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Abstract

In 2008, Vallentin made a conjecture involving the least distortion of an

embedding of a distance-regular graph into Euclidean space. Vallentin’s

conjecture implies that for a least distortion Euclidean embedding of

a distance-regular graph of diameter d, the most contracted pairs of

vertices are those at distance d. In this paper, we confirm Vallentin’s

conjecture for several families of distance-regular graphs. We also provide

counterexamples to this conjecture, where the largest contraction occurs

between pairs of vertices at distance d − 1. We suggest three alternative

conjectures and prove them for various families of distance-regular graphs

and for distance-regular graphs of diameter 3.

1 Introduction

Embeddings of graphs into Euclidean spaces have been well studied in mathe-
matics and computer science. Linial, London, and Rabinovich [9] investigated
the distortion of such embeddings. Informally, the distortion of an embedding of
a graph G measures how much the combinatorial distance between two vertices
in G disagrees with their Euclidean distance in the embedding. This ties
into a larger problem of embedding finite metric spaces in Hilbert spaces, as
investigated by Bourgain [1].

In this paper, we continue an investigation by Vallentin [13] into the least
Euclidean distortion constant of distance-regular graphs. We refer to [9, 13] for
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more details on applications and related work. More formally, let ‖·‖ denote the
norm of the standard inner product on R

n, that is ‖x‖ =
√

x2
1 + . . .+ x2

n. Let
(X, d) be a finite metric space with n elements. For an embedding ρ : X → R

n

define, as in [9], the following quantities:

• expansion(ρ) := supx,y∈X
‖ρ(x)−ρ(y)‖

d(x,y) ,

• contraction(ρ) := supx,y∈X
d(x,y)

‖ρ(x)−ρ(y)‖ ,

• distortion(ρ) := expansion(ρ) · contraction(ρ).
Let c2(X, d) denote the least distortion for which (X, d) can be embedded into
R

n. We say that an embedding of (X, d) is optimal if it has distortion c2(X, d).
Any connected graph G = (V,E) can be regarded as a finite metric space with
point set V , where the distance between any two vertices equals the length of the
shortest path between them. We denote the least distortion of this finite metric
space by c2(G). In this paper, all embeddings are faithful, that is ‖ρ(x)− ρ(y)‖
only depends on d(x, y), not the choice of x or y. Vallentin showed that this is
no restriction in case of distance-regular graphs (see [13, Lemma 3.2]).

Extending the work by Enflo for the hypercube [5] and by Linial and Magen
for cycles and products of cycles [10], Vallentin [13] determined the least distor-
tion constant of Hamming graphs (including the hypercube), Johnson graphs,
and all strongly regular graphs. These are all classes of distance-regular graphs.
A connected graph is distance-regular if it is regular of valency k, and if for any
two vertices x, y at distance i, there are precisely ci neighbors of y at distance
i− 1 from x and precisely bi neighbors at distance i+1 from x [3, p. 126]. The
set {b0, b1, . . . , bd−1; c1, c2, . . . , cd} is called the intersection array of the distance-
regular graph. The adjacency matrix of a distance-regular graph G has precisely
d + 1 distinct eigenvalues θ0 > θ1 > . . . > θd. Further, there exist univariate
polynomials vi of degree i such that vi(θj) is an eigenvalue of the distance-i-
graph of G (and any eigenvalue of the distance-i-graph can be obtained that

way). Denote wi(θj) =
vi(θj)
vi(θ0)

. The sequence (w0(θj), . . . , wd(θj)) is called the

standard sequence of G corresponding to the eigenvalue θj in [3, p. 128] and
has the name the r-cosine sequence with respect to θj in [6, p. 263] (see Section
2, [3, Chapter 4] and [6, Chapter 13] for a more details). In this more general
framework, Vallentin proved the following result (see [13, Theorem 2.4]).

Theorem 1.1 (Vallentin, 2008). If G is a distance-regular graph with diameter
d, then

c2(G)2 ≥ d2 min
j∈{1,...,d}

{

1− w1(θj)

1− wd(θj)

}

.

In [13], Vallentin also conjectured that the preceding result is tight.

Conjecture 1.2. (Vallentin’s Conjecture) If G is a distance-regular graph with
diameter d, then

c2(G)2 = d2 min
j∈{1,...,d}

{

1− w1(θj)

1− wd(θj)

}

.
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In Section 3, we disprove Conjecture 1.2 by presenting several counterexam-
ples with diameter 4 and larger. We also prove Conjecture 1.2 for several families
of distance-regular graphs. Most notably, we prove the following result for
distance-regular graphs with classical parameters (see Section 5 for definitions).

Theorem 1.3. Let G be a distance-regular graph with classical parameters
(d, b, α, β) with b ≥ 1. If β is sufficiently large, then

c2(G)2 = d2
1− w1(θ1)

1− wd(θ1)
= d2

bd−1

[

d
1

]

b

.

In Section 5 we verify Conjecture 1.2 for known families of distance-regular
graphs with classical parameters. We believe that Conjecture 1.2 is true with
some minor modifications. Indeed, the proof of Theorem 1.1 in [13] actually
shows the following more general bound1 (see Section 3 for details).

Theorem 1.4. If G is a distance-regular graph with diameter d, then

c2(G)2 ≥ max
r=d−1,d

{

r2 min
j∈{1,...,d}

{

1− w1(θj)

1− wr(θj)

}}

.

We suggest the following revised version of Vallentin’s conjecture.

Conjecture 1.5. (Vallentin’s Conjecture, revised) If G is a distance-regular
graph of diameter d, then

c2(G)2 = max
r=d−1,d

{

r2
1− w1(θ1)

1− wr(θ1)

}

.

The maximum occurs at r = d unless G is antipodal.

We prove this conjecture for distance-regular graphs of diameter 3 in The-
orem 4.3. We also provide partial results towards this conjecture for distance-
regular graphs of diameter 4 in Section 4. In addition to Conjecture 1.5, we also
propose the following two conjectures.

Conjecture 1.6. Let G be a distance-regular graph of diameter d with eigen-
values θ0 > θ1 > . . . > θd. If (w0(θ1), w1(θ1), . . . , wd(θ1)) is the cosine sequence
of θ1, then

min
1≤r≤d

{

1− wr(θ1)

r2

}

= min
r=d−1,d

{

1− wr(θ1)

r2

}

.

