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Abstract. In this paper, we analyze the Bollobás and Riordan polynomial R for ribbon graphs

with half-ribbons introduced in [Combinatorics, Probability and Computing 31, 507-549, 2022].

We prove the universality property of a multivariate version of R whereas R itself turns out
to be universal for a subclass of ribbon graphs with half-ribbons. We also show that R can be

defined on some equivalence classes of ribbon graphs involving half-ribbons moves and that the

new polynomial is universal on these classes.
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1. Introduction

The Bollobás-Riordan (BR) graph polynomial [5] is a polynomial in four variables which
extends the Tutte polynomial [17, 12] from simple graphs to graphs with additional structures such
as ribbon graphs (such graphs arise as neighbourhoods of graphs embedded into surfaces). Both
polynomials satisfy a contraction/deletion recurrence rule defined on the associated graphs and,
furthermore, are universal polynomial invariants. The universality property of these invariants
means that any invariant of graphs satisfying the same relations of contraction and deletion can
be calculated from those. Universality can be also of great use, for example, in statistical mechanics
[14] and quantum field theory [8, 7, 16].

The BR polynomial is defined on signed ribbon graphs which are ribbon graphs whose edges
are marked either by +1 or by −1. The signs of the edges play an important role in the orientabil-
ity of the ribbon graphs. Signed ribbon graphs and their polynomial invariants are still under
investigations [18, 10, 15, 1]. For example, in [10] the authors provide a “recipe theorem” for
the BR polynomial very close to the universality property. The proof of the universality of the BR
polynomial is mainly based on the fact that the BR polynomial satisfies a contraction/deletion
relation. However the proof of that claim relies on several other ingredients. Chord diagrams as-
sociated with bouquets and canonical diagrams found from these chord diagrams after a sequence
of operations called rotations and twists about chords are extremely useful to establish that fact.
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Let us discuss in greater detail the polynomial on a new class of ribbon graphs introduced in
[2] called ribbon graphs with half-ribbons. A half-ribbon (HR) is simply a ribbon edge incident
to a unique vertex without forming a loop. The presence of HRs in a ribbon graph has several
interesting combinatorial properties as shown in [2]. HRs also allow to introduce a new and
intuitive enough operation which is the cut of an edge which differs from the usual edge deletion.
The authors of the above work describe the implications that HRs have on the BR polynomial.
One notes that in the polynomial worked out therein, the orientability of the ribbons is not taken
into account. Since this new invariant satisfies a contraction/cut recurrence relation (replacing in
this setting the usual contraction/deletion rule), one may wonder if this invariant is universal or
not. Answering this question is the purpose of this paper.

We find in this paper an extension of the polynomial found in [2] by adding now a variable
for the orientability of the ribbon graphs. We call it R. In the presence of this new variable, the
contraction/cut rule still holds for R. We infer a multivariate polynomial Q that reduces to R
and also obeys a contraction/cut relation. We then prove a main result (Theorem 5) which is the
universality property for Q on ribbon graphs with HRs. The method used to prove this is close
to that given in [5] but it is however specific due to the presence of HRs. As a corollary, the
polynomial invariant R is proved universal on a subclass of ribbon graphs with HRs. We then
reveal the existence of another polynomial invariant defined over classes of ribbon graphs with
HRs related to a new operation called HR moves. Theorem 6 establishes the universality of that
new polynomial which is a second main result of this paper.

The rest of this paper is organized as follows. In section 2, we give an overview of the BR
polynomial and its universality property. Section 3 recalls some results on the BR polynomial R
for ribbon graphs with HRs and introduces two multivariate versions Q̃ and Q of that invariant.
The next section 4 delivers our main result which is the proof of the universality theorem of Q.
We finally define a polynomial invariant on classes of ribbon graphs related by moves of HRs and
prove its universality property in section 5.

2. Overview of the Bollobás-Riordan polynomial and its universality property

In this section, we give an overview of the BR polynomial for ribbon graphs and mainly focus
on its universality theorem introduced in [5]. There are several ingredients in the proof of this
theorem which will be useful for our subsequent developments and, thus, are worth to be reviewed
as well.

Definition 1 (Ribbon graphs [5, 11]). A ribbon graph G is a (not necessarily orientable)
surface with boundary represented as the union of two sets of closed topological discs called vertices
V and edges E . These sets satisfy the following properties:
• Vertices and edges intersect in disjoint line segments,
• each such line segment lies on the boundary of precisely one vertex and one edge,
• every edge contains exactly two such line segments.

The isomorphism class of ribbon graphs is defined as follows [5, 6]: first identify a ribbon
graph with its signed rotation system. Two rotation systems are called equivalent (henceforth
their respective ribbon graphs) if there is a sequence of vertex flips and graph isomorphims that
transform one into the other.

There are three kinds of edges that can be identified in a ribbon graph. An edge e of a ribbon
graph G is called a bridge in G if its removal disconnects a component of G. The edge e is a
self-loop in G if the two ends of e are incident to the same vertex v of G and e is a regular edge of
G if it is neither a bridge nor a self-loop. Ribbon edges can be twisted as well (see Figure 1). We
say that a self-loop e at a vertex v of a ribbon graph G is twisted if v ∪ e forms a Möbius band
as opposed to an annulus (an untwisted self-loop). A self-loop e is trivial if there is no cycle in G
which can be contracted to form a loop f interlaced with e. Introducing twisted edges has some
consequences on the orientation of the ribbon graph.

In addition, there are other topological notions in a ribbon graph that we now describe.
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Figure 1. Untwisted (left) and twisted (right) edge notations.

Definition 2 (Faces and orientation [5]). A face is a component of the boundary of G con-
sidered as a geometric ribbon graph and hence as a surface with boundary.

If G is regarded as the neighborhood of a graph embedded into a surface, the set of faces is
the set of faces of the embedding. A ribbon graph is denoted by G(V, E).

Definition 3 (Deletion and contraction [5]). Let G be a ribbon graph and e one of its edges.
• We call G − e the ribbon graph obtained from G by deleting e and keeping the end vertices

as closed discs.
• If e is not a self-loop, the graph G/e obtained by contracting e is defined from G by deleting e

and identifying its end vertices v1,2 into a new vertex which possesses all edges in the same cyclic
order as they appeared in v1,2.
• If e is a trivial twisted self-loop, contraction is deletion: G − e = G/e. The contraction of a

trivial untwisted self-loop e is the deletion of the self-loop and the addition of a vertex v0 forming
a new connected component to the graph G − e. We write G/e = (G − e) t {v0}.

The contraction of a non self-loop may be also restated as follows: G/e is defined from G by
identifying a new vertex as v1 ∪ v2 ∪ e. We recall that the contraction of a (twisted or untwisted)
self-loop e in G coincides with an edge deletion in the graph dual of G.

A spanning subgraph A of a ribbon graph G(V, E) is a ribbon graph with set of vertices
V(A) = V and set of edges E(A) ⊆ E . We denote it as A b G.

Definition 4 (Ribbon graph polynomial [5]). Let G be a ribbon graph. We define the ribbon
graph polynomial of G to be

RG(X,Y, Z,W ) =
∑
AbG

(X − 1)r (G)−r (A)(Y − 1)n(A)Zk(A)−F (A)+n(A)W t(A) (1)

considered as an element of the quotient of Z[X,Y, Z,W ] by the ideal generated by W 2 −W and
where r (A), n(A), k(A), F (A) and t(A) are, respectively, the rank, the nullity, the number of
connected components, the number of faces and the parameter which characterizes the orientability
of A as a surface. If A is orientable, then t(A) = 0, otherwise, t(A) = 1. By definition, r (A) =
|V| − k(A) and n(A) = |E(A)| − r (A).

