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Abstract

Dealing with NP-hard problems, kernelization is a fundamental notion for polynomial-time
data reduction with performance guarantees: in polynomial time, a problem instance is
reduced to an equivalent instance with size upper-bounded by a function of a parameter
chosen in advance. Kernelization for weighted problems particularly requires to also shrink
weights. Marx and Végh [ACM Trans. Algorithms 2015] and Etscheid et al. [J. Comput. Syst.
Sci. 2017] used a technique of Frank and Tardos [Combinatorica 1987] to obtain polynomial-
size kernels for weighted problems, mostly with additive goal functions. We characterize
the function types that the technique is applicable to, which turns out to contain many
non-additive functions. Using this insight, we systematically obtain kernelization results for
natural problems in graph partitioning, network design, facility location, scheduling, vehicle
routing, and computational social choice, thereby improving and generalizing results from
the literature.
Keywords: NP-hard problems, problem kernelization, weight reduction, routing, scheduling,
computational social choice, partitioning

1. Introduction

In the early eighties, Grötschel et al. [29] employed the famous ellipsoid method by
Khachiyan [34, 35] for solving the Weighted Independent Set (WIS) problem: Given
an undirected graph G = (V,E) with vertex weights w : V → Q+, find a set U ⊆ V such
that U is an independent set and maximizes

∑
v∈U w(v). Grötschel et al. [29] proved WIS

to be solvable in polynomial time on perfect graphs. The running time of their algorithm,
however, was only weakly polynomial, which led to the question whether WIS on perfect
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graphs is solvable in strongly polynomial time.2 In their seminal work, Frank and Tardos [28]
affirmatively answered this question by developing a (what we call) losing-weight technique.
Their technique employs a preprocessing algorithm that, exemplified for WIS, does the
following:

Example 1.1 (Weighted Independent Set). In strongly polynomial time, compute
vertex weights ŵ such that

(a) the encoding length of the maximum value of ŵ is upper-bounded by a polynomial in
the number of graph vertices,

while preserving the relative quality of all solutions and non-solutions, that is,

(b) for every two (independent) sets U,U ′ ⊆ V , it holds that
∑

v∈U w(v) ≥
∑

v∈U ′ w(v) if
and only if

∑
v∈U ŵ(v) ≥

∑
v∈U ′ ŵ(v).

Thus, WIS can be solved in strongly polynomial time on perfect graphs by first applying
the losing-weight technique and then the algorithm of Grötschel et al. [29]. To the best of our
knowledge, the technique was used the first time in the context of parameterized algorithmics
by Fellows et al. [25], where it was used to obtain fixed-parameter algorithms running in
polynomial space. Marx and Végh [42] first observed the connection of the losing-weight
technique to polynomial-time data reduction, namely kernelization: intuitively, in polynomial
time, a problem instance is reduced to an equivalent instance with size upper-bounded by a
function of a problem-specific parameter. Notably, their kernelization first increases the size
of the instance and then introduces additional edge weights. Marx and Végh [42] stated that
“[...] this technique seems to be an essential tool for kernelization of problems involving costs.”
Subsequently, Etscheid et al. [22] and Knop and Koutecký [36] used the technique to prove
polynomial kernels for several weighted problems, supporting Marx and Végh’s statement.

In almost all problems studied by the four papers mentioned above, the goal functions
are additive set functions (that is, functions f satisfying f(A ] B) = f(A) + f(B) for
sets A and B). In the two cases where they are not, ad-hoc adaptions of Frank and Tardos’
theorem [28] are used. We present a method of systematically recognizing non-additive
functions (which are not necessarily set functions) to which the losing-weight technique
applies.

Our Contributions and Structure of this Work. In Section 2, we introduce basic notation
and give a brief introduction to the losing-weight technique. In Section 3, we show how to
apply the losing-weight technique to two problems with non-additive goal functions in graph
partitioning and network design. In Section 4, we characterize what we call α-linearizable
functions to which Frank and Tardos’ [28] losing-weight technique applies. Intuitively, the

2Not to be confused with pseudo-polynomial and polynomial running time, see, e.g., Schrijver [46,
Section 4.12] or Grötschel et al. [30, Section 1.3]. For strongly polynomial time, one requires from the
algorithm to have space polynomial in the input size and that the number of elementary arithmetic and
other operations executed by the algorithm does not depend on the sizes of the numbers in the input.
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parameter α associated with a linearizable function specifies how “far” the function is from an
everywhere-linear function. We additionally provide some tools that allow for a convenient
computation of a linearizable function’s α-value. In Section 5, we exemplify the versatility of
these tools using problems from network design, facility location, scheduling, vehicle routing,
and computational social choice.

We complement or improve several results in the literature: In Section 4.2, we settle
an open problem on the kernelizability of the Min-Power Symmetric Connectivity
problem [8]. In Section 5.1, we show a problem kernel for the Uncapacitated Facility
Location problem whose size is polynomially upper-bounded in the number of the vertices of
the input graph. Previously, only problem kernels with size exponentially upper-bounded in
the optimal solution cost (which is usually larger than the number of vertices) were known [23].
In Section 5.2, we shrink weights in several classical scheduling problems. Polynomial problem
kernels for scheduling problems are rare [14, 36, 44] and shrinking weights will necessarily be
an ingredient in kernels for weighted scheduling problems. In Section 5.3, we generalize a
kernelization result for the Rural Postman Problem [10] to the Min-Max k-Rural
Postman Problem. In Section 5.4, we prove a theorem on polynomial kernelization for the
Power Vertex Cover problem that has been stated without proof in the literature [2].

2. Preliminaries and the Losing-Weight Technique

2.1. Basic Notation and Definitions
An n-dimensional vector x ∈ Sn for some set S is interpreted as a column vector, and we

denote by x> its transpose. For two vectors x = (x1, . . . , xn) ∈ Sn and y = (y1, . . . , ym) ∈ Tm,
we denote by x◦y := (x1, . . . , xn, y1, . . . , ym) ∈ (S∪T )n+m the concatenation of x and y. The
`1-norm of a vector x ∈ Rn is ‖x‖1 :=

∑n
i=1 |xi|. The `∞-norm (also known as max-norm) of x

is ‖x‖∞ := maxi∈{1,...,n} |xi|. For a number x ∈ R, the signum of x is defined by sign(x) := 1
if x > 0, sign(x) := 0 if x = 0, and sign(x) := −1 if x < 0.

Let Σ be a finite alphabet. A set P ⊆ Σ∗ × N is called a parameterized problem. In an
instance (x, k) ∈ Σ∗ × N, we call x the input and k the parameter.

Definition 2.1. A problem kernelization for a parameterized problem P ⊆ Σ∗ × N is an
algorithm that, given an instance (x, k), computes in polynomial time an instance (x′, k′)
such that

(i) (x, k) ∈ P if and only if (x′, k′) ∈ P , and

(ii) |x′|+ k′ ≤ f(k) for some computable function f only depending on k.

We call f the size of the problem kernel (x′, k′). If f ∈ kO(1), then we call the problem kernel
polynomial.
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2.2. A Useful and Central Equivalence Relation
In this section, with the goal in mind to replace any given weight vector w by a “repre-

sentative” weight vector ŵ with upper-bounded ‖ŵ‖1, we define an equivalence relation on
vectors over K ∈ {Z,Q}. Its equivalence classes will be formed by partitioning the space
using hyperplanes with coefficients from

Zr := {±p ∈ Z | p ∈ {0, . . . , r}} ⊆ Z or (2.1)

Qr :=

{
±p
q

∣∣∣∣ p ∈ {0, . . . , r}, q ∈ {1, . . . , r}} ⊆ Q. (2.2)

Specifically, we will say that two vectors u and v are equivalent if and only if for all vectors β
from some specific subset of Kr, their dot products β>u and β>v have the same signum.
Geometrically speaking, u and v are equivalent if and only if for all vectors β from some
specific subset of Kr, there is no hyperplane {x | β>x = 0} separating u and v. Formally:

Definition 2.2. Let K ∈ {Z,Q} and r, d ∈ N. Then, the binary relation ∼Kd

r on Qd is given
by

w ∼Kd

r w′ ⇐⇒ ∀β ∈ Kd
r with ‖β‖1 ≤ r it holds that sign(β>w) = sign(β>w′).

For every w ∈ Qd, let [w]K
d

r := {w′ ∈ Qd | w′ ∼Kd

r w} ⊆ Qd be the class of w under ∼Kd

r .

