Decomposition of planar graphs with forbidden configurations

Lingxi $\mathrm{Li}^{*} \quad$ Huajing $\mathrm{Lu}^{\dagger} \quad$ Tao Wang ${ }^{\ddagger} \quad$ Xuding Zhu^{\S}

Abstract

A (d, h)-decomposition of a graph G is an ordered pair (D, H) such that H is a subgraph of G of maximum degree at most h and D is an acyclic orientation of $G-E(H)$ with maximum out-degree at most d. In this paper, we prove that for $l \in\{5,6,7,8,9\}$, every planar graph without 4 - and l-cycles is $(2,1)$-decomposable. As a consequence, for every planar graph G without 4 - and l-cycles, there exists a matching M, such that $G-M$ is 3-DP-colorable and has Alon-Tarsi number at most 3. In particular, G is 1-defective 3-DP-colorable, 1-defective 3-paintable and 1-defective 3-choosable. These strengthen the results in [Discrete Appl. Math. 157 (2) (2009) 433-436] and [Discrete Math. 343 (2020) 111797].

Keywords: decomposition; list coloring; defective coloring; Alon-Tarsi number; DP-coloring

1 Introduction

A proper k-coloring of a graph G is a mapping $\phi: V(G) \rightarrow[k]$ such that $\phi(u) \neq \phi(v)$, whenever $u v \in E(G)$, where and herein after, $[k]=\{1,2, \ldots, k\}$. The least integer k such that G admits a proper k-coloring is the chromatic number $\chi(G)$ of G. Let h be a non-negative integer. An h-defective k-coloring of G is a mapping $\phi: V(G) \rightarrow[k]$ such that each color class induces a subgraph of maximum degree at most h. In particular, a 0 -defective coloring is a proper coloring of G.

A k-list assignment of G is a mapping L that assigns a list $L(v)$ of k colors to each vertex v in G. An h-defective L-coloring of G is an h-defective coloring ψ of G such that $\psi(v) \in L(v)$ for all $v \in V(G)$. A graph G is h-defective k-choosable if G admits an h-defective L-coloring for each k-list assignment L. In particular, if G is 0 -defective k-choosable, then we call it k-choosable. The choice number $\operatorname{ch}(G)$ is the smallest integer k such that G is k-choosable.

Cowen, Cowen, and Woodall [2] proved that every outerplanar graph is 2-defective 2-colorable, and every planar graph is 2-defective 3-colorable. Eaton and Hull [6], and independently, Škrekovski [12] proved that every outerplanar graph is 2 -defective 2 -choosable, and every planar graph is 2 -defective 3 -choosable. Cushing and Kierstead [3] proved that every planar graph is 1-defective 4 -choosable. Let $\mathcal{G}_{4, l}$ be the family of planar graphs which contain no 4 -cycles and no l-cycles. Lih et al. [10] proved that for each $l \in\{5,6,7\}$, every graph $G \in \mathcal{G}_{4, l}$ is 1 -defective 3 -choosable. Dong and $\mathrm{Xu}[4]$ proved that for each $l \in\{8,9\}$, every graph $G \in \mathcal{G}_{4, l}$ is 1 -defective 3 -choosable.

Note that a graph being h-defective k-choosable means that for every k-list assignment L of G, there exists a subgraph H (depending on L) of G with $\Delta(H) \leq h$ such that $G-E(H)$ is L-colorable. The subgraph H may be different for different L. As a strengthening of the above results, the following problem is studied in the literature: For $(h, k) \in\{(2,3),(1,4)\}$, is it true that every planar graph G has a subgraph of maximum

[^0]

Fig. 1: Forbidden configurations in (1) and (2) of Theorem 1.1.
degree h such that $G-E(H)$ is k-choosable? For $l \in\{5,6,7,8,9\}$, is it true that every graph $G \in \mathcal{G}_{4, l}$ has a matching M such that $G-M$ is 3 -choosable?

It turns out that for the first question, the answer is negative for $(h, k)=(2,3)$, and positive for $(h, k)=$ $(1,4)$. It was proved in [8] that there exists a planar graph G such that for any subgraph H of G of maximum degree $3, G-E(H)$ is not 3 -choosable, and proved in [7] that every planar graph G has a matching M such that $G-M$ is 4-choosable. For the second question, for $l \in\{5,6,7\}$, it was shown in [11] every graph $G \in \mathcal{G}_{4, l}$ has a matching M such that $G-M$ is 3 -choosable.

Indeed, stronger results were proved in $[7,11]$. The results concern two other graph parameters: The AlonTarsi number $A T(G)$ of G and the paint number $\chi_{P}(G)$ of G. The reader is referred to [7] for the definitions. We just note here that for any graph $G, \operatorname{ch}(G) \leq \chi_{P}(G) \leq A T(G)$, and the differences $\chi_{P}(G)-c h(G)$ and $A T(G)-\chi_{P}(G)$ can be arbitrarily large. It was proved in [7] that every planar graph G has a matching M such that $A T(G-M) \leq 4$, and proved in [11] that for $l \in\{5,6,7\}$, every graph $G \in \mathcal{G}_{4, l}$ has a matching M such that $A T(G-M) \leq 3$.

In this paper, we consider further strengthening of the results concerning graphs in $\mathcal{G}_{4, l}$ for $l \in\{5,6,7,8,9\}$. (Note that the result in [11] does not cover the cases for $l=8$ and 9). We strengthen the above results in two aspects: a larger class of graphs with a stronger property.

Given two non-negative integers d, h and a graph G, a (d, h)-decomposition of G is a pair (D, H) such that H is a subgraph of G of maximum degree at most h and D is an acyclic orientation of $G-E(H)$ with maximum out-degree at most d. We say G is (d, h)-decomposable if G has a (d, h)-decomposition. Cho et al. [1] proved that every planar graph is (4, 1)-decomposable, (3, 2)-decomposable and (2, 6)-decomposable. Note that a graph H which has an acyclic orientation of maximum out-degree at most d if and only if H is d-degenerate, i.e., the vertices of H can be linearly ordered so that each vertex has at most d backward neighbors. It is well-known and easy to see that d-degenerate graphs not only have choice number, paint number, Alon-Tarsi number and DP-chromatic number at most $d+1$, there is a linear time algorithm that creates the above mentioned linear ordering and the corresponding coloring is easily obtained by using a greedy coloring algorithm. The reader is referred to [5] for the definition of DP-chromatic number $\chi_{D P}(G)$ of a graph G. We just mention here that $\operatorname{ch}(G) \leq \chi_{D P}(G)$, and there are graphs G for which $\chi_{D P}(G)$ are larger than each of $A T(G)$ and $\chi_{P}(G)$, there are also graphs G for which $\chi_{D P}(G)$ are smaller than each of $A T(G)$ and $\chi_{P}(G)[9]$. This paper proves the following result:

Theorem 1.1. Assume G is a plane graph. Then G is $(2,1)$-decomposable if one of the following holds:
(1) G has no subgraph isomorphic to any configuration in Fig. 1 and Fig. 2.
(2) G has no subgraph isomorphic to any configuration in Fig. 1 and Fig. 3.
(3) $G \in \mathcal{G}_{4,9}$.

Note that if $G \in \mathcal{G}_{4, l}$ for some $l \in\{5,6,7\}$, then G has no subgraph isomorphic to any configuration in Fig. 1 and Fig. 2, and if $G \in \mathcal{G}_{4,8}$, then G has no subgraph isomorphic to any configuration in Fig. 1 and

Fig. 2: Forbidden configurations in (1) of Theorem 1.1.

(a)

(b)

(c)

(d)

(e)

Fig. 3: Forbidden configurations in (2) of Theorem 1.1.

Fig. 3. Consequently, for $l \in\{5,6,7,8,9\}$, all graphs $G \in \mathcal{G}_{4, l}$ are (2,1)-decomposable.
All graphs in this paper are finite and simple. For a plane graph G, we use $V(G), E(G)$ and $F(G)$ to denote the vertex set, edge set and face set of G, respectively. For any element $x \in V(G) \cup F(G)$, the degree of x is denoted by $d(x)$. A vertex v in G is called a k-vertex, or k^{+}-vertex, or k^{-}-vertex, if $d(v)=k$, or $d(v) \geq k$, or $d(v) \leq k$, respectively. Analogously, one can define k-face, k^{+}-face, and k^{-}-face. An n-face $\left[x_{1} x_{2} \ldots x_{n}\right]$ is a $\left(d_{1}, d_{2}, \ldots, d_{n}\right)$-face if $d\left(x_{i}\right)=d_{i}$ for $1 \leq i \leq n$. Let D be an orientation of a graph G, we use $d_{D}^{+}(v)$ and $d_{D}^{-}(v)$ to denote the out-degree and in-degree of a vertex v in D, respectively. Let $\Delta^{+}(D)$ denote the maximum out-degree of vertices in D. Two cycles (or faces) are adjacent if they have at least one common edge. Two cycles (or faces) are normally adjacent if they intersect in exactly two vertices. Let G be a plane graph and $x y$ be a given boundary edge of G. A vertex $v \neq x, y$ is called a normal vertex. A vertex v is special if v is a 5^{+}-vertex or $v \in\{x, y\}$. A face is internal if it is not the outer face f_{0}. A face is special if it is an internal 7^{+}-face or the outer face f_{0}. A normal vertex v is minor if $d(v)=3$ and it is incident with an internal 4^{-}-face. A good 5 -face is an internal 5 -face adjacent to at least one internal 3 -face. An edge contained in a triangle is a triangular edge. Note that in all three cases, there are no adjacent triangles. So every triangular edge is contained in a unique triangle.

2 Proof of Theorem 1.1

For the purpose of using induction, we prove the following result. Assume G is a plane graph and $e=x y$ is a boundary edge of G. A nice decomposition of (G, e) is a pair (D, M) such that M is a matching and D is an acyclic orientation of $G-M$ with $d_{D}^{+}(x)=d_{D}^{+}(y)=0$ and $\Delta^{+}(D) \leq 2$. Note that in a nice decomposition (D, M) of (G, e), since $d_{D}^{+}(x)=d_{D}^{+}(y)=0$, we conclude that $e=x y \in M$.