In the following, we use the variable (Y − 1) for parameterizing the nullity of the subgraphs.
This convention differs from the one in [5] which rather uses Y . From a simple change of variable
at any moment (Y → Y +1), one can recover the convention used therein. Moreover, putting W =
1 = Z, one recovers the Tutte polynomial for G seen as a simple graph. After introducing terminal
forms, the choice (Y − 1) will be discussed. We will often refer to the ribbon graph polynomial as
the BR polynomial. Moreover, we use interchangeably RG(X,Y, Z,W ) and R(G;X,Y, Z,W ).

The BR polynomial obeys a contraction and deletion rule.

Theorem 1 (Contraction and deletion [5]). Let G be a ribbon graph. If e is a regular edge,
then

RG = RG/e +RG−e ; (2)

for a bridge e of G, one has
RG = X RG/e ; (3)

for a trivial untwisted self-loop e,
RG = Y RG−e ; (4)

and for a trivial twisted self-loop e, the following holds

RG = (1 + (Y − 1)ZW )RG−e . (5)
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Figure 2. A doubled positive chord (left) and a doubled negative chord (right).

The relations (3)–(5) are useful for the evaluation of the terminal forms (ribbon graphs which
only possess edges which are not regular). For a graph G with only n bridges, m untwisted trivial
self-loops and p twisted trivial self-loops, the polynomial of G is XnY m(1 + (Y − 1)ZW )p. Note
that, in [1], the list of terminal forms has been further extended to specific one-vertex graphs
called flowers so that one can complete the above with other contributions.

Let us discuss in more details the universality of the BR polynomial for ribbon graphs [5]. It
is shown that the polynomial R is the universal invariant for connected ribbon graphs satisfying
(2) and (3) and any other invariant satisfying the same relations can be calculated from R. First,
one must understand that the knowledge of R can be reduced to one-vertex ribbon graphs also
simply called ”bouquets”.

Specifically, we obtain a bouquet after a contraction of a spanning tree in a connected ribbon
graph G. To achieve the proof of the universality of their polynomial, Bollobás and Riordan
used another representation of bouquets called “signed chord diagrams” (chord diagrams are also
related to Vassiliev invariants [3, 4]). A chord diagram D is a construction related to a bouquet
G such that if G has n edges, D is constructed by putting on a circle 2n distinct points paired
off by n chords. In the case of a ribbon graph with twisted and untwisted edges, D is called a
signed chord diagram, if we put an assignment of sign “t” or “unt” to each chord according to
the fact that this chord corresponds to a twisted or negative edge or untwisted or positive edge,
respectively.

We shall write n(D) for the number of chords of D which is also the nullity of G (each chord
corresponds to an edge in a bouquet or a cycle generator). Using the “doubling operation” which
consists in replacing each chord of D by two edges joining the parts of the circle on each side
of each end of the chord as shown in Figure 2, F (D) denotes the number of components of the
resulting figure. We have F (D) = F (G) and t(D) stands for t(G) which is equal to 0 if all chords
of D have a positive sign (or untwisted) and 1 otherwise.

A subdiagram of a signed chord diagram D is a signed chord diagram D′ obtained from D by
deleting a subset of chords of D. For a bouquet G, looked at as a signed chord diagram D, the
BR polynomial summation is defined over the spanning subdiagrams D′ b D as:

R(D;X,Y, Z,W ) =
∑
D′bD

(Y − 1)n(D′)Z1−F (D′)+n(D′)W t(D′). (6)

Later this summation is written as:

R(D;X,Y, Z,W ) =
∑
i,j,k

Rijk(D;X)(Y − 1)iZjW k, (7)

where Rijk(D;X), the coefficient of (Y − 1)iZjW k in (7), counts the number of subdiagrams
D′ b D which have i chords, j = 1− F (D′) + n(D′) and k = t(D′) in (6). It is obvious that the
above expression finds an extension to any ribbon graph G. In such a case, Rijk(D;X) becomes

a sum of monomials (X − 1)r (G)−r (A) for particular subgraphs A b G with properties constrained
by i, j, k.

Let G be the set of isomorphism classes of connected ribbon graphs [5]. The theorem of
universality is given by the following statement:
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Theorem 2 (Universality of Bollobás-Riordan polynomial [5]). Let R be a commutative ring,
x an element of R, and φ a map from G to R satisfying

φ(G) =

 φ(G − e) + φ(G/e) if e is regular,

x φ(G/e) if e is a bridge.
(8)

Then there are elements λijk ∈ R, i ≥ 0, 0 ≤ j ≤ i, 0 ≤ k ≤ 1, such that

φ(G) =
∑
i,j,k

λijkRijk(G;x). (9)

The main point of the universality theorem is the determination of the λijk. The coefficients
λijk are determined by the evaluation of φ on the so-called “canonical diagrams”. For a bouquet

t

Figure 3. The canonical chord diagram D5,1,1.

G seen as a chord diagram D, a sequence of rotations and twists about chords [5] in D provides a
simple diagram called canonical. Given canonical diagrams Di,j,k, consisting of i− 2j− k positive
chords intersecting no other chords, j pairs of intersecting positive chords, and k negative chords
0 ≤ k ≤ 2, intersecting no other chords (see an example in Figure 3), then λijk is equal to some
φ(Di,j′,k′). This is proved by a recurrence relation on the number of chords i, given the initial
value λ000 for the value of φ on a bare vertex. The same result holds for any connected ribbon
graph using the relations (8). The case of several connected components can be simply inferred
from this point because the polynomial is multiplicative over disjoint union.

3. The Bollobás-Riordan polynomial for ribbon graphs with HRs

This section introduces a polynomial invariant for ribbon graphs with HRs which is a notion
studied in [11]. The polynomial which will be discussed extends the invariant found in [2] by
adding a variable that takes into account the orientability of the ribbon graph. We introduce some
multivariate variants of that polynomial. The question of the universality of such polynomials is
then asked.

We first recall some definitions.

Definition 5 (Half-ribbon and external points [2]). A half-ribbon or half-edge is a rectangle
incident to a unique vertex of a ribbon graph by a unique line segment s on the boundary, i.e.
without forming a loop. The segment parallel to s called the external segment. The end points of
any external segment are called external points of the HR. The two boundary segments of a ribbon
edge or of a HR that are neither external nor incident to a vertex are called strands. A HR is
always oriented consistently with the vertex it intersects. (See Figure 4.)

ss'
a

b

Figure 4. A HR with two end segments (in red): s′ touching

the vertex and s external; the ends a and b of s are the external

points.
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Definition 6 (Cut of a ribbon edge [2]). Let G be a ribbon graph and let e be a ribbon edge
of G. The cut graph G ∨ e is obtained from G by deleting e and attaching two HRs at the same
line segments where e was incident to the end vertices, one at each of the end vertices of e. If e
is a loop, the two HRs are on the same vertex. (See an illustration in Figure 5.)

The definition of a ribbon graph with HRs may be introduced at this stage.

Definition 7 (Ribbon graph with HRs and spanning c-subgraph [2]). A ribbon graph with
HRs G(V, E , f0) (or simply Gf0) is a ribbon graph G(V, E) (or shortly G) with a set f0 of HRs such
that each HR is attached to a unique vertex as in Definition 5, and the segments where the HRs are
attached are disjoint from each other and from the segments where any ribbon edges are attached.
The ribbon graph G is called the underlying ribbon graph of Gf0 .
• A spanning c-subgraph A of Gf0 is formed by cutting some subset of the ribbon edges of Gf0 .

We denote again the spanning c-subgraph inclusion as A b Gf0 . (See A in Figure 6.)

Note that a ribbon graph is a ribbon graph with HRs with f0 = ∅. The isomorphism class of
ribbon graph with HRs is much inspired from the isomorphism class of ribbon graphs. Consider
two ribbon graphs with HRs Gf0 andHf′0 . We say that Gf0 is isomorphic toHf′0 , if their underlying
ribbon graphs G and H are isomorphic, and their sets of HRs are of same cardinality and obeys
the same incidence relation with the same cyclic ordering onto vertices.