Example 2.3. Consider Q2 and r = 2. Any two vectors fall into the same class under ∼Z2

2 if
and only if they cannot be separated by vectors from Z2 with entries in {0,±1} (see Figure 1
for an illustration).

We prove next that the relation from Definition 2.2 is an equivalence relation.

Observation 2.4. For every K ∈ {Z,Q} and r, d ∈ N, the relation ∼Kd

r on Qd is an
equivalence relation.

Proof. Let K ∈ {Z,Q} and r, d ∈ N. Clearly, w ∼Kd

r w (reflexivity) and w ∼Kd

r w′ ⇐⇒
w′ ∼Kd

r w (symmetry). Moreover, if w ∼Kd

r w′ and w′ ∼Kd

r w′′, then w ∼Kd

r w′′ (transitivity):
For every β ∈ Kd

r with ‖β‖1 ≤ r, one has sign(β>w) = sign(β>w′) = sign(β>w′′).

Next, we prove some properties of ∼Kd

r and [·]Kd

r . The first property is the following:

Observation 2.5. Let K ∈ {Z,Q}, d ∈ N, and w ∈ Kd. For every r, r′ ∈ N with r ≤ r′ it
holds that [w]K

d

r ⊇ [w]K
d

r′ .

Proof. Let K ∈ {Z,Q}, d ∈ N, w ∈ Kd, and r, r′ ∈ N with r ≤ r′. Let w′ ∈ [w]K
d

r′ . We
prove that w′ ∈ [w]K

d

r . To this end, let β ∈ Kd
r with ‖β‖1 ≤ r. Note that β ∈ Kd

r′ ⊇ Kd
r

and ‖β‖1 ≤ r ≤ r′. Hence, sign(β>w) = sign(β>w′), and, therefore, w ∼Kd

r w′.

Reconsider Example 2.3 to exemplify Observation 2.5. If we change r to one, then, for
instance, the union of the equivalence classes C2, C3, and C4 forms an equivalence class,
say C, under ∼Z2

1 . Since w ∈ C4, we have that w ∈ C.
The second property is the following:
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Figure 1: Illustration of the equivalence classes C0, C1, . . . , C16 regarding ∼Zd

r partitioning Qd with d = 2
and r = 2. Theorem 2.7 is exemplified with some w and ŵ, each of which belonging to the equivalence
class C4, where the dotted rectangle illustratively frames all vectors fulfilling Theorem 2.7(i).

Observation 2.6. Let w = (w1, . . . , wd) ∈ Qd, d ∈ N, and K ∈ {Z,Q}. Then,

(i) for every r ≥ 1 and w′ = (w′1, . . . , w
′
d) ∈ [w]K

d

r it holds that sign(wi) = sign(w′i) for
all i ∈ {1, . . . , d};

(ii) for every r ≥ 2 and w′ = (w′1, . . . , w
′
d) ∈ [w]K

d

r it holds that sign(wi−wj) = sign(w′i−w′j)
for all i, j ∈ {1, . . . , d}.

Reconsider Example 2.3 to illustrate Observation 2.6. For instance, we have that for
every vector w = (w1, w2) ∈ C2 it holds that w1, w2 > 0 and w2 < w1, for every vector w =
(w1, w2) ∈ C3 it holds that w1, w2 > 0 and w1 = w2, and for every vector w = (w1, w2) ∈ C4

it holds that w1, w2 > 0 and w1 < w2.

2.3. Losing-Weight Technique
Our work heavily relies on the following seminal result:

Theorem 2.7 (Frank and Tardos [28, Section 3]). On inputs w ∈ Qd and integer N , one
can compute in time polynomial in the encoding length of w and N a vector ŵ ∈ Zd with

(i) ‖ŵ‖∞ ≤ 24d3(N + 1)d(d+2) such that

(ii) sign(w>b) = sign(ŵ>b) for all b ∈ Zd with ‖b‖1 ≤ N .

5



We briefly explain how Theorem 2.7 relates to Example 1.1: The vertex weights in
Weighted Independent Set can be interpreted as a vector w ∈ Qd with d := |V |. Any
two vertex subsets U,U ′ ⊆ V can be interpreted as vectors u, u′ ∈ {0, 1}d, where uv = 1
if and only if v ∈ U , and u′v = 1 if and only if v ∈ U ′. Then,

∑
v∈U wv = u>w and∑

v∈U ′ wv = u′>w. With b := u− u′, the statement of Example 1.1(b) can thus be rewritten
as b>w ≥ 0 ⇐⇒ b>ŵ ≥ 0. Since ‖b‖1 ≤ |V |, applying Theorem 2.7 to w with N := |V |
yields a new weight vector ŵ satisfying Example 1.1(a) and Example 1.1(b).

Theorem 2.7 also works for decision rather than optimization problems. Indeed, the
application to decision problems is a direct corollary, first stated by Marx and Végh [42,
Remark 3.15] and then formalized by Etscheid et al. [22], thereby observing that the value
given additionally along the description of the decision problem can be “attached” to the
weight vector.

Corollary 2.8. Given w ∈ Qd, k ∈ Q, and N ∈ N, in time polynomial in the encoding
length of w, k, and N , one can compute a vector ŵ ∈ Zd and an integer k̂ ∈ Z such that

(i) ‖ŵ‖∞ , |k̂| ≤ 24(d+1)3(N + 1)(d+1)(d+3) and

(ii) w>b ≤ k ⇐⇒ ŵ>b ≤ k̂ for all b ∈ Zd with ‖b‖1 ≤ N − 1.

Whenever we are facing a weighted problem with an additive goal function, that is, for
example finding some set S such that

∑
s∈S w(s) is minimized (or maximized), the application

of Theorem 2.7 is immediate. So it is for the well-known Knapsack problem, as proven by
Etscheid et al. [22], giving the affirmative answer to the open question [20, 24] of whether
Knapsack admits a kernel of size polynomial in the number if items:

Example 2.9. Recall the Knapsack problem: Given a set X = {1, . . . , n} of items with
weights w : X → Q and values v : X → Q, and rational numbers k, ` ∈ Q, the question is
whether there is a subset S ⊆ X of items such that

∑
i∈S w(i) ≤ k and

∑
i∈S v(i) ≥ `. Let w

and v be interpreted as n-dimensional vectors with wi := w(i) and vi := v(i). Applying
Corollary 2.8 once with input w, k, and N := n + 1, and once with input v, `, and N ,
(where d = n in each application) yields an equivalent instance of Knapsack where the
weights and values are of encoding-length polynomial in n. Hence, this yields a problem
kernel of size polynomial in n.

2.4. Losing-Weight Technique and our Equivalence Relation Combined
Note that Theorem 2.7(ii) is equivalent to ŵ being contained in the equivalence class [w]Z

d

N

of w. Hence, Theorem 2.7, given a d-dimensional vector w and any positive integer N ,
efficiently computes an integral representative ŵ from w’s equivalence class where each
entry can be upper-bounded by some number only depending on d and N (see Figure 1 for
an illustrative example). Consequently, we can rephrase Theorem 2.7 with respect to our
equivalence relation as follows:

Theorem 2.10 (Theorem 2.7 rephrased). On inputs w ∈ Qd and integer N , in time
polynomial in the encoding length of w and N one can compute a vector ŵ ∈ Zd ∩ [w]Z

d

N with
‖ŵ‖∞ ≤ 24d3(N + 1)d(d+2).
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For convenience, we will refer to Theorem 2.10 (instead of Theorem 2.7) in the remainder
of this work.

3. Two Case Studies with Non-Additive Goal Functions

In this section, we show two applications of Theorem 2.10 to optimization problems with
non-additive goal functions. In Example 1.1 (Weighted Independent Set) and Exam-
ple 2.9 (Knapsack) the used representation of the vectors has a one-to-one correspondence
to solution candidates: Any solution candidate to WIS or Knapsack is a set of vertices or
items, respectively. Such a set can clearly be represented with a (binary) vector and every
(binary) vector represents a solution candidate. Yet, is the second requirement needed? In
several of the applications that we are going to present, this is in fact not the case. Our core
idea is hence as follows: We still require that every solution candidate can be represented as
a vector, however, we do not require every vector to represent a solution candidate. Note
that this is fine since ∼ holds for all vectors b from the vector space containing vectors
representing solution candidates, and thus, also for all vectors that do represent solution
candidates. We next exemplify our idea using two problems with non-additive goal functions
and formalize them later in Section 4.