The minimum occurs at r = d unless G is antipodal.

Conjecture 1.7. Let G be a distance-regular graph with diameter d and eigen-
values θ0 > θ1 > . . . > θd. For 1 ≤ j ≤ d, let (w0(θj), w1(θj), . . . , wd(θj))
denote the cosine sequence of θj. For any r ∈ {2, 3, . . . , d}, the following holds:

max
1≤j≤d

{

1− wr(θj)

1− w1(θj)

}

=
1− wr(θ1)

1− w1(θ1)
.

1Indeed, the maximum can range over all r ∈ {1, . . . , d}, but we are not aware of any cases
for which a value of r ∈ {1, . . . , d− 2} yields a better bound.
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Note that Conjecture 1.6 and Conjecture 1.7 imply Conjecture 1.5. We have
verified Conjecture 1.6 and Conjecture 1.7 (and therefore Conjecture 1.5) for all
feasible intersection arrays given in Brouwer’s list in [4] (see §3.4).

2 Optimal Embeddings

Let G be a distance-regular graph with n vertices and diameter d. Consider the
graph representation of G on the eigenspace corresponding to an eigenvalue θ
(see [6, §13] for definitions). For us, usually θ = θ1. Suppose θ has multiplicity
m. Let Uθ be a n×m matrix with columns forming an orthonormal basis for the
eigenspace associated with θ. Denote by uθ(i) ∈ R

m the i-th row of Uθ. Note
that the Euclidean inner product (uθ(i), uθ(i)) does not depend on the vertex i
(see [6, p. 262]). If i and j are vertices in G at distance r, then the r-th cosine
wr(θ) may be defined as:

wr(θ) =
(uθ(i), uθ(j))

(uθ(i), uθ(i))
.

If we take the inner product of both sides of the equation

θuθ(i) =
∑

j∼i

uθ(j)

with uθ(ℓ), where ℓ is a vertex with d(ℓ, i) = r, then we obtain the recurrence

θwr(θ) = crwr−1(θ) + arwr(θ) + brwr+1(θ),

where ar = k − br − cr. It is easy to verify that wr(θj) =
vr(θj)
vr(θ0)

and we recover

our definition of wr from Section 1.
Let us define the following embedding ρ : V (G) → R

m as

ρ : j → 1
√

2(uθ(i), uθ(i))(1 − w1(θ))
uθ(j). (1)

Lemma 13.3.1 of [6] implies that ρ is an injective function, thus, an embedding.
For two vertices x and y at distance r, we denote Sr := ‖ρ(x) − ρ(y)‖. Using
the above definition of ρ, we get that

Sr = ‖ρ(x)− ρ(y)‖ =

√

1− wr(θ)
√

1− w1(θ)
.

According to [10, Claim 2.2] the most expanded pairs of vertices are adjacent.
For the sake of completeness, we include the proof below for the embedding ρ.

Lemma 2.1. Let p and q are two positive integers such that pq ≤ d. Then

Spq

pq
≤ Sq

q
.

If q = 1, then any pair of adjacent vertices are most expanded for ρ.
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Proof. Consider two vertices x and y at distance pq. There exists vertices x0 =
x, x1, . . . , xp = y such that d(xi, xi+1) = q for all i = 0, . . . , p − 1. Using the
triangle inequality, we obtain that

Spq

pq
=

‖ρ(x)− ρ(y)‖
d(x, y)

≤
∑p−1

i=0 ‖ρ(xi)− ρ(xi+1)‖
pq

=
pSq

pq
=

Sq

q
.

Taking q = 1 above proves the second assertion.

Thus,

expansion(ρ) = sup
x,y∈V (G)

‖ρ(x)− ρ(y)‖
d(x, y)

=
S1

1
=

√

1− w1(θ)
√

1− w1(θ)
= 1,

and therefore, distortion(ρ) = contraction(ρ) = max1≤r≤d

{

r
√

1−w1(θ1)√
1−wr(θ1)

}

.

Conjecture 1.7 implies that the embedding ρ in (1) with θ = θ1 is an optimal
embedding for any distance-regular graphs.

We obtain some evidence for Conjecture 1.6.

Corollary 2.2. Let G be a distance-regular graph of diameter d with eigenvalues
θ0 > θ1 > . . . > θd. If (w0(θ1), w1(θ1), . . . , wd(θ1)) is the cosine sequence of θ1,
then

min
1≤r≤d

{

1− wr(θ1)

r2

}

= min
⌈ d+1

2 ⌉≤r≤d

{

1− wr(θ1)

r2

}

.

Proof. We apply Lemma 2.1. For any q, such that q ≤ ⌊d+1
2 ⌋, there exist a

positive integer p such that ⌈d+1
2 ⌉ ≤ pq ≤ d.

3 Antipodal Graphs and Counterexamples

Linial, London and Rabinovich [9, Corollary 3.5] showed that the least Euclidean
distortion of a graph G = (V,E) is given by the equation:

c2(G)2 = max
Q

∑

(x,y):qx,y>0 d(x, y)
2qx,y

∑

(x,y):qx,y<0 d(x, y)
2(−qx,y)

,

where the maximum is taken over all positive semidefinite V × V matrix Q =
(qx,y)x,y∈V having each row sum equal to zero. Given an embedding ρ with
minimal distortion c2(G), Linial and Magen [10, Claim 1.4] proved that a matrix
Q attaining equality above must satisfy the following properties:

• qx,y > 0 only for the most contracted pairs of vertices (x, y), i.e., the pairs
with d(x, y)/‖ρ(x) − ρ(y)‖ =contraction(ρ),

• qx,y < 0 only for the most expanded pairs (x, y), i.e., the pairs with
‖ρ(x)− ρ(y)‖/d(x, y) =expansion(ρ),
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• qx,y = 0 for all the other pairs of vertices.

Moreover, Linial and Magen [10, Claim 2.2] showed that the most expanded
pairs of vertices are always the pairs of adjacent vertices.