Theorem 2.1. If G is a plane graph satisfying the condition of Theorem 1.1 and e is a boundary edge of G, then (G, e) has a nice decomposition.

Assume Theorem 2.1 is not true and G is a counterexample with minimum number of vertices. We shall
derive a sequence of properties of G that lead to a contradiction. It is obvious that G is connected, for otherwise we can consider each component of G separately.

Lemma 2.2. G is 2-connected.
Proof. Assume to the contrary that G has a cut-vertex x^{\prime}. Let $G=H_{1} \cup H_{2}, V\left(H_{1} \cap H_{2}\right)=\left\{x^{\prime}\right\}$ and $e=x y \in E\left(H_{1}\right)$. Let $e^{\prime}=x^{\prime} y^{\prime}$ be a boundary edge of H_{2}. By the minimality of G, there is a nice decomposition $\left(D_{1}, M_{1}\right)$ of $\left(H_{1}, e\right)$ and a nice decomposition $\left(D_{2}, M_{2}\right)$ of $\left(H_{2}, e^{\prime}\right)$. Let $M=\left(M_{1} \cup M_{2}\right) \backslash\left\{x^{\prime} y^{\prime}\right\}$ and $D=D_{1} \cup D_{2} \cup\left\{\overleftarrow{x^{\prime} y^{\prime}}\right\}$. It is straightforward to verify that (D, M) is a nice decomposition of (G, e).

Lemma 2.3. For any $v \in V(G) \backslash\{x, y\}, d(v) \geq 3$.
Proof. Assume $v \in V(G) \backslash\{x, y\}$ and $d(v) \leq 2$. By the minimality of G, there exists a nice decomposition (D, M) of $(G-v, e)$. Let D^{\prime} be obtained from D by orienting edges incident with v as out-going edges from v. Then $\left(D^{\prime}, M\right)$ is a nice decomposition of (G, e).

Lemma 2.4. If u and v are two adjacent 3 -vertices, then $\{u, v\} \cap\{x, y\} \neq \emptyset$.
Proof. Suppose that u and v are two adjacent 3-vertices with $\{u, v\} \cap\{x, y\}=\emptyset$. By the minimality of G, there is a nice decomposition (D, M) of $(G-\{u, v\}, e)$. Let $M^{\prime}=M \cup\{u v\}$, and D^{\prime} be obtained from D by orienting the other edges incident with u, v as out-going edges from u, v. Then $\left(D^{\prime}, M^{\prime}\right)$ is a nice decomposition of (G, e).

For an internal face f, let t_{f} be the number of incident normal 3 -vertices and let s_{f} be the number of adjacent internal 3 -faces. Note that each 3 -vertex of f is incident with at most one 3 -face adjacent to f. Thus we have the following corollary.

Corollary 2.5. For any internal face $f, t_{f} \leq d(f) / 2$ and $t_{f}+s_{f} \leq d(f)$.
The following four lemmas first appeared in [11], although the hypotheses and some definitions are slightly different. For the completeness of this paper, we include the short proofs with illustration figures.

(a)

(b)

Fig. 4: (a) A bad 5-cycle and an adjacent triangle. (b) For the proof of Lemma 2.6. Here and in figures below, a solid triangle represents a 3 -vertex, a solid square represents a 4 -vertex, a thick line represents an edge in the matching M.

A 5-cycle $\left[u_{1} u_{2} u_{3} u_{4} u_{5}\right]$ is a bad 5 -cycle if it is adjacent to a triangle $\left[u_{1} u_{5} u_{6}\right]$ with $u_{i} \notin\{x, y\}$, where $1 \leq i \leq 6$, and $d\left(u_{1}\right)=d\left(u_{3}\right)=3$, and $d\left(u_{2}\right)=d\left(u_{4}\right)=d\left(u_{5}\right)=d\left(u_{6}\right)=4$, as depicted in Fig. 4(a).

Lemma 2.6 (Lemma 5.2 in [11]). There are no bad 5-cycles in G.

Proof of Lemma 2.6. Assume $C=\left[u_{1} u_{2} u_{3} u_{4} u_{5}\right]$ is a bad 5 -cycle and $T=\left[u_{1} u_{5} u_{6}\right]$ is a triangle adjacent to C, where $d\left(u_{1}\right)=d\left(u_{3}\right)=3$ and $d\left(u_{i}\right)=4$ for $i \in\{2,4,5,6\}$, as depicted in Fig. 4(a). A nice decomposition of $G-\left\{u_{1}, u_{2}, \ldots, u_{6}\right\}$ is extended to a nice decomposition as in Fig. 4(b).

A triangle T is minor if T is a (3,4,4)-triangle and $T \cap\{x, y\}=\emptyset$. A triangle chain in G is a subgraph of $G-\{x, y\}$ consisting of vertices $w_{1}, w_{2}, \ldots, w_{k+1}, u_{1}, u_{2}, \ldots, u_{k}$ in which $\left[w_{i} w_{i+1} u_{i}\right]$ is a $(4,4,4)$-cycle for $1 \leq i \leq k$, as depicted in Fig. 5 . We denote T_{i} the triangle $\left[w_{i} w_{i+1} u_{i}\right]$ and denote such a triangle chain by $T_{1} T_{2} \ldots T_{k}$. If a triangle T has exactly one common vertex with a triangle chain $T_{1} T_{2} \ldots T_{k}$ and the common vertex is in T_{1}, then we say T intersects the triangle chain $T_{1} T_{2} \ldots T_{k}$.

Fig. 5: A triangle chain.

Fig. 6: (a) The configuration in Lemma 2.7. (b) For the proof of Lemma 2.7.

Lemma 2.7 (Lemma 2.10 in [11]). If a minor triangle T_{0} intersects a triangle chain $T_{1} T_{2} \ldots T_{k}$, then every 3-vertex adjacent to a vertex in T_{k} belongs to $\{x, y\} \cup V\left(T_{0}\right)$.

The $k=0$ case of the above lemma asserts that every 3 -vertex adjacent to a vertex in T_{0} belongs to $\{x, y\}$.

Proof of Lemma 2.7. Assume G has a minor triangle $T_{0}=\left[w_{0} w_{1} u_{0}\right]$ intersecting a triangle chain $T_{1} T_{2} \ldots T_{k}$, and $z \notin\{x, y\} \cup V\left(T_{0}\right)$ is a 3-vertex adjacent to a vertex in T_{k}, as depicted in Fig. 6(a). A nice decomposition of $G-\left(\bigcup_{i=0}^{k} V\left(T_{i}\right) \cup\{z\}\right)$ is extended to a nice decomposition of G as in Fig. 6(b).

Lemma 2.8 (Lemma 2.11 in [11]). If a minor triangle T_{0} intersects a triangle chain $T_{1} T_{2} \ldots T_{k}$, then the distance between T_{k} and another minor triangle is at least two.

Fig. 7: (a) The configuration in Lemma 2.8. (b) For the proof of Lemma 2.8.

Fig. 8: (a) The configuration in Lemma 2.9. (b) For the proof of Lemma 2.9.

Proof of Lemma 2.8. Assume to the contrary that $T_{1} T_{2} \ldots T_{k}$ with $T_{i}=\left[w_{i} w_{i+1} u_{i}\right], 1 \leq i \leq k$, is a triangle chain that intersects a minor triangle $T_{0}=\left[w_{0} w_{1} u_{0}\right]$, and the distance between T_{k} and another minor triangle $T_{0}^{\prime}=\left[z z_{1} z_{2}\right]$ with $d\left(z_{1}\right)=3$ is less than 2. By Lemma 2.7, we may assume $w_{k+1} z$ is a (4,4)-edge connecting T_{k} and T_{0}^{\prime}, as depicted in Fig. 7(a). A nice decomposition of $G-\left(\bigcup_{i=0}^{k} V\left(T_{i}\right) \cup V\left(T_{0}^{\prime}\right)\right)$ is extended to a nice decomposition of G as in Fig. 7(b).

Lemma 2.9 (Lemma 3.1 in [11]). Assume that f is a 6 -face adjacent to five 3 -faces, and none of the vertices on these 3 -faces is in $\{x, y\}$. If f is incident with a 3 -vertex, then there is at least one 5^{+}-vertex on these five 3 -faces.

Proof of Lemma 2.9. Let $f=\left[v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}\right]$ be a 6 -face, v_{1} be a 3 -vertex and $T_{i}=\left[v_{i} v_{i+1} u_{i}\right], 1 \leq i \leq 5$, be the five 3 -faces. Assume to the contrary that there is no 5^{+}-vertex on T_{i}. By Lemma 2.7, we may assume all v_{i+1} and u_{i} are 4 -vertices for $1 \leq i \leq 5$, as depicted in Fig. 8(a). A nice decomposition of $G-\left(\bigcup_{i=1}^{5} V\left(T_{i}\right)\right)$ is extended to a nice decomposition of G as in Fig. 8(b).

The above lemmas present some reducible configurations. We use standard discharging method to prove that there must be some reducible configurations in a minimum counterexample, which leads to a contradiction.

First, we define an initial charge function by $\mu(x)=d(x)-4, \mu(y)=d(y)-4, \mu\left(f_{0}\right)=d\left(f_{0}\right)+4$, and $\mu(v)=d(v)-4$ for each vertex $v \in V(G) \backslash\{x, y\}, \mu(f)=d(f)-4$ for each face f other than f_{0}. By Euler's formula and handshaking theorem, we obtain that the sum of all the initial charges is zero, i.e.,

$$
(d(x)-4)+(d(y)-4)+\left(d\left(f_{0}\right)+4\right)+\sum_{v \neq x, y}(d(v)-4)+\sum_{f \neq f_{0}}(d(f)-4)=0
$$

Next, we design some discharging rules to redistribute the charges, such that the sum of the final charges is not zero, which leads to a contradiction.

Discharging Rules

R1. Every internal 3-face f receives $\frac{1}{3}$ from each adjacent face.
R2. Assume v is a normal 3-vertex. If v is incident with an internal 4^{-}-face, then it receives $\frac{1}{2}$ from each of the other two incident faces. Otherwise it receives $\frac{1}{3}$ from each incident face.

