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Decomposition of planar graphs with forbidden configurations

Lingxi Li∗ Huajing Lu† Tao Wang‡ Xuding Zhu§

Abstract

A (d, h)-decomposition of a graph G is an ordered pair (D,H) such that H is a subgraph of G of

maximum degree at most h and D is an acyclic orientation of G − E(H) with maximum out-degree at

most d. In this paper, we prove that for l ∈ {5, 6, 7, 8, 9}, every planar graph without 4- and l-cycles is

(2, 1)-decomposable. As a consequence, for every planar graph G without 4- and l-cycles, there exists a

matching M , such that G−M is 3-DP-colorable and has Alon-Tarsi number at most 3. In particular, G

is 1-defective 3-DP-colorable, 1-defective 3-paintable and 1-defective 3-choosable. These strengthen the

results in [Discrete Appl. Math. 157 (2) (2009) 433–436] and [Discrete Math. 343 (2020) 111797].

Keywords: decomposition; list coloring; defective coloring; Alon-Tarsi number; DP-coloring

1 Introduction

A proper k-coloring of a graph G is a mapping φ : V (G)→ [k] such that φ(u) 6= φ(v), whenever uv ∈ E(G),
where and herein after, [k] = {1, 2, . . . , k}. The least integer k such that G admits a proper k-coloring is the
chromatic number χ(G) of G. Let h be a non-negative integer. An h-defective k-coloring of G is a mapping
φ : V (G) → [k] such that each color class induces a subgraph of maximum degree at most h. In particular,
a 0-defective coloring is a proper coloring of G.

A k-list assignment of G is a mapping L that assigns a list L(v) of k colors to each vertex v in G. An
h-defective L-coloring of G is an h-defective coloring ψ of G such that ψ(v) ∈ L(v) for all v ∈ V (G). A graph
G is h-defective k-choosable if G admits an h-defective L-coloring for each k-list assignment L. In particular,
if G is 0-defective k-choosable, then we call it k-choosable. The choice number ch(G) is the smallest integer
k such that G is k-choosable.

Cowen, Cowen, and Woodall [2] proved that every outerplanar graph is 2-defective 2-colorable, and every
planar graph is 2-defective 3-colorable. Eaton and Hull [6], and independently, Škrekovski [12] proved that
every outerplanar graph is 2-defective 2-choosable, and every planar graph is 2-defective 3-choosable. Cushing
and Kierstead [3] proved that every planar graph is 1-defective 4-choosable. Let G4,l be the family of planar
graphs which contain no 4-cycles and no l-cycles. Lih et al. [10] proved that for each l ∈ {5, 6, 7}, every graph
G ∈ G4,l is 1-defective 3-choosable. Dong and Xu [4] proved that for each l ∈ {8, 9}, every graph G ∈ G4,l is
1-defective 3-choosable.

Note that a graph being h-defective k-choosable means that for every k-list assignment L of G, there exists
a subgraph H (depending on L) of G with ∆(H) ≤ h such that G − E(H) is L-colorable. The subgraph H
may be different for different L. As a strengthening of the above results, the following problem is studied in
the literature: For (h, k) ∈ {(2, 3), (1, 4)}, is it true that every planar graph G has a subgraph of maximum
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(a) (b) (c)

Fig. 1: Forbidden configurations in (1) and (2) of Theorem 1.1.

degree h such that G−E(H) is k-choosable? For l ∈ {5, 6, 7, 8, 9}, is it true that every graph G ∈ G4,l has a
matching M such that G−M is 3-choosable?

It turns out that for the first question, the answer is negative for (h, k) = (2, 3), and positive for (h, k) =

(1, 4). It was proved in [8] that there exists a planar graph G such that for any subgraph H of G of maximum
degree 3, G−E(H) is not 3-choosable, and proved in [7] that every planar graph G has a matching M such
that G−M is 4-choosable. For the second question, for l ∈ {5, 6, 7}, it was shown in [11] every graph G ∈ G4,l
has a matching M such that G−M is 3-choosable.

Indeed, stronger results were proved in [7, 11]. The results concern two other graph parameters: The Alon-

Tarsi number AT (G) of G and the paint number χP (G) of G. The reader is referred to [7] for the definitions.
We just note here that for any graph G, ch(G) ≤ χP (G) ≤ AT (G), and the differences χP (G) − ch(G) and
AT (G)− χP (G) can be arbitrarily large. It was proved in [7] that every planar graph G has a matching M
such that AT (G−M) ≤ 4, and proved in [11] that for l ∈ {5, 6, 7}, every graph G ∈ G4,l has a matching M
such that AT (G−M) ≤ 3.

In this paper, we consider further strengthening of the results concerning graphs in G4,l for l ∈ {5, 6, 7, 8, 9}.
(Note that the result in [11] does not cover the cases for l = 8 and 9). We strengthen the above results in
two aspects: a larger class of graphs with a stronger property.

Given two non-negative integers d, h and a graph G, a (d, h)-decomposition of G is a pair (D,H) such
that H is a subgraph of G of maximum degree at most h and D is an acyclic orientation of G − E(H)

with maximum out-degree at most d. We say G is (d, h)-decomposable if G has a (d, h)-decomposition. Cho
et al. [1] proved that every planar graph is (4, 1)-decomposable, (3, 2)-decomposable and (2, 6)-decomposable.
Note that a graph H which has an acyclic orientation of maximum out-degree at most d if and only if H
is d-degenerate, i.e., the vertices of H can be linearly ordered so that each vertex has at most d backward
neighbors. It is well-known and easy to see that d-degenerate graphs not only have choice number, paint
number, Alon-Tarsi number and DP-chromatic number at most d+ 1, there is a linear time algorithm that
creates the above mentioned linear ordering and the corresponding coloring is easily obtained by using a
greedy coloring algorithm. The reader is referred to [5] for the definition of DP-chromatic number χDP (G)

of a graph G. We just mention here that ch(G) ≤ χDP (G), and there are graphs G for which χDP (G) are
larger than each of AT (G) and χP (G), there are also graphs G for which χDP (G) are smaller than each of
AT (G) and χP (G) [9]. This paper proves the following result:

Theorem 1.1. Assume G is a plane graph. Then G is (2, 1)-decomposable if one of the following holds:

(1) G has no subgraph isomorphic to any configuration in Fig. 1 and Fig. 2.

(2) G has no subgraph isomorphic to any configuration in Fig. 1 and Fig. 3.

(3) G ∈ G4,9.

Note that if G ∈ G4,l for some l ∈ {5, 6, 7}, then G has no subgraph isomorphic to any configuration in
Fig. 1 and Fig. 2, and if G ∈ G4,8, then G has no subgraph isomorphic to any configuration in Fig. 1 and
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(a) (b) (c) (d)

Fig. 2: Forbidden configurations in (1) of Theorem 1.1.

(a) (b) (c) (d) (e)

Fig. 3: Forbidden configurations in (2) of Theorem 1.1.