Figure 5. Cutting a ribbon edge.

t

Figure 6. A ribbon graph with HRs Gf0 and a spanning c-

subgraph A.

G A

The notion that we will extensively use is the one of spanning c-subgraph. We can simply
explain that notion in the following way: Take a subset of edges of a given graph, cut them all.
Consider the spanning subgraph then formed by the resulting graph. The set of HRs of this
subgraph contains both the set of HRs of the initial graph (f0) plus an additional set induced by
the cut of the edges.

Note that cutting an edge of a graph modifies the boundary faces of this graph. There are
new boundary faces following the contour of the HRs. However, combinatorially, we distinguish
this new type of faces and the initial ones which follow the boundary of well-formed edges.

Definition 8 (Closed, open faces). Let Gf0 be a ribbon graph with HRs.
• A closed face is a boundary component of Gf0 which never passes through any external

segment of a HR. The set of closed faces is denoted Fint. (See the closed face f0 in Figure 7.)
• An open face is a boundary arc leaving an external point of some HR rejoining another

external point without passing through any external segment of a HR. The set of open faces is
denoted Fext. (Examples of open faces are provided in Figure 7.)
• The set of faces F of a ribbon graph with HRs is defined by Fint ∪ Fext.

Open and closed faces are illustrated in Figure 7.
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f1

f2

f3

f0

Figure 7. A ribbon graph with set of internal faces Fint = {f0},
and set of external faces Fext = {f1, f2, f3}.

Definition 9 (Boundary graph [9]). The boundary graph ∂G of a ribbon graph with HRs
Gf0 is an abstract graph ∂G(V∂ , E∂) such that V∂ is in one-to-one correspondence with f0, and E∂
is in one-to-one correspondence with Fext. Consider an edge e of E∂ , its corresponding open face
fe ∈ Fext, a vertex v, and its corresponding HR hv. The edge e is incident to v if and only if fe
has one end-point in hv, and, if both end-points of fe are in hv, then e is a loop. (The boundary
of the graph given in Figure 7 is provided in Figure 8.)

f1

f2

f3

Figure 8. The boundary graph associated with the ribbon

graph in Figure 7.

The notions of edge contraction and deletion for ribbon graphs with HRs keep their meaning
as in Definition 3. We are in position to identify a new polynomial invariant. To alleviate our
notation, from this point onwards, we will denote a ribbon graph with HRs Gf0 simply as G as
there will be no confusion given the fact that we will always work with ribbon graph with HRs.
We keep the notation G for the set of isomorphism classes of connected ribbon graphs with HRs.

Definition 10 (Polynomial for ribbon graphs with HRs). Let G(V, E , f0) be a ribbon graph
with HRs. We define the polynomial of G to be

RG(X,Y, Z, S,W, T ) =
∑
AbG

(X − 1)r (G)−r (A)(Y − 1)n(A)Zk(A)−Fint(A)+n(A) SC∂(A)W t(A)T f(A),

(10)
considered as an element of the quotient of Z[X,Y, Z, S,W, T ] by the ideal generated by W 2 −W ,
where C∂(A) = |C∂(A)| is the number of connected components of the boundary graph of A,
Fint(A) = |Fint(A)| and f(A) the number of HRs of A.

The polynomial R (10) generalizes the BR polynomial R (1). One way to recover R is by
replacing the sum over c-subgraphs by a sum over subgraphs (that casts the powers of S to 0),
then putting T = 1. Another remark follows: as the number of HRs on a spanning c-subgraph A
can be written as f(A) = |f0|+ 2(|E| − |E(A)|), we can always factor T f(G) from the polynomial.

Hence, RG/T |f
0| might be also considered as an interesting reduced polynomial.

After performing the change of variable S → Z−1, we are led to another extension of the BR
polynomial for ribbon graphs with HRs. We will refer the second polynomial to as R′. In symbols,
for a ribbon graph with HRs G, we write

RG(X,Y, Z, Z−1,W, T ) = R′G(X,Y, Z,W, T ) , (11)

where R is given by Definition 10 .
Graph operations such as the disjoint union and the one-point-join (G1 t G2 and G1 ·v1,v2 G2,

respectively) [17] extend to ribbon graphs [5] and to ribbon graphs with HRs [2]. The product
G1 ·v1,v2 G2 at the vertex resulting from merging v1 and v2 on an arc of each of these which
does not contain any ribbon edges or HRs (in the sense of the second point of Definition 3)
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respects the cyclic order of all edges and HRs on the previous vertices v1 and v2. The fact that
RG1tG2 = RG1RG2 = RG1·v1,v2G2 holds for ribbon graphs without HRs [5] can be extended to
ribbon graphs with HRs under particular conditions. The following proposition holds.

Proposition 1 (Operations on BR polynomials [2]). Let G1 and G2 be two disjoint ribbon
graphs with HRs, then

RG1tG2 = RG1RG2 , R′G1tG2 = R′G1R
′
G2 , (12)

R′G1·v1,v2G2 = R′G1R
′
G2 , (13)

for any disjoint vertices v1,2 in G1,2, respectively.

Proof. The proof of Proposition 1 corresponds to that of Proposition 5 in [2] where the
sole additional fact concerns the variable W associated with the orientability. This can be simply
achieved by adding the fact that W 2 = W in the proof of Proposition 5 in [2]. �

Theorem 3 (Contraction and cut on BR polynomial). Let G(V, E , f0) be a ribbon graph with
HRs. Then, for a regular edge e,

RG = RG∨e +RG/e ; (14)

for a bridge e, we have
RG = (X − 1)RG∨e +RG/e ; (15)

for a trivial twisted self-loop e, the following holds

RG = RG∨e + (Y − 1)ZW RG/e ; (16)

whereas for a trivial untwisted self-loop e, we have

RG = RG∨e + (Y − 1)RG/e . (17)

Proof. This can be proved in the same lines of Theorem 3 in [2] where the new point (16)
associated with the orientability can be recovered from [5]. �

Corollary 1 (Contraction and cut on BR polynomial R′). Let G(V, E , f0) be a ribbon graph
with HRs. Then, for a regular edge e,

R′G = R′G∨e +R′G/e , R′G∨e = T 2R′G−e ; (18)

for a bridge e, we have R′G/e = R′G−e = T−2R′G∨e
R′G = [(X − 1)T 2 + 1]R′G/e ; (19)

for a trivial twisted self-loop, R′G−e = T−2R′G∨e and

R′G = [T 2 + (Y − 1)ZW ]R′G−e , (20)

whereas for a trivial untwisted self-loop, we have R′G−e = T−2R′G∨e and

R′G = [T 2 + (Y − 1)]R′G−e . (21)

Proof. The corollary is immediate from Theorem 3 and Corollary 1 in [2]. The new relation
(20) can be achieved using a similar identity in Theorem 1 in [5].

�
The following statement holds.

Proposition 2. The polynomial R′ is universal in the sense of Theorem 2.

Proof. From Corollary 1, R′ satisfies the following relations:

R′G =

{
T 2R′(G − e) +R′(G/e) if e is neither a bridge nor a self-loop,
[(X − 1)T 2 + 1]R′(G − e) if e is a bridge.