R3. Let v be a normal 5 -vertex. Then v sends $\frac{1}{6}$ to each incident 4^{+}-face. If v is incident with a 3 -face $g=[u v w]$, then v sends $\frac{1}{6}$ to the other face g^{\prime} incident with $u w$. Moreover, if v is incident with three consecutive faces f_{1}, f_{2}, f_{3} and f_{1}, f_{3} are 3 -faces, then v sends an extra $\frac{1}{6}$ to f_{2}.

R4. Let v be a normal 6^{+}-vertex. Then v sends $\frac{1}{3}$ to each incident 4^{+}-face. If v is incident with a 3 -face $g=[u v w]$, then v sends $\frac{1}{3}$ to the other face g^{\prime} incident with $u w$.

R5. Let v be a vertex in $\{x, y\}$. Then it sends $\frac{1}{3}$ to every incident internal 4^{+}-face. If v is incident with a 3 -face $g=[u v w]$, then v sends $\frac{1}{3}$ to the other face g^{\prime} incident with $u w$.

R6. f_{0} sends $\frac{1}{3}$ to each adjacent 4^{+}-face.
R7. In Case 2 (i.e., G has no subgraph isomorphic to any configuration in Fig. 1 and Fig. 3), every internal 5 -face receives $\frac{1}{6}$ from adjacent internal 6^{+}-faces via each common edge.

R8. In Case 3 (i.e., $G \in \mathcal{G}_{4,9}$), every good 5 -face receives $\frac{1}{3}$ from adjacent internal 7^{+}-faces via each common edge.

For $z \in V(G) \cup F(G)$, let $\mu^{\prime}(z)$ be the final charge of z. In the remainder of this paper, we prove that $\sum_{z \in V(G) \cup F(G)} \mu^{\prime}(z)>0$, which contradicts the fact that $\sum_{z \in V(G) \cup F(G)} \mu^{\prime}(z)=\sum_{z \in V(G) \cup F(G)} \mu(z)=0$.

Note that R7 only applies to Case 2 and R8 only applies to Case 3. Moreover, R7 and R8 only involve 5^{+}-faces.

It follows from R5 that for $v \in\{x, y\}$

$$
\mu^{\prime}(v) \geq \mu(v)-(d(v)-1) \times \frac{1}{3}=\frac{2 d(v)-11}{3} \geq-\frac{7}{3}
$$

Note that f_{0} sends $\frac{1}{3}$ to each adjacent internal face by R1 and R6, and sends at most $\frac{1}{2}$ to each incident normal 3 -vertex by R2. It follows from Lemma 2.4 that f_{0} is incident with at most $\frac{d\left(f_{0}\right)}{2}$ normal 3 -vertices. Then

$$
\mu^{\prime}\left(f_{0}\right) \geq \mu\left(f_{0}\right)-\frac{d\left(f_{0}\right)}{2} \times \frac{1}{2}-d\left(f_{0}\right) \times \frac{1}{3} \geq \frac{5 d\left(f_{0}\right)}{12}+4 \geq \frac{21}{4}
$$

Hence, $\mu^{\prime}(x)+\mu^{\prime}(y)+\mu^{\prime}\left(f_{0}\right)>0$.

Assume v is a normal 3-vertex. If v is incident with an internal 4^{-}-face, then the other two incident faces are 5^{+}-faces or the outer face f_{0}. Hence $\mu^{\prime}(v)=\mu(v)+2 \times \frac{1}{2}=0$. Otherwise each face incident with v is a 5^{+}-face or f_{0}, and $\mu^{\prime}(v)=\mu(v)+3 \times \frac{1}{3}=0$ by R2.

If v is a normal 4 -vertex, then $\mu^{\prime}(v)=\mu(v)=0$. If v is a normal 5 -vertex, then it is incident with at most two 3 -faces, and then $\mu^{\prime}(v) \geq \mu(v)-5 \times \frac{1}{6}-\frac{1}{6}=0$ by R3. If v is a normal 6^{+}-vertex, then $\mu^{\prime}(v)=\mu(v)-d(v) \times \frac{1}{3}=\frac{2(d(v)-6)}{3} \geq 0$ by R 4 .

If f is an internal 3-face, then it receives $\frac{1}{3}$ via each incident edge, and $\mu^{\prime}(f)=\mu(f)+3 \times \frac{1}{3}=0$ by R1. If f is an internal 4-face, then $\mu^{\prime}(f) \geq \mu(f)=0$.
It remains to show that $\mu^{\prime}(f) \geq 0$ for internal 5^{+}-faces f.
In the remainder of the paper, we consider the three cases separately in three subsections.

2.1 G has no subgraph isomorphic to any configuration in Fig. 1 and Fig. 2

Assume that $f=\left[v_{1} v_{2} v_{3} v_{4} v_{5}\right]$ is an internal 5 -face. By Corollary $2.5, t_{f} \leq 2$. If f is not adjacent to any internal 3 -face, then $\mu^{\prime}(f) \geq \mu(f)-2 \times \frac{1}{2}=0$ by R2. So we may assume that f is adjacent to at least one internal 3 -face. Since the configurations Fig. 2(a) $-2(\mathrm{~d})$ are forbidden, f is adjacent to exactly one internal 3 -face f^{*} and no 4-faces. If $t_{f} \leq 1$, then $\mu^{\prime}(f) \geq \mu(f)-\frac{1}{3}-\frac{1}{2}>0$ by R1 and R2. Assume $t_{f}=2$ and $f^{*}=\left[u v_{1} v_{2}\right]$ is an internal 3-face. If there are some special vertices in $\left\{u, v_{1}, v_{2}, \ldots, v_{5}\right\}$, then f receives at least $\frac{1}{6}$ from special vertices, and then $\mu^{\prime}(f) \geq \mu(f)-\frac{1}{3}-\left(\frac{1}{3}+\frac{1}{2}\right)+\frac{1}{6}=0$ by R1, R2, R3, R4 and R5. So we may assume that none of $\left\{u, v_{1}, v_{2}, \ldots, v_{5}\right\}$ is a special vertex. It follows that f is incident with two 3 -vertices and three 4 -vertices. If neither v_{1} nor v_{2} is a 3 -vertex, then $\mu^{\prime}(f) \geq \mu(f)-\frac{1}{3}-2 \times \frac{1}{3}=0$ by R1 and R2. Without loss of generality, assume that $d\left(v_{2}\right)=3$ and $d\left(v_{1}\right)=d\left(v_{3}\right)=d(u)=4$. If $d\left(v_{4}\right)=3$ and $d\left(v_{5}\right)=4$, then it contradicts Lemma 2.6. If $d\left(v_{4}\right)=4$ and $d\left(v_{5}\right)=3$, then it contradicts Lemma 2.7.

Assume that $f=\left[v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}\right]$ is an internal 6 -face. By Corollary $2.5, t_{f} \leq 3$.

- $t_{f}=3$. Without loss of generality, assume that v_{1}, v_{3} and v_{5} are normal 3 -vertices.

By Corollary 2.5, $s_{f} \leq 3$. If $s_{f} \leq 1$, then $\mu^{\prime}(f) \geq \mu(f)-\frac{1}{3}-3 \times \frac{1}{2}>0$ by R1 and R2.
Assume that $s_{f}=2$. By symmetry, assume that one of the adjacent internal 3 -face is $\left[v_{1} v_{2} u\right]$. By Lemma 2.7, one vertex in $\left\{u, v_{2}\right\}$ is a special vertex. Thus, $\mu^{\prime}(f) \geq \mu(f)-2 \times \frac{1}{3}-3 \times \frac{1}{2}+\frac{1}{6}=0$ by R1, R2, R3, R4 and R5.

Assume that $s_{f}=3$.
(i) $v_{i} v_{i+1}$ is incident with an internal 3 -face $\left[v_{i} v_{i+1} u_{i}\right]$ for $i \in\{1,3,5\}$. For each $i \in\{1,3,5\}$, by Lemma 2.7, there is a special vertex in $\left\{u_{i}, v_{i+1}\right\}$. Thus f receives at least $\frac{1}{6}$ from $\left\{u_{i}, v_{i+1}\right\}$ by R3, R4 and R5. Hence, $\mu^{\prime}(f) \geq \mu(f)-3 \times \frac{1}{3}-3 \times \frac{1}{2}+3 \times \frac{1}{6}=0$ by R1, R2, R3, R 4 and R5.
(ii) $v_{i} v_{i+1}$ is incident with an internal 3 -face $\left[v_{i} v_{i+1} u_{i}\right]$ for $i \in\{1,2,5\}$. If v_{2} is a special vertex, then f receives $\frac{1}{3}$ from v_{2}. Otherwise, v_{2} is a normal 4 -vertex. By Lemma 2.7, both u_{1} and u_{2} are special vertices. Then f receives at least $2 \times \frac{1}{6}=\frac{1}{3}$ from u_{1} and u_{2} by R3, R4 and R5. In any way, f receives at least $\frac{1}{3}$ from $\left\{u_{1}, u_{2}, v_{2}\right\}$. On the other hand, one of u_{5} and v_{6} is also a special vertex, and f receives at least $\frac{1}{6}$ from $\left\{u_{5}, v_{6}\right\}$ by R3, R4 and R5. Thus, $\mu^{\prime}(f) \geq \mu(f)-3 \times \frac{1}{3}-3 \times \frac{1}{2}+\frac{1}{3}+\frac{1}{6}=0$.

- $t_{f}=2$. By Corollary 2.5, $s_{f} \leq 4$. If $s_{f} \leq 3$, then $\mu^{\prime}(f) \geq \mu(f)-3 \times \frac{1}{3}-2 \times \frac{1}{2}=0$ by R1 and R2.