Fig. 3. Consequently, for l ∈ {5, 6, 7, 8, 9}, all graphs G ∈ G4,l are (2, 1)-decomposable.
All graphs in this paper are finite and simple. For a plane graph G, we use V (G), E(G) and F (G) to

denote the vertex set, edge set and face set of G, respectively. For any element x ∈ V (G)∪F (G), the degree
of x is denoted by d(x). A vertex v in G is called a k-vertex, or k+-vertex, or k−-vertex, if d(v) = k, or
d(v) ≥ k, or d(v) ≤ k, respectively. Analogously, one can define k-face, k+-face, and k−-face. An n-face
[x1x2 . . . xn] is a (d1, d2, . . . , dn)-face if d(xi) = di for 1 ≤ i ≤ n. Let D be an orientation of a graph G, we
use d+D(v) and d−D(v) to denote the out-degree and in-degree of a vertex v in D, respectively. Let ∆+(D)

denote the maximum out-degree of vertices in D. Two cycles (or faces) are adjacent if they have at least one
common edge. Two cycles (or faces) are normally adjacent if they intersect in exactly two vertices. Let G be
a plane graph and xy be a given boundary edge of G. A vertex v 6= x, y is called a normal vertex. A vertex
v is special if v is a 5+-vertex or v ∈ {x, y}. A face is internal if it is not the outer face f0. A face is special

if it is an internal 7+-face or the outer face f0. A normal vertex v is minor if d(v) = 3 and it is incident
with an internal 4−-face. A good 5-face is an internal 5-face adjacent to at least one internal 3-face. An edge
contained in a triangle is a triangular edge. Note that in all three cases, there are no adjacent triangles. So
every triangular edge is contained in a unique triangle.

2 Proof of Theorem 1.1

For the purpose of using induction, we prove the following result. Assume G is a plane graph and e = xy is
a boundary edge of G. A nice decomposition of (G, e) is a pair (D,M) such that M is a matching and D is
an acyclic orientation of G−M with d+D(x) = d+D(y) = 0 and ∆+(D) ≤ 2. Note that in a nice decomposition
(D,M) of (G, e), since d+D(x) = d+D(y) = 0, we conclude that e = xy ∈M .

Theorem 2.1. If G is a plane graph satisfying the condition of Theorem 1.1 and e is a boundary edge of G,
then (G, e) has a nice decomposition.

Assume Theorem 2.1 is not true and G is a counterexample with minimum number of vertices. We shall
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derive a sequence of properties of G that lead to a contradiction. It is obvious that G is connected, for
otherwise we can consider each component of G separately.

Lemma 2.2. G is 2-connected.

Proof. Assume to the contrary that G has a cut-vertex x′. Let G = H1 ∪ H2, V (H1 ∩ H2) = {x′} and
e = xy ∈ E(H1). Let e′ = x′y′ be a boundary edge of H2. By the minimality of G, there is a nice
decomposition (D1,M1) of (H1, e) and a nice decomposition (D2,M2) of (H2, e

′). Let M = (M1∪M2)\{x′y′}

and D = D1 ∪D2 ∪ {
←−−
x′y′}. It is straightforward to verify that (D,M) is a nice decomposition of (G, e).

Lemma 2.3. For any v ∈ V (G) \ {x, y}, d(v) ≥ 3.

Proof. Assume v ∈ V (G) \ {x, y} and d(v) ≤ 2. By the minimality of G, there exists a nice decomposition
(D,M) of (G− v, e). Let D′ be obtained from D by orienting edges incident with v as out-going edges from
v. Then (D′,M) is a nice decomposition of (G, e).

Lemma 2.4. If u and v are two adjacent 3-vertices, then {u, v} ∩ {x, y} 6= ∅.

Proof. Suppose that u and v are two adjacent 3-vertices with {u, v} ∩ {x, y} = ∅. By the minimality of
G, there is a nice decomposition (D,M) of (G − {u, v}, e). Let M ′ = M ∪ {uv}, and D′ be obtained from
D by orienting the other edges incident with u, v as out-going edges from u, v. Then (D′,M ′) is a nice
decomposition of (G, e).

For an internal face f , let tf be the number of incident normal 3-vertices and let sf be the number of
adjacent internal 3-faces. Note that each 3-vertex of f is incident with at most one 3-face adjacent to f .
Thus we have the following corollary.

Corollary 2.5. For any internal face f , tf ≤ d(f)/2 and tf + sf ≤ d(f).

The following four lemmas first appeared in [11], although the hypotheses and some definitions are slightly
different. For the completeness of this paper, we include the short proofs with illustration figures.

u1

u2

u3

u4

u5

u6

(a)

u1

u6

u5

u4

u3

u2

(b)

Fig. 4: (a) A bad 5-cycle and an adjacent triangle. (b) For the proof of Lemma 2.6. Here and in figures
below, a solid triangle represents a 3-vertex, a solid square represents a 4-vertex, a thick line represents an
edge in the matching M .

A 5-cycle [u1u2u3u4u5] is a bad 5-cycle if it is adjacent to a triangle [u1u5u6] with ui /∈ {x, y}, where
1 ≤ i ≤ 6, and d(u1) = d(u3) = 3, and d(u2) = d(u4) = d(u5) = d(u6) = 4, as depicted in Fig. 4(a).

Lemma 2.6 (Lemma 5.2 in [11]). There are no bad 5-cycles in G.
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Proof of Lemma 2.6. Assume C = [u1u2u3u4u5] is a bad 5-cycle and T = [u1u5u6] is a triangle adjacent to
C, where d(u1) = d(u3) = 3 and d(ui) = 4 for i ∈ {2, 4, 5, 6}, as depicted in Fig. 4(a). A nice decomposition
of G− {u1, u2, . . . , u6} is extended to a nice decomposition as in Fig. 4(b).

A triangle T is minor if T is a (3, 4, 4)-triangle and T ∩ {x, y} = ∅. A triangle chain in G is a subgraph
of G− {x, y} consisting of vertices w1, w2, . . . , wk+1, u1, u2, . . . , uk in which [wiwi+1ui] is a (4, 4, 4)-cycle for
1 ≤ i ≤ k, as depicted in Fig. 5. We denote Ti the triangle [wiwi+1ui] and denote such a triangle chain by
T1T2 . . . Tk. If a triangle T has exactly one common vertex with a triangle chain T1T2 . . . Tk and the common
vertex is in T1, then we say T intersects the triangle chain T1T2 . . . Tk.

u1

w1 w2

u2

w3

uk

wk wk+1

Fig. 5: A triangle chain.

w0

u0

w1

u1

w2

u2

w3 wk

uk

wk+1 z

(a)

w0

u0

w1

u1

w2

u2

w3 wk

uk

wk+1 z

(b)

Fig. 6: (a) The configuration in Lemma 2.7. (b) For the proof of Lemma 2.7.

Lemma 2.7 (Lemma 2.10 in [11]). If a minor triangle T0 intersects a triangle chain T1T2 . . . Tk, then every
3-vertex adjacent to a vertex in Tk belongs to {x, y} ∪ V (T0).

The k = 0 case of the above lemma asserts that every 3-vertex adjacent to a vertex in T0 belongs to
{x, y}.

Proof of Lemma 2.7. AssumeG has a minor triangle T0 = [w0w1u0] intersecting a triangle chain T1T2 . . . Tk,
and z /∈ {x, y}∪V (T0) is a 3-vertex adjacent to a vertex in Tk, as depicted in Fig. 6(a). A nice decomposition
of G− (

⋃k

i=0 V (Ti) ∪ {z}) is extended to a nice decomposition of G as in Fig. 6(b).