(22)

After a change of variables as: {
X̃ = (X − 1)T 2 + 1

Ỹ = Y − 1 + T 2 (23)
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and given the fact that, for a given ribbon graph G(V, E , f0) and A b G,

f(A) = |f0|+ 2(|E| − |E(A)|) , (24)

we get

R′G(X,Y, Z,W, T ) = T |f
0|T 2n(G)RG(X̃,

Ỹ

T 2
, Z,W ), (25)

with R the BR polynomial defined in (1). The above equation shows that the reduced polynomial
R′ is universal on the set of ribbon graphs, i.e. it defines a family of base polynomials {R′ijk} that

plays the same role as the family {Rijk} in Theorem 2. �

Multivariate polynomials. There exist multivariate versions of R. We will concentrate on a
general multivariate polynomial and one of its reduction that turns out to be universal for the
invariants satisfying the contraction-cut rule on ribbon graphs with HRs.

We introduce some notation. Let G be a ribbon graph with HRs. Consider any A b G and call
f(A) the set of HRs of A. We recall the notation |f(A)| = f(A). Let G0 be the spanning c-subgraph
of G obtained by cutting all edges in E . Any HR of any spanning c-subgraph A of G must appear
(once and only once) in f(G0). This also means f(A) ⊆ f(G0). The following polynomial requires
at most |f(G0)| variables for each of its monomials.

For any c-subgraph A b G, Fint(A) ⊆ Fint(G), as a closed face of G could be either cut
during the process of creating A or kept in A. Thus, we introduce a set of variables zα for
α ∈ Fint = Fint(G).

For any c-subgraph A b G, consider the set C∂(A) of connected components of the boundary of
A. We recall |C∂(A)| = C∂(A). Let {ζi}i=0,··· ,|f(A)| be a set of variables, where each ζi records the
presence of one boundary component with i half-ribbons on it. More explicitly, for a c-subgraph
A and an element cc of C∂(A), we define cc ∩ f(A) to be the subset of HRs of A that are incident
to cc. To lighten the notation, we shortly write c ∩ f(A) instead of cc ∩ f(A). We associate a
variable ζi=|c∩f(A)| with each c ∈ {1, . . . , C∂(A)}. Clearly, f(A) becomes partitioned by the ζi
in |C∂(A)| parts, each of which associated with a connected component of the boundary graph:
f(A) =

∑
c |c ∩ f(A)|.

Definition 11 (Multivariate polynomial for ribbon graphs with HRs). Let G(V, E , f0) be a
ribbon graph with HRs, {βe} = {βe}e∈E be a set of variables associated with the edges of G,
{zα} = {zα}α∈Fint

be a set of variables associated with internal faces G. Let {ζi}i∈{1,...,|f(G0)|} be
a set of variables recording i HRs in any connected component of the boundary of any c-subgraphs
of G.

We define the multivariate polynomial of G to be

Q̃G(x, {βe}, {zα}, w, {ζi}) =∑
AbG

xk(A)

 ∏
e∈E(A)

βe

 ∏
α∈Fint(A)

zα

 wt(A)

C∂(A)∏
c=1

ζ|c∩f(A)|

 . (26)

The following statement holds

Theorem 4. Let G(V, E , f0) be a ribbon graph with HRs. Then, for a regular edge e, the
multivariate polynomial obeys the recursion relation

Q̃G(x, {βe}, {zα}, w, {ζi}) (27)

= Q̃G∨e(x, {βe′ 6=e}, {zα}, w, {ζi}) + xβeQ̃G/e(x, {βe′ 6=e}, {zα}, w, {ζi})

Proof. The proof is straightforward as it follows the standard decomposition of the set of
c-subgraphs in those that contain e and those that do not. �

We have the following reduction, setting all multiple variables to some constants

Q̃G(x, {βe = β}, {zα = z}, w, {ζi = sζi}) =
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AbG

xk(A)βE(A)zFint(A)wt(A) sC∂(A) ζf(A)

= (zxβ−1)k(G)β|V|
∑
AbG

(xzβ−1)k(A)−k(G)(zβ)n(A)z−n(A)−k(A)zFint(A) sC∂(A) wt(A)ζf(A)

= (zxβ−1)k(G)β|V|RG(xzβ−1 + 1, zβ + 1, z−1, s, w, ζ) (28)

where E(A) = |E(A)|. Thus RG can be recovered from the multivariate polynomial Q̃G after some
change of variables.

We will be interested in the intermediate reduced form

1

((x− 1)(y − 1)z)k(G)

1

((y − 1)z)|V|−k(G)
×

Q̃G((x− 1)(y − 1)z2, {βe = (y − 1)z}, {zα = z−1}, w, {ζi})

=
1

((x− 1)(y − 1)z)k(G)

1

((y − 1)z)|V|−k(G)
×

∑
AbG

((x− 1)(y − 1)z2)k(A)((y − 1)z)E(A)z−Fint(A) wt(A)

C∂(A)∏
c=1

ζ|c∩f(A)|

=
∑
AbG

(x− 1)k(A)−k(G)(y − 1)n(A)zk(A)−Fint(A)+n(A) wt(A)

C∂(A)∏
c=1

ζ|c∩f(A)|

= QG(x, y, z, s, w, {ζi}) (29)

Thus QG(x, y, z, s, w, {ζi}) defines a multivariate invariant with monomials that keep track of
the partition of the number of HRs on each connected component of the boundary graph of each
c-subgraph. RG can be recovered from QG setting all ζi = sζi.

4. Main results: Universality theorems

4.1. Chord diagrams with HRs. The main objective of this sub-section is the determina-
tion of a special class of diagrams called canonical which turn out to be necessary for the proof
of the universality of the polynomial in (10). To succeed in this, we need to understand how the
operations of rotation and twist about chords [5] make sense on “open” chord diagrams or chord
diagrams associated to one-vertex ribbon graphs with HRs, called bouquets with HRs. After
defining open chord diagrams, we will focus on a two-vertex ribbon graph with HRs where the
distinct ways of contracting the edges lead to some equivalent diagrams.

Definition 12 (Chord diagrams). • A HR on a chord diagram is a segment attached to a
unique point on its circle.
• An (open) chord diagram is a chord diagram in the sense of [5] with the further data of the

set of HRs. In the case where this set is empty, it becomes a chord diagram.
• A signed (open) chord diagram is an (open) chord diagram with an assignment of a sign “

t” or “ unt” to each chord.

We remark that in the previous definition of chord diagram D, if D has n chords and l HRs,
there are 2n+ l distinct and marked points on the circle.

If G is a bouquet with HRs and D the corresponding (open) signed chord diagram, the number
of chords n(D) of D is equal to the nullity of G and we have n(D) = e(G) = n(G). The doubling
operation on D consists of replacing each chord of D by two edges joining the parts of the circle
on each side of each end of the chord and each HR of D by two parallel segments, each one
on each side of the HR. For each HR, consider the end points of the two parallel segments that
are not on the circle. Insert a vertex of degree 2 between these end points and perform this
insertion for each pair of parallel segments for each HR. We call the resulting diagram D′, the
pinched diagram of D. With this operation, the number of boundary components of D′ is equal
to Fint(D

′) +C∂(D′) where Fint(D
′) = Fint(D) is the number of components which are closed and

C∂(D′) is the number of remaining boundary components. We then define C∂(D) = C∂(D′). We
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easily realize that C∂(D) is equal to the number of connected components of the boundary graph
associated with D.

The ordinary operations on ribbon graphs simply translate to chord diagrams. In particular,
the deletion or the cutting of chords and disjoint union or one-point-join between two separate
diagrams obey the same principles as in ribbon graphs.