3.1. The Case of Small Set Expansion
Consider the following graph partitioning problem, which was studied in the context of

bicriteria approximation [4] and the unique games conjecture [45].

Small Set Expansion (SSE)

Input: An undirected graph G = (V,E) with edge weights w : E → Q+.

Task: Find a non-empty subset S ⊆ V of size at most |S| ≤ n/2 that minimizes

1

|S|
∑

e∈(S,V \S)

w(e), (3.1)

where (S, V \ S) denotes the set of all edges with exactly one endpoint in S.

The goal function’s value for a vertex set S can be represented by w>s for a fractional
vector s ∈ {0, 1/|S|}|E|, where w is interpreted as vector and an entry of s is non-zero if and
only if the corresponding edge is in the edge cut (S, V \ S). Fractional numbers, however,
are not captured by Theorem 2.10. Yet, with a scaling argument we can derive the following
analog to Theorem 2.10 dealing with fractional numbers:

Proposition 3.1. On input w ∈ Qd and integer r ∈ N, one can compute in time polynomial
in the encoding length of w and r a vector ŵ ∈ Zd ∩ [w]Q

d

r with ‖ŵ‖∞ ≤ 24d3(r2 + 1)r·d(d+2).

7



Proof. Apply Theorem 2.10 with N = r! · r to obtain a vector ŵ ∈ Zd ∩ [w]Z
d

r!r with

‖ŵ‖∞ ≤ 24d3(N + 1)d(d+2) = 24d3(r! · r + 1)d(d+2) ≤ 24d3(r2 + 1)r·d(d+2).

It remains to prove that ŵ ∈ Zd∩ [w]Q
d

r . Let b∗ ∈ Qd
r with ‖b∗‖1 ≤ r, and let b′ := r!·b∗ ∈ Zdr!·r.

Note that ‖b′‖1 ≤ r! · r = N . Thus, due to Theorem 2.10, we have that

sign(w>b∗) = sign(ŵ>b∗) ⇐⇒ sign(r! · w>b∗) = sign(r! · ŵ>b∗)
⇐⇒ sign(w>(r! · b∗)) = sign(ŵ>(r! · b∗))
⇐⇒ sign(w>b′) = sign(ŵ>b′).

From Proposition 3.1, we get the following.

Lemma 3.2. For an input instance (G = (V,E), w) of Small Set Expansion with
n := |V | and m := |E|, in time polynomial in |(G,w)| one can compute an instance (G, ŵ)
of Small Set Expansion such that

(i) ‖ŵ‖∞ ≤ 24m3 · (n4 ·m2 + 1)n
2m2(m+2) and

(ii) a solution S ⊆ V for (G,w) is optimal if and only if it is optimal for (G, ŵ).

Proof. Denote the edges of G as E = {e1, . . . , em} and the weight functions w and ŵ as vectors
in Nm such that wi = w(ei) and ŵi = ŵ(ei) for all i ∈ {1, . . . ,m}. Apply Proposition 3.1
with d = m and r = n2m. Let S ⊆ V and let s ∈ {0, 1/|S|}m be the vector such that si 6= 0
if and only if ei ∈ (S, V \S). Let S ′ ⊆ V be another set, and let s′ ∈ {0, 1/|S ′|}m with s′i 6= 0
if and only if ei ∈ (S ′, V \S ′). Let b := s− s′. Note that for each i ∈ {1, . . . ,m} it holds that

|si − s′i| =
∣∣∣∣ |S ′|si|S ′|

− |S|s
′
i

|S|

∣∣∣∣ ∈ {0,

∣∣∣∣ |S ′| − |S||S| · |S ′|

∣∣∣∣ , 1

|S|
,

1

|S ′|

}
,

and hence b ∈ Qm
n2 and ‖b‖1 ≤ n2m. We thus get

s>w − (s′)>w ≤ 0 ⇐⇒ (s− s′)>w ≤ 0

Prop. 3.1⇐⇒ (s− s′)>ŵ ≤ 0 ⇐⇒ s>ŵ − (s′)>ŵ ≤ 0.

3.2. The Case of Min-Power Symmetric Connectivity
The previous case of Small Set Expansion showed how Theorem 2.10 can be applied

to weighted sums. Next we show how to deal with a non-additive functions involving maxima.
To this end, consider the following NP-hard optimization problem from survivable network
design [1, 18], which has also been studied in the context of parameterized complexity with
practical results [6, 8] (same for the asymmetric case [7]).
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(a)

u
v

x

y

3

8 1 10

2

7

(b) {u, v} {u, x} {u, y} {v, x} {v, y} {x, y}
w 3 8 7 1 2 10

u 1 1 1 0 0 0
v 1 0 0 1 1 0
x 0 1 0 1 0 1
y 0 0 1 0 1 1

b := 2 0 0 1 1 0

Figure 2: Illustrative example for MPSC and the application of Theorem 2.10. (a) depicts an edge-weighted
undirected example graph with a connected spanning subgraph (indicated by thick edges) of edge-weight
six, and (b) shows the incidence matrix of the graph in (a), the vector w of edge-weights, and the vector b
representing the solution from (a) with goal function value w>b = 9.

Min-Power Symmetric Connectivity (MPSC)

Input: A connected undirected graph G = (V,E) and edge weights w : E → N.

Task: Find a connected spanning subgraph T = (V, F ) of G that minimizes∑
v∈V

max
{u,v}∈F

w({u, v}). (3.2)

Applying Theorem 2.10 to the goal function (3.2) is not obvious: Let E = {e1, . . . , em} and
the weight function w be represented as a vector in Nm such that wi = w(ei). Let b ∈ {0, 1}m
be the vector representing the edge set F of a solution T = (V, F ), that is, bi = 1 if and only
if ei ∈ F . Then, the value w>b is not equal to

∑
v∈V max{u,v}∈F w({u, v}). See Figure 2(a)

for an example.
However, we can circumvent this issue (arising from the max-function in the goal function)

and still apply Theorem 2.10. To this end, observe that we only need to find a correct
representation of a solution. An edge e ∈ F contributes its weight to (3.2) each time it
appears in the (maximum in the) sum, that is, either zero, one, or two times. Hence,
a solution can be represented as vector b ∈ {0, 1, 2}m such that the term w(ei) appears
bi ∈ {0, 1, 2} times in the sum of the cost function regarding T = (V, F ). See Figure 2(b) for
an example. This change of the representation of a solution only changes the domain of the
vector b, and hence increases the value of N in the application of Theorem 2.10 by a factor
of two. Eventually, we obtain:

Lemma 3.3. For an input instance (G = (V,E), w) of MPSC with m := |E|, in time
polynomial in |(G,w)| one can compute an instance (G, ŵ) of MPSC such that

(i) ‖ŵ‖∞ ≤ 24m3 · (2m+ 1)m(m+2) and

(ii) a connected subgraph T = (V, F ) of G is an optimal solution for (G,w) if and only if T
is an optimal solution for (G, ŵ).

9



Proof. Denote the edges of G as E = {e1, . . . , em} and the weight functions w and ŵ as
(column) vectors in Nm such that wi = w(ei) and ŵi = ŵ(ei) for all i ∈ {1, . . . ,m}. We
apply Theorem 2.10 with d = m and N = 2m to the weight vector w and obtain the weight
vector ŵ. Theorem 2.10 immediately implies statement (i). Moreover, recall that ŵi ≥ 0 for
all i ∈ {1, . . . ,m} due to Observation 2.6(i), and hence (G, ŵ) is well-defined.

Next, we prove statement (ii). Let T = (V, F ) be a connected subgraph of G and let
s ∈ {0, 1, 2}m be an m-dimensional vector such that the term w(ei) appears si times in (3.2).
Then,

∑
v∈V max{u,v}∈F w({u, v}) = s>w. For a connected subgraph T ′ = (V, F ′) of G,

let s′ ∈ {0, 1, 2}m be derived analogously so that the cost of T ′ is (s′)>w. Define b := s− s′.
Note that −2 ≤ bi ≤ 2 for each i ∈ {1, . . . ,m}. Hence, ‖b‖1 ≤ 2m = N . Moreover, due
to Theorem 2.10, we have that ŵ ∈ [w]Z

m

2m , and hence

s>w − (s′)>w ≤ 0 ⇐⇒ (s− s′)>w ≤ 0

‖b‖1≤2m⇐⇒ (s− s′)>ŵ ≤ 0 ⇐⇒ s>ŵ − (s′)>ŵ ≤ 0.