Lemma 2.8 (Lemma 2.11 in [11]). If a minor triangle T0 intersects a triangle chain T1T2 . . . Tk, then the
distance between Tk and another minor triangle is at least two.
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w0

u0

w1

u1

w2

u2

w3 wk

uk

wk+1 z z1

z2

(a)

w0

u0

w1

u1

w2

u2

w3 wk

uk

wk+1 z z1

z2

(b)

Fig. 7: (a) The configuration in Lemma 2.8. (b) For the proof of Lemma 2.8.

v1v2

v3

v4 v5

v6

u1

u2

u3

u4

u5

u6

(a)

v1v2

v3

v4 v5

v6

u1

u2

u3

u4

u5

u6

(b)

Fig. 8: (a) The configuration in Lemma 2.9. (b) For the proof of Lemma 2.9.

Proof of Lemma 2.8. Assume to the contrary that T1T2 . . . Tk with Ti = [wiwi+1ui], 1 ≤ i ≤ k, is a triangle
chain that intersects a minor triangle T0 = [w0w1u0], and the distance between Tk and another minor triangle
T ′
0 = [zz1z2] with d(z1) = 3 is less than 2. By Lemma 2.7, we may assume wk+1z is a (4, 4)-edge connecting
Tk and T ′

0, as depicted in Fig. 7(a). A nice decomposition of G− (
⋃k

i=0 V (Ti) ∪ V (T ′
0)) is extended to a nice

decomposition of G as in Fig. 7(b).

Lemma 2.9 (Lemma 3.1 in [11]). Assume that f is a 6-face adjacent to five 3-faces, and none of the vertices
on these 3-faces is in {x, y}. If f is incident with a 3-vertex, then there is at least one 5+-vertex on these five
3-faces.

Proof of Lemma 2.9. Let f = [v1v2v3v4v5v6] be a 6-face, v1 be a 3-vertex and Ti = [vivi+1ui], 1 ≤ i ≤ 5,
be the five 3-faces. Assume to the contrary that there is no 5+-vertex on Ti. By Lemma 2.7, we may assume
all vi+1 and ui are 4-vertices for 1 ≤ i ≤ 5, as depicted in Fig. 8(a). A nice decomposition of G−(

⋃5
i=1 V (Ti))

is extended to a nice decomposition of G as in Fig. 8(b).
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The above lemmas present some reducible configurations. We use standard discharging method to prove
that there must be some reducible configurations in a minimum counterexample, which leads to a contradic-
tion.

First, we define an initial charge function by µ(x) = d(x) − 4, µ(y) = d(y) − 4, µ(f0) = d(f0) + 4, and
µ(v) = d(v)− 4 for each vertex v ∈ V (G) \ {x, y}, µ(f) = d(f)− 4 for each face f other than f0. By Euler’s
formula and handshaking theorem, we obtain that the sum of all the initial charges is zero, i.e.,

(d(x) − 4) + (d(y) − 4) + (d(f0) + 4) +
∑

v 6=x,y

(d(v) − 4) +
∑

f 6=f0

(d(f)− 4) = 0.

Next, we design some discharging rules to redistribute the charges, such that the sum of the final charges is
not zero, which leads to a contradiction.

Discharging Rules

R1. Every internal 3-face f receives 1
3 from each adjacent face.

R2. Assume v is a normal 3-vertex. If v is incident with an internal 4−-face, then it receives 1
2 from each of

the other two incident faces. Otherwise it receives 1
3 from each incident face.

R3. Let v be a normal 5-vertex. Then v sends 1
6 to each incident 4+-face. If v is incident with a 3-face

g = [uvw], then v sends 1
6 to the other face g′ incident with uw. Moreover, if v is incident with three

consecutive faces f1, f2, f3 and f1, f3 are 3-faces, then v sends an extra 1
6 to f2.

R4. Let v be a normal 6+-vertex. Then v sends 1
3 to each incident 4+-face. If v is incident with a 3-face

g = [uvw], then v sends 1
3 to the other face g′ incident with uw.

R5. Let v be a vertex in {x, y}. Then it sends 1
3 to every incident internal 4+-face. If v is incident with a

3-face g = [uvw], then v sends 1
3 to the other face g′ incident with uw.

R6. f0 sends 1
3 to each adjacent 4+-face.

R7. In Case 2 (i.e., G has no subgraph isomorphic to any configuration in Fig. 1 and Fig. 3), every internal
5-face receives 1

6 from adjacent internal 6+-faces via each common edge.

R8. In Case 3 (i.e., G ∈ G4,9), every good 5-face receives 1
3 from adjacent internal 7+-faces via each common

edge.

For z ∈ V (G) ∪ F (G), let µ′(z) be the final charge of z. In the remainder of this paper, we prove that
∑

z∈V (G)∪F (G) µ
′(z) > 0, which contradicts the fact that

∑

z∈V (G)∪F (G) µ
′(z) =

∑

z∈V (G)∪F (G) µ(z) = 0.
Note that R7 only applies to Case 2 and R8 only applies to Case 3. Moreover, R7 and R8 only involve

5+-faces.
It follows from R5 that for v ∈ {x, y}

µ′(v) ≥ µ(v)− (d(v) − 1)×
1

3
=

2d(v)− 11

3
≥ −

7

3
.

Note that f0 sends 1
3 to each adjacent internal face by R1 and R6, and sends at most 1

2 to each incident
normal 3-vertex by R2. It follows from Lemma 2.4 that f0 is incident with at most d(f0)

2 normal 3-vertices.
Then

µ′(f0) ≥ µ(f0)−
d(f0)

2
×

1

2
− d(f0)×

1

3
≥

5d(f0)

12
+ 4 ≥

21

4
.

Hence, µ′(x) + µ′(y) + µ′(f0) > 0.
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Assume v is a normal 3-vertex. If v is incident with an internal 4−-face, then the other two incident faces
are 5+-faces or the outer face f0. Hence µ′(v) = µ(v) + 2 × 1

2 = 0. Otherwise each face incident with v is a
5+-face or f0, and µ′(v) = µ(v) + 3× 1

3 = 0 by R2.
If v is a normal 4-vertex, then µ′(v) = µ(v) = 0. If v is a normal 5-vertex, then it is incident with

at most two 3-faces, and then µ′(v) ≥ µ(v) − 5 × 1
6 −

1
6 = 0 by R3. If v is a normal 6+-vertex, then

µ′(v) = µ(v) − d(v)× 1
3 = 2(d(v)−6)

3 ≥ 0 by R4.
If f is an internal 3-face, then it receives 1

3 via each incident edge, and µ′(f) = µ(f) + 3× 1
3 = 0 by R1.

If f is an internal 4-face, then µ′(f) ≥ µ(f) = 0.
It remains to show that µ′(f) ≥ 0 for internal 5+-faces f .
In the remainder of the paper, we consider the three cases separately in three subsections.

2.1 G has no subgraph isomorphic to any configuration in Fig. 1 and Fig. 2

Assume that f = [v1v2v3v4v5] is an internal 5-face. By Corollary 2.5, tf ≤ 2. If f is not adjacent to any
internal 3-face, then µ′(f) ≥ µ(f) − 2 × 1

2 = 0 by R2. So we may assume that f is adjacent to at least one
internal 3-face. Since the configurations Fig. 2(a)–2(d) are forbidden, f is adjacent to exactly one internal
3-face f∗ and no 4-faces. If tf ≤ 1, then µ′(f) ≥ µ(f) − 1

3 −
1
2 > 0 by R1 and R2. Assume tf = 2 and

f∗ = [uv1v2] is an internal 3-face. If there are some special vertices in {u, v1, v2, . . . , v5}, then f receives at
least 1

6 from special vertices, and then µ′(f) ≥ µ(f) − 1
3 − (13 + 1

2 ) +
1
6 = 0 by R1, R2, R3, R4 and R5.