Assume $s_{f}=4$. We claim that f will receive at least $\frac{1}{3}$ from vertices. If f is incident with a 2 -vertex, then the 2 -vertex must be in $\{x, y\}$, and f receives at least $\frac{1}{3}$ from incident 2 -vertices by R5. So we may assume that f is not incident with any 2 -vertex. By symmetry, it suffices to consider five cases.
(1) The four adjacent internal 3 -faces are $\left[v_{i} v_{i+1} u_{i}\right]$ for $1 \leq i \leq 4$. Thus, the two normal 3 -vertices must be v_{1} and v_{5}. If one of v_{2}, v_{3} and v_{4} is a special vertex, then f receives $\frac{1}{3}$ from it by $\mathrm{R} 3, \mathrm{R} 4$ and R 5 . So we may assume that v_{2}, v_{3} and v_{4} are normal 4 -vertices. By Lemma 2.7 and Lemma 2.8, there are at least two special vertices in $\left\{u_{1}, u_{2}, u_{3}, u_{4}\right\}$, thus f receives at least $2 \times \frac{1}{6}=\frac{1}{3}$ from these vertices by R3, R4 and R 5 .

Fig. 9: Two adjacent 5 -faces. The solid vertex is a 2 -vertex in G.
(2) The four adjacent internal 3 -faces are $\left[v_{i} v_{i+1} u_{i}\right]$ for $i \in\{1,2,3,5\}$, while v_{1} and v_{4} are normal 3vertices. Similarly, if v_{2} or v_{3} is a special vertex, then f receives at least $\frac{1}{3}$ from it. So we may assume that v_{2} and v_{3} are normal 4-vertices. By Lemma 2.7 and Lemma 2.8, there are at least two special vertices in $\left\{u_{1}, u_{2}, u_{3}\right\}$, thus f receives at least $2 \times \frac{1}{6}=\frac{1}{3}$ from these vertices by R3, R 4 and R 5 .
(3) The four adjacent internal 3 -faces are $\left[v_{i} v_{i+1} u_{i}\right]$ for $i \in\{1,2,3,5\}$, while v_{1} and v_{5} are normal 3 vertices. By Lemma 2.7, u_{5} or v_{6} is a special vertex; one of $\left\{v_{2}, v_{3}, v_{4}, u_{1}, u_{2}, u_{3}\right\}$ is a special vertex. Thus, f receives at least $2 \times \frac{1}{6}=\frac{1}{3}$ from these vertices by R3, R 4 and R 5 .
(4) The four adjacent internal 3 -faces are $\left[v_{i} v_{i+1} u_{i}\right]$ for $i \in\{1,2,4,5\}$, while v_{1} and v_{3} are normal 3vertices. If v_{2} is a special vertex, then f receives $\frac{1}{3}$ from it by $\mathrm{R} 3, \mathrm{R} 4$ and R 5 . Otherwise, v_{2} is a normal 4 -vertex. By Lemma 2.7, each of u_{1} and u_{2} is a special vertex, thus f receives at least $2 \times \frac{1}{6}=\frac{1}{3}$ from $\left\{u_{1}, u_{2}\right\}$ by R3, R4 and R5.
(5) The four adjacent internal 3 -faces are $\left[v_{i} v_{i+1} u_{i}\right]$ for $i \in\{1,2,4,5\}$, while v_{1} and v_{4} are normal 3vertices. By Lemma 2.7, there is at least one special vertex in $\left\{u_{1}, u_{2}, v_{2}, v_{3}\right\}$, and there is at least one special vertex in $\left\{u_{4}, u_{5}, v_{5}, v_{6}\right\}$. Thus, f receives at least $2 \times \frac{1}{6}=\frac{1}{3}$ from these vertices by R3, R4 and R5.

To sum up, f always receives at least $\frac{1}{3}$ from some vertices in the above five cases. Therefore, $\mu^{\prime}(f) \geq$ $\mu(f)-4 \times \frac{1}{3}-2 \times \frac{1}{2}+\frac{1}{3}=0$ by R1 and R2.
$\bullet t_{f}=1$. By Corollary 2.5, $s_{f} \leq 5$. If $s_{f} \leq 4$, then $\mu^{\prime}(f) \geq \mu(f)-\frac{1}{2}-4 \times \frac{1}{3}>0$. Assume that $s_{f}=5$ and for $1 \leq i \leq 5,\left[v_{i} v_{i+1} u_{i}\right]$ is an internal 3 -face. Let $X=\left\{v_{1}, \ldots, v_{6}, u_{1}, \ldots, u_{5}\right\}$. By Lemma 2.9, there is a special vertex in X. Therefore, f receives at least $\frac{1}{6}$ from the special vertices in X, and $\mu^{\prime}(f) \geq \mu(f)-\frac{1}{2}-5 \times \frac{1}{3}+\frac{1}{6}=0$ by R3, R4 and R5.

- $t_{f}=0$. Then f sends nothing to incident vertices, and $\mu^{\prime}(f) \geq \mu(f)-6 \times \frac{1}{3}=0$.

If f is an internal 7^{+}-face, then f sends out charges by R 1 and R 2 . As $t_{f}+s_{f} \leq d(f)$, we have

$$
\mu^{\prime}(f) \geq \mu(f)-\frac{s_{f}}{3}-\frac{t_{f}}{2} \geq \frac{2}{3} d(f)-4-\frac{t_{f}}{6} \geq \frac{7}{12} d(f)-4>0
$$

This completes the proof of Case 1 of Theorem 1.1.

2.2 G has no subgraph isomorphic to any configuration in Fig. 1 and Fig. 3

Lemma 2.10 below follows easily from the fact that configurations in Fig. 1 and Fig. 3 are forbidden.
Lemma 2.10. If two 5 -faces have two consecutive common edges on their boundaries, then one of the 5 -face is the outer face f_{0} (see Fig. 9).

Now we calculate the final charge of internal 5^{+}-faces.
Assume f is an internal d-face. If f is incident with a 2 -vertex, then the 2 -vertex belongs to $\{x, y\}$, and f is adjacent to at most $d-2$ internal faces. By R5, f receives $\frac{1}{3}$ from each of x and y. By R6, f receives $\frac{1}{3}$ via each common edge with the outer face f_{0}. By R1 and R7, f sends at most $\frac{1}{3}$ to each adjacent internal face. By R2,
f sends at most $\frac{1}{2}$ to each incident normal 3-vertex. Thus, $\mu^{\prime}(f) \geq d-4+2 \times \frac{1}{3}+2 \times \frac{1}{3}-(d-2) \times \frac{1}{3}-\left\lfloor\frac{d}{2}\right\rfloor \times \frac{1}{2} \geq$ $\frac{5 d-24}{12}>0$.

Assume that f is not incident with any 2-vertex. By Lemma 2.10, there are no adjacent internal 5 -faces. By Lemma 2.4, f is adjacent to at most $d-t_{f}$ internal 5 -faces.
$\boldsymbol{d}=\mathbf{5}$. Assume that $f=\left[v_{1} v_{2} v_{3} v_{4} v_{5}\right]$. Since adjacent triangles and a triangle normally adjacent to a 7 -cycle are forbidden, $s_{f} \leq 2$. By Corollary 2.5, $t_{f} \leq 2$. It follows that f is incident with at most two minor 3 -vertices.

If $s_{f}=0$, then $\mu^{\prime}(f) \geq \mu(f)-2 \times \frac{1}{2}=0$ by R 2 .
Assume $s_{f} \geq 1$. Since Fig. 1 and Fig. 3(c) are forbidden, f is not adjacent to any 4 -face. It follows that every face adjacent to f is a 3 -face or a 6^{+}-face. Thus, f is adjacent to at least three 6^{+}-faces (the number of adjacent 6^{+}-faces is counted by the number of common edges). If f is incident with at most one minor 3 -vertex, then $\mu^{\prime}(f) \geq 5-4-2 \times \frac{1}{3}-\left(\frac{1}{2}+\frac{1}{3}\right)+3 \times \frac{1}{6}=0$ by R1, R2 and R7. Assume f is incident with exactly two minor 3 -vertices. That is $t_{f}=2$ and $s_{f}=2$. By symmetry, we have three subcases to consider:

- f is adjacent to two internal 3 -faces $\left[v_{1} v_{2} u_{1}\right],\left[v_{3} v_{4} u_{3}\right]$, and v_{1}, v_{3} are minor 3 -vertices.
- f is adjacent to two internal 3 -faces $\left[v_{1} v_{2} u_{1}\right]$, $\left[v_{3} v_{4} u_{3}\right]$, and v_{1}, v_{4} are minor 3 -vertices.
- f is adjacent to two internal 3 -faces $\left[v_{1} v_{2} u_{1}\right]$, $\left[v_{2} v_{3} u_{2}\right]$, and v_{1}, v_{3} are minor 3 -vertices.

By Lemma 2.7 and Lemma 2.8, the two 3 -faces are incident with at least one special vertex. By R3, R4 and R5, f receives at least $\frac{1}{6}$ from these special vertices. Hence, $\mu^{\prime}(f) \geq 5-4+\frac{1}{6}+3 \times \frac{1}{6}-2 \times \frac{1}{3}-2 \times \frac{1}{2}=0$.
$\square \boldsymbol{d}=\mathbf{6}$. Assume that $f=\left[v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}\right]$. If $s_{f}=0$, then it sends at most $\frac{1}{2}$ to each incident normal 3 -vertex, and sends $\frac{1}{6}$ to each adjacent 5-face, thus $\mu^{\prime}(f) \geq 6-4-t_{f} \times \frac{1}{2}-\left(6-t_{f}\right) \times \frac{1}{6}=1-\frac{t_{f}}{3} \geq 0$ by R2 and R7.

Suppose that f is adjacent to an internal 3-face. Then they are normally adjacent. Since the configurations in Fig. 1 and Fig. 3(c) are forbidden, $s_{f}=1$. By Corollary 2.5, $t_{f} \leq 3$. If $t_{f} \leq 2$, then $\mu^{\prime}(f) \geq 6-4-\frac{1}{3}-$ $t_{f} \times \frac{1}{2}-\left(6-t_{f}\right) \times \frac{1}{6}=\frac{2-t_{f}}{3} \geq 0$ by R1, R2 and R7.