Finally, note that due to Observation 2.6(ii), the goal function’s values for both T and T ′
with respect to ŵ are still correctly represented by s and s′, that is,∑

v∈V

max
{u,v}∈F

ŵ({u, v}) = s>ŵ and
∑
v∈V

max
{u,v}∈F ′

ŵ({u, v}) = (s′)>ŵ.

4. Linearizable Functions

In this section, we provide our central framework formalizing our key idea from the
previous section. Our framework bases on our notion of linearizable functions. Before
presenting the formal definition (see Definition 4.1 below), we recap the central insights from
the previous section.

Our case studies for Small Set Expansion and Min-Power Symmetric Connec-
tivity show that problems with non-additive goal functions still allow for an application of
the losing-weight technique. A natural question is what characterizes these goal functions.
Both of our cases have in common that, for any weight vector w, the goal function’s value for
every solution s can be represented as b>s w with bs being a vector associated with s. Moreover,
to apply the losing-weight technique, we also need that if we change the weight vector to a
“smaller” weight vector ŵ, then the goal function’s value is still represented for solution s
as b>s ŵ and vice versa (for this we used Observation 2.6(ii) in the proof of Lemma 3.3). That
is, we want that the value of solution s with respect to w is b>s w if and only if the value of
solution s with respect to ŵ is b>s ŵ. Formally, this is captured by the following. (Let Kr

with K ∈ {Z,Q} be as defined in (2.1) and (2.2).)

Definition 4.1. Let f : L×Qd → Q, where L (here and in the following) is some arbitrary
domain. We say that f is α-K-linearizable for some α ∈ N if for all w ∈ Qd and for all x ∈ L
there exists a vector bx,w ∈ Kd

α with ‖bx,w‖1 ≤ α such that f(x,w′) = b>x,ww
′ for all w′ ∈ [w]K

d

α .

10



Intuitively, an α-K-linearizable function maps a solution (contained in the set L) together
with a weight vector to a number. For a fixed weight vector this number can be expressed
for every solution as the product of some vector representing the solution and the weight
vector. Moreover, this representation of the solution is robust against exchanging weight
vectors with any representative from its class.

We start with three basic properties of linearizable functions.

Observation 4.2. For any set X = {x1, x2, . . . , xd} and any weight vector w = (w1, w2,
. . . , wd) ∈ Qd, the function f : X ×Qd → Q, (xi, w) 7→ wi is 1-K-linearizable for every K ∈
{Z,Q}.

Observation 4.3. Let K ∈ {Z,Q}. If f is α-K-linearizable, then f is α′-K-linearizable for
all α′ ∈ N with α′ ≥ α.

Proof. Let w ∈ Qd. We know that, for all x ∈ L, there exists a vector bx ∈ Kd
α ⊆ Kd

α′

with ‖bx‖1 ≤ α ≤ α′ such that f(x,w′) = b>xw
′ for all w′ ∈ [w]K

d

α ⊇ [w]K
d

α′ (recall Observa-
tion 2.5 for the latter inclusion).

Lemma 4.4. Let K ∈ {Z,Q}, f, f ∗ : L×Qd → Q, and c : L→ Kn \ {0}, where n ∈ N. If f
is α-K-linearizable, then f ∗(x,w) = c(x) · f(x,w) is nα-K-linearizable.

Proof. Let w ∈ Qd. Since f is α-K-linearizable, we know that for every x ∈ L there
exists a vector bx,w ∈ Kd

α with ‖bx,w‖1 ≤ α such that f(x,w′) = b>x,ww
′ for all w′ ∈ [w]K

d

α .
Let b∗x,w := c(x) · bx,w. We have that b∗x,w ∈ Kd

nα and
∥∥b∗x,w∥∥1 ≤ nα. Thus, for any

w′ ∈ [w]K
d

nα ⊆ [w]K
d

α , it holds that

f ∗(x,w′) = c(x) · f(x,w′) = c(x) · b>x,ww′ = (c(x) · bx,w)>w′ = (b∗x,w)>w′.

Next, we prove next that the losing-weight technique applies to linearizable functions.
We first discuss Z-linearizable functions, and afterwards Q-linearizable functions.

4.1. Z-linearizable Functions
The losing-weight technique applies to Z-linearizable functions as follows.

Theorem 4.5. Let f : L × Qd → Q be an α-Z-linearizable function, and let w ∈ Qd,
k ∈ Q. Then in time polynomial in the encoding length of w, k, and α, one can compute a
vector ŵ ∈ Zd and an integer k̂ ∈ Z such that

(i) ‖ŵ‖∞ , |k̂| ≤ 24(d+1)3(2α + 1)(d+1)(d+3),

(ii) f(x,w) ≥ f(y, w) ⇐⇒ f(x, ŵ) ≥ f(y, ŵ) for all x, y ∈ L, and

(iii) f(x,w) ≥ k ⇐⇒ f(x, ŵ) ≥ k̂ for all x ∈ L.

11



Proof. Apply Theorem 2.10 with N = 2α to the vector w ◦ k to obtain the concatenated
vector ŵ ◦ k̂ with

ŵ ◦ k̂ ∈ [w ◦ k]Z
d+1

2α (4.1)

and ‖ŵ ◦ k̂‖∞ ≤ 24(d+1)3(2α+ 1)(d+1)(d+3). Thus, ŵ and k̂ fulfill statement (i). Since f is α-Z-
linearizable, by Definition 4.1, for every x, y ∈ L there are bx, by ∈ Zdα with ‖bx‖1 , ‖by‖1 ≤ α

such that f(x,w′) = b>xw
′ and f(y, w′) = b>y w

′ for all w′ ∈ [w]Z
d

α .
For statement (ii), let b := bx − by. We have b ∈ Zd2α and ‖b‖1 ≤ 2α. Moreover

sign(f(x,w)− f(y, w)) = sign((bx − by)>w)

(4.1)
= sign((bx − by)>ŵ) = sign(f(x, ŵ)− f(y, ŵ)),

and hence
f(x,w)− f(y, w) ≥ 0 ⇐⇒ f(x, ŵ)− f(y, ŵ) ≥ 0.

For statement (iii), let b := bx ◦ (−1). We have b ∈ Zd+1
α ⊆ Zd+1

2α and ‖b‖1 ≤ α + 1 ≤ 2α.
Moreover,

sign(f(x,w)− k) = sign(b>xw − k) = sign(b>(w ◦ k))

(4.1)
= sign(b>(ŵ ◦ k̂)) = sign(b>x ŵ − k̂) = sign(f(x, ŵ)− k̂)

and hence
f(x,w) ≥ k ⇐⇒ f(x, ŵ) ≥ k̂.

Using Theorem 4.5, we can shrink the weights in α-Z-linearizable functions so that
their encoding length is polynomially upper-bounded in α and the dimension d. For easy
application of Theorem 4.5, we need to easily recognize α-Z-linearizable functions and, in
particular, to determine α. To this end, we show how to recognize an α-Z-linearizable
function by simply looking at the functions it is composed of. We subsequently demonstrate
this using the example of Min-Power Symmetric Connectivity (MPSC).

Lemma 4.6. Let f : L × Qd → Q be a function. If f is α-Z-linearizable, then the func-
tion f ′ : {X ⊆ L | |X| ≤ n} ×Qd → Q with n ∈ N and

(i) f ′(X,w) =
∑

x∈X f(x,w) is nα-Z-linearizable;

(ii) f ′(X,w) = maxx∈X f(x,w) is 2α-Z-linearizable;

(iii) f ′(X,w) = minx∈X f(x,w) is 2α-Z-linearizable.