So we may assume that none of {u, v1, v2, . . . , v5} is a special vertex. It follows that f is incident with two
3-vertices and three 4-vertices. If neither v1 nor v2 is a 3-vertex, then µ′(f) ≥ µ(f) − 1

3 − 2 × 1
3 = 0 by R1

and R2. Without loss of generality, assume that d(v2) = 3 and d(v1) = d(v3) = d(u) = 4. If d(v4) = 3 and
d(v5) = 4, then it contradicts Lemma 2.6. If d(v4) = 4 and d(v5) = 3, then it contradicts Lemma 2.7.

Assume that f = [v1v2v3v4v5v6] is an internal 6-face. By Corollary 2.5, tf ≤ 3.
• tf = 3. Without loss of generality, assume that v1, v3 and v5 are normal 3-vertices.
By Corollary 2.5, sf ≤ 3. If sf ≤ 1, then µ′(f) ≥ µ(f)− 1

3 − 3× 1
2 > 0 by R1 and R2.

Assume that sf = 2. By symmetry, assume that one of the adjacent internal 3-face is [v1v2u]. By
Lemma 2.7, one vertex in {u, v2} is a special vertex. Thus, µ′(f) ≥ µ(f)− 2× 1

3 − 3× 1
2 +

1
6 = 0 by R1, R2,

R3, R4 and R5.
Assume that sf = 3.
(i) vivi+1 is incident with an internal 3-face [vivi+1ui] for i ∈ {1, 3, 5}. For each i ∈ {1, 3, 5}, by Lemma 2.7,

there is a special vertex in {ui, vi+1}. Thus f receives at least 1
6 from {ui, vi+1} by R3, R4 and R5. Hence,

µ′(f) ≥ µ(f)− 3× 1
3 − 3× 1

2 + 3× 1
6 = 0 by R1, R2, R3, R4 and R5.

(ii) vivi+1 is incident with an internal 3-face [vivi+1ui] for i ∈ {1, 2, 5}. If v2 is a special vertex, then f

receives 1
3 from v2. Otherwise, v2 is a normal 4-vertex. By Lemma 2.7, both u1 and u2 are special vertices.

Then f receives at least 2 × 1
6 = 1

3 from u1 and u2 by R3, R4 and R5. In any way, f receives at least 1
3

from {u1, u2, v2}. On the other hand, one of u5 and v6 is also a special vertex, and f receives at least 1
6 from

{u5, v6} by R3, R4 and R5. Thus, µ′(f) ≥ µ(f)− 3× 1
3 − 3× 1

2 + 1
3 + 1

6 = 0.
• tf = 2. By Corollary 2.5, sf ≤ 4. If sf ≤ 3, then µ′(f) ≥ µ(f)− 3× 1

3 − 2× 1
2 = 0 by R1 and R2.

Assume sf = 4. We claim that f will receive at least 1
3 from vertices. If f is incident with a 2-vertex,

then the 2-vertex must be in {x, y}, and f receives at least 1
3 from incident 2-vertices by R5. So we may

assume that f is not incident with any 2-vertex. By symmetry, it suffices to consider five cases.
(1) The four adjacent internal 3-faces are [vivi+1ui] for 1 ≤ i ≤ 4. Thus, the two normal 3-vertices must

be v1 and v5. If one of v2, v3 and v4 is a special vertex, then f receives 1
3 from it by R3, R4 and R5. So we

may assume that v2, v3 and v4 are normal 4-vertices. By Lemma 2.7 and Lemma 2.8, there are at least two
special vertices in {u1, u2, u3, u4}, thus f receives at least 2× 1

6 = 1
3 from these vertices by R3, R4 and R5.
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5-face

5-face

Fig. 9: Two adjacent 5-faces. The solid vertex is a 2-vertex in G.

(2) The four adjacent internal 3-faces are [vivi+1ui] for i ∈ {1, 2, 3, 5}, while v1 and v4 are normal 3-
vertices. Similarly, if v2 or v3 is a special vertex, then f receives at least 1

3 from it. So we may assume that
v2 and v3 are normal 4-vertices. By Lemma 2.7 and Lemma 2.8, there are at least two special vertices in
{u1, u2, u3}, thus f receives at least 2× 1

6 = 1
3 from these vertices by R3, R4 and R5.

(3) The four adjacent internal 3-faces are [vivi+1ui] for i ∈ {1, 2, 3, 5}, while v1 and v5 are normal 3-
vertices. By Lemma 2.7, u5 or v6 is a special vertex; one of {v2, v3, v4, u1, u2, u3} is a special vertex. Thus,
f receives at least 2× 1

6 = 1
3 from these vertices by R3, R4 and R5.

(4) The four adjacent internal 3-faces are [vivi+1ui] for i ∈ {1, 2, 4, 5}, while v1 and v3 are normal 3-
vertices. If v2 is a special vertex, then f receives 1

3 from it by R3, R4 and R5. Otherwise, v2 is a normal
4-vertex. By Lemma 2.7, each of u1 and u2 is a special vertex, thus f receives at least 2× 1

6 = 1
3 from {u1, u2}

by R3, R4 and R5.
(5) The four adjacent internal 3-faces are [vivi+1ui] for i ∈ {1, 2, 4, 5}, while v1 and v4 are normal 3-

vertices. By Lemma 2.7, there is at least one special vertex in {u1, u2, v2, v3}, and there is at least one special
vertex in {u4, u5, v5, v6}. Thus, f receives at least 2× 1

6 = 1
3 from these vertices by R3, R4 and R5.

To sum up, f always receives at least 1
3 from some vertices in the above five cases. Therefore, µ′(f) ≥

µ(f)− 4× 1
3 − 2× 1

2 + 1
3 = 0 by R1 and R2.

• tf = 1. By Corollary 2.5, sf ≤ 5. If sf ≤ 4, then µ′(f) ≥ µ(f)− 1
2−4×

1
3 > 0. Assume that sf = 5 and for

1 ≤ i ≤ 5, [vivi+1ui] is an internal 3-face. Let X = {v1, . . . , v6, u1, . . . , u5}. By Lemma 2.9, there is a special
vertex in X . Therefore, f receives at least 1

6 from the special vertices inX , and µ′(f) ≥ µ(f)− 1
2−5×

1
3+

1
6 = 0

by R3, R4 and R5.
• tf = 0. Then f sends nothing to incident vertices, and µ′(f) ≥ µ(f)− 6× 1

3 = 0.
If f is an internal 7+-face, then f sends out charges by R1 and R2. As tf + sf ≤ d(f), we have

µ′(f) ≥ µ(f)−
sf
3
−
tf
2
≥

2

3
d(f)− 4−

tf
6
≥

7

12
d(f)− 4 > 0.

This completes the proof of Case 1 of Theorem 1.1.

2.2 G has no subgraph isomorphic to any configuration in Fig. 1 and Fig. 3

Lemma 2.10 below follows easily from the fact that configurations in Fig. 1 and Fig. 3 are forbidden.

Lemma 2.10. If two 5-faces have two consecutive common edges on their boundaries, then one of the 5-face
is the outer face f0 (see Fig. 9).