In his proof of Theorem 1.1, Vallentin used the above facts and assumed
that the most contracted pairs of vertices are those at distance d = diam(G),
with the comment (see [13, p. 6]):

so the lower bound can only be tight when the most contracted pairs are at
distance d.

In this section, we show that this is not always the case and present several
distance-regular graphs for which an optimal embedding has the property that
the most contracted pairs of vertices are the pairs of vertices at distance d− 1.
All the examples we found are antipodal. In agreement with Conjecture 1.5,
we are not aware of any distance-regular graphs for which the most contracted
vertices occur at a distance other than d− 1 or d.

3.1 Proof of Theorem 1.4

With these ideas in mind, let us now prove Theorem 1.4. This can be done by
using essentially the same argument as Vallentin’s proof of Theorem 1.1. For
1 ≤ r ≤ d, on page 6 of [13], use the matrix Qα = (k1 − αkr)A0 − A1 + αAr

instead of Qα = (k1 − αkd)A0 −A1 + αAd. The same proof implies that

c2(G)2 ≥ r2 min
j∈{1,...,d}

{

1− w1(θj)

1− wr(θj)

}

.

Therefore,

c2(G)2 ≥ max
r:1≤r≤d

r2 min
j∈{1,...,d}

{

1− w1(θj)

1− wr(θj)

}

.

3.2 Antipodal Graphs

A distance-regular graph is antipodal whenever bi = cd−i for all i = 0, 1, . . . , d,
except possibly i = ⌊d/2⌋. If G is antipodal, then by definition, the distance-d
graph Gd is a disjoint union of cliques. These cliques are called the fibers of G.
These cliques are all the same size. We also say G is an antipodal r-cover, where
r is the size of the cliques of Gd. When r = 2, we say antipodal double-cover.
The distinct eigenvalues ofKn are n−1 and −1. We know sign(wd(θi)) = (−1)i,
thus for an antipodal r-cover we have

wd(θj) =

{

1, if j is even,

− 1
r−1 , if j is odd.

First, we show Conjecture 1.7 for r = d−1 and d in case of antipodal graphs.

6



Lemma 3.1. Let G be an antipodal r-cover. Let w0(θj), w1(θj), . . . , wd(θj)
denote the cosine sequence of θj. For any r = d− 1, d, we have

max
1≤j≤d

{

1− wr(θj)

1− w1(θj)

}

=
1− wr(θ1)

1− w1(θ1)
.

Proof. For r = d, we have min{wd(θj)} = wd(θ1) and max{w1(θj)} = w1(θ1).

For r = d − 1, using the three-term recursion for wi, we obtain
wd−1(θj)
wd(θj)

=
θj−ad

bd
. Thus, we have

wd−1(θj) =

{

θj
k , if j is even,

− 1
r−1 · θj

k , if j is odd.

Thus, we have
1−wd−1(θj)
1−w1(θj)

= 1 for j even, and
1−wd−1(θj)
1−w1(θj)

=
1+

θj

k(r−1)

1− θj

k

for j

odd.

For G an antipodal r-cover, then the expressions for wd−1(θ1) and wd(θ1)
from the preceding proof imply that

1− wd−1(θ1)

(d− 1)2
<

1− wd(θ1)

d2
⇐⇒ θ1

k
<

d2 − 2rd+ r

d2
. (2)

Notice that, if d ≤ 2r−1, then d2−2rd+ r < 0 but θ1 > 0. Thus, we obtain
the following important corollary.

Corollary 3.2. Let G be an antipodal r-cover of diameter d such that d ≥ 2r.

Then G is a counterexample of Conjecture 1.2 if and only if θ1
k < d2−2rd+r

d2 .

In the next four subsections, we describe four counterexamples to Conjecture
1.6.

3.3 Counterexamples

3.3.1 Hadamard graphs

For µ even, let G denote a Hadamard graph with intersection array {2µ, 2µ−
1, µ, 1; 1, µ, 2µ− 1, 2µ}, see [3, §1.8]. We obtain the following Wij = wj(θi):

W =















1 1 1 1 1
1 1√

2µ
0 − 1√

2µ
−1

1 0 − 1
2µ−1 0 1

1 − 1√
2µ

0 1√
2µ

−1

1 −1 1 −1 1















.

According to Theorem 1.1, we have

c2(G)2 ≥ 42 ·min

{

1− 1√
2µ

1 + 1
,
1− 0

1− 1
,
1 + 1√

2µ

1 + 1
,
1 + 1

1− 1

}

= 8

(√
2µ− 1√
2µ

)

.
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Theorem 1.4 actually shows that (for r = d− 1 = 3)

c2(G)2 ≥ 32 min

{

1− 1√
2µ

1 + 1√
2µ

,
1− 0

1− 0
,
1 + 1√

2µ

1− 1√
2µ

,
1 + 1

1 + 1

}

= 9

(√
2µ− 1√
2µ+ 1

)

.

When µ ≥ 34, 9
(√

2µ−1√
2µ+1

)

> 8
(√

2µ−1√
2µ

)

. Thus, any Hadamard graph with

µ ≥ 34 is a counterexample to Conjecture 1.2. The embedding in (1) shows that

c2(G)2 = 9

(√
2µ− 1√
2µ+ 1

)

.

3.3.2 Coset graph of the shortened binary Golay code

The coset graph of the shortened binary Golay code G is distance-regular of
diameter 6 with intersection array {22, 21, 20, 3, 2, 1; 1, 2, 3, 20, 21, 22}, see [3,
§11.3H]. Theorem 1.1 only shows c2(G)2 ≥ 126

11 ∼ 11.45, while Theorem 1.4
together with the embedding in Section 2 shows that c2(G)2 = 35

3 = 11.6.

3.3.3 Double coset graph of truncated Golay code

The double coset graph of truncated Golay code G is distance-regular of diam-
eter 7 with intersection array {22, 21, 20, 16, 6, 2, 1; 1, 2, 6, 16, 20, 21, 22}, see [3,
§11.3F]. Theorem 1.1 only shows c2(G)2 ≥ 147

11 ∼ 13.36, while Theorem 1.4
together with the embedding in Section 2 shows that c2(G)2 = 27

2 = 13.5.