Proof. (i): Let w ∈ Qd and X ⊆ L with |X| ≤ n. Since f is α-Z-linearizable, we know
that, for all x ∈ X ⊆ L there is a bx,w ∈ Zdα with ‖bx,w‖1 ≤ α such that f(x,w′) = b>x,ww

′

for all w′ ∈ [w]Z
d

α . Let bX := (
∑

x∈X bx,w) ∈ Zdnα. Let w′ ∈ [w]Z
d

nα ⊆ [w]Z
d

α . We have
that f ′(X,w′) =

∑
x∈X f(x,w′) =

∑
x∈X b

>
x,ww

′ = b>Xw
′.
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(ii): Let w ∈ Qd and X ⊆ L with |X| ≤ n. We know that, for all x ∈ X ⊆ L, there is
a vector bx,w ∈ Zdα such that f(x,w′) = b>x,ww

′ for all w′ ∈ [w]Z
d

α . Let z ∈ arg maxx∈X b
>
x,ww

and bX := bz,w ∈ Zdα. Let w′ ∈ [w]Z
d

2α ⊆ [w]Z
d

α . For any y ∈ X, let b := bz − by. Note
that b ∈ Zd2α and ‖b‖1 ≤ 2α, and hence sign(b>w) = sign(b>w′). Thus, we have that

sign(f(z, w)− f(y, w)) = sign(b>z w − b>y w) = sign(b>w)

= sign(b>w′) = sign(f(z, w′)− f(y, w′))

and hence it holds that f(z, w) ≥ f(y, w) ⇐⇒ f(z, w′) ≥ f(y, w′). Finally, it follows
that f ′(X,w′) = maxx∈X f(x,w′) = b>z,ww

′ = b>Xw
′.

(iii): Works analogously to (ii).

Revisiting the Case of Min-Power Symmetric Connectivity. The goal function in
MPSC is composed of a sum over maxima. We proved that such a composition preserves
linearizability. We explain the use of our machinery for MPSC. To this end, rewrite the
goal function as follows. Let Fv := {e ∈ F | v ∈ e} and F := {Fv | v ∈ V }. Then, the goal
function becomes

h(F , w) =
∑
Fv∈F

g(Fv, w) with g(F,w) = max
e∈F

w(e).

Due to Observation 4.2, f(e, w) = w(e) is 1-Z-linearizable. Due to Lemma 4.6(ii), g(F,w) =
maxe∈F f(e, w) is 2-Z-linearizable. Finally, due to Lemma 4.6(i) (with L = 2E and n = |V |),
h(F , w) =

∑
Fv∈F g(Fv, w) is 2n-Z-linearizable. Employing Theorem 4.5, we get in polynomial

time a vector ŵ ∈ Qm such that ‖ŵ‖∞ ∈ 2O(m3 log(n)), and for any two connected subgraphs
T = (V, F ) and T ′ = (V, F ′) of G, we have that∑

v∈V

max
v∈e∈F

w(e) ≥
∑
v∈V

max
v∈e∈F ′

w(e) ⇐⇒
∑
v∈V

max
v∈e∈F

ŵ(e) ≥
∑
v∈V

max
v∈e∈F ′

ŵ(e).

We have thus reproven Lemma 3.3. Moreover, for the decision variant of MinPSC, which asks
whether there is a solution of at most a given cost k, with Theorem 4.9 on input (G,w, k),
we immediately obtain a polynomial kernel.

Proposition 4.7. Min-Power Symmetric Connectivity admits a polynomial kernel
with respect to the number of vertices.

In previous work [6, 8], we developed a partial kernel, that is, an algorithm that maps
any instance of MPSC to an equivalent instance where the number of vertices and edges,
yet not necessarily the edge weights, are polynomially upper-bounded in the feedback edge
number.3 Finding a polynomial kernel regarding the feedback edge number was an open
problem. Given the partial kernel [6, 8], Proposition 4.7 yields the following affirmative
answer.

3The smallest number of edges to be removed to transform a graph into a forest.
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Corollary 4.8. Min-Power Symmetric Connectivity admits a polynomial kernel with
respect to the feedback edge number of the input graph.

We will revisit the case of Small Set Expansion (SSE) in the next section, using (an
analog of) Theorem 4.5 for Q-linearizable functions.

4.2. Q-linearizable Functions
In this section, we give an analog of Theorem 4.5 for Q-linearizable functions and revisit

the case of Small Set Expansion. The analog of Theorem 4.5 for Q-linearizable functions
is as follows.

Theorem 4.9. Let f : L × Qd → Q be an α-Q-linearizable function, and let w ∈ Qd,
k ∈ Q. Then, in time polynomial in the encoding length of w, k, and α, one can compute a
vector ŵ ∈ Zd and an integer k̂ ∈ Z such that

(i) ‖ŵ‖∞ , |k̂| ≤ 24(d+1)3(4α4 + 1)2α
2·(d+1)(d+3),

(ii) f(x,w) ≥ f(y, w) ⇐⇒ f(x, ŵ) ≥ f(y, ŵ) for all x, y ∈ L, and

(iii) f(x,w) ≥ k ⇐⇒ f(x, ŵ) ≥ k̂ for all x ∈ L.

Proof. Apply Proposition 3.1 with r = 2α2 to the concatenated vector w ◦ k to obtain the
concatenated vector

ŵ ◦ k̂ ∈ [w ◦ k]Q
d+1

2α2 . (4.2)

with ‖ŵ◦k̂‖∞ ≤ 24(d+1)3(4α4+1)2α
2·(d+1)(d+3). Hence, ŵ and k̂ fulfill statement (i). Since f is α-

Q-linearizable, by Definition 4.1, for every x, y ∈ L there are bx,w, by,w ∈ Qd
α with ‖bx,w‖1 ≤ α

and ‖by,w‖1 ≤ α such that f(x,w′) = b>x,ww
′ and f(y, w′) = b>y,ww

′ for all w′ ∈ [w]Q
d

α ⊇ [w]Q
d

2α2 .
For statement (ii), let b := bx,w − by,w. We have that b ∈ Qd

2α2 and ‖b‖1 ≤ 2α ≤ 2α2.
Moreover,

sign(f(x,w)− f(y, w)) = sign((bx − by)>w)

(4.2)
= sign((bx − by)>ŵ) = sign(f(x, ŵ)− f(y, ŵ)),

and hence
f(x,w) ≥ f(y, w) ⇐⇒ f(x, ŵ) ≥ f(y, ŵ).

For statement (iii), let b := bx ◦ (−1). We have that b ∈ Qd+1
α ⊆ Qd+1

2α2 and ‖b‖1 ≤ α+ 1 ≤
2α2. Moreover,

sign(f(x,w)− k) = sign(b>xw − k) = sign(b>(w ◦ k))

(4.2)
= sign(b>(ŵ ◦ k̂)) = sign(b>x ŵ − k̂) = sign(f(x, ŵ)− k̂),

and hence
f(x,w) ≥ k ⇐⇒ f(x, ŵ) ≥ k̂.
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Next, we present an analog of Lemma 4.6 for Q-linearizable functions. It turns out that
composing Q-linearizable functions introduces larger α-values compared to Z-linearizable
functions.

Lemma 4.10. Let f : L × Qd → Q be a function. If f is α-Q-linearizable, then the
function f ′ : {X ⊆ L | |X| ≤ n} ×Qd → Q with n ∈ N and

(i) f ′(X,w) =
∑

x∈X f(x,w) is α!nα-Q-linearizable;

(ii) f ′(X,w) = maxx∈X f(x,w) is 2α2-Q-linearizable;

(iii) f ′(X,w) = minx∈X f(x,w) is 2α2-Q-linearizable.

Proof. (i): Let w ∈ Qd and X ⊆ L with |X| ≤ n. Since f is α-Q-linearizable, we know that
for all x ∈ X ⊆ L there is a vector bx,w ∈ Qd

α with ‖bx,w‖1 ≤ α such that f(x,w′) = b>x,ww
′

for all w′ ∈ [w]Q
d

α . Let bX := (
∑

x∈X bx,w) ∈ Qd
α!nα. Let w′ ∈ [w]Q

d

α!nα ⊆ [w]Q
d

α . We have
that f ′(X,w′) =

∑
x∈X f(x,w′) =

∑
x∈X b

>
x,ww

′ = b>Xw
′.

(ii): Let w ∈ Qd and X ⊆ L with |X| ≤ n. Since f is α-Q-linearizable, we know that
for all x ∈ X ⊆ L there is a vector bx,w ∈ Qd

α such that f(x,w′) = b>x,ww
′ for all w′ ∈ [w]Z

d

α .
Let z ∈ arg maxx∈X b

>
x,ww and bX := bz,w ∈ Qd

α. Let w′ ∈ [w]Q
d

2α2 ⊆ [w]Q
d

α . For any y ∈ X,
let b := bz − by. Note that b ∈ Qd

2α2 and ‖b‖1 ≤ 2α ≤ 2α2, and hence sign(b>w) = sign(b>w′).
Thus,

sign(f(z, w)− f(y, w)) = sign(b>z w − b>y w) = sign(b>w)

= sign(b>w′) = sign(f(z, w′)− f(y, w′))

and thus it holds that f(z, w) ≥ f(y, w) ⇐⇒ f(z, w′) ≥ f(y, w′). It follows that f ′(X,w′) =
maxx∈X f(x,w′) = b>z,ww

′ = b>Xw
′.