Now we calculate the final charge of internal 5+-faces.
Assume f is an internal d-face. If f is incident with a 2-vertex, then the 2-vertex belongs to {x, y}, and f is

adjacent to at most d−2 internal faces. By R5, f receives 1
3 from each of x and y. By R6, f receives 1

3 via each
common edge with the outer face f0. By R1 and R7, f sends at most 1

3 to each adjacent internal face. By R2,
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f sends at most 1
2 to each incident normal 3-vertex. Thus, µ′(f) ≥ d−4+2× 1

3+2× 1
3−(d−2)×

1
3−⌊

d
2⌋×

1
2 ≥

5d−24
12 > 0.
Assume that f is not incident with any 2-vertex. By Lemma 2.10, there are no adjacent internal 5-faces.

By Lemma 2.4, f is adjacent to at most d− tf internal 5-faces.
� d = 5. Assume that f = [v1v2v3v4v5]. Since adjacent triangles and a triangle normally adjacent to a

7-cycle are forbidden, sf ≤ 2. By Corollary 2.5, tf ≤ 2. It follows that f is incident with at most two minor
3-vertices.

If sf = 0, then µ′(f) ≥ µ(f)− 2× 1
2 = 0 by R2.

Assume sf ≥ 1. Since Fig. 1 and Fig. 3(c) are forbidden, f is not adjacent to any 4-face. It follows that
every face adjacent to f is a 3-face or a 6+-face. Thus, f is adjacent to at least three 6+-faces (the number
of adjacent 6+-faces is counted by the number of common edges). If f is incident with at most one minor
3-vertex, then µ′(f) ≥ 5 − 4 − 2 × 1

3 − (12 + 1
3 ) + 3 × 1

6 = 0 by R1, R2 and R7. Assume f is incident with
exactly two minor 3-vertices. That is tf = 2 and sf = 2. By symmetry, we have three subcases to consider:
• f is adjacent to two internal 3-faces [v1v2u1], [v3v4u3], and v1, v3 are minor 3-vertices.
• f is adjacent to two internal 3-faces [v1v2u1], [v3v4u3], and v1, v4 are minor 3-vertices.
• f is adjacent to two internal 3-faces [v1v2u1], [v2v3u2], and v1, v3 are minor 3-vertices.

By Lemma 2.7 and Lemma 2.8, the two 3-faces are incident with at least one special vertex. By R3, R4 and
R5, f receives at least 1

6 from these special vertices. Hence, µ′(f) ≥ 5− 4 + 1
6 + 3× 1

6 − 2× 1
3 − 2× 1

2 = 0.
� d = 6. Assume that f = [v1v2v3v4v5v6]. If sf = 0, then it sends at most 1

2 to each incident normal
3-vertex, and sends 1

6 to each adjacent 5-face, thus µ′(f) ≥ 6− 4− tf ×
1
2 − (6− tf )×

1
6 = 1−

tf
3 ≥ 0 by R2

and R7.
Suppose that f is adjacent to an internal 3-face. Then they are normally adjacent. Since the configurations

in Fig. 1 and Fig. 3(c) are forbidden, sf = 1. By Corollary 2.5, tf ≤ 3. If tf ≤ 2, then µ′(f) ≥ 6 − 4 − 1
3 −

tf ×
1
2 − (6− tf )×

1
6 =

2−tf
3 ≥ 0 by R1, R2 and R7.

Assume tf = 3 and the 3-face is [uv1v2]. By Lemma 2.4, we may assume v1, v3 and v5 are the three normal
3-vertices. By Lemma 2.7, there is a special vertex in {u, v2}, thus f receives at least 1

6 from {u, v2}. Since the
configurations in Fig. 1 and Fig. 3 are all forbidden, v5 cannot be incident with an internal 4−-face. Thus, f is
incident with at most two minor 3-vertices, which implies that µ′(f) ≥ 6−4−(2× 1

2+
1
3 )−

1
3−(6−3)×

1
6+

1
6 = 0.

� d = 7. Let f be a 7-face. As Fig. 3(c) is forbidden, sf = 0. By Corollary 2.5, tf ≤ 3. By R2, f
sends at most 1

2 to each incident normal 3-vertex. By R7, f sends 1
6 to each adjacent internal 5-face. Hence,

µ′(f) ≥ 7− 4− tf ×
1
2 − (7− tf )×

1
6 =

11−2tf
6 > 0.

� d ≥ 8. Let f be a 8+-face. Then f sends at most 1
2 to each incident normal 3-vertex, and 1

3 to each
adjacent internal 3-face, and 1

6 to each adjacent internal 5-face. Combining with Corollary 2.5, we have that

µ′(f) ≥ d− 4− tf ×
1

2
− sf ×

1

3
− (d− sf )×

1

6
=

5

6
d−

1

2
tf −

1

6
sf − 4 ≥

d

2
− 4 ≥ 0.

This completes the proof of Case 2.

2.3 G ∈ G4,9

Lemma 2.11. A 5-cycle contains at most three triangular edges.

Proof. Assume [x1x2x3x4x5] is a 5-cycle, and [x1x2x6], [x2x3x7], [x3x4x8] and [x4x5x9] are four triangles.
Since there is no 4-cycle in G, x1, x2, . . . , x9 are nine distinct vertices. Thus, [x1x6x2x7x3x8x4x9x5] is a
9-cycle, a contradiction.
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Fig. 10: Some local structures around 5-face.

Lemma 2.12. Let f = [x1x2x3x4x5] and g = [x5x1uvw] be two adjacent 5-faces. If d(x1) ≥ 3 and d(x5) ≥ 3,
then f and g are normally adjacent, and neither x2x3 nor x3x4 is adjacent to a 3-face. Moreover, if x1x2 is
incident with a 3-face, then x1 is a 3-vertex and the 3-face is [x1x2u].

Proof. Since d(x1) ≥ 3 and d(x5) ≥ 3, we have that x2 6= u and x4 6= w. Since G has no 4-cycle,
x1, x2, . . . , x5, u, v, w are distinct. Therefore, f and g are normally adjacent.

By the symmetry of x2x3 and x3x4, suppose that x2x3 is incident with a 3-face [x2x3x7]. Since there
are no 4-cycles in G, x7 is not incident with f or g. Thus, [x5x4x3x7x2x1uvw] is a 9-cycle, a contradiction.
Hence, neither x2x3 nor x3x4 is incident with a 3-face.

Let x1x2 be incident with a 3-face [x1x2x6]. Since f has no chord, x6 /∈ {x3, x4, x5, v, w}. If x6 6= u, then
[x5x4x3x2x6x1uvw] is a 9-cycle, a contradiction. Thus x6 = u and x1 is a 3-vertex.

Lemma 2.13. Let f = [x1x2x3x4x5] and g = [x5x1upqw] be two adjacent faces. If d(x1) ≥ 3 and d(x5) ≥ 3,
then {u,w}∩ {x1, . . . , x5} = ∅, while {p, q}∩ {x2, x3, x4} = {p} = {x2} or {p, q}∩ {x2, x3, x4} = {q} = {x4}.

Proof. Since G has no 9-cycle, {x2, x3, x4} ∩ {u, p, q, w} 6= ∅. For d(x1) ≥ 3 and d(x5) ≥ 3, we have that
x2 6= u and x4 6= w. Note that there are no 4-cycles, it follows that {x2, x3, x4} ∩ {u,w} = ∅, x3 /∈ {p, q},
x4 6= p and x2 6= q. Therefore, {p, q} ∩ {x2, x4} = {p} = {x2} or {p, q} ∩ {x2, x4} = {q} = {x4}.