3.3.4 Double coset graph of binary Golay code

The double coset graph of binary Golay code G is distance-regular of diameter 7
with intersection array {23, 22, 21, 20, 3, 2, 1; 1, 2, 3, 20, 21, 22, 23}, see [3, §11.3E].
Theorem 1.1 only shows c2(G)2 ≥ 343

23 ∼ 14.91, while Theorem 1.4 together with
the embedding in Section 2 shows that c2(G)2 = 63

4 = 15.75.

3.4 Feasible Intersection Arrays for Counterexamples

There are further intersection arrays which are feasible and could provide coun-
terexamples if corresponding distance-regular graphs were to be found. The
fact that we cannot find any counterexamples to Conjecture 1.5 even among
feasible intersection arrays is in our opinion strong evidence that it is correct.
Feasible intersection arrays for distance-regular graphs of bipartite, antipodal
of diameter 4 are so plentiful that we will not list them here.

Intersection arrays with diameter at least 4 which are antipodal, but not
bipartite, on at most 2048 vertices:

8



d v IA c2(G)2 comments
4 1104 {76, 75, 6, 1; 1, 6, 75, 76} ∼ 7.14773
4 1600 {85, 84, 5, 1; 1, 5, 84, 85} ∼ 7.23867
4 1568 {116, 115, 10, 1; 1, 10, 115, 116} ∼ 7.47073
4 1232 {135, 128, 18, 1; 1, 18, 128, 135} 7.2 G1,2 SRG
4 1850 {154, 150, 15, 1; 1, 15, 150, 154} 7.5
4 2000 {243, 224, 36, 1; 1, 36, 224, 243} 7.2
6 2048 {22, 21, 20, 3, 2, 1; 1, 2, 3, 20, 21, 22} 35

3
§3.3.2

Intersection arrays with diameter at least 5 which are antipodal and bipartite
on at most 2048 vertices for diameter 5 and on at most 65536 vertices otherwise.

d v IA c2(G)2 comments

5 704 {26, 25, 24, 2, 1; 1, 2, 24, 25, 26} 10

5 420 {33, 32, 27, 6, 1; 1, 6, 27, 32, 33} 64
7

5 704 {36, 35, 32, 4, 1; 1, 4, 32, 35, 36} 112
11

5 1408 {37, 36, 35, 2, 1; 1, 2, 35, 36, 37} 120
11

5 532 {45, 44, 36, 9, 1; 1, 9, 36, 44, 45} 176
19

5 784 {46, 45, 40, 6, 1; 1, 6, 40, 45, 46} 72
7

5 1276 {49, 48, 45, 4, 1; 1, 4, 45, 48, 49} 320
29

5 1300 {55, 54, 50, 5, 1; 1, 5, 50, 54, 55} 144
13

5 648 {57, 56, 45, 12, 1; 1, 12, 45, 56, 57} 28
3

Q-pol.

5 1104 {76, 75, 64, 12, 1; 1, 12, 64, 75, 76} 240
23

5 1600 {85, 84, 75, 10, 1; 1, 10, 75, 84, 85} 11.2

5 1334 {96, 95, 80, 16, 1; 1, 16, 80, 95, 96} 304
29

5 1568 {116, 115, 96, 20, 1; 1, 20, 96, 115, 116} 368
35

Q-pol.

7 4114 {16, 15, 15, 14, 2, 1, 1; 1, 1, 2, 14, 15, 15, 16} 180
11

7 2048 {22, 21, 20, 16, 6, 2, 1; 1, 2, 6, 16, 20, 21, 22} 13.5 §3.3.3

7 4096 {23, 22, 21, 20, 3, 2, 1; 1, 2, 3, 20, 21, 22, 23} 15.75 §3.3.4

7 19140 {105, 104, 100, 75, 30, 5, 1; 1, 5, 30, 75, 100, 104, 105} 468
29

4 Small Diameter

4.1 Strongly Regular Graphs

Let G be a strongly regular graph (SRG) with v vertices and eigenvalues k >

r > s. In [13, Theorem 2.5] it is shown that c2(G)2 = 4(v−k−1)(k−r)
k(v−k+r) . We found

c2(G)2 = 4(1 + 1
s ) which is equivalent.2

Note that the proof of Theorem 1.1 in [13] implies that the optimal embed-
ding comes from the orthogonal projection onto the eigenspace of θ1 = r (as is
implied by Conjecture 1.7). We verified this explicitly.

4.2 Diameter 3 or 4

Lemma 4.1. Let G be a distance-regular graph of diameter 3 or 4. Then
Conjecture 1.6 holds true for G.

2Note that in [13, §4.3] the eigenvalues of strongly regular graphs are stated incorrectly.
This has no consequence, as these formulas are not used in [13].
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Proof. For d = 3, 4 we have ⌈d+1
2 ⌉ = 2, 3 respectively. By using Corollary 2.2,

we are done.

Lemma 4.2. Let G be a distance-regular graph of diameter 3. Then Conjecture
1.7 holds true for G.

Proof. By using the three term recursion of wr(θ) we obtain that

1− w2(θj)

1− w1(θj)
=

θ0 + θj − a1
b1

,

and

1− w3(θj)

1− w1(θj)
=

θ2j − (a1 + a2 − θ0)θj + a1a2 − b1c2 − b0c1 − (a1 + a2 − θ0)θ0

b1b2
.

Since θ1 > θ2 > θ3, thus max1≤j≤3

{

1−w2(θj)
1−w1(θj)

}

= 1−w2(θ1)
1−w1(θ1)

. Moreover, to show

that max1≤j≤3

{

1−w3(θj)
1−w1(θj)

}

= 1−w3(θ1)
1−w1(θ1)

is equivalent to show that θ0 + θ1 +

θ3 − (a1 + a2) ≥ 0. That is equivalent to show that a3 − θ2 ≥ 0, because
θ0 + θ1 + θ2 + θ3 = a1 + a2 + a3. Consider the matrix

T =





−c1 b1 0
c1 k − b1 − c2 b2
0 c2 k − b2 − c3



 .

The eigenvalue of T are θ1, θ2, θ3 (see [3, §4.1.B]). As,

[

−c1 0
0 k − b2 − c3

]

is a

principal submatrix of T , so by the interlacing of the eigenvalues we have that
θ2 ≤ k − b2 − c3 = a3 − b2, or θ2 ≤ −c1 = −1. In either case, a3 − θ2 ≥ 0.