Consider a two-vertex ribbon graph with HRs G with at least two edges e and g which are
not loops. Let us write a, b, c and d for the sections into which e and g divide the cyclic orders
at the vertices of G (some HRs may be attached to the vertices as illustrated in Figure 9). The
contractions of e or of g give two different bouquets with HRs. If e and g are positive edges, let
D1 be the (open) chord diagram associated with the graph we obtain by contracting g in G, D′1
the (open) chord diagram associated to the graph we obtain by contracting g in G ∨ e, D2 the
(open) chord diagram associated to the graph we obtain by contracting e in G and D′2 the one we
obtain by contracting e in G ∨ g (see Figure 10). If g is negative (without loss of generality), we
replace D1, D2, D′1 and D′2, respectively, by D3, D4, D′3 and D′4 in the previous statement (see
Figure 11).

e

g

f1 f2a b d c

Figure 9. Two-vertex ribbon graph with HRs

a c

b d

D1

f1

f2

a c

b d

D′

1

f1

f2

c a

d b

D2

f2

f1
c a

d b

D′

2

f2

f1

Figure 10. Related chords diagrams D1, D′1, D2, D′2

a c

b d

D3

f1

f2

t

a c

b d

D′

3

f1

f2

b c′

a d′

D4

f1 f2

t

b c′

a d′

D′

4

f1 f2

Figure 11. Related chords diagrams D3, D′3, D4, D′4

In Figure 11, the sector c′ is obtained from c after a sequence of two operations: we reverse
the order of the endpoints of the HRs and chords of c and we change the sign of any chord from
c to the rest of the diagram. The same apply to d′ obtained from d.

Two signed (open) chord diagrams are related by a rotation about the chord e if they are
related as D1 and D2 in Figure 10, and they are related by a twist about e, if they are related as
D3 and D4 in Figure 11. Now we can give the definitions of R-equivalent diagrams and the sum
of two chord diagrams.

Definition 13 (R-equivalence relation [5]). Two diagrams or signed diagrams D1 and D2

are R-equivalent if and only if they are related by a sequence of rotations and twists. We write
D1 ∼ D2.
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Definition 14 (Sum of diagrams [5]). The sum of two diagrams or signed diagrams D1 and
D2 is obtained by choosing a point pi (not the end-point of a chord or a HR) on the boundary of
each Di, joining the boundary circles at these points and then deforming the result until it is again
a circle.

By choosing the pi differently, this sum can be formed in many different ways but we shall
show that all of them are R-equivalent.

Lemma 1. If two diagrams D and D′ are both sums of diagrams D1 and D2, then they are
R-equivalent.

Proof. The proof is the same as in [6] since the rotations and twists about chords move only
the points p1 or p2 chosen on D1 or D2, respectively. The only fact that one must pay attention
is to respect the cyclic order of the HRs on the resulting circle. In the case where there are some
HRs coming before the chord we want to rotate about or twist about, we must rotate or twist the
HR about a chord before the next step. �

Canonical chord diagrams. For i ≥ 0, 0 ≤ 2j ≤ i, 0 ≤ k ≤ i + 1, l ≥ 0 and 0 ≤ m ≤ 2, let
Di,j,k,(s;l1,...,lq),m be the chord diagram consisting of i chords, j pairs of positive chords intersecting

each other, k connected components of the boundary graph of this diagram, l HRs (l = s+
∑q
p=1 lp)

disposed in a specific way and m negative chords (or twisted chords) intersecting no other chords
(hence i − 2j −m is the number of positive chords intersecting no other chords); if s = 0 then
q = k, and if s > 0, then q = k − 1. Note that the above inequalities defining the canonical
diagram are not independent: if l = 0, then k = 0, otherwise l > 0 and then 0 < k ≤ i+ 1. This
diagram is drawn in such a way that there is a number l − s of HRs partitioned in (lp)p=1,··· ,q
positive chords intersecting no other chords (we shall also call these isolated chords) and s is the
rest of the HRs. We put “t” for only twisted chords for simplicity. All these chords and HRs are
arranged around the circle of the diagram (see an illustration for D4,1,2,(3;1),1 and D5,1,2,(0;1,2),1):

t t

Figure 12. Canonical diagrams: D4,1,2,(3;1),1 and D5,1,2,(0;1,2),1

If there are no HRs on the graph, our canonical diagram corresponds exactly to that of
Bollobás and Riordan [5]. Consider now a chord diagram D with l > 0 HRs. Forgetting about the
HRs for a moment, one performs a sequence of rotations and twists about chords in the same way
as [5] and is led to a BR canonical diagram. The HRs in D were disposed on open faces (open
components) which are preserved under rotations and twists. Therefore, at the end, one adds the
HRs on the resulting BR canonical diagram in order to obtain the result if the same sequence of
rotations and twists about chords was performed on the initial signed chord diagram D considered
with HRs. The issue here is the disposition of the HRs in the BR canonical diagram. We will
show however that, from the knowledge of D, either we can directly reconstruct the new canonical
diagram or find a canonical diagram R-equivalent to it.

Lemma 2. Any (open) chord diagram D is R-equivalent to some Di,j,k,(s;l1,...,lq),m.

Proof. Let D be a signed (open) chord diagram with i chords, k connected components of
the boundary graph of D and l HRs.

Suppose l = 0. In this case k = 0 and D is R-equivalent to some Dijm in sense of [5]. We
denote it as Di,j,0,(0),m since the set of partitions (s; l1, · · · , lq) is empty.

Assume now that l > 0. If we forget the HRs for a moment and perform a sequence of
rotations and twists about chords, we obtain that D is R-equivalent to some Dijm, a signed chord
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diagram consisting of i chords, j pairs of positive chords intersecting each other, i−2j−m isolated
positive chords and m (0 ≤ m ≤ 2) negative isolated chords. One can add now the l HRs to Dijm.
Note that there is only one internal face which passes through all the pairs of positive chords
intersecting each other and all negative chords. Then inserting HRs on this face just leads to
only one connected component of the boundary graph. The remaining connected components of
the boundary graph can be formed by putting a number of HRs in a certain number of isolated
positive chords. Some cases have to be discussed.

Suppose at first that i−2j−m > 0 (there is at least one positive isolated chord). This situation
decomposes in two cases. If k ≤ i−2j−m, the number of connected components of the boundary
graph is at most the number of isolated positive chords. We have two possible ways to arrange
the l HRs. One way is to arrange the l HRs such that they are partitioned in k isolated positive
chords and then we obtain the canonical diagram Di,j,k,(0;l1,...,lk),m (lp > 0, ∀p = 1, · · · , k). The
second way is to arrange l− s (s > 0) HRs such that they are partitioned in k− 1, k > 1, isolated
positive chords and the remaining s HRs are not in any chord. Then we obtain the canonical
diagram Di,j,k,(s;l1,...,lk−1),m (lp > 0, ∀p = 1, · · · , k − 1). If k = 1, there is no remaining isolated
positive chords and l = s yielding the canonical diagram Di,j,k,(l;0),m. By a sequence of rotations
and twists about chords we have Di,j,k,(0;l1,...,lk),m ∼ Di,j,k,(s;l1,...,lk−1),m (see Figure 13. Note also
that, for k = 1, the above expression trivializes to Di,j,k,(l;0),m ∼ Di,j,k,(0;l),m. Now assume that
k > i− 2j −m > 0, then all the i− 2j −m isolated positive chords of D must receive some HRs.
The l − s (s > 0) HRs of D must be partitioned in the i − 2j −m chords, and s HRs must be
disposed elsewhere. Hence k = i− 2j −m+ 1 and we have D = Di,j,k,(s;l1,...,lk−1),m.

Consider finally that i − 2j −m = 0 which means that we do not have any positive isolated
chord. Then, to have a nonempty set of HRs forces k = 1 and then D ∼ Di,j,1,(l;0),m. �

t t

Figure 13. Two R-equivalent canonical diagrams: D5,1,2,(0;1,2),1 ∼ D5,1,2,(2;1),1

Without distinguishing the s HRs with the remaining HRs, let us denote Di,j,k,(s;l1,...,lq),m as
Di,j,k,(l1,...,lk),m. Now, given a permutation σ in Sk (the permutation group with k elements), we
discussed the fact that Di,j,k,(l1,...,lk),m ∼ Di,j,k,(lσ(1),...,lσ(k)),m. This simply means that the order

of the sequence (l1, · · · , lk) does not matter when writing the canonical diagram. In the following,
whenever possible and for simplicity, we use Di,j,k,[l],m to denote Di,j,k,(l1,··· ,lk),m.