Lemma 2.14. Let f = [x1x2x3x4x5] be a 5-face adjacent to two 3-faces, that are either [x1x2x6] and
[x2x3x7], or [x1x2x6] and [x3x4x8] (see Fig. 10(a) and Fig. 10(b)). If d(x1) = 3, d(x5) ≥ 3 and d(x6) ≥ 3,
and x5x1x6 is incident with a 6−-face g, then g is a 6-face [x5x1x6uvw], where {u,w} ∩ {x1, x2, . . . , x8} = ∅,
v = x4 and d(x4) ≥ 4 (d(x4) ≥ 5 for the case of Fig. 10(b)).

Proof. We only consider the case of Fig. 10(a) here, the case of Fig. 10(b) is quite similar. Suppose that
g = [x5x1x6u . . . w]. Since d(x5) ≥ 3 and d(x6) ≥ 3, x1, x2, x6, u are four distinct vertices, and x1, x4, x5, w

are four distinct vertices. As there is no 4-cycle in G, x1, x2, . . . , x7, u, w are distinct. It follows that g must
be a 5- or 6-face. If g is a 5-face, then g = [x5x1x6uw] and [x5x4x3x7x2x1x6uw] is a 9-cycle, a contradiction.
Let g = [x5x1x6uvw] be a 6-face. If v /∈ {x2, x3, x4}, then [uvwx5x4x3x2x1x6] is a 9-cycle, a contradiction.
If v = x2, then [ux6x1x2] is a 4-cycle, a contradiction. If v = x3, then [ux6x2x3] is a 4-cycle, a contradiction.
Hence, v = x4 and [x4x5w] is a triangle.

Lemma 2.15. Let f = [x1x2x3x4x5] be a 5-face adjacent to two 3-faces [x1x2x6] and [x3x4x8]. If d(x2) = 3,
d(x3) ≥ 4 and d(x6) ≥ 3, then x3x2x6 is incident with a 7+-face.
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Proof. Suppose that x3x2x6 is incident with a face g = [x3x2x6u . . . w]. Since d(x3) ≥ 4 and d(x6) ≥ 3,
we have that x2, x3, x4, x8, w are five distinct vertices, and x1, x2, x6, u are four distinct vertices. Since there
are no 4-cycles, we have that x1, x2, . . . , x6, x8, u, w are distinct. It follows that g must be a 5+-face. If g
is a 5-face, then g = [x3x2x6uw] and [x3x8x4x5x1x2x6uw] is a 9-cycle, a contradiction. Let g be a 6-face
[x3x2x6uvw]. If v /∈ {x1, x4, x5}, then [uvwx3x4x5x1x2x6] is a 9-cycle, a contradiction. If v = x1, then
[ux6x2x1] is a 4-cycle, a contradiction. If v = x4, then [wx3x8x4] is a 4-cycle, a contradiction. If v = x5,
then [ux6x1x5] is a 4-cycle, a contradiction. Therefore, x3x2x6 is incident with a 7+-face.

Lemma 2.16. Let f = [x1x2x3 . . . ] be a 7+-face. If x2 is a normal 3-vertex, then at most one of x1x2 and
x2x3 is incident with a good 5-face.

Proof. Suppose to the contrary that x1x2 is incident with a good 5-face g1 = [x1x2v3v4v5] and x2x3 is
incident with a good 5-face g2 = [x3x2v3u4u5]. Note that g1 and g2 are all internal faces. By Lemma 2.3,
v3 cannot be a 2-vertex. By Lemma 2.12, g1 and g2 are normally adjacent. Moreover, v3 is a 3-vertex, and
g3 = [v3v4u4] is an internal 3-face. It is observed that g1, g2 and g3 are all internal faces. It follows that v3
does not belong to {x, y}, but this contradicts Lemma 2.4.

Let τ(→ f) be the number of charges that f receives from other elements.

Claim 1. If f is an internal 5-face and sf = 1, then τ(→ f) ≥ 1
3 .

Proof. Let f = [v1v2v3v4v5] be an internal 5-face, and let [v1v2v6] be an internal 3-face. Since f has no
chord, v1, v2, . . . , v6 are six distinct vertices. If vi ∈ {x, y} for any 1 ≤ i ≤ 6, then vi sends 1

3 to f by R5, we
are done. Assume {v1, v2, . . . , v6} ∩ {x, y} = ∅. By Lemma 2.3, d(vi) ≥ 3 for 1 ≤ i ≤ 6.

Next, we show that f is adjacent to a special face. By the hypothesis, neither v3v4 nor v4v5 is incident
with an internal 4−-face. By Lemma 2.12, neither v3v4 nor v4v5 is incident with a 5-face. If v3v4 or v4v5 is
incident with an internal 7+-face or f0, we are done. So we may assume that each of v3v4 and v4v5 is incident
with an internal 6-face. By Lemma 2.13, v3v4 is incident with a 6-face [v3v4upv2w]. If [v2v3w] bounds a
3-face, then d(w) = 2 and v2v3 is incident with the outer face [v2v3w], we are done. Hence, we can assume
that v2v3 is not incident with a 3-face. By Lemma 2.12, v2v3 cannot be incident with a 5-face. Since there
are no 9-cycles, v2v3 cannot be incident with a 6-face. Hence, v2v3 is incident with a 7+-face. Therefore, f
is adjacent to at least one special face in any case. By R6 and R8, f receives 1

3 from each adjacent special
face, thus τ(→ f) ≥ 1

3 .

Claim 2. Let f be an internal 5-face and sf = 2. If f is incident with one minor 3-vertex, then τ(→ f) ≥ 1
3 .

Proof. Assume that f = [x1x2x3x4x5]. If x or y is incident with f or one of the adjacent 3-faces, then it
sends at least 1

3 to f by R5. So we may assume that neither x nor y is incident with f or the adjacent 3-faces.
Now we show that f is adjacent to at least one 7+-face sending 1

3 to f by R6 and R8.
Case 1. Let [x1x2x6] and [x2x3x7] be internal 3-faces, and let x1 be a minor 3-vertex. By Lemma 2.3

and Lemma 2.4, d(x5) ≥ 4 and d(x6) ≥ 4. By Lemma 2.14, if x5x1x6 is incident with a 6−-face, then [x4x5w]

is a triangle but it does not bound a 3-face, thus x4x5 is incident with a 7+-face. Hence, either x5x1x6 or
x4x5 is incident with a 7+-face.

Case 2. Let [x1x2x6] and [x3x4x8] be internal 3-faces, and let x1 be a minor 3-vertex. By Lemma 2.3,
Lemma 2.4 and Lemma 2.14, we also get that either x5x1x6 or x4x5 is incident with a 7+-face.

Case 3. Let [x1x2x6] and [x3x4x8] be internal 3-faces, and let x2 be a minor 3-vertex. By Lemma 2.3
and Lemma 2.4, d(x3) ≥ 4 and d(x6) ≥ 4. By Lemma 2.15, x2x3 is incident with a 7+-face.

Claim 3. Let f be an internal 5-face and sf ≥ 2. If f is incident with two minor 3-vertices, then τ(→ f) ≥ 1.
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Proof. Assume f = [x1x2x3x4x5]. If xi is a 2-vertex, then xi ∈ {x, y} and xi−1xixi+1 is incident with the
outer face f0. By R5, f receives 1

3 from each of x and y. By R6, f receives 1
3 via each of xi−1xi and xixi+1.