Theorem 4.3. Let G be a distance-regular graph of diameter 3 then Conjecture
1.5 holds true for G. That is,

c2(G)2 = max

{

4
1− w1(θ1)

1− w2(θ1)
, 9

1− w1(θ1)

1− w3(θ1)

}

= max

{

4b1
θ0 + θ1 − a1

,
9b1b2

(θ0 + θ1 − a1)(θ0 + θ1 − a2)− θ0θ1 − b1c2 − θ0

}

and further if G is an antipodal r-cover, then

c2(G)2 = 9
1− w1(θ1)

1− w3(θ1)
=

9b1b2
(θ0 + θ1 − a1)(θ0 + θ1 − a2)− θ0θ1 − b1c2 − θ0

.

Proof. First assertion follows from Lemma 4.1 and Lemma 4.2. The second one
follows since for any r ≥ 2 we have d2 − 2rd + r = 9 − 5r < 0 but θ1 > 0 and
can use (2).
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4.2.1 Taylor Graphs

A distance-regular graph with intersection array {k, µ, 1; 1, µ, k} is called a
Taylor graph [3, §1.5]. The eigenvalues of the Taylor graph are θ0 = k > θ1 =
z1 > θ2 = −1 > θ3 = z2, where z1 and z2 are the roots of z

2−(k−1−2µ)z−k = 0,
i.e.,

z1, z2 =
(k − 1− 2µ)±

√

(k − 1− 2µ)2 + 4k

2
.

For the matrix W , Wij = wj(θi), we obtain

W =









1 1 1 1
1 z1/k −z1/k −1
1 −1/k −1/k 1
1 z2/k −z2/k −1









.

By using Theorem 4.3, we have that

c2(G)2 = 32
k − z1
2k

.

4.2.2 Generalized Polygons

Let us consider the point graph G of a generalized polygon of order (s, t), see
[3, §6.5] for details. In the following we generalize the results for classical
generalized polygons with s = t in [8]. A generalized polygon with s > 1
and t > 1 whose point graphs is neither complete nor strongly regular, is either
a generalized hexagon with s ≤ t3 and t ≤ s3 or a generalized octagon with
s ≤ t2 and t ≤ s2. Note that in both cases Lemma 4.1 shows that Conjecture
1.6 is true for these graphs. In addition, a straightforward calculation implies
that the minimum in Conjecture 1.6 is attained for r = d. Thus, to compute
the least distortion we only need to prove Conjecture 1.7 for r = d.

For G the point graph of a generalized hexagon, we obtain the following
Wij = wj(θi):

W =











1 1 1 1

1 s−1+
√
st

s(t+1)
−s+(s−1)

√
st

s2t(t+1) −1/st
√
st

1 s−1−
√
st

s(t+1)
−s−(s−1)

√
st

s2t(t+1) 1/st
√
st

1 −1/s 1/s2 −1/s3











.

Note that w3(θ2) > 0, so we only need to compare
1−w3(θj)
1−w1(θj)

for j = 1, 3 to

show Conjecture 1.7 for r = 3. This is easily done, since 1−w3(θ1)
1−w1(θ1)

> 1−w3(θ3)
1−w1(θ3)

⇐⇒ (s3 + s2)(t + 1) + st2(s3t2 + 1) + t3/2(t(s7/2 − s3/2) + (s9/2 − s1/2)) > 0.
Hence,

c2(G)2 = 32
t
√
st

(
√
st+ 1)(t+ 1)

.
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For G the point graph of a generalized octagon, we obtain

W =















1 1 1 1 1

1 s−1+
√
2st

s(t+1)
s(t−1)+(s−1)

√
2st

s2t(t+1)
(s−1)st−s

√
2st

s3t2(t+1) −1/s2t2

1 (s− 1)/s(t+ 1) −1/st −(s− 1)/s2t(t+ 1) 1/s2t2

1 s−1−
√
2st

s(t+1)
s(t−1)−(s−1)

√
2st

s2t(t+1)
(s−1)st+s

√
2st

s3t2(t+1) −1/s2t2

1 −1/s 1/s2 −1/s3 1/s4















.

Note that w4(θ2) > 0, w4(θ4) > 0, and w4(θ1) = w4(θ3). Thus, Conjecture
1.7 holds true for r = 4. Hence,

c2(G)2 = 42
st2(st−

√
2st+ 1)

(t+ 1)(s2t2 + 1)
.

5 Graphs with Classical Parameters

Given an integer b 6= 0,−1 and two integers m and n, define

[

n

m

]

=

[

n

m

]

b

=



























0 if m < 0,
(

n

m

)

if b = 1,

m−1
∏

h=0

bn−h − 1

bm−h − 1
otherwise.

Let d be a natural number. By the graphs with classical parameters (d, b,
α, β), we mean the distance-regular graphs with intersection numbers bi = (

[

d
1

]

−
[

i
1

]

)(β − α
[

i
1

]

) and ci =
[

i
1

]

(1 + α
[

i−1
1

]

) (0 ≤ i ≤ d) (see [3, §6.1]). It follows

that k = b0 = β
[

d
1

]

and ai = k− bi − ci =
[

i
1

]

(β − 1+α(
[

d
1

]

−
[

i
1

]

−
[

i−1
1

]

)). The

eigenvalues of graphs with classical parameters are θi =
[

d−i
1

]

(β −α
[

i
1

]

)−
[

i
1

]

=

b−ibi −
[

i
1

]

, 0 ≤ i ≤ d, (see [3, Corollary 8.4.2]). The following is a proof of
Conjecture 1.6 for all distance-regular graphs of classical parameter with b ≥ 1.

Theorem 5.1. Let G be a distance-regular graphs of classical parameter with
b ≥ 1 of diameter d. Let w0(θ1), w1(θ1), . . . , wd(θ1) denote the cosine sequence
of θ1. Then

min
1≤r≤d

{

1− wr(θ1)

r2

}

=
1− wd(θ1)

d2
.