4.2. Universality of the polynomial Q. We are in position to show that the multivariate
polynomial invariant QG in (29) is universal on the class of ribbon graphs with HRs. Then, we
will prove RG (10) is universal on a subclass of ribbon graphs with HRs.

We define [l] ` l to be a partition of a positive integer l ≥ 0 and, given A b G, the set of
contraints on A defined as:

Cijk[l]m(A) ≡ {n(A) = i, k(A)− Fint(A) + n(A) = j, C∂(A) = k, t(A) = m, f(A) = l,

[l] defines the same partition as [lc] of the number of HRs of A}. (30)

If Cijk[l]m(A) holds for a given A, where [l] ` l is a given partition of l, with parts lu (
∑
u lu = l),

then each lu must be a number of HRs disposed in a given connected component cu ∈ C∂(A).
Hence, C∂(A) = k must be the number of parts of the partition [l].
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Consider the following expansion of QG

QG(X,Y, Z,W, {ζi}) =
∑

i,j,k,l,m

∑
[l]`l

Rijk[l]m(G;X)(Y − 1)iZjWm
k∏
u=1

ζlu , (31)

Rijk[l]m(G;X) :=
∑

AbG| Cijk[l]m(A) holds

(X − 1)r (G)−r (A),

where each Rijk[l]m(·;X) is a map from the set G of isomorphism classes of connected ribbon
graphs with HRs to Z[X]. Rijk[l]m(G;X) fulfills the contraction-cut rules (14) and (15) as given
by Theorem 3 (the extra contraints on the type of c-subgraphs do not have any influence on the
proof).

Given a ring R and an element x of R, for i,j,k,l,m, as Rijk[l]m(·;X) takes values in Z[X],
we compose it with the ring homomorphism from Z[X] to R mapping X to x, and obtain a map
Rijk[l]m(·;x) from G to R. The infinite sum of these functions is of significance, but in general a
finite number are non-vanishing on any given ribbon graph with HRs.

Theorem 5 (Universality of Q). Let R be a commutative ring and x ∈ R. If a function
φ : G→ R satisfies

φ(G) =

 φ(G ∨ e) + φ(G/e) if e is regular,

(x− 1)φ(G ∨ e) + φ(G/e) if e is a bridge,
(32)

then there are coefficients λijk[l]m ∈ R, with i ≥ 0, 0 ≤ k ≤ i + 1, l ≥ 0, 0 ≤ m ≤ 1 and

0 ≤ j ≤ i+ 1 such that

φ(G) =
∑

i,j,k,l,m

∑
[l]`l

λijk[l]mRijk[l]m(G;x). (33)

Proof. Let us consider a two-vertex ribbon graph G of the form in Figure 9. Applying
equation (32) provides two different expressions for φ(G): at first, one applies these relations to
the positive edge e and then to the positive edge g (if it is not a self-loop), and then vice-versa.
Equating these expressions shows that

φ(D1)− φ(D′1) = φ(D2)− φ(D′2), (34)

where D1, D′1, D2 and D′2 are signed chord diagrams related as illustrated in Figure 10.
Similarly, considering the case where g is negative allows us to get

φ(D3)− φ(D′3) = φ(D4)− φ(D′4), (35)

where D3, D′3, D4 and D′4 are signed chord diagrams related as illustrated in Figure 11.
Suppose that φ satisfies (32), we now show that it has the form (33). We define the λijk[l]m

by induction. If i = 0, then m = 0 and we set λ000[0]0 for the value of φ on a bouquet without
loops and HRs, λ011[l]0 (l > 0 and [l] = (s = l; 0)) for the value of φ on a bouquet without loops
but with l HRs and λ0jk[l]m = 0 for all other values of j, k, l,m.

Assume that n ≥ 1 and φ(G) =
∑
i<n; j,k,l,m

∑
[l]`l λijk[l]mRijk[l]m(G;x) for all bouquets with

HRs with fewer than n loops. Let us set φ′ = φ −
∑
i<n; j,k,l,m

∑
[l]`l λijk[l]mRijk[l]m(·;x). φ′

vanishes on bouquets with HRs with less than n loops and satisfies (32) since φ and the Rijk[l]m

satisfy it. This also shows φ′ andRijk[l]m obey (34) and (35). Since φ′ vanishes on chords diagrams
with fewer than n chords, then φ′(D1) = φ′(D2) or φ′(D3) = φ′(D4) for related diagrams with n
chords. Consequently, φ′(D) depends only on the R-equivalence class of the chord diagram. For
j, k, m, l and [l] ` l, there is an Rnj′k′[l′]m′ such that Rnj′k′[l′]m′(Dn,j′′,k′′,[l′′],m′′ ;x) = 1, if i = i′′,
j = j′′, k = k′′, l = l′′, and [l] = [l′′] (the same partition of l) and 0 otherwise (see (37), (38)
and (39), in the discussion below). We can therefore select the λnjk[l]m so that (33) holds on the
Dn,j,k,[l],m and this extends to all chord diagrams with n chords.

By induction on n, there exist λijk[l]m such that (33) holds for all bouquets with HRs G. The
same result follows for all connected ribbon graphs with HRs using (32). �
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Let γ be the function defined on the set {0, 1, 2} by:{
γ(0) = 0,
γ(1) = γ(2) = 1.

(36)

The computation of φ′ on a canonical signed chord diagram Dn,j′,k′,[l′],m′ gives:

φ′(Dn,j′,k′,[l′],m′) =
∑
j,k,l,m

∑
[l]`l

λnjk[l]mRnjk[l]m(Dn,j′,k′,[l′],m′ ;x)

=
∑
j,k,l,m

∑
[l]`l

λnjk[l]mδj,2j′+k′+m′δk,k′δ[l],[l′]δm,γ(m′)

= λn(2j′+k′+m′)k′[l′]γ(m′) (37)

where δpp′ is 1 if p = p′ for two integers p and p′, and 0 otherwise; the delta function δ[l],[l′] of two
partitions [l] and [l′] equals 1 if [l] = [l′] (as defining the same partition of l = l′), and 0 otherwise.
For some j, k, l and m, we can compute explicitly, λnjk[l]m:
• If m = 0

λnjk[l]0 = φ′(Dn, 12 (j−k),k,[l],0). (38)

Then λnjk[l]0 is the value of φ′ on the canonical signed chord diagram Dn, 12 (j−k),k,[l],0 if and only

if j − k ∈ 2N and j ≤ n+ 1. Otherwise, λnjk[l]0 = 0.
• If m = 1

λnjk[l]1 =


φ′(Dn, 12 (j−k−1),k,[l],1) if j − k ∈ 2N + 1,

φ′(Dn, 12 (j−k−2),k,[l],2) if j − k ∈ 2N + 2.
(39)

Then λnjk[l]1 is the value of φ′ on the canonical signed chord diagram Dn, 12 (j−k−1),k,[l],1 if and

only if j − k ∈ 2N + 1 and j ≤ n+ 1. It can be also the value of φ′ on the canonical signed chord
diagram Dn, 12 (j−k−2),k,[l],2 if and only if j − k ∈ 2N + 2 and j ≤ n+ 1. Otherwise, λnjk[l]1 = 0.

As in case of Tutte polynomial and BR polynomial, the condition (32) in Theorem 5 can be
replaced by

φ(G) =

 τφ(G ∨ e) + σφ(G/e) if e is regular,

(x− 1)φ(G ∨ e) + σφ(G/e) if e is a bridge,
(40)

with fixed element x, σ and τ of R. If σ and τ are invertible and φ(G) satisfies (40), then
Φ′(G) = σ−r (G)τ−n(G)φ(G) satisfies (32) with (x− 1) replaced by (x− 1)σ−1 if we want to apply
Theorem 5 to this function.