(iii): Works analogously to (ii).

The framework for Z-linearizable functions allows for “chaining up sums” while keeping α
polynomially bounded. Note that this is in general not the case for Q-linearizable functions
when applying Lemma 4.10. Although more restrictive, however, the framework for Z-
linearizable functions is sufficient for MPSC and all upcoming examples except for the
following.

Revisiting the Case of Small Set Expansion. The goal function in SSE is a multiplication
of a number and a sum. By Lemma 4.4, we know that multiplication preserves linearizability.
Moreover, by Lemma 4.10(i), we know that the sum preserves linearizability. So, we are set
to use our machinery for SSE.

Let ES := (S, V \ S) for all S ⊆ V . Let L := {(S,ES) | S ⊆ V, 1 ≤ |S| ≤ n/2}.
Let c : L→ Qn \ {0}, (S,ES) 7→ 1

|S| . Then, the goal function of SSE becomes h((S,ES), w) =
1
|S| · g((S,ES), w) with g((S,ES), w) =

∑
e∈ES

w(e). By Observation 4.2, f(e, w) = w(e)

is 1-Q-linearizable. Moreover, by Lemma 4.10(i), g is m-Q-linearizable. Finally, due to
Lemma 4.4, h is n · m-Q-linearizable. Finally, employing Theorem 4.9, we can reprove
Lemma 3.2 and additionally obtain the following kernel.
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Step 1:
Decompose

Find a representation
of f such that f can
be decomposed into

K-linearizable functions.

Step 2:
Determine

Recursively apply
Lemmas 4.4, 4.6 and 4.10

to determine α such
that f is α-K-linearizable.

Step 3:
Deploy

Deploy Theorems 4.5
and 4.9 to obtain a

smaller weight vector pre-
serving optimal solutions.

Figure 3: Recipe DDD for applying our framework, illustrated for a weighted problem seeking for a set that
maximizes or minimizes some function f .

Proposition 4.11. Small Set Expansion admits a polynomial kernel with respect to the
number of vertices.

Summary of our Framework. We introduced α-K-linearizable functions (Definition 4.1)
for K ∈ {Z,Q}. Due to Lemmas 4.4, 4.6 and 4.10, we can easily recognize special types of
α-K-linearizable functions by simply looking at their composition. Further, we proved that
the losing-weight technique applies to α-K-linearizable functions (Theorems 4.5 and 4.9).
Thus, for applying our framework, we offer the recipe in Figure 3.

We showed that any combination of sums, maxima, minima, and multiplication with
(rational) numbers preserves linearizability. In the next section, we show that we can also
compose functions using case distinctions on linearizable constraints (Lemma 5.4). Finding
compositions of further functions preserving linearizability remains a task for future work.

5. Further Applications of the Losing-Weight Technique

In this section, we provide further problems with linearizable goal functions and demon-
strate how our framework applies to them via the recipe DDD. The further problems stem
from network design, facility location, scheduling, vehicle routing, and computational social
choice.

5.1. Uncapacitated Facility Location.
The Uncapacitated Facility Location problem is one of the most fundamental and

well-studied problems in operations research [38, Section 3.4]. It has also been studied in the
context of parameterized complexity and data reduction [15, 23].

Uncapacitated Facility Location (UFL)

Input: A set C of n clients, a set F of m facilities, facility opening costs f : F → Q≥0,
and client service costs c : F × C → Q≥0.

Task: Find a subset F ′ ⊆ F that minimizes∑
i∈F ′

f(i) +
∑
j∈C

min
i∈F ′

c(i, j). (5.1)
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When the cost function is a metric, then the problem is also called Metric Uncapacitated
Facility Location (MUFL). By showing that the goal function (5.1) is linearizable, we
can prove:

Lemma 5.1. There is an algorithm that, on an input consisting of an instance (C,F , f, c)
of UFL and k ∈ Q, in time polynomial in |(C,F , f, c, k)| computes an instance (C,F , f̄ , c̄)
of UFL and k̄ ∈ Z such that

(i)
∥∥f̄∥∥∞ + ‖c̄‖∞ , |k| ≤ 24(nm+m+1)3(4(2n+m) + 1)(nm+m+1)(nm+m+3),

(ii) any subset F ′ ⊆ F forms an optimal solution for (C,F , f, c) if and only if F ′ forms an
optimal solution for (C,F , f̄ , c̄), and

(iii) for any subset F ′ ⊆ F we have that
∑

i∈F ′ f(i) +
∑

j∈Cmini∈F ′ c(i, j) ≥ k ⇐⇒∑
i∈F ′ f̄(i) +

∑
j∈Cmini∈F ′ c̄(i, j) ≥ k̄.

Proof. First, observe that f and c are 1-Z-linearizable as they can be represented as e>i w,
where ei denotes the unit vector with the ith entry being one and w = (f(1), . . . , f(m),
c(1, 1), . . . , c(m,n)) denotes a weight vector that contains all possible opening and serving
costs. Since the goal function is composed of a sum of two sums, we will first analyze each
of the sums individually and then analyze the outer sum. Observe that

∑
i∈F ′ f(i) is m-Z-

linearizable by Lemma 4.6(i) as |F ′| ≤ m. Similarly, since mini∈F ′ c(i, j) is 2-Z-linearizable
by Lemma 4.6(iii), it follows from Lemma 4.6(i) that

∑
j∈Cmini∈F ′ c(i, j) is 2n-Z-linearizable

as |C| = n. Next, we define

f ′(`, C,F ′) :=


∑
i∈F ′

f(i) if ` = 1,∑
j∈C

min
i∈F ′

c(i, j) if ` = 2.

Observe that f ′ is (2n + m)-Z-linearizable as it is (2n + m)-Z-linearizable in each of the
two cases by Observation 4.3. Moreover, note that the goal function can be represented
as
∑

`∈{1,2} f
′(`, C,F ′). Due to Lemma 4.6(i), it follows that the goal function is 2 · (2n+m)-

Z-linearizable. Finally, Theorem 4.5 yields the desired statement with α = 2(2n + m)
and d = nm+m.

We can apply Lemma 5.1 also for the MUFL, which requires the cost function to satisfy
the triangle inequality c(i, j) ≤ c(i, j′) + c(i′, j′) + c(i′, j) for all i, i′ ∈ C and j, j′ ∈ F . This
easily follows from the following:

Observation 5.2. Let w ∈ Qd, d ∈ N, and K ∈ {Z,Q}. Then for every r ≥ 4 and ŵ ∈ [w]K
d

r

it holds that sign(w>(~ei+~ej+~ek−~e`)) = sign(ŵ>(~ei+~ej+~ek−~e`)) for each i, j, k, l ∈ {1, . . . , d}.

The consequence of Observation 5.2 is that if Theorem 2.10 is applied to a vector w
encoding a metric (i. e., the entries of w are pairwise distances of some points), then the
resulting vector ŵ also encodes a metric. This property carries over to Theorems 4.5 and 4.9.
Overall, we obtain the following result.
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Proposition 5.3. Each of UFL and MUFL admits a problem kernel of size (n+m)O(1).

This complements a result of Fellows and Fernau [23] who showed a problem kernel with
size exponential in a given upper bound on the optimum (which is unbounded in n+m).

5.2. Scheduling with Tardy Jobs
The parameterized complexity of scheduling problems recently gained increased inter-

est [44]. In the following, we demonstrate our framework on two single-machine scheduling
problems where the goal functions are functions not of sets, but of permutations, so that the
notions of linearity or additivity do clearly not apply to them.

In the first problem, we minimize the weighted number of tardy jobs. Interestingly, we
are going to shrink not only the weights of the jobs, but also their processing times and due
dates, where the goal function contains products of terms depending on these numbers:

Single-Machine Minimum Weighted Tardy Jobs (1||ΣwjUj)

Input: A set J := {1, . . . , n} of jobs, for each job j ∈ J a processing time pj ∈ N, a
due date dj ∈ N, and a weight wj ∈ N.

Task: Find a total order � on J that minimizes the weighted number of tardy jobs

∑
j∈J

wjUj, where Uj :=

{
1 if dj < Cj

0 otherwise,
and Cj :=

∑
i�j

pi.