Proof. Since b ≥ 1, thus θ0 > θ1 > . . . > θd. Suppose b = 1. Then the proof of
[3, Theorem 6.1.1] implies that

1− wr(θ1) = r

(

1− θ1
k

)

. (3)

Thus,

min
1≤r≤d

{

1− wr(θ1)

r2

}

=
1− wd(θ1)

d2
.
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Suppose b > 1. According to [3, Proposition 4.1.8 and Corollary 8.4.2] we have

wr(θ1) = uσr + v = u

[

d− r

1

]

b

+ v,

for some numbers u 6= 0 and v. By using w0(θ1) = 1 and w1(θ1) =
θ1
k we solve

for u and v and we obtained

1− wr =
b(1− b−r)

(b − 1)

(

1− θ1
k

)

. (4)

Thus, the assertion follows.

Corollary 5.2. Let G be a distance-regular graphs of classical parameter with
b ≥ 1. Then

d2 min
j∈{1,...,d}

{

1− w1(θj)

1− wd(θj)

}

≤ c2(G)2 ≤ d2
{

1− w1(θ1)

1− wd(θ1)

}

= d2
bd−1

[

d
1

]

b

.

Proof. The first inequality follows from Theorem 1.1. The second follows,

since Theorem 5.1 implies that distortion(ρ)2 = d2
{

1−w1(θ1)
1−wd(θ1)

}

and c2(G)2 ≤
distortion(ρ)2. The last equality follows from (3) and (4) for r = d.

If Conjecture 1.7 holds true (for r = d) for graphs of classical parameters
with b ≥ 1 then the above inequality becomes equality. Now we can show
Conjecture 1.7 for β sufficiently large, that is Theorem 1.3.

Proof of Theorem 1.3. According to [2, Theorem 4.5], if β is sufficiently large,
then min1≤j≤d{wd(θj)} = wd(θ1). We already know that max1≤j≤d{w1(θj)} =
w1(θ1).

5.1 Known Examples

In this subsection, we compute the least distortion constant of various graphs
with classical parameters from Tables 6.1 and 6.2 in [3]. In each case, we provide
a reference for the needed eigenvalues. We only include explicit calculations for
the arguably hardest case of Hermitian forms graphs. Our results suggest that
the upper bound in Corollary 5.2 is tight for all distance-regular regular graphs
with classical parameters and b ≥ 1.

We start with example with b ≥ 1. Note that we have Corollary 5.2 in
this case, which simplifies calculations. The eigenvalues and therefore c2(G)
only depend on the parameters (d, b, α, β). If different graphs have the same
parameters, then we refer to that entry.
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name d b α β c2(G) ref

Hamming graph d 1 0 q−1
√
d [13, Th. 2.5(a)]

Johnson graph d 1 1 n−d
√
d [13, Th. 2.5(b)]

Halved cube d 1 2 m
√
d [3, §9.2D]

Doob graph d 1 0 3
√
d see Hamming, q=4

Grassmann graph d q q
[

n−d+1
1

]

q
−1 d

√

qd−1/
[

d

1

]

q
[2, §5, Prop. 5.4(iv)]

Twisted Grassmann d q q
[

n−d+1
1

]

q
−1 d

√

qd−1/
[

d

1

]

q
see Grassmann

Bilinear forms graph d q q−1 qn−1 d
√

qd−1/
[

d

1

]

q
[2, §7, Prop. 7.3(iii)]

Dual polar graph
e ∈ {0, 1

2
, 1, 3

2
, 2} d q 0 qe d

√

qd−1/
[

d

1

]

q
[2, §6]

Alternating forms graph d q2 q2−1 qm−1 d
√

bd−1/
[

d

1

]

b
[2, §8, Prop. 8.3(i)]

Quadratic forms graph d q2 q2−1 qm−1 d
√

bd−1/
[

d

1

]

b
see alternating

Half dual polar graph
Dn,n(q)

d q2 q2 + q
[

m+1
1

]

q
−1 d

√

bd−1/
[

d

1

]

b
[3, §9.4C]

Dist. 1-or-2 symplectic
dual polar graph

d q2 q2 + q
[

m+1
1

]

q
−1 d

√

bd−1/
[

d

1

]

b
see Dn,n(q)

Pseudo Dm(q) graphs d q 0 1 d
√

bd−1/
[

d

1

]

b
dual polar, e=0

Gosset graph E7(1) 3 1 4 9
√
3 [3, §3.11]

Exceptional Lie graph
E7,7(q)

3 q4
[5
1

]

q
−1

[10
1

]

q
−1 3

√

b2/
[3
1

]

b
[3, §10.7]

Affine E6(q) graph 3 q4 q4−1 q9−1 3
√

b2/
[3
1

]

b
[3, §10.8]

For b ≤ −1, we have the following.

name d b α β c2(G) ref

Witt graph M24 3 −2 −4 10 2
5

√
42 [3, §11.4A]

Witt graph M23 3 −2 −2 5 2
√

21
13

[3, §11.4B]

Extended ternary
Golay code graph

3 −2 −3 8
√

33
5

[3, §11.3A]

Triality graph 3D4,2(q) 3 −q q

1−q
q2+q 3

√

q5

(q3+1)(q2+1)
[3, §10.7]

Unitary dual polar
graph U(2d,

√
q)

d −√
q

q+
√

q

1−
√

q

√
q−(−

√
q)d+1

1−
√

q
d
√

qd−1/
[

d

1

]

q

dual polar
for e = 1

2

Hermitian forms graph d −q −q−1 −(−q)d−1 d

√

(bd+bd−1+b+1)bd−1

(bd+b+1)
[

d
1

]

b

§5.2

Note that U(2d,
√
q) is a dual polar graph with e = 1

2 which happens to have
two sets of classical parameters, one with b ≥ 1, see [3, Corollary 6.2.2].

5.2 Hermitian forms graphs

Hermitian forms graphs are graphs with classical parameters with (d, b, α, β)
= (d,−q,−q−1,−(−q)d−1) see [3, §9.5C]. We know that

vj(θi) = (−1)j
j
∑

h=0

(−q)(
j−h
2 )+hd

[

d− h

d− j

]

b

[

d− i

h

]

b

(5)

(see [2, §9], [11], and [12]). Here the Gaussian coefficients have base b = −q.
The eigenvalues are θi = ((−q)2d−i − 1)/(q + 1) for i = 0, . . . , d. Note that, the
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second largest eigenvalue here is θ2 rather than θ1. Thus, we prove conjectures
1.6 and 1.7 with respect to θ2. Since Hermitian forms graphs are self-dual, thus
wr(θi) = wi(θr) for all i = 0, . . . , d and r = 0, . . . , d. We prove Conjecture 1.6
and Conjecture 1.7 below.