The polynomial basis Rijk[l]m(G;−) cannot be easily determined from the unique knowledge
of R(G;−). We have the following expansion

RG(X,Y, Z, S,W, T ) =
∑

i,j,k,l,m

Rijklm(G;X)(Y − 1)iZj SkWm T l

Rijklm(G;X) =
∑
[l]`l

Rijk[l]m(G;X) (41)

where Rijklm(G;X) is a sum of the Rijk[l]m(G;X). This could be regarded as an obstacle to call
R(G;−) universal on ribbon graphs with HRs.

A way to circumvent this issue consists in a specification of a subclass of ribbon graphs with
HRs that will make R(G;−) fully characterizing a subset of the polynomials Rijk[l]m(G;−), for
some precise partitions [l]. This happens when, e.g., Rijklm(G;X) = Rijk[l]m(G;X) for a specific
type of partition [l]. One of the simplest instance where R(G;−) determines Rijk[l]m(G;−) occurs
when k and l fully fix the partition [l] for all c-subgraphs. Consider a ribbon graph with the
following property: every connected component of the boundary of its c-subgraph contains a
single HR except for one that contains the remaining l− (k− 1) HRs. Hence, for all c-subgraphs,
the partition [l] is of the form (l − (k − 1), 1k−1). This class is non empty. Indeed, we illustrate
an example of one of its elements on the left of figure 14. Of course, the reasoning extends by
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requesting a fixed number, say α, of HRs per connected component of the boundary graph of each
c-subgraph, except for one having the remaining of HRs. This is illustrated for α = 2 at the right
of Figure 14. Therein, one fixes α = 2 HRs per connected components of the boundary of each
c-subgraphs except for one. Generally, the partition takes the form [l] = (l−α(k− 1), αk−1). The
recipe is to create a single connected component of the boundary graph of G containing all HRs
in such a way that cutting the edges keeps them in the same boundary component if they do not
fall into a new connected component subgraph.

t

t

t t

t

 t

Figure 14. Ribbon graphs with HRs with dashed arcs corresponding to an ar-
bitrary number of leaves, of 2-edge vertices, of (twisted) self-loops or of HRs.

For the subclass with α = 2, we have the following reduced expansion

RG(X,Y, Z, S,W, T ) =
∑

i,j,k,l,m

Rijk[l−2(k−1),2k−1]m(G;X)(Y − 1)iZj SkWm T l. (42)

The analog expression for any α ≥ 1 subclass can be easily deduced.
The following statement becomes straightforward:

Corollary 2 (Universality of R). R is universal in the sense of Theorem 5 for functions
fulfilling the contraction/cut rule (32) on the class of ribbon graphs with HRs with all c-subgraphs
having 2 HRs on each connected component of their boundary graph except for one which contains
all remaining HRs.

Proof. The equation (33) is now understood in the sense that the sum over partitions [l]
restricts to those corresponding to [l] = [l − 2(k − 1), 2k−1]. The set of canonical diagrams that
appear in the present situation are restricted to those allowing precisely the considered partitions.
The rest of the proof is identical to that of Theorem 5. �

We reasonably conjecture that the universality of R extends beyond the (α = 2)–subclass of
ribbon graphs with HRs to the generic α–subclass. However, we postpone a thorough answer to
the question of the universality domain of R to future investigation.

It is a noteworthy fact that the polynomial RG on ribbon graphs with HRs has another special
invariance. Indeed, consider two ribbon graphs with HRs, G1 and G2 that only differ by the way
that their HRs are distributed along the boundary components of their boundary graphs (in other
words, the underlying ribbon graphs of G1 and G2 are isomorphic and one is obtained from the
other by moving around the HRs in a way of preserving each connected component of the boundary
graphs and the set of internal faces). In the next section, we shall give a clean definition of such
operations, but for the moment, one realizes that RG1 = RG2 , for two such graphs. Moving around
HRs on a given ribbon graph with HRs shows that there are some partitions of the set HRs in
the connected components of the boundary graph that do not truly matter in the evaluation of
R. This strongly suggests that there exists another way of classifying ribbon graphs with HRs, a
corresponding polynomial invariant that is constant on these new classes and that turns out to be
universal for all maps that fulfills the same kind of invariance.
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5. Polynomial invariant for HR-equivalent ribbon graphs

In order to define the new category of graphs of interest, we must introduce a new equivalence
relation on ribbon graphs.

Definition 15 (HR move operation). Let G(V, E , f0) be a ribbon graph with HRs. A HR move
in G consists in removing a HR f ∈ f0 from one-vertex V and placing f either on V or on another
vertex such that it is called
• a HR displacement if the boundary connected component where f belongs is not modified

(see G1 and G2 in Figure 15);
• a HR jump if the HR is moved from one boundary connected component to another one,

provided the former remains a connected boundary component (see G1 and G3 or G2 and G3 in
Figure 15).

G1 G2 G3

Figure 15. Some HR moves

One observes that under HR displacements the boundary graph remains unchanged whereas
under HR jumps this graph can be modified. In general, under HR moves, the number of connected
components of the boundary graph is not modified. For instance, in Figure 15, the graphs G2 and
G3 are obtained from G1 by a HR displacement and a HR jump, respectively.

Definition 16 (HR-equivalence relation). We say that two ribbon graphs with HRs G and
G′ are HR-equivalent if they are related by a sequence of HR moves. This relation is denoted by
G ∼HR G′.

One can check that the HR-equivalence is an equivalence relation. As a consequence of the
definition, if G ∼HR G′, then V(G) = V(G′), E(G) = E(G′),Fint(G) = Fint(G′), f(G) = f(G′),
k(G) = k(G′), t(G) = t(G′), r (G) = r (G′), n(G) = n(G) and C∂(G) = C∂(G′). Thus the HR moves
only modify the incidence relation between HRs and vertices. We denote the HR-equivalence class
of G by [G]. Hence the three graphs in Figure 15 are HR-equivalent. For short, we will also use
“G is equivalent to G′” if there is no confusion.

Let [G] be a class of a ribbon graph with HRs under such relation. We define V ([G]) =
V (G), E([G]) = E(G), and f([G]) = f(G). The number of connected components, the rank,
nullity, the number of internal faces and the number of boundary components of [G] are those of
G, namely, k([G]) = k(G), r ([G]) = r (G), n([G]) = n(G), Fint([G]) = Fint(G) and C∂([G]) = C∂(G).

The following statement holds.

Lemma 3. If two ribbon graphs with HRs G and G′ are HR-equivalent, then for any edge e in
G and G′, G ∨ e and G′ ∨ e are HR-equivalent.

Proof. We shall establish that a single HR move operation commute with cutting an edge e
in G. In order to do so, we must observe that there exists a number of connected components of the
boundary graph which may pass through the edge e and pay attention on how these components
get modified under the two processes.

We call G′ the graph obtained from G after the HR move. A case by case study is required.

(i) Assume that no connected component of the boundary graph passes through e. This
means that there is one closed face or there are two closed faces passing through e.
Consider in G a HR move giving G′. The HR cannot visit the closed face(s) passing
through e. Then after cutting e, the HR cannot be hooked on the (1 or 2) boundary
connected components which are generated in G′ ∨ e. If we start by cutting e in G and
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perform the same HR move in G ∨ e, the HR cannot still visit the boundary components
generated by the cut.

(ii) Assuming now that, through e pass one closed face and one boundary connected com-
ponent. Cutting e merges the close face to the boundary component. The reasoning is
similar to the above point (i) (in the sense that the HR cannot be hooked to the sector
generated by the closed face) and the operations commute.