Thus, τ(→ f) ≥ 2× 1
3 +2× 1

3 > 1. So we may assume that d(xi) ≥ 3 for any 1 ≤ i ≤ 5. Denote the adjacent
face incident with xixi+1 by gi for i ∈ {1, 2, 3, 4, 5}.

Case 1. Let [x1x2x6] and [x2x3x7] be internal 3-faces, and let x1 and x3 be minor 3-vertices. Suppose
that x6 is a 2-vertex. It follows that {x2, x6} = {x, y} and g5 = f0. By R5, f receives 1

3 from each of x2 and
x6. By R6, f receives at least 1

3 from the outer face f0. Thus, τ(→ f) ≥ 3× 1
3 = 1.

So we may assume that d(x6) ≥ 3, and by symmetry, d(x7) ≥ 3. Firstly, we claim that f receives at least
1
3 from {x2, x6, x7}. If x2 is a special vertex, then f receives 1

3 from x2 by R3, R4 and R5. So we may assume
that x2 is a normal 4-vertex. It follows from Lemma 2.7 that both x6 and x7 are special vertices. By R3, R4
and R5, f receives at least 1

6 × 2 = 1
3 from x6 and x7.

Next, we show that f is adjacent to at least two special faces. Since f receives at least 2 × 1
3 = 2

3 from
adjacent special faces by R6 and R8, we are done. By Lemma 2.14, we get that both g3 and g5 are 6+-faces,
and g3, g5 cannot be 6-face simultaneously. If both g3 and g5 are 7+-faces, then we are done. By symmetry,
assume that g5 is a 6-face and g3 is a 7+-face. It follows that g4 is the outer 3-face or a 7+-face. That is, g3
and g4 are the special faces, we are done.

Case 2. Let [x1x2x6] and [x3x4x8] be internal 3-faces, and let x1 and x4 be minor 3-vertices. Similar to
Case 1, we may assume that d(x6) ≥ 3 and d(x8) ≥ 3. Note that x1 and x4 are 3-vertices. Since there are no
4-cycles, neither g4 nor g5 is a 4−-face. By Lemma 2.12, neither g4 nor g5 is a 5-face. By Lemma 2.13 and
Lemma 2.14, neither g4 nor g5 is a 6-face. So both g4 and g5 are 7+-faces. Thus, f receives at least 1

3 ×2 = 2
3

from these 7+-faces. Next we show that f will receive at least 1
3 from others.

If g2 is a 7+-face, then we are done. By Lemma 2.13, g2 cannot be a 6-face. Assume g2 is a 5-face. By
Lemma 2.12, d(x2) = d(x3) = 3. By Lemma 2.4, we have that {x2, x3} = {x, y}. By R5, f receives 1

3 from
each of x2 and x3, we are done. It is clear that g2 cannot be a 4-face. Suppose that g2 is a 3-face [x2x3x7].
If there is one special vertex in {x2, x3}, then we are done by R3, R4 and R5. So we may assume that both
x2 and x3 are normal 4-vertices. By Lemma 2.7 and Lemma 2.8, at least two of x6, x7 and x8 are special
vertices, thus f receives at least 2× 1

6 = 1
3 from these special vertices, we are done.

Case 3. Let [x1x2x6] and [x3x4x8] be internal 3-faces, and let x1 and x3 be minor 3-vertices. Similar to
Case 1, assume d(x6) ≥ 3 and d(x8) ≥ 3. By Lemma 2.7, one of {x2, x6} is a special vertex. By R3, R4 and
R5, f receives at least 1

6 from {x2, x6}.
Since there are no 4-cycles, we have that g2 cannot be a 4−-face. Suppose that g2 is a 5-face. By

Lemma 2.12, we have that d(x2) = d(x3) = 3. By Lemma 2.4, x2 belongs to {x, y}. As a consequence,
{x2, x6} = {x, y} and g2 is the outer face f0. By R5 and R6, τ(→ f) ≥ 2 × 1

3 + 1
3 = 1, we are done. By

Lemma 2.13, g2 cannot be a 6-face. Thus, we may assume that g2 is a 7+-face. By R8, f receives 1
3 from g2.

Next we show that f receives at least 1
2 from others. By Lemma 2.12 and Lemma 2.13, g4 cannot be

a 5- or 6-face. Thus, g4 is a 3- or 7+-face. Suppose that g4 is a 3-face [x4x5x9]. If x9 is a 2-vertex, then
{x, y} ⊂ {x4, x5, x9}, and then f receives at least 2 × 1

3 >
1
2 from x and y by R5. So we may assume that

d(x9) ≥ 3. By Lemma 2.12 and Lemma 2.13, g5 is a 7+-face sending 1
3 to f . By Lemma 2.7, there is a special

vertex in {x4, x5, x8, x9} sending at least 1
6 to f . Thus, f receives at least 1

6 +
1
3 = 1

2 from g5 and the special
vertex. Suppose that g4 is a 7+-face. If g5 is also a 7+-face, then f receives at least 2 × 1

3 >
1
2 from g4 and

g5, we are done. So we may assume that g5 is a 6−-face. By Lemma 2.14, d(x4) ≥ 5. By R3, R4 and R5, f
receives at least 1

6 from x4. Therefore, f still receives at least 1
6 + 1

3 = 1
2 from g4 and x4.

Claim 4. Let f be an internal 5-face and sf = 2. If tf = 2, and exactly one of the two normal 3-vertices is
minor, then τ(→ f) ≥ 1

2 .
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Proof. Assume f = [x1x2x3x4x5]. By the definition of normal 3-vertex and minor 3-vertex, we only need to
consider two cases.

Case 1. Let [x1x2x6] and [x2x3x7] be internal 3-faces, and let x1 and x4 be normal 3-vertices. If x5 or
x6 is a 2-vertex, then x5 or x6 belongs to {x, y}. It follows that x1x5 is incident with the outer face f0. By
R5, f receives at least 1

3 from {x, y}. By R6, f receives 1
3 from the outer face f0. Thus, τ(→ f) ≥ 2× 1

3 >
1
2 .

So we may assume that d(x5) ≥ 3 and d(x6) ≥ 3. Note that x4 is a 3-vertex. By Lemma 2.14, x1x5 cannot
be incident with a 6−-face. That is, x1x5 is incident with a 7+-face which sends 1

3 to f . On the other
hand, by Lemma 2.7, one vertex in {x2, x3, x6, x7} is a special vertex which sends at least 1

6 to f . Thus,
τ(→ f) ≥ 1

3 + 1
6 = 1

2 .
Case 2. Let [x1x2x6] and [x3x4x8] be internal 3-faces, and let x2 and x5 be normal 3-vertices. If x6 is

a 2-vertex, then x6 ∈ {x, y}. Since x2 is a normal vertex, {x, y} = {x1, x6}. Thus, f receives 1
3 from each

of x1 and x6 by R5, and thus τ(→ f) ≥ 1
3 + 1

3 ≥
1
2 . Assume d(x6) ≥ 3. By Lemma 2.7, at least one of x1

and x6 is a special vertex. By R3, R4 and R5, f receives at least 1
6 from these special vertices. If x3 is a

3-vertex, then x3 ∈ {x, y} by Lemma 2.4. By R5, f receives 1
3 from x3. Thus, τ(→ f) ≥ 1

6 + 1
3 = 1

2 . So we
may assume that d(x3) ≥ 4. By Lemma 2.15, x2x3 is incident with a 7+-face. By R8, f receives 1

3 from each
adjacent 7+-face. Thus, τ(→ f) ≥ 1

6 + 1
3 = 1

2 .