Proposition 5.3. Let G be a Hermitian forms graph. Then

min
1≤r≤d

{

1− wr(θ2)

r2

}

=
1− wd(θ2)

d2
.

Proof. We know wr(θ2) = w2(θr) =
v2(θr)

v2(θ0)
. By using (5), we get that

1− wr(θ2)

r2
=

q2d−1(1− q−2r) + (q − 1)((−1)rq−r − 1)

(q2d−1 − q)(1− q−2d)r2
.

The assertion follows.

Proposition 5.4. Let G be a Hermitian forms graph. Then

max
1≤j≤d

{

1− wd(θj)

1− w1(θj)

}

=
1− wd(θ2)

1− w1(θ2)
.

Proof. We know wd(θj) = wj(θd) =
vj(θd)

vj(θ0)
=

vj(θd)

kj
. By using (5) to compute

vj(θd) and [3, Corollary 8.4.4] to compute kj , we get that

wd(θj) =

(

j−1
∏

h=0

((−q)d−h + 1)

)−1

.

Recall that

w1(θj) =
θj
θ0

=
(−q)2d−j − 1

(−q)2d − 1

and that max
1≤j≤d

{w1(θj)} = w1(θ2). Note that we have

|wd(θj)|
|wd(θj+1)|

= |(−q)d−j + 1| ≥ 1

as well as

wd(θ1) =
1

(−q)d + 1
, and

wd(θ2) =
1

((−q)d + 1)((−q)d−1 + 1)
.
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Thus, if d is even then min
1≤j≤d

{wd(θj)} = wd(θ2). Hence,

max
1≤j≤d

{

1− wd(θj)

1− w1(θj)

}

=
1− wd(θ2)

1− w1(θ2)
.

On the other hand, if d is odd then

min
2≤j≤d

{wd(θj)} = wd(θ2),

but min{wd(θ1), wd(θ2)} = wd(θ1). Hence,

max
1≤j≤d

{

1− wd(θj)

1− w1(θj)

}

= max

{

1− wd(θ1)

1− w1(θ1)
,
1− wd(θ2)

1− w1(θ2)

}

= max

{

qd + 1

qd−1(q + 1)
,

(qd + 1)(qd + q − 1)

qd−1(q + 1)(qd + q − 1− qd−1)

}

=
1− wd(θ2)

1− w1(θ2)
.

Thus, by using the above two propositions we have

c2(G) = d

√

1− w1(θ2)

1− wd(θ2)
= d

√

(bd + b+ 1 + bd−1)bd−1

(bd + b+ 1)
[

d
1

]

b

.

6 Odd Graphs

For natural numbers n ≥ 2d, the Johnson graph J(n, d) has as its vertices the
d-subsets of a given set with n elements, where two d-subsets are adjacent if and
only they meet in a (d− 1)-set. For 0 ≤ j ≤ d, the distance-j graph J(n, d, j) of
the Johnson graph J(n, d) has the same vertex set as J(n, d) and two d-subsets
are adjacent in J(n, d, j) if and only if they are at distance j in J(n, d) which is
equivalent to their intersection having size d−j. The eigenvalues of the Johnson
graph J(n, d, j) are given by the Eberlein polynomials Ej(i) for 0 ≤ i, j ≤ d,
where

Ej(i) =

j
∑

h=0

(−1)h
(

i

h

)(

d− i

j − h

)(

n− d− i

j − h

)

.

See also [2, §3] for other formulas of these eigenvalues.
The Odd graph Od+1 is the distance d graph of the Johnson graph J(2d+

1, d, 1). Its vertices are the d-subsets of [2d+1] and two vertices are adjacent if
and only if they are disjoint. If x and y are two vertices at distance r in Od+1,
then

|x ∩ y| =
{

d− r
2 , if r is even,

d− 2d−r+1
2 , if r is odd.
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We use the Eberlein polynomials above to compute cosine sequences of the Odd
graph. The eigenvalues of Od+1 are θi = (−1)i(d + 1 − i), for 0 ≤ i ≤ d. Note
that the second largest eigenvalue here is θ2 rather than θ1. Thus, we prove
Conjecture 1.6 and Conjecture 1.7 with respect to θ2.

Proposition 6.1. For the Odd graph Od+1,

min
1≤r≤d

{

1− wr(θ2)

r2

}

=
1− wd(θ2)

d2
.

Proof. For j ∈ {1, . . . , d}, we have

1− Ej(2)

Ej(0)
=

4jd2 − 4j2d+ 2j(j − 1)

d(d2 − 1)
.

Thus, for j1 = r/2 and j2 = (2d− r + 1)/2,

1− wr(θ2)

r2
=

1− Ej1(2)

Ej1(0)

r2
=

2(2d2−1)
r − (2d− 1)

2d(d2 − 1)

for r even, and

1− wr(θ2)

r2
=

1− Ej2(2)

Ej2(0)

r2
=

4d2

r − 2d+1
r2 − (2d− 1)

2d(d2 − 1)

for r odd. From these formulas the claim follows.

The distance-d graph of Od+1 is the distance-⌈d
2⌉ graph of Johnson graph

J(n, d), i.e., it is J(2d+ 1, d, ⌈d
2⌉), whose eigenvalues are

E⌈ d
2 ⌉(i) =

i
∑

h=0

(−1)i−h

(

i

h

)(

d− h

⌈d
2⌉

)(

d− i+ h+ 1

⌊d
2⌋+ 1

)

.

Lemma 6.2. The smallest eigenvalue of J(2d+ 1, 2d, ⌈d
2⌉) is E⌈ d

2 ⌉(2).