(iii) Let us consider now that there is no closed face passing through e. Two situations, A
and B, might occur:

A) We have a unique boundary component C passing through e. This case further
divides into two possibilities:

A1) The cut of e generates a unique connected component of the boundary: One
easily checks that the HR move commute with the cut.

A2) The cut of e generates two connected components C1 and C2 of the boundary
graph containing each a HR coming from e.
• Now let us assume that the move is a jump and that the HR come from another

boundary component C0 and ends on C. After cutting e that HR must be hooked to a
unique Ci, i = 1, 2. Assuming that we cut e first, the same HR jump can be performed
if and only if Ci has a HR. This is indeed the case.
• Let then assume that the move is a displacement. Two situations can happen.

Either the move is done within a sector Ci or done from C1 to C2 (without loss of
generality). Then we can cut e. If the displacement was within Ci, one notes that, after
cutting e, we can perform the same move within the same Ci which yields an identical
configuration as above. Meanwhile, if the displacement was from C1 to C2 (as sectors of
C), after cutting e, C1 disconnects from C2 and the same move cannot be a displacement
anymore. It can be however a jump if and only if C1 has at least one HR and this is
true.

B) We have exactly two boundary components C1 and C2 passing through e. Note
that the cut of e generates a unique connected component C of the boundary. This case
divides in two further possibilities:
• The move is a displacement within a sector Ci: there is no difficulty to see that

the operations commute in this case.
• The move is a jump. Two further cases must be discussed. Either the jump is

from another boundary component C0 to Ci, i = 1, 2, then this case is again easily
solved or the jump occurs from the component C1 to the component C2 (without loss of
generality). Then, if we cut first e, and perform the same move, one realizes that this
move is simply a displacement within C.

So far, we checked the case where the jump operation was defined by adding a HR to the
boundary connected components passing through e. The proof for the converse case when these
components lose a HR after a HR jump can be done in the totally symmetric way. �

Let [G] ∨ e be the set obtained by cutting e in all elements of [G], [G]− e the set obtained by
deleting e in all elements of [G] and [G]/e the set obtained by contracting e in all elements of [G].
We have:
• [G ∨ e] ⊃ [G] ∨ e and [G − e] ⊃ [G]− e.
• If e is not a self-loop, [G/e] = [G]/e.
It might happen that [G] ∨ e ( [G ∨ e] and [G]− e ( [G − e]. Thus it is not clear that [G] ∨ e

and [G]− e correspond to some equivalence classes of some graphs.

Lemma 4. For two HR-equivalent ribbon graphs, G and G′, R(G) = R(G′) with R the poly-
nomial defined in (10).

Proof. The proof of this lemma uses Lemma 3. The number of monomials in the expansion
of R(G) or R(G′) is the same since G and G′ have exactly the same set of edges. Each monomial
of R(G) is obtained from the contribution of a spanning subgraph A b G. Since A is obtained
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by cutting a subset E ′ of edges in G, we choose also the spanning subgraph A′ b G′ obtained by
cutting the same subset of edges in G′. Applying successively Lemma 3 to all elements of E ′, the
subgraphs A and A′ are HR-equivalent. Then, the monomial associated with A in R(G) is equal
to the one associated with A′ in R(G′). This achieves the proof. �

We are now ready to define the polynomial R on HR-equivalence classes.

Definition 17 (Polynomial for HR-equivalence classes). Let G(V, E , f0) be a ribbon graph with
HRs and [G] be its HR-equivalence class. We define the polynomial of [G] to be

R[G] = RG . (43)

The following statement is trivial.

Proposition 3. Let G be a ribbon graph with HRs, [G] its HR-equivalence class and e one of
its edges. The following relations hold R[G∨e] = RG∨e and R[G/e] = RG/e.

Corollary 3 (Contraction and cut on BR polynomial). Let G(V, E , f0) be a ribbon graph
with HRs and [G] be its HR-equivalence class. Then, for a regular edge e,

R[G] = R[G∨e] +R[G/e] , (44)

for a bridge e, we have

R[G] = (X − 1)R[G∨e] +R[G/e] , (45)

for a trivial twisted self-loop e, the following holds

R[G] = R[G∨e] + (Y − 1)ZW R[G/e] , (46)

whereas for a trivial untwisted self-loop e, we have

R[G] = R[G∨e] + (Y − 1)R[G/e] . (47)

Proof. The proof of this theorem is immediate using Theorem 3 and Proposition 3. �
The polynomial (43) is also universal and the proof of this claim can be achieved in the same

way as done for Theorem 5. Consider the following expression:

Rijklm([G]) := Rijklm(G) (48)

where Rijklm keeps the meaning it has in (31).
Consider GHR the set of HR-equivalence classes of isomorphism classes of connected ribbon

graphs with HRs. This means that we have GHR = (G/ ∼HR). Classes of chord diagrams under
HR-equivalence relation are naturally well defined. Then the following statement holds.

Dealing with a class [G] of GHR, the important information to keep track in each partition
[l] ` l is its the number of parts that must coincide with the number of connected components of
the boundary graph of [G].

Theorem 6 (Universality of R on classes). Let R be a commutative ring and x ∈ R. If a
function φ : GHR → R satisfies

φ([G]) =

 φ([G ∨ e]) + φ([G/e]) if e is regular,

(x− 1)φ([G ∨ e]) + φ([G/e]) if e is a bridge.
(49)

Then there are coefficients λijklm ∈ R, with i ≥ 0, 0 ≤ k ≤ i + 1, l ≥ 0, 0 ≤ m ≤ 1 and

0 ≤ j ≤ i+ 1 such that

φ([G]) =
∑

i,j,k,l,m

λijklmRijklm(x). (50)

Proof. As the partition [l] of HRs needs not record in HR-equivalence classes, we simply
define the canonical diagram Di,j,k,l,m to be [Di,j,k,[l],m], namely the HR-equivalence class of
the canonical diagram Di,j,k,[l],m. Indeed, as Di,j,k,(s;l1,l2,...,lq),m ∼HR Di,j,k,(l−q;1,1,...,1),m, where
k = q, if s = 0, or k = q + 1 otherwise, we do not need to track the partition of HRs in isolated
positive chords in the class Di,j,k,l,m.
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We adjust the proof of Theorem 5: if D1, D′1, D2 and D′2 are signed chord diagrams related
as in Figures 10 or 11,

φ(D1)− φ(D′1) = φ(D2)− φ(D′2), (51)

then we can write

φ([D1])− φ([D′1]) = φ([D2])− φ([D′2]). (52)

The definition of Rijklm(G;X) (31) remains valid. Its expansion in terms of a sum over par-
titions becomes irrelevant since all c-subgraphs obeying the constraints Cijklm are necessarily
HR-equivalent. Following step by step the proof of Theorem 5, one proves the existence of the
coefficients λijklm so that (50) holds on the Di,j,k,l,m and therefore on all chord diagrams with i
chords. The rest of the proof is similar to what was done for Theorem 5. �

It is natural to find the restricted polynomial R′ (11) over classes of HR-equivalent ribbon
graphs and to show its universality. Several other interesting developments can be now undertaken
from the polynomial invariants treated in this paper. For instance, the polynomial R does not
satisfy the ordinary factorization property under the one-point-join operation (see Proposition 1).
Therefore, finding a recipe theorem in the sense of [10] becomes a nontrivial task for ribbon graphs
with HRs. This certainly deserves to be investigated. Furthermore, significant progresses around
matroids [7] and Hopf algebra techniques [8] applied to the Tutte polynomial have been recently
highlighted. These studies should find as well an extension for the present types of invariants.
Finally, combining some ideas of this work and Hopf algebra calculations [13], another important
investigation would be to find a universality theorem for polynomial invariants over stranded
graphs [2] extending ribbons with HRs.
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