Assume $t_{f}=3$ and the 3 -face is $\left[u v_{1} v_{2}\right]$. By Lemma 2.4, we may assume v_{1}, v_{3} and v_{5} are the three normal 3 -vertices. By Lemma 2.7, there is a special vertex in $\left\{u, v_{2}\right\}$, thus f receives at least $\frac{1}{6}$ from $\left\{u, v_{2}\right\}$. Since the configurations in Fig. 1 and Fig. 3 are all forbidden, v_{5} cannot be incident with an internal 4^{-}-face. Thus, f is incident with at most two minor 3 -vertices, which implies that $\mu^{\prime}(f) \geq 6-4-\left(2 \times \frac{1}{2}+\frac{1}{3}\right)-\frac{1}{3}-(6-3) \times \frac{1}{6}+\frac{1}{6}=0$.

■ d=7. Let f be a 7 -face. As Fig. $3(\mathrm{c})$ is forbidden, $s_{f}=0$. By Corollary $2.5, t_{f} \leq 3$. By R2, f sends at most $\frac{1}{2}$ to each incident normal 3-vertex. By R7, f sends $\frac{1}{6}$ to each adjacent internal 5 -face. Hence, $\mu^{\prime}(f) \geq 7-4-t_{f} \times \frac{1}{2}-\left(7-t_{f}\right) \times \frac{1}{6}=\frac{11-2 t_{f}}{6}>0$.

- d≥ 8. Let f be a 8^{+}-face. Then f sends at most $\frac{1}{2}$ to each incident normal 3 -vertex, and $\frac{1}{3}$ to each adjacent internal 3 -face, and $\frac{1}{6}$ to each adjacent internal 5 -face. Combining with Corollary 2.5 , we have that

$$
\mu^{\prime}(f) \geq d-4-t_{f} \times \frac{1}{2}-s_{f} \times \frac{1}{3}-\left(d-s_{f}\right) \times \frac{1}{6}=\frac{5}{6} d-\frac{1}{2} t_{f}-\frac{1}{6} s_{f}-4 \geq \frac{d}{2}-4 \geq 0
$$

This completes the proof of Case 2.

$2.3 G \in \mathcal{G}_{4,9}$

Lemma 2.11. A 5-cycle contains at most three triangular edges.
Proof. Assume $\left[x_{1} x_{2} x_{3} x_{4} x_{5}\right]$ is a 5 -cycle, and $\left[x_{1} x_{2} x_{6}\right],\left[x_{2} x_{3} x_{7}\right],\left[x_{3} x_{4} x_{8}\right]$ and $\left[x_{4} x_{5} x_{9}\right]$ are four triangles. Since there is no 4 -cycle in $G, x_{1}, x_{2}, \ldots, x_{9}$ are nine distinct vertices. Thus, $\left[x_{1} x_{6} x_{2} x_{7} x_{3} x_{8} x_{4} x_{9} x_{5}\right]$ is a 9 -cycle, a contradiction.

Fig. 10: Some local structures around 5-face.

Lemma 2.12. Let $f=\left[x_{1} x_{2} x_{3} x_{4} x_{5}\right]$ and $g=\left[x_{5} x_{1} u v w\right]$ be two adjacent 5 -faces. If $d\left(x_{1}\right) \geq 3$ and $d\left(x_{5}\right) \geq 3$, then f and g are normally adjacent, and neither $x_{2} x_{3}$ nor $x_{3} x_{4}$ is adjacent to a 3 -face. Moreover, if $x_{1} x_{2}$ is incident with a 3 -face, then x_{1} is a 3 -vertex and the 3 -face is $\left[x_{1} x_{2} u\right]$.

Proof. Since $d\left(x_{1}\right) \geq 3$ and $d\left(x_{5}\right) \geq 3$, we have that $x_{2} \neq u$ and $x_{4} \neq w$. Since G has no 4 -cycle, $x_{1}, x_{2}, \ldots, x_{5}, u, v, w$ are distinct. Therefore, f and g are normally adjacent.

By the symmetry of $x_{2} x_{3}$ and $x_{3} x_{4}$, suppose that $x_{2} x_{3}$ is incident with a 3 -face $\left[x_{2} x_{3} x_{7}\right]$. Since there are no 4 -cycles in G, x_{7} is not incident with f or g. Thus, $\left[x_{5} x_{4} x_{3} x_{7} x_{2} x_{1} u v w\right]$ is a 9 -cycle, a contradiction. Hence, neither $x_{2} x_{3}$ nor $x_{3} x_{4}$ is incident with a 3 -face.

Let $x_{1} x_{2}$ be incident with a 3 -face $\left[x_{1} x_{2} x_{6}\right]$. Since f has no chord, $x_{6} \notin\left\{x_{3}, x_{4}, x_{5}, v, w\right\}$. If $x_{6} \neq u$, then $\left[x_{5} x_{4} x_{3} x_{2} x_{6} x_{1} u v w\right]$ is a 9 -cycle, a contradiction. Thus $x_{6}=u$ and x_{1} is a 3 -vertex.

Lemma 2.13. Let $f=\left[x_{1} x_{2} x_{3} x_{4} x_{5}\right]$ and $g=\left[x_{5} x_{1} u p q w\right]$ be two adjacent faces. If $d\left(x_{1}\right) \geq 3$ and $d\left(x_{5}\right) \geq 3$, then $\{u, w\} \cap\left\{x_{1}, \ldots, x_{5}\right\}=\emptyset$, while $\{p, q\} \cap\left\{x_{2}, x_{3}, x_{4}\right\}=\{p\}=\left\{x_{2}\right\}$ or $\{p, q\} \cap\left\{x_{2}, x_{3}, x_{4}\right\}=\{q\}=\left\{x_{4}\right\}$.
Proof. Since G has no 9 -cycle, $\left\{x_{2}, x_{3}, x_{4}\right\} \cap\{u, p, q, w\} \neq \emptyset$. For $d\left(x_{1}\right) \geq 3$ and $d\left(x_{5}\right) \geq 3$, we have that $x_{2} \neq u$ and $x_{4} \neq w$. Note that there are no 4 -cycles, it follows that $\left\{x_{2}, x_{3}, x_{4}\right\} \cap\{u, w\}=\emptyset, x_{3} \notin\{p, q\}$, $x_{4} \neq p$ and $x_{2} \neq q$. Therefore, $\{p, q\} \cap\left\{x_{2}, x_{4}\right\}=\{p\}=\left\{x_{2}\right\}$ or $\{p, q\} \cap\left\{x_{2}, x_{4}\right\}=\{q\}=\left\{x_{4}\right\}$.

Lemma 2.14. Let $f=\left[x_{1} x_{2} x_{3} x_{4} x_{5}\right]$ be a 5 -face adjacent to two 3 -faces, that are either $\left[x_{1} x_{2} x_{6}\right]$ and [$\left.x_{2} x_{3} x_{7}\right]$, or $\left[x_{1} x_{2} x_{6}\right]$ and $\left[x_{3} x_{4} x_{8}\right]$ (see Fig. 10(a) and Fig. 10(b)). If $d\left(x_{1}\right)=3, d\left(x_{5}\right) \geq 3$ and $d\left(x_{6}\right) \geq 3$, and $x_{5} x_{1} x_{6}$ is incident with a 6^{-}-face g, then g is a 6 -face $\left[x_{5} x_{1} x_{6} u v w\right]$, where $\{u, w\} \cap\left\{x_{1}, x_{2}, \ldots, x_{8}\right\}=\emptyset$, $v=x_{4}$ and $d\left(x_{4}\right) \geq 4\left(d\left(x_{4}\right) \geq 5\right.$ for the case of Fig. 10(b)).

Proof. We only consider the case of Fig. 10(a) here, the case of Fig. 10(b) is quite similar. Suppose that $g=\left[x_{5} x_{1} x_{6} u \ldots w\right]$. Since $d\left(x_{5}\right) \geq 3$ and $d\left(x_{6}\right) \geq 3, x_{1}, x_{2}, x_{6}, u$ are four distinct vertices, and x_{1}, x_{4}, x_{5}, w are four distinct vertices. As there is no 4 -cycle in $G, x_{1}, x_{2}, \ldots, x_{7}, u, w$ are distinct. It follows that g must be a 5 - or 6 -face. If g is a 5 -face, then $g=\left[x_{5} x_{1} x_{6} u w\right]$ and $\left[x_{5} x_{4} x_{3} x_{7} x_{2} x_{1} x_{6} u w\right]$ is a 9 -cycle, a contradiction. Let $g=\left[x_{5} x_{1} x_{6} u v w\right]$ be a 6 -face. If $v \notin\left\{x_{2}, x_{3}, x_{4}\right\}$, then $\left[u v w x_{5} x_{4} x_{3} x_{2} x_{1} x_{6}\right]$ is a 9 -cycle, a contradiction. If $v=x_{2}$, then $\left[u x_{6} x_{1} x_{2}\right]$ is a 4 -cycle, a contradiction. If $v=x_{3}$, then $\left[u x_{6} x_{2} x_{3}\right]$ is a 4 -cycle, a contradiction. Hence, $v=x_{4}$ and $\left[x_{4} x_{5} w\right]$ is a triangle.

Lemma 2.15. Let $f=\left[x_{1} x_{2} x_{3} x_{4} x_{5}\right]$ be a 5 -face adjacent to two 3 -faces $\left[x_{1} x_{2} x_{6}\right]$ and $\left[x_{3} x_{4} x_{8}\right]$. If $d\left(x_{2}\right)=3$, $d\left(x_{3}\right) \geq 4$ and $d\left(x_{6}\right) \geq 3$, then $x_{3} x_{2} x_{6}$ is incident with a 7^{+}-face.