Proof. Suppose d = 2ℓ+1, then, by [2, Proposition 3.4], E⌈ d
2 ⌉(2) = E⌈ d

2 ⌉(1). The

latter is the smallest eigenvalue according to [2, Theorem 3.10]. Now, suppose
d = 2ℓ. For ℓ ≤ 6, we verified the statement by computer. Thus, we assume
that ℓ ≥ 7. The multiplicity of each eigenvalue Eℓ(i) is mi =

(

2d+1
i

)

−
(

2d+1
i−1

)

.
Hence,

d
∑

i=3

miEℓ(i)
2 = v · Eℓ(0)−

2
∑

i=0

miEℓ(i)
2

=
(4ℓ+ 1)!

ℓ!4(ℓ + 1)
− (12ℓ3 + 7ℓ2 − 3ℓ− 1)(2ℓ)!4

(2ℓ− 1)(ℓ+ 1)2ℓ!8
.
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For all i ∈ {3, . . . , d}, mi ≥ m3 = 8ℓ(4ℓ+1)(ℓ−1)
3 , thus we have

|Eℓ(i)| ≤
√

3

8ℓ(4ℓ+ 1)(ℓ− 1)

(

(4ℓ+ 1)!

ℓ!4(ℓ+ 1)
− (12ℓ3 + 7ℓ2 − 3ℓ− 1)(2ℓ)!4

(2ℓ− 1)(ℓ + 1)2ℓ!8

)

.

Hence,

|Eℓ(i)|
|Eℓ(2)|

≤
√

3

8ℓ3(ℓ−1)

(

(4ℓ)!ℓ!4

(2ℓ)!4
(ℓ+1)(2ℓ−1)2 − (12ℓ3+7ℓ2−3ℓ−1)(2ℓ−1)

(4ℓ+1)

)

.

By induction on ℓ ≥ 7, we verify that (4ℓ)!ℓ!4

(2ℓ)!4 ≤ ℓ
2 . This implies that

|Eℓ(i)|
|Eℓ(2)|

≤
√

48ℓ5 − 60ℓ4 − 42ℓ3 + 51ℓ2 − 3

64ℓ5 − 48ℓ4 − 16ℓ3
< 1.

Since Eℓ(1) > 0 and Eℓ(2) < 0, min1≤i≤d{Eℓ(i)} = Eℓ(2).

Hence, we obtain the following corollary.

Corollary 6.3. For the Odd graph Od+1,

max
1≤j≤d

{

1− wd(θj)

1− w1(θj)

}

=
1− wd(θ2)

1− w1(θ2)
.

Thus,

c2(Od+1) = d

√

1− w1(θ2)

1− wd(θ2)
=







2ℓ
√

4ℓ−2
4ℓ2+ℓ−1 , if d = 2ℓ,

(2ℓ+ 1)
√

4ℓ+2
4ℓ2+7ℓ+3 , if d = 2ℓ+ 1.

7 Final Remarks

In this paper, we disproved a conjecture of Vallentin on the least Euclidean
distortion of distance-regular graphs. We proposed a revised conjecture related
to the least Euclidean distortion and two related conjectures involving the
cosine sequences of distance-regular graphs. We proved our conjectures for
several families of graphs and presented computational arguments in their favor.
Instead of considering the least distortion with respect to Euclidean norm,
one may ask what happens for other norms. The least distortion cp(G) with
respect to the p-norm for a graph G is a natural generalization of c2(G) and
was investigated by Jolissaint and Valette in [7]. In particular, they determine
cp(G) for the hypercube. It would be interesting to investigate cp(G) for other
distance-regular graphs as well.
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[2] A. E. Brouwer, S.M. Cioabă, F. Ihringer and M. McGinnis, The smallest
eigenvalues of Hamming graphs, Johnson graphs and other distance-
regular-graphs with classical parameters, J. Combin. Theory Ser. B 133
(2018), 88–121.

[3] A. E. Brouwer, A.M. Cohen and A. Neumaier, Distance-Regular Graphs,
Springer, Heidelberg, 1989.

[4] A. E. Brouwer, https://www.win.tue.nl/~aeb/drg/drgtables.html,
accessed on: 23/08/2021.

[5] P. Enflo, On the nonexistence of uniform homeomorphisms between Lp-
spaces, Ark. Math. 8 (1999), 103–105.

[6] C. Godsil, Algebraic Combinatorics, Chapman and Hall, 1993.

[7] P.-N. Jolissaint and A. Valette,Lp-distortion and p-spectral gap of finite
graphs, Bull. London Math. Soc. 46 (2014), 329–341.

[8] T. Kobayashi and T. Kondo, The Euclidean distortion of generalized
polygons, Adv. Geom. 14(5) (2015), 499–506.

[9] N. Linial, E. London, and Y. Rabinovich, The geometry of graphs and some
of its algorithmic applications, Combinatorica 15 (1995), 215–246.

[10] N. Linial and A. Magen, Least-distortion Euclidean embeddings of graphs:
Products of cycles and expanders, J. Combin. Theory Ser. B 79 (1995),
157–171.

[11] K.-U. Schmidt, Hermitian rank distance codes, Des. Codes Cryptogr. 86
(2018), 1469–1481.

[12] D. Stanton, A partially ordered set and q-Krawtchouk polynomials, J.
Combin. Theory Ser. A 30 (1981), 276–284.

[13] F. Vallentin, Optimal distortion embeddings of distance-regular graphs into
Euclidean spaces, J. Combin Theory Ser. B 98 (2008), 95–104.

19

https://www.win.tue.nl/~aeb/drg/drgtables.html

	1 Introduction
	2 Optimal Embeddings
	3 Antipodal Graphs and Counterexamples
	3.1 Proof of Theorem 1.4
	3.2 Antipodal Graphs
	3.3 Counterexamples
	3.3.1 Hadamard graphs
	3.3.2 Coset graph of the shortened binary Golay code
	3.3.3 Double coset graph of truncated Golay code
	3.3.4 Double coset graph of binary Golay code

	3.4 Feasible Intersection Arrays for Counterexamples

	4 Small Diameter
	4.1 Strongly Regular Graphs
	4.2 Diameter 3 or 4
	4.2.1 Taylor Graphs
	4.2.2 Generalized Polygons


	5 Graphs with Classical Parameters
	5.1 Known Examples
	5.2 Hermitian forms graphs

	6 Odd Graphs
	7 Final Remarks
	Bibliography