In other words, Uj is 1 if job j is tardy, that is, its completion time Cj is after its due
date dj. The problem is weakly NP-hard [33], solvable in pseudo-polynomial time [40], and
is well-studied in terms of parameterized complexity [31, 32, 44], yet there are no known
kernelization results.

To apply our framework to 1||ΣwjUj, we show that we can also compose functions via
case distinctions (like the one used to define Uj) with linearizable constraints.

Lemma 5.4. Let f1, f2, g : L × Qd → Q. If f1, f2, and g are α-K-linearizable, then the
following function is α-K-linearizable:

h(x,w) =

{
f1(x,w) if g(x,w) ≤ 0,

f2(x,w) otherwise.

Proof. Let w ∈ Qd, x ∈ L, and ŵ ∈ [w]K
d

α . We know that there exists a vector bx,w ∈ Kd
α

with ‖bx,w‖1 ≤ α such that g(x,w′) = b>x,ww
′ for all w′ ∈ [w]K

d

α . It follows that

sign(g(x,w)) = sign(b>x,ww) = sign(b>x,wŵ) = sign(g(x, ŵ)).

Thus, we have that h(x,w) = f1(x,w) ⇐⇒ h(x, ŵ) = f1(x, ŵ) and h(x,w) = f2(x,w) ⇐⇒
h(x, ŵ) = f2(x, ŵ). Since both f1 and f2 are α-K-linearizable, the statement follows.
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Using Lemma 5.4 and Lemma 4.6(i), one can decompose the goal function
∑

j∈J wjUj for
an order � into simple linearizable functions. Our framework then yields the following:

Lemma 5.5. There is an algorithm that, on an instance I of 1||ΣwjUj and k ∈ N, computes
in polynomial time an instance I ′ of 1||ΣwjUj and a k′ such that

(i) each processing time, due date, weight, and k′ is at most 24(3n+1)3(2n2 + 1)(3n+1)(3n+3),

(ii) any solution � is optimal for I if and only if it is optimal for I ′, and

(iii) I has a solution of cost at most k if and only if I ′ has a solution of cost at most k′.

Proof. We shrink the entries in the vector u = (w1, . . . , wn, p1, . . . , pn, d1, . . . , dn)> ∈ N3n.
We can rewrite the goal function value for a solution � as

f(�, u) =
n∑
j=1

h(�, j, u) with h(�, j, u) =

0 if dj ≥ Cj =
∑
i�j

pi,

wj otherwise (dj < Cj).

To this end, define g(�, j, u) = −dj+
∑

i�j pi. Note that by Observation 4.2 and Lemma 4.6(i)
we have that g is n-Z-linearizable. Hence, applying Lemma 5.4 with the 0-Z-linearizable f1 ≡ 0
and the 1-Z-linearizable f2(j, u) = wj (see Observation 4.2) shows that h is n-Z-linearizable.
Thus, by Lemma 4.6(i), f is n2-Z-linearizable. The statement of the lemma now follows from
Theorem 4.5.

We point out that a more careful and direct analysis shows that the goal function is even
1-Z-linearizable. However, we skip this here since it is more tedious. Using Lemma 5.5(iii),
one gets the following.

Proposition 5.6. 1||ΣwjUj admits a problem kernel of size polynomial in n.

In the next problem, one minimizes the total tardiness of jobs on a single machine.

Single-Machine Minimum Total Tardiness (1||ΣTj)

Input: A set J := {1, . . . , n} of jobs, for each job j ∈ J a processing time pj ∈ N and a
due date dj ∈ N.

Task: Find a total order � on J that minimizes the total tardiness∑
j∈J

Tj, where Tj := max{0, Cj − dj} and Cj :=
∑
i�j

pi.

Minimizing the total tardiness is motivated by its equivalence to minimizing the average
tardiness (just divide the goal function by n). The problem is fixed-parameter tractable
parameterized by the maximum processing time [39] (this result was very recently strengthened
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by Knop et al. [37], who showed fixed-parameter tractability even for the version with parallel
unrelated machines, jobs with release dates and weights, where jobs and machines are given
in a high-multiplicity encoding that encodes the numbers of jobs and machines of each type
in binary).

It is easy to see that the goal function is a composition of sums and maxima. Hence,
using Lemma 4.6 one can show that the goal function is linearizable and thus prove:

Lemma 5.7. There is an algorithm that, on any input instance I of 1||ΣTj and k ∈ N, in
polynomial time computes an instance I ′ of 1||ΣTj and k′ such that

(i) each processing time, due date, and k′ is at most 24(2n+1)3(4n2 + 1)(2n+1)(2n+3),

(ii) any solution � is optimal for I if and only if it is optimal for I ′, and

(iii) I has a solution of cost at most k if and only if I ′ has a solution of cost at most k′.

Proof. We want to shrink weights in the vector u = (p1, . . . , pn, d1, . . . , dn)> ∈ N2n. To show
that the goal function is linearizable, we express its value for a solution � as

f(�, u) :=
∑
j∈J

fT (�, j, u) with fT (�, j, u) := max{0,
∑
i�j

pi − dj}.

By Observation 4.2 and Lemma 4.6(i), we have that g(�, j, u) :=
∑

i�j pi− dj is n-Z-lineariz-
able. Observe that h ≡ 0 is 0-Z-linearizable. Thus, by Observation 4.3 and Lemma 4.6(ii), we
have that fT (�, j, u) is 2n-Z-linearizable. Using again Lemma 4.6(i), we obtain that f(�, u)
is 2n2-Z-linearizable. The statement of the lemma now follows from Theorem 4.5.

From Lemma 5.7(iii) we get the following.

Proposition 5.8. 1||ΣTj admits a problem kernel of size polynomial in n.

Possible Generalizations. The results in this section can easily be generalized to scheduling
problems with parallel machines (even with machine-dependent processing times, so-called
unrelated machines) since the completion time Cj of job j can still be represented as the
sum of processing times of predecessors of j on the same machine. Variants with precedence
constraints (whose parameterized complexity is also well-studied [11, 16, 26]) can be handled
since the completion time Cj of a job j can be expressed as the sum pj and the completion
time Ci of a direct predecessor i of j in the precedence order (possibly on a different machine).

Other goal functions can be handled as follows: the total completion time
∑

j∈J Cj is
just the special case with dj = 0 for all jobs j ∈ J . Moreover, one can replace the outer
sums by maxima to minimize the makespan or maximum tardiness. We leave open whether
Proposition 5.8 can be proven for the weighted variant 1||ΣwjTj, where each job j has a
weight wj and one minimizes

∑
j∈J wjTj : in this case, the goal function contains products of

the weights we want to shrink.
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5.3. Arc Routing Problems with Min-Max Objective.
Arc routing problems have applications in garbage collection, mail delivery, meter reading,

drilling, and plotting [19]. Their parameterized complexity is intensively studied [10], which
led to promising results on real-world instances [9, 13]. Of particular interest are problem
variants with multiple vehicles with tours of balanced length [3, 5], for example:

Min-Max k-Rural Postman Problem (MM k-RPP)

Input: An undirected graph G = (V,E), edge lengths c : E → N, and a subset R ⊆ E
of required edges.

Task: Find closed walks w1, . . . , wk in G such that R ⊆
⋃k
i=1E(wk) that minimize

max{c(wi) | 1 ≤ i ≤ k}, where E(wi) is the set of edges and c(wi) is the total
length of edges on wi.

A key feature of the k = 1 case (known as the Rural Postman Problem) is that
one can simply enforce the triangle inequality [12] and thus get an equivalent instance with
2|R| vertices [10]. For MM k-RPP, we partly enforce the triangle inequality to generalize
this:

Lemma 5.9. In polynomial time, one can turn an instance (G,R, c) of MM k-RPP into
an instance (G′, R, cO) on 3|R| vertices such that any solution for (G,R, c) can be turned in
polynomial time into a solution of at most the same cost for (G′, R, cO), and vice versa.

Proof. We first turn G into a complete graph G∗ = (V,E ′) with edge lengths

cO : E ′ → N, {u, v} 7→

{
c({u, v}) if {u, v} ∈ R,
distc(u, v) otherwise,

where distc(u, v) is the length of a shortest u-v-path in G according to c. Any feasible solution
for (G,R, c) is feasible for (G∗, R, cO) and has at most the same cost. In the other direction,
one can replace non-required edges in a feasible solution for (G∗, R, cO) by shortest paths
in G in polynomial time to get a feasible solution of at most the same cost for (G,R, c).