Proof. Suppose that $x_{3} x_{2} x_{6}$ is incident with a face $g=\left[x_{3} x_{2} x_{6} u \ldots w\right]$. Since $d\left(x_{3}\right) \geq 4$ and $d\left(x_{6}\right) \geq 3$, we have that $x_{2}, x_{3}, x_{4}, x_{8}, w$ are five distinct vertices, and x_{1}, x_{2}, x_{6}, u are four distinct vertices. Since there are no 4 -cycles, we have that $x_{1}, x_{2}, \ldots, x_{6}, x_{8}, u, w$ are distinct. It follows that g must be a 5^{+}-face. If g is a 5 -face, then $g=\left[x_{3} x_{2} x_{6} u w\right]$ and $\left[x_{3} x_{8} x_{4} x_{5} x_{1} x_{2} x_{6} u w\right]$ is a 9 -cycle, a contradiction. Let g be a 6 -face $\left[x_{3} x_{2} x_{6} u v w\right]$. If $v \notin\left\{x_{1}, x_{4}, x_{5}\right\}$, then $\left[u v w x_{3} x_{4} x_{5} x_{1} x_{2} x_{6}\right]$ is a 9 -cycle, a contradiction. If $v=x_{1}$, then [$\left.u x_{6} x_{2} x_{1}\right]$ is a 4 -cycle, a contradiction. If $v=x_{4}$, then $\left[w x_{3} x_{8} x_{4}\right]$ is a 4 -cycle, a contradiction. If $v=x_{5}$, then $\left[u x_{6} x_{1} x_{5}\right]$ is a 4 -cycle, a contradiction. Therefore, $x_{3} x_{2} x_{6}$ is incident with a 7^{+}-face.

Lemma 2.16. Let $f=\left[x_{1} x_{2} x_{3} \ldots\right]$ be a 7^{+}-face. If x_{2} is a normal 3 -vertex, then at most one of $x_{1} x_{2}$ and $x_{2} x_{3}$ is incident with a good 5 -face.

Proof. Suppose to the contrary that $x_{1} x_{2}$ is incident with a good 5 -face $g_{1}=\left[x_{1} x_{2} v_{3} v_{4} v_{5}\right]$ and $x_{2} x_{3}$ is incident with a good 5 -face $g_{2}=\left[x_{3} x_{2} v_{3} u_{4} u_{5}\right]$. Note that g_{1} and g_{2} are all internal faces. By Lemma 2.3, v_{3} cannot be a 2 -vertex. By Lemma 2.12, g_{1} and g_{2} are normally adjacent. Moreover, v_{3} is a 3 -vertex, and $g_{3}=\left[v_{3} v_{4} u_{4}\right]$ is an internal 3 -face. It is observed that g_{1}, g_{2} and g_{3} are all internal faces. It follows that v_{3} does not belong to $\{x, y\}$, but this contradicts Lemma 2.4.

Let $\tau(\rightarrow f)$ be the number of charges that f receives from other elements.
Claim 1. If f is an internal 5 -face and $s_{f}=1$, then $\tau(\rightarrow f) \geq \frac{1}{3}$.
Proof. Let $f=\left[v_{1} v_{2} v_{3} v_{4} v_{5}\right]$ be an internal 5 -face, and let [$v_{1} v_{2} v_{6}$] be an internal 3 -face. Since f has no chord, $v_{1}, v_{2}, \ldots, v_{6}$ are six distinct vertices. If $v_{i} \in\{x, y\}$ for any $1 \leq i \leq 6$, then v_{i} sends $\frac{1}{3}$ to f by R5, we are done. Assume $\left\{v_{1}, v_{2}, \ldots, v_{6}\right\} \cap\{x, y\}=\emptyset$. By Lemma 2.3, $d\left(v_{i}\right) \geq 3$ for $1 \leq i \leq 6$.

Next, we show that f is adjacent to a special face. By the hypothesis, neither $v_{3} v_{4}$ nor $v_{4} v_{5}$ is incident with an internal 4^{-}-face. By Lemma 2.12 , neither $v_{3} v_{4}$ nor $v_{4} v_{5}$ is incident with a 5 -face. If $v_{3} v_{4}$ or $v_{4} v_{5}$ is incident with an internal 7^{+}-face or f_{0}, we are done. So we may assume that each of $v_{3} v_{4}$ and $v_{4} v_{5}$ is incident with an internal 6 -face. By Lemma $2.13, v_{3} v_{4}$ is incident with a 6 -face $\left[v_{3} v_{4} u p v_{2} w\right]$. If $\left[v_{2} v_{3} w\right]$ bounds a 3 -face, then $d(w)=2$ and $v_{2} v_{3}$ is incident with the outer face $\left[v_{2} v_{3} w\right]$, we are done. Hence, we can assume that $v_{2} v_{3}$ is not incident with a 3 -face. By Lemma 2.12, $v_{2} v_{3}$ cannot be incident with a 5 -face. Since there are no 9 -cycles, $v_{2} v_{3}$ cannot be incident with a 6 -face. Hence, $v_{2} v_{3}$ is incident with a 7^{+}-face. Therefore, f is adjacent to at least one special face in any case. By R 6 and $\mathrm{R} 8, f$ receives $\frac{1}{3}$ from each adjacent special face, thus $\tau(\rightarrow f) \geq \frac{1}{3}$.

Claim 2. Let f be an internal 5 -face and $s_{f}=2$. If f is incident with one minor 3 -vertex, then $\tau(\rightarrow f) \geq \frac{1}{3}$.
Proof. Assume that $f=\left[x_{1} x_{2} x_{3} x_{4} x_{5}\right]$. If x or y is incident with f or one of the adjacent 3 -faces, then it sends at least $\frac{1}{3}$ to f by R5. So we may assume that neither x nor y is incident with f or the adjacent 3 -faces. Now we show that f is adjacent to at least one 7^{+}-face sending $\frac{1}{3}$ to f by R6 and R8.

Case 1. Let $\left[x_{1} x_{2} x_{6}\right]$ and $\left[x_{2} x_{3} x_{7}\right]$ be internal 3 -faces, and let x_{1} be a minor 3-vertex. By Lemma 2.3 and Lemma 2.4, $d\left(x_{5}\right) \geq 4$ and $d\left(x_{6}\right) \geq 4$. By Lemma 2.14, if $x_{5} x_{1} x_{6}$ is incident with a 6^{-}-face, then $\left[x_{4} x_{5} w\right]$ is a triangle but it does not bound a 3 -face, thus $x_{4} x_{5}$ is incident with a 7^{+}-face. Hence, either $x_{5} x_{1} x_{6}$ or $x_{4} x_{5}$ is incident with a 7^{+}-face.

Case 2. Let $\left[x_{1} x_{2} x_{6}\right]$ and $\left[x_{3} x_{4} x_{8}\right]$ be internal 3 -faces, and let x_{1} be a minor 3 -vertex. By Lemma 2.3, Lemma 2.4 and Lemma 2.14, we also get that either $x_{5} x_{1} x_{6}$ or $x_{4} x_{5}$ is incident with a 7^{+}-face.

Case 3. Let $\left[x_{1} x_{2} x_{6}\right]$ and $\left[x_{3} x_{4} x_{8}\right]$ be internal 3 -faces, and let x_{2} be a minor 3-vertex. By Lemma 2.3 and Lemma 2.4, $d\left(x_{3}\right) \geq 4$ and $d\left(x_{6}\right) \geq 4$. By Lemma 2.15, $x_{2} x_{3}$ is incident with a 7^{+}-face.

Claim 3. Let f be an internal 5 -face and $s_{f} \geq 2$. If f is incident with two minor 3 -vertices, then $\tau(\rightarrow f) \geq 1$.

Proof. Assume $f=\left[x_{1} x_{2} x_{3} x_{4} x_{5}\right]$. If x_{i} is a 2-vertex, then $x_{i} \in\{x, y\}$ and $x_{i-1} x_{i} x_{i+1}$ is incident with the outer face f_{0}. By R5, f receives $\frac{1}{3}$ from each of x and y. By R6, f receives $\frac{1}{3}$ via each of $x_{i-1} x_{i}$ and $x_{i} x_{i+1}$. Thus, $\tau(\rightarrow f) \geq 2 \times \frac{1}{3}+2 \times \frac{1}{3}>1$. So we may assume that $d\left(x_{i}\right) \geq 3$ for any $1 \leq i \leq 5$. Denote the adjacent face incident with $x_{i} x_{i+1}$ by g_{i} for $i \in\{1,2,3,4,5\}$.

Case 1. Let $\left[x_{1} x_{2} x_{6}\right]$ and $\left[x_{2} x_{3} x_{7}\right]$ be internal 3 -faces, and let x_{1} and x_{3} be minor 3 -vertices. Suppose that x_{6} is a 2-vertex. It follows that $\left\{x_{2}, x_{6}\right\}=\{x, y\}$ and $g_{5}=f_{0}$. By R5, f receives $\frac{1}{3}$ from each of x_{2} and x_{6}. By R6, f receives at least $\frac{1}{3}$ from the outer face f_{0}. Thus, $\tau(\rightarrow f) \geq 3 \times \frac{1}{3}=1$.

So we may assume that $d\left(x_{6}\right) \geq 3$, and by symmetry, $d\left(x_{7}\right) \geq 3$. Firstly, we claim that f receives at least $\frac{1}{3}$ from $\left\{x_{2}, x_{6}, x_{7}\right\}$. If x_{2} is a special vertex, then f receives $\frac{1}{3}$ from x_{2} by $\mathrm{R} 3, \mathrm{R} 4$ and R 5 . So we may assume that x_{2} is a normal 4 -vertex. It follows from Lemma 2.7 that both x_{6} and x_{7} are special vertices. By R3, R4 and R5, f receives at least $\frac{1}{6} \times 2=\frac{1}{3}$ from x_{6} and x_{7}.

Next, we show that f is adjacent to at least two special faces. Since f receives at least $2 \times \frac{1}{3}=\frac{2}{3}$ from adjacent special faces by R6 and R8, we are done. By Lemma 2.14, we get that both g_{3} and g_{5} are 6^{+}-faces, and g_{3}, g_{5} cannot be 6 -face simultaneously. If both g_{3} and g_{5} are 7^{+}-faces, then we are done. By symmetry, assume that g_{5} is a 6 -face and g_{3} is a 7^{+}-face. It follows that g_{4} is the outer 3 -face or a 7^{+}-face. That is, g_{3} and g_{4} are the special faces, we are done.