Claim 5. If f is an internal 5-face and sf = 3, then τ(→ f) ≥ 2
3 .

Proof. Assume f = [x1x2x3x4x5]. According to symmetry, we only need to consider two cases.
Case 1. Let [x1x2x6], [x2x3x7] and [x4x5x9] be internal 3-faces. Assume d(x6) = 2. By Lemma 2.4,

{x, y} = {x1, x6} or {x, y} = {x2, x6}. By R5, f receives 1
3 from each of x and y, thus τ(→ f) ≥ 2× 1

3 = 2
3 .

So we may assume that d(x6) ≥ 3. Similarly, we can assume that d(x7) ≥ 3 and d(x9) ≥ 3. It is clear that
neither x1x5 nor x3x4 is incident with a 4−-face. By Lemma 2.12, neither x1x5 nor x3x4 is incident with a
5-face. By Lemma 2.13, neither x1x5 nor x3x4 is incident with a 6-face. Hence, f is adjacent to two 7+-faces.
By R6 and R8, τ(→ f) ≥ 2× 1

3 = 2
3 .

Case 2. Let [x1x2x6], [x2x3x7] and [x3x4x8] be internal 3-faces. If d(xi) = 2 for i ∈ {5, 6, 7, 8}, then
xi ∈ {x, y} by Lemma 2.3. Since x and y are adjacent, we have that {x, y} ⊂ {x1, x2, . . . , x8}. By R5, f
receives 1

3 from each of x and y, thus τ(→ f) ≥ 2× 1
3 = 2

3 . So we may assume that x5, x6, x7 and x8 are all
3+-vertices. It is clear that neither x4x5 nor x1x5 is contained in a 4−-face. By Lemma 2.12, neither x1x5
nor x4x5 is incident with a 5-face. Recall that x6 is a 3+-vertex and x4x5 is not contained in a triangle. By
Lemma 2.13, x1x5 cannot be incident with a 6-face. Hence, x1x5 is incident with a 7+-face. By symmetry,
x4x5 is also incident with a 7+-face. By R6 and R8, τ(→ f) ≥ 2× 1

3 = 2
3 .

Now we calculate the final charge of internal 5+-faces. Let f = [v1v2 . . . vd] be an internal d-face for d ≥ 5.
By Lemma 2.2, every face in G is bounded by a cycle. Since there are no 9-cycles, d 6= 9.

If vi is a 2-vertex, then vi ∈ {x, y} and vi−1vivi+1 is incident with the outer face f0. Thus, f is adjacent
to at most d− 2 internal faces. By Corollary 2.5, tf ≤ d

2 . By R1 and R8, f sends at most 1
3 to each adjacent

internal face. By R2, f sends at most 1
2 to each incident normal 3-vertex. By R5, f receives 1

3 from each of x
and y. By R6, f receives 1

3 via each of vi−1vi and vivi+1. Hence, µ′(f) ≥ d−4+4× 1
3−(d−2)×

1
3−

d
2×

1
2 > 0.

So we may assume that there is no 2-vertex incident with f .
• d = 5.
By Corollary 2.5 and Lemma 2.11, tf ≤ 2 and sf ≤ 3. If sf = 0, then µ′(f) ≥ 5− 4− 2× 1

3 > 0 by R2.
If sf = 1, then f is incident with at most one minor 3-vertex. By Claim 1, R1 and R2, µ′(f) ≥

5− 4 + 1
3 −

1
3 −

(

1
2 + 1

3

)

> 0.
Assume sf = 2. If tf = 0, then µ′(f) ≥ 5 − 4 − 2 × 1

3 > 0 by R1. Let tf = 1. If the normal
3-vertex is not minor, then µ′(f) ≥ 5 − 4 − 2 × 1

3 −
1
3 = 0 by R1 and R2. If the normal 3-vertex is
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minor, then µ′(f) ≥ 5 − 4 + 1
3 − 2 × 1

3 −
1
2 > 0 by Claim 2, R1 and R2. Let tf = 2. It is observed

that f is incident with at least one minor 3-vertex. If f is incident with exactly one minor 3-vertex, then
µ′(f) ≥ 5 − 4 + 1

2 − 2 × 1
3 − (12 + 1

3 ) = 0 by Claim 4, R1 and R2. The other situation, f is incident with
exactly two minor 3-vertices. Thus, µ′(f) ≥ 5− 4 + 1− 2× 1

3 − 2× 1
2 > 0 by Claim 3, R1 and R2.

Assume sf = 3. If tf = 0, then µ′(f) ≥ 5 − 4 − 3 × 1
3 = 0 by R1. If tf = 1, then µ′(f) ≥ 5 − 4 + 2

3 −

3 × 1
3 −

1
2 > 0 by Claim 5, R1 and R2. If tf = 2, then it is incident with two minor 3-vertices, and then

µ′(f) ≥ 5− 4 + 1− 3× 1
3 − 2× 1

2 = 0 by Claim 3, R1 and R2.
• d = 6.
Note that there are no 4-cycle in G. If f is adjacent to a 3-face, then it must be normally adjacent to the

3-face. Since there are no 9-cycles in G, f is adjacent to at most two 3-faces. It follows that f is incident
with at most two minor 3-vertices. By R1 and R2, µ′(f) ≥ 6− 4− 2× 1

3 − (2× 1
2 + 1

3 ) = 0.
• d = 7.
If f is adjacent to a 3-face, then it must be normally adjacent to the 3-face. Otherwise, there is a 4-cycle

in G. Since there are no 9-cycles in G, f is adjacent to at most one 3-face. It follows that f is incident with
at most one minor 3-vertex. By Corollary 2.5, tf ≤ 3. If tf = 3, then f is adjacent to at most four good
5-faces by Lemma 2.4 and Lemma 2.16, and then µ′(f) ≥ 7 − 4 − (1 + 4)× 1

3 − (12 + 2 × 1
3 ) > 0 by R1, R2

and R8. If tf = 2, then f is adjacent to at most five good 5-faces by Lemma 2.4 and Lemma 2.16, and then
µ′(f) ≥ 7 − 4 − (1 + 5) × 1

3 − (12 + 1
3 ) > 0 by R1, R2 and R8. If tf = 1, then f is adjacent to at most six

good 5-faces by Lemma 2.4 and Lemma 2.16, and then µ′(f) ≥ 7 − 4 − (1 + 6)× 1
3 −

1
2 > 0 by R1, R2 and

R8. If tf = 0, then µ′(f) ≥ 7− 4− 7× 1
3 > 0 by R1 and R8.

• d = 8.
Similar to the above cases, if f is adjacent to a 3-face, then it must be normally adjacent to the 3-face.

Since there are no 9-cycles, f is not adjacent to any 3-face. Thus, f is not incident with any minor 3-vertex.
By R2 and R8, µ′(f) ≥ 8− 4− 8× 1

3 − 4× 1
3 = 0.

• d ≥ 10.
By R1 and R8, f sends at most 1

3 via each incident edge. It follows that µ′(f) ≥ d−4−d× 1
3 −

d
2 ×

1
2 > 0.

This completes the proof of Theorem 2.1.
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