Let V̄ (R) ⊆ V be so that for each edge {u, v} ∈ R, it contains the vertices of at least one
shortest u-v-path p (including u and v). Observe that if p contains a vertex x not incident to
any edge in R, then (u, x, v) is a u-v-path of at most the same length. Thus, we can easily
compute the set V̄ (R) so that |V̄ (R)| ≤ 3|R|: it contains the end points u and v for each
edge {u, v} ∈ R and at most one vertex on a shortest u-v-path not incident to edges in R.

The key observation is now that any shortest closed walk in G∗ containing a subset R′ ⊆ R
of required edges can be shortcut (in polynomial time) so as to only contain vertices of V̄ (R).
Thus, we can simply take G′ = G∗[V̄ (R)].

One can prove a problem kernel by shrinking the weights.
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Lemma 5.10. There is an algorithm that, on an input instance I of MM k-RPP with
m edges and κ ∈ N, computes in polynomial time an instance I ′ and κ′ such that

(i) each edge cost is upper-bounded by 24(m+1)3 · (8m+ 1)(m+1)(m+3),

(ii) a set of walks is an optimal solution for I if and only if it is optimal for I ′, and

(iii) I has a solution of cost at most κ if and only if I ′ has a solution of cost at most κ′.

Proof. First observe that, without loss of generality, each walk wi in a solution contains each
edge of G at most two times: if it contains an edge e three times, then two occurrences
of e can be removed, the walk gets shorter by 2c(e), yet the edge e remains covered. Thus,
one can write f(wi, c) := c(wi) = x>c, where the vector c ∈ Nm contains the edge costs and
x ∈ {0, 1, 2}m indicates how often each edge is on walk wi. Since for any alternative edge
weight vector c′ we have f(wi, c

′) = x>c′, it follows that f is 2m-Z-linearizable.
By Lemma 4.6, it follows that the goal function max1≤i≤k f(wi, c) of MM k-RPP is

4m-Z-linearizable and the lemma follows from Theorem 4.5.

Proposition 5.11. Min-Max k-Rural Postman Problem has a 3|R|-vertex kernel of
size polynomial in |R|.

It is straightforward to transfer Lemma 5.10 to other vehicle routing problems that
minimize maximum tour length.

5.4. Power Vertex Cover
Angel et al. [2] claimed a polynomial-size problem kernel for the following problem

parameterized by the number of vertices that are assigned non-zero values in a solution:

Power Vertex Cover (PVC)

Input: An undirected graph G = (V,E) with edge weights w : E → Q≥0.

Task: Find an assignment µ : V → Q≥0 minimizing
∑

v∈V µ(v) such that, for each
edge e = {u, v} ∈ E, one has max{µ(u), µ(v)} ≥ w(e).

In fact, Angel et al. [2] only proved a partial kernel, since the edge weights in the kernel
can be arbitrarily large. Using Theorem 4.5, we prove that we can shrink the weights. To
this end, our application of the losing-weight technique for PVC relies on the following.

Observation 5.12. If µ is an optimal solution, then for every v ∈ V , we have µ(v) ∈
{w(e) | e ∈ E} ∪ {0}.

This leads to the following equivalent problem formulation of PVC.
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Power Vertex Cover 2 (PVC2)

Input: An undirected graph G = (V,E) with edge weights w : E ∪ {∅} → Q≥0
with w(∅) = 0.

Task: Find an assignment µ : V → E ∪ {∅} such that for each edge e = {u, v} ∈ E it
holds true that max{w(µ(u)), w(µ(v))} ≥ w(e) and µ minimizes

∑
v∈V w(µ(v)).

Lemma 5.13. There is an algorithm that, on an instance I = (G = (V,E), w) of PVC2
with n := |V | and m := |E|, and k ∈ Q, in time polynomial in |(I, k)| computes an
instance I ′ = (G = (V,E), ŵ) of PVC2 and k̂ ∈ Z such that

(i) ‖ŵ‖∞ , |k̂| ≤ 24(m+1)3 · (2n+ 1)(m+1)(m+3),

(ii) any assignment µ : V → E ∪ {∅} forms an optimal solution for I if and only if µ forms
an optimal solution for I ′, and

(iii) for any assignment µ : V → E ∪ {∅} it holds that
∑

v∈V w(µ(v)) ≤ k ⇐⇒∑
v∈V ŵ(µ(v)) ≤ k̂.

Proof. Let f(v, w) = w(e) if µ(v) = e, and 0 if µ(v) = ∅. Due to Observation 4.2, f is 1-Z-
linearizable. Hence, g(V,w) =

∑
v∈V f(v, w) is n-Z-linearizable. Theorem 4.5 now yields the

desired statement with α = n and d = m.

Using Lemma 5.13 and the partial kernel of Angel et al. [2], we obtain Proposition 5.14.

Proposition 5.14. Power Vertex Cover admits a polynomial kernel with respect to the
number of non-zero values in a solution.

5.5. Chamberlin-Courant Committee with Cardinal Utilities
Another exemplary application is the following problem from computational social choice.

It deals with the Chamberlin-Courant voting rule [17], which already has been studied from
a parameterized complexity point of view [27, 43, 47].

Chamberlin-Courant Committee with Cardinal Utilities (C4U)

Input: A set V of voters, a set A of alternatives, a function u : V ×A→ Q≥0, and k ∈ N.

Task: Find a subset A′ ⊆ A of size at most k that maximizes∑
v∈V

max
a∈A′

u(v, a). (5.2)

We will show that the goal function (5.2) is linearizable.
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Lemma 5.15. There is an algorithm that, on an input consisting of an instance (V,A, u, k) of
C4U with n := |V | and m := |A|, and p ∈ Q, computes in time polynomial in |(V,A, u, k, p)|
an instance (V,A, ū, k) of C4U and p̄ ∈ Z such that

(i) ‖ū‖∞ , |p̄| ≤ 24(nm+1)3 · (4n+ 1)(nm+1)(nm+3),

(ii) any subset A′ ⊆ A forms an optimal solution for (V,A, u, k) if and only if A′ forms an
optimal solution for (V,A, ū, k), and

(iii) for any subset A′ ⊆ A we have that
∑

v∈V max
a∈A′

u(v, a) ≥ p ⇐⇒
∑

v∈V max
a∈A′

ū(v, a) ≥ p̄.

Proof. Observe that the goal function can be restated as follows:∑
v∈V

max
a∈A′

u(v, a) =
∑
v∈V

max
(v,a)∈{v}×A′

u(v, a).

Due to Observation 4.2, u : V × A→ Q≥0 is 1-Z-linearizable. Note that the weight vector
representing u is of dimension d = nm. By Lemma 4.6(ii), we know that g(v, A′) =
max(v,a)∈{v}×A′ u(v, a) is 2-Z-linearizable. Finally, by Lemma 4.6(i), h(V,A′) =

∑
v∈V g(v, A′)

is 2n-Z-linearizable. By Theorem 4.5 with α = 2n and d = nm, the claim follows.

Lemma 5.15 yields Proposition 5.16.

Proposition 5.16. Chamberlin-Courant Committee with Cardinal Utilities
admits a problem kernel of size polynomial in the combined parameter number of voters and
alternatives.

6. Concluding Remarks

The losing-weight technique due to Frank and Tardos [28] is a key tool to obtain polynomial
problem kernels for weighted parameterized problems. While Marx and Végh [42] and
Etscheid et al. [22] proved the usefulness of the technique for several problems with additive
goal functions, we demonstrated its applicability for a larger class of functions (linearizable
functions) containing next to additive also non-additive functions. In addition, in Section 5
we displayed our recipe DDD to be a neat manual for applying the losing-weight technique
to the class of (linearizable) functions.

As Etscheid et al. [22] pointed out, one direction for future work is to improve the upper
bound in Theorem 2.10 on the maximum norm of the output vector. In this direction,
Eisenbrand et al. [21] recently proved a stronger upper bound, yet non-constructively.
Another direction, seemingly not addressed so far, aims for a better running time: Frank
and Tardos [28] state no explicit running time of their algorithm, and Lenstra et al. [41,
Proposition 1.26] state that their simultaneous Diophantine approximation algorithm, which
forms a subroutine in Frank and Tardos’ technique, runs in d6 · log(‖w‖∞)O(1) time. This
is clearly a bottleneck for the practical applicability of the techniques we discussed. Hence,
we put forward the following: Can Theorem 2.10 be executed in quadratic, or even linear
time? We point out that for approximate kernelizations, there is an analog to Theorem 2.10
executable in linear time [9].
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