Case 2. Let $\left[x_{1} x_{2} x_{6}\right]$ and $\left[x_{3} x_{4} x_{8}\right]$ be internal 3 -faces, and let x_{1} and x_{4} be minor 3 -vertices. Similar to Case 1 , we may assume that $d\left(x_{6}\right) \geq 3$ and $d\left(x_{8}\right) \geq 3$. Note that x_{1} and x_{4} are 3 -vertices. Since there are no 4 -cycles, neither g_{4} nor g_{5} is a 4^{-}-face. By Lemma 2.12, neither g_{4} nor g_{5} is a 5 -face. By Lemma 2.13 and Lemma 2.14, neither g_{4} nor g_{5} is a 6 -face. So both g_{4} and g_{5} are 7^{+}-faces. Thus, f receives at least $\frac{1}{3} \times 2=\frac{2}{3}$ from these 7^{+}-faces. Next we show that f will receive at least $\frac{1}{3}$ from others.

If g_{2} is a 7^{+}-face, then we are done. By Lemma 2.13, g_{2} cannot be a 6 -face. Assume g_{2} is a 5 -face. By Lemma 2.12, $d\left(x_{2}\right)=d\left(x_{3}\right)=3$. By Lemma 2.4, we have that $\left\{x_{2}, x_{3}\right\}=\{x, y\}$. By R $5, f$ receives $\frac{1}{3}$ from each of x_{2} and x_{3}, we are done. It is clear that g_{2} cannot be a 4 -face. Suppose that g_{2} is a 3 -face $\left[x_{2} x_{3} x_{7}\right]$. If there is one special vertex in $\left\{x_{2}, x_{3}\right\}$, then we are done by R3, R4 and R5. So we may assume that both x_{2} and x_{3} are normal 4 -vertices. By Lemma 2.7 and Lemma 2.8, at least two of x_{6}, x_{7} and x_{8} are special vertices, thus f receives at least $2 \times \frac{1}{6}=\frac{1}{3}$ from these special vertices, we are done.

Case 3. Let $\left[x_{1} x_{2} x_{6}\right]$ and $\left[x_{3} x_{4} x_{8}\right]$ be internal 3 -faces, and let x_{1} and x_{3} be minor 3 -vertices. Similar to Case 1, assume $d\left(x_{6}\right) \geq 3$ and $d\left(x_{8}\right) \geq 3$. By Lemma 2.7, one of $\left\{x_{2}, x_{6}\right\}$ is a special vertex. By R3, R4 and R5, f receives at least $\frac{1}{6}$ from $\left\{x_{2}, x_{6}\right\}$.

Since there are no 4 -cycles, we have that g_{2} cannot be a 4^{-}-face. Suppose that g_{2} is a 5 -face. By Lemma 2.12, we have that $d\left(x_{2}\right)=d\left(x_{3}\right)=3$. By Lemma 2.4, x_{2} belongs to $\{x, y\}$. As a consequence, $\left\{x_{2}, x_{6}\right\}=\{x, y\}$ and g_{2} is the outer face f_{0}. By R5 and R6, $\tau(\rightarrow f) \geq 2 \times \frac{1}{3}+\frac{1}{3}=1$, we are done. By Lemma 2.13, g_{2} cannot be a 6 -face. Thus, we may assume that g_{2} is a 7^{+}-face. By R8, f receives $\frac{1}{3}$ from g_{2}.

Next we show that f receives at least $\frac{1}{2}$ from others. By Lemma 2.12 and Lemma 2.13, g_{4} cannot be a 5 - or 6 -face. Thus, g_{4} is a 3 - or 7^{+}-face. Suppose that g_{4} is a 3 -face $\left[x_{4} x_{5} x_{9}\right]$. If x_{9} is a 2 -vertex, then $\{x, y\} \subset\left\{x_{4}, x_{5}, x_{9}\right\}$, and then f receives at least $2 \times \frac{1}{3}>\frac{1}{2}$ from x and y by R5. So we may assume that $d\left(x_{9}\right) \geq 3$. By Lemma 2.12 and Lemma 2.13, g_{5} is a 7^{+}-face sending $\frac{1}{3}$ to f. By Lemma 2.7, there is a special vertex in $\left\{x_{4}, x_{5}, x_{8}, x_{9}\right\}$ sending at least $\frac{1}{6}$ to f. Thus, f receives at least $\frac{1}{6}+\frac{1}{3}=\frac{1}{2}$ from g_{5} and the special vertex. Suppose that g_{4} is a 7^{+}-face. If g_{5} is also a 7^{+}-face, then f receives at least $2 \times \frac{1}{3}>\frac{1}{2}$ from g_{4} and g_{5}, we are done. So we may assume that g_{5} is a 6^{-}-face. By Lemma $2.14, d\left(x_{4}\right) \geq 5$. By R3, R4 and R5, f receives at least $\frac{1}{6}$ from x_{4}. Therefore, f still receives at least $\frac{1}{6}+\frac{1}{3}=\frac{1}{2}$ from g_{4} and x_{4}.

Claim 4. Let f be an internal 5 -face and $s_{f}=2$. If $t_{f}=2$, and exactly one of the two normal 3 -vertices is minor, then $\tau(\rightarrow f) \geq \frac{1}{2}$.

Proof. Assume $f=\left[x_{1} x_{2} x_{3} x_{4} x_{5}\right]$. By the definition of normal 3 -vertex and minor 3 -vertex, we only need to consider two cases.

Case 1. Let $\left[x_{1} x_{2} x_{6}\right]$ and $\left[x_{2} x_{3} x_{7}\right]$ be internal 3 -faces, and let x_{1} and x_{4} be normal 3 -vertices. If x_{5} or x_{6} is a 2-vertex, then x_{5} or x_{6} belongs to $\{x, y\}$. It follows that $x_{1} x_{5}$ is incident with the outer face f_{0}. By $\mathrm{R} 5, f$ receives at least $\frac{1}{3}$ from $\{x, y\}$. By R6, f receives $\frac{1}{3}$ from the outer face f_{0}. Thus, $\tau(\rightarrow f) \geq 2 \times \frac{1}{3}>\frac{1}{2}$. So we may assume that $d\left(x_{5}\right) \geq 3$ and $d\left(x_{6}\right) \geq 3$. Note that x_{4} is a 3 -vertex. By Lemma $2.14, x_{1} x_{5}$ cannot be incident with a 6^{-}-face. That is, $x_{1} x_{5}$ is incident with a 7^{+}-face which sends $\frac{1}{3}$ to f. On the other hand, by Lemma 2.7, one vertex in $\left\{x_{2}, x_{3}, x_{6}, x_{7}\right\}$ is a special vertex which sends at least $\frac{1}{6}$ to f. Thus, $\tau(\rightarrow f) \geq \frac{1}{3}+\frac{1}{6}=\frac{1}{2}$.

Case 2. Let $\left[x_{1} x_{2} x_{6}\right]$ and $\left[x_{3} x_{4} x_{8}\right]$ be internal 3 -faces, and let x_{2} and x_{5} be normal 3 -vertices. If x_{6} is a 2 -vertex, then $x_{6} \in\{x, y\}$. Since x_{2} is a normal vertex, $\{x, y\}=\left\{x_{1}, x_{6}\right\}$. Thus, f receives $\frac{1}{3}$ from each of x_{1} and x_{6} by R5, and thus $\tau(\rightarrow f) \geq \frac{1}{3}+\frac{1}{3} \geq \frac{1}{2}$. Assume $d\left(x_{6}\right) \geq 3$. By Lemma 2.7, at least one of x_{1} and x_{6} is a special vertex. By $\mathrm{R} 3, \mathrm{R} 4$ and $\mathrm{R} 5, f$ receives at least $\frac{1}{6}$ from these special vertices. If x_{3} is a 3 -vertex, then $x_{3} \in\{x, y\}$ by Lemma 2.4. By R5, f receives $\frac{1}{3}$ from x_{3}. Thus, $\tau(\rightarrow f) \geq \frac{1}{6}+\frac{1}{3}=\frac{1}{2}$. So we may assume that $d\left(x_{3}\right) \geq 4$. By Lemma 2.15, $x_{2} x_{3}$ is incident with a 7^{+}-face. By R8, f receives $\frac{1}{3}$ from each adjacent 7^{+}-face. Thus, $\tau(\rightarrow f) \geq \frac{1}{6}+\frac{1}{3}=\frac{1}{2}$.

Claim 5. If f is an internal 5 -face and $s_{f}=3$, then $\tau(\rightarrow f) \geq \frac{2}{3}$.
Proof. Assume $f=\left[x_{1} x_{2} x_{3} x_{4} x_{5}\right]$. According to symmetry, we only need to consider two cases.
Case 1. Let $\left[x_{1} x_{2} x_{6}\right],\left[x_{2} x_{3} x_{7}\right]$ and $\left[x_{4} x_{5} x_{9}\right]$ be internal 3-faces. Assume $d\left(x_{6}\right)=2$. By Lemma 2.4, $\{x, y\}=\left\{x_{1}, x_{6}\right\}$ or $\{x, y\}=\left\{x_{2}, x_{6}\right\}$. By R5, f receives $\frac{1}{3}$ from each of x and y, thus $\tau(\rightarrow f) \geq 2 \times \frac{1}{3}=\frac{2}{3}$. So we may assume that $d\left(x_{6}\right) \geq 3$. Similarly, we can assume that $d\left(x_{7}\right) \geq 3$ and $d\left(x_{9}\right) \geq 3$. It is clear that neither $x_{1} x_{5}$ nor $x_{3} x_{4}$ is incident with a 4^{-}-face. By Lemma 2.12, neither $x_{1} x_{5}$ nor $x_{3} x_{4}$ is incident with a 5 -face. By Lemma 2.13, neither $x_{1} x_{5}$ nor $x_{3} x_{4}$ is incident with a 6 -face. Hence, f is adjacent to two 7^{+}-faces. By R6 and R8, $\tau(\rightarrow f) \geq 2 \times \frac{1}{3}=\frac{2}{3}$.

Case 2. Let $\left[x_{1} x_{2} x_{6}\right],\left[x_{2} x_{3} x_{7}\right]$ and $\left[x_{3} x_{4} x_{8}\right]$ be internal 3-faces. If $d\left(x_{i}\right)=2$ for $i \in\{5,6,7,8\}$, then $x_{i} \in\{x, y\}$ by Lemma 2.3. Since x and y are adjacent, we have that $\{x, y\} \subset\left\{x_{1}, x_{2}, \ldots, x_{8}\right\}$. By R $5, f$ receives $\frac{1}{3}$ from each of x and y, thus $\tau(\rightarrow f) \geq 2 \times \frac{1}{3}=\frac{2}{3}$. So we may assume that x_{5}, x_{6}, x_{7} and x_{8} are all 3^{+}-vertices. It is clear that neither $x_{4} x_{5}$ nor $x_{1} x_{5}$ is contained in a 4^{-}-face. By Lemma 2.12, neither $x_{1} x_{5}$ nor $x_{4} x_{5}$ is incident with a 5 -face. Recall that x_{6} is a 3^{+}-vertex and $x_{4} x_{5}$ is not contained in a triangle. By Lemma 2.13, $x_{1} x_{5}$ cannot be incident with a 6 -face. Hence, $x_{1} x_{5}$ is incident with a 7^{+}-face. By symmetry, $x_{4} x_{5}$ is also incident with a 7^{+}-face. By R6 and R8, $\tau(\rightarrow f) \geq 2 \times \frac{1}{3}=\frac{2}{3}$.

Now we calculate the final charge of internal 5^{+}-faces. Let $f=\left[v_{1} v_{2} \ldots v_{d}\right]$ be an internal d-face for $d \geq 5$. By Lemma 2.2, every face in G is bounded by a cycle. Since there are no 9 -cycles, $d \neq 9$.

If v_{i} is a 2-vertex, then $v_{i} \in\{x, y\}$ and $v_{i-1} v_{i} v_{i+1}$ is incident with the outer face f_{0}. Thus, f is adjacent to at most $d-2$ internal faces. By Corollary $2.5, t_{f} \leq \frac{d}{2}$. By R1 and R8, f sends at most $\frac{1}{3}$ to each adjacent internal face. By R2, f sends at most $\frac{1}{2}$ to each incident normal 3 -vertex. By R5, f receives $\frac{1}{3}$ from each of x and y. By R6, f receives $\frac{1}{3}$ via each of $v_{i-1} v_{i}$ and $v_{i} v_{i+1}$. Hence, $\mu^{\prime}(f) \geq d-4+4 \times \frac{1}{3}-(d-2) \times \frac{1}{3}-\frac{d}{2} \times \frac{1}{2}>0$.

So we may assume that there is no 2 -vertex incident with f.

- $d=5$.

By Corollary 2.5 and Lemma 2.11, $t_{f} \leq 2$ and $s_{f} \leq 3$. If $s_{f}=0$, then $\mu^{\prime}(f) \geq 5-4-2 \times \frac{1}{3}>0$ by R2.
If $s_{f}=1$, then f is incident with at most one minor 3 -vertex. By Claim 1, R1 and R2, $\mu^{\prime}(f) \geq$ $5-4+\frac{1}{3}-\frac{1}{3}-\left(\frac{1}{2}+\frac{1}{3}\right)>0$.

Assume $s_{f}=2$. If $t_{f}=0$, then $\mu^{\prime}(f) \geq 5-4-2 \times \frac{1}{3}>0$ by R1. Let $t_{f}=1$. If the normal 3 -vertex is not minor, then $\mu^{\prime}(f) \geq 5-4-2 \times \frac{1}{3}-\frac{1}{3}=0$ by R1 and R2. If the normal 3 -vertex is
minor, then $\mu^{\prime}(f) \geq 5-4+\frac{1}{3}-2 \times \frac{1}{3}-\frac{1}{2}>0$ by Claim 2, R1 and R2. Let $t_{f}=2$. It is observed that f is incident with at least one minor 3 -vertex. If f is incident with exactly one minor 3 -vertex, then $\mu^{\prime}(f) \geq 5-4+\frac{1}{2}-2 \times \frac{1}{3}-\left(\frac{1}{2}+\frac{1}{3}\right)=0$ by Claim 4, R1 and R2. The other situation, f is incident with exactly two minor 3 -vertices. Thus, $\mu^{\prime}(f) \geq 5-4+1-2 \times \frac{1}{3}-2 \times \frac{1}{2}>0$ by Claim 3, R1 and R2.

Assume $s_{f}=3$. If $t_{f}=0$, then $\mu^{\prime}(f) \geq 5-4-3 \times \frac{1}{3}=0$ by R1. If $t_{f}=1$, then $\mu^{\prime}(f) \geq 5-4+\frac{2}{3}-$ $3 \times \frac{1}{3}-\frac{1}{2}>0$ by Claim 5, R1 and R2. If $t_{f}=2$, then it is incident with two minor 3 -vertices, and then $\mu^{\prime}(f) \geq 5-4+1-3 \times \frac{1}{3}-2 \times \frac{1}{2}=0$ by Claim 3, R1 and R2.

- $d=6$.

Note that there are no 4 -cycle in G. If f is adjacent to a 3 -face, then it must be normally adjacent to the 3 -face. Since there are no 9 -cycles in G, f is adjacent to at most two 3 -faces. It follows that f is incident with at most two minor 3-vertices. By R1 and R2, $\mu^{\prime}(f) \geq 6-4-2 \times \frac{1}{3}-\left(2 \times \frac{1}{2}+\frac{1}{3}\right)=0$.

- $d=7$.

If f is adjacent to a 3 -face, then it must be normally adjacent to the 3 -face. Otherwise, there is a 4 -cycle in G. Since there are no 9 -cycles in G, f is adjacent to at most one 3 -face. It follows that f is incident with at most one minor 3 -vertex. By Corollary 2.5, $t_{f} \leq 3$. If $t_{f}=3$, then f is adjacent to at most four good 5 -faces by Lemma 2.4 and Lemma 2.16, and then $\mu^{\prime}(f) \geq 7-4-(1+4) \times \frac{1}{3}-\left(\frac{1}{2}+2 \times \frac{1}{3}\right)>0$ by R1, R2 and R8. If $t_{f}=2$, then f is adjacent to at most five good 5 -faces by Lemma 2.4 and Lemma 2.16 , and then $\mu^{\prime}(f) \geq 7-4-(1+5) \times \frac{1}{3}-\left(\frac{1}{2}+\frac{1}{3}\right)>0$ by R1, R2 and R8. If $t_{f}=1$, then f is adjacent to at most six good 5-faces by Lemma 2.4 and Lemma 2.16, and then $\mu^{\prime}(f) \geq 7-4-(1+6) \times \frac{1}{3}-\frac{1}{2}>0$ by R1, R2 and R8. If $t_{f}=0$, then $\mu^{\prime}(f) \geq 7-4-7 \times \frac{1}{3}>0$ by R1 and R8.

- $d=8$.

Similar to the above cases, if f is adjacent to a 3 -face, then it must be normally adjacent to the 3 -face. Since there are no 9 -cycles, f is not adjacent to any 3 -face. Thus, f is not incident with any minor 3 -vertex. By R2 and R8, $\mu^{\prime}(f) \geq 8-4-8 \times \frac{1}{3}-4 \times \frac{1}{3}=0$.

- $d \geq 10$.

By R1 and R8, f sends at most $\frac{1}{3}$ via each incident edge. It follows that $\mu^{\prime}(f) \geq d-4-d \times \frac{1}{3}-\frac{d}{2} \times \frac{1}{2}>0$. This completes the proof of Theorem 2.1.

References

[1] E.-K. Cho, I. Choi, R. Kim, B. Park, T. Shan and X. Zhu, Decomposing planar graphs into graphs with degree restrictions, J. Graph Theory 101 (2) (2022) 165-181.
[2] L. J. Cowen, R. H. Cowen and D. R. Woodall, Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency, J. Graph Theory 10 (2) (1986) 187-195.
[3] W. Cushing and H. A. Kierstead, Planar graphs are 1-relaxed, 4-choosable, European J. Combin. 31 (5) (2010) 1385-1397.
[4] W. Dong and B. Xu, A note on list improper coloring of plane graphs, Discrete Appl. Math. 157 (2) (2009) 433-436.
[5] Z. Dvořák and L. Postle, Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8, J. Combin. Theory Ser. B 129 (2018) 38-54.
[6] N. Eaton and T. Hull, Defective list colorings of planar graphs, Bull. Inst. Combin. Appl. 25 (1999) 79-87.
[7] J. Grytczuk and X. Zhu, The Alon-Tarsi number of a planar graph minus a matching, J. Combin. Theory Ser. B 145 (2020) 511-520.
[8] R. Kim, S.-J. Kim and X. Zhu, The Alon-Tarsi number of subgraphs of a planar graph, arXiv:1906.01506, http://arxiv.org/abs/1906.01506v1.
[9] S.-J. Kim, A. V. Kostochka, X. Li and X. Zhu, On-line DP-coloring of graphs, Discrete Appl. Math. 285 (2020) 443-453.
[10] K.-W. Lih, Z. Song, W. Wang and K. Zhang, A note on list improper coloring planar graphs, Appl. Math. Lett. 14 (3) (2001) 269-273.
[11] H. Lu and X. Zhu, The Alon-Tarsi number of planar graphs without cycles of lengths 4 and l, Discrete Math. 343 (5) (2020) 111797.
[12] R. Škrekovski, List improper colourings of planar graphs, Combin. Probab. Comput. 8 (3) (1999) 293299.

[^0]: *School of Mathematics and Statistics, Henan University, Kaifeng, 475004, P. R. China
 ${ }^{\dagger}$ College of Basic Science, Ningbo University of Finance and Economics, Ningbo, 315000, P. R. China
 ${ }^{\ddagger}$ Center for Applied Mathematics, Henan University, Kaifeng, 475004, P. R. China. Email: wangtao@henu.edu.cn
 ${ }^{\S}$ School of Mathematical Sciences, Zhejiang Normal University, Jinhua, 321004, P. R. China. This research is supported by Grants: NSFC 11971438, U20A2068.

