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On the Wiener Index of Orientations of Graphs
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University of Johannesburg

Abstract

The Wiener index of a strong digraph D is defined as the sum of the
distances between all ordered pairs of vertices. This definition has been ex-
tended to digraphs that are not necessarily strong by defining the distance
from a vertex a to a vertex b as 0 if there is no path from a to b in D.

Knor, S̆krekovski and Tepeh [Some remarks on Wiener index of oriented
graphs. Appl. Math. Comput. 273] considered orientations of graphs with
maximum Wiener index. The authors conjectured that for a given tree T , an
orientation D of T of maximum Wiener index always contains a vertex v such
that for every vertex u, there is either a (u, v)-path or a (v, u)-path in D. In
this paper we disprove the conjecture.

We also show that the problem of finding an orientation of maximum
Wiener index of a given graph is NP-complete, thus answering a question by
Knor, S̆krekovski and Tepeh [Orientations of graphs with maximum Wiener
index. Discrete Appl. Math. 211].

We briefly discuss the corresponding problem of finding an orientation of
minimum Wiener index of a given graph, and show that the special case of
deciding if a given graph on m edges has an orientation of Wiener index m

can be solved in time quadratic in n.

Keywords: Wiener index, average distance, orientation, digraph, NP-complete.

1 Introduction

The Wiener index W (G) of a connected graph G is defined as the sum of the
distances between all unordered pairs of vertices, i.e.,

W (G) =
∑

{u,v}⊆V

dG(u, v),

where V is the vertex set of G and dG(u, v) denotes the distance between u and
v, i.e., the length a shortest (u, v)-path. The Wiener index, originally introduced
as a tool in chemistry [10], has been studied extensively in the mathematical and
chemical literature and is arguably one of the most applicable graph invariants.

The definition of Wiener index extends naturally to strong digraphs. If D is a
strong digraph with vertex set V , then the Wiener index of D is defined as

W (D) =
∑

(u,v)∈V ×V

dD(u, v),

1Financial support by the South African National Research Foundation, grant 118521, is grate-
fully acknowledged
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where V × V is the set of all ordered pairs of vertices of D. The Wiener index of a
graph (digraph) is closely related to the average distance, defined as the arithmetic
mean of the distances between all unordered (ordered) pairs of distinct vertices. For
recent results on the Wiener index of strong digraphs see, for example, [4] and [2].

Knor, S̆krekovski and Tepeh [5] extended the definition of the Wiener index to
digraphs that are not necessarily strong by defining the distance dD(u, v) as the
length of a shortest (u, v)-path if D contains a (u, v)-path, and as 0 if no (u, v)-path
exists in D. In [7] the same authors gave further results on the Wiener index, for
example they showed that the Wiener index of a tournaments of order n cannot
exceed

(

n+1
3

)

− 1, which had previously been proved by Plesńık [8] for tournaments
that are strong.

The Wiener index of orientations of graphs was investigated first in [1], where
strong orientations of a given graph that minimise the Wiener index were considered.
Applying their more general definition of distance in digraphs, Knor, S̆krekovski and
Tepeh [5, 7] considered (not necessarily strong) orientations of graphs that maximise
or minimise the Wiener index. Among several other results, they demonstrated that
it is not true in general that an orientation of a given graph maximising the Wiener
index is necessarily strong.

In this paper we resolve two open questions related to orientations of maximum
Wiener index by Knor, S̆krekovski and Tepeh. Considering trees, they conjectured
the following result.

Conjecture 1 ([5]). Let T be a tree. If D is an orientation of T that maximises
W (D), then there exists a vertex v in D such that for every vertex u there exists a
(u, v)-path or a (v, u)-path in D.

We prove that this conjecture is not true in general. We also consider the question
whether finding an orientation of maximum Wiener index of a given graph is NP-
hard, posed in [7], and answer it in the affirmative. Finally, we briefly discuss the
problem of finding an orientation of minimum Wiener index of a given graph.

We use the following notation. We denote the vertex set of a graph (digraph,
mixed graph) G by V (G), and the edge set or arc set by E(G), leaving out the
argument G if there is no danger of confusion. Generally, uv denotes an undirected
edge, while −→uv denotes a directed edge which is directed from u to v.

The converse of a digraph D is the digraph obtained from D by reversing the
direction of every arc of D.

A Hamiltonian path in a graph G is a path that contains all vertices of G.

2 A Counter-example to Conjecture 1

Conjecture 1 is supported by results in [5], which show that it is true for some
subclasses of trees. Since it is reasonable to expect that an orientation of a tree
maximising the Wiener index also maximises the number of pairs of vertices (u, v)
between which there exists a path, the following result due to Henning and Oeller-
mann [3] which gives further support to Conjecture 1.
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Theorem 1 ([3]). Let T be a tree, and D an orientation of T that maximises the
number of ordered pairs (u, v) of vertices of D for which there exists a (u, v)-path in
D. Then D contains a vertex w so that for every vertex u there exists a (u, w)-path
or a (w, u)-path in D.

Nevertheless, we found that Conjecture 1 is not true in general. In this section
we present an infinite family of counter-examples to Conjecture 1.

Let D be an orientation of a tree T . Following [5], we say that D is zig-zag if
T contains a path P whose edges change their direction in D at least twice as P
is traversed. It was observed in [5] that an orientation D of a tree is not zig-zag if
and only if D has a vertex w so that for every vertex u of D there exists either a
(u, w)-path or a (w, u)-path. Conjecture 1 was given in [5] in an equivalent form,
stating that for a given tree T , every orientation of T that has maximum Wiener
index is not zig-zag.

We construct a family of counter-examples to Conjecture 1 as follows. Let k ∈
N be a multiple of 3. Let Tk be the tree obtained from a path of order k with
vertices w1, w2, . . . , wk by appending vertices u1, u2, . . . , uk2/9 to w1, appending a
path x1, x2, x3, x4, x5 to w2, and a single vertex y1 to w3. A sketch of the tree Tk is
shown in Figure 1.

uk2/9

u2

u1

x1

x2

x3

x4

x5

y1

w1 w2 w3 w4 w5 wk

Figure 1: The tree Tk.

Let Dk be the orientation of Tk shown in Figure 2, i.e., the edges of the path
w1, w2, . . . , wk are oriented towards wk, each edge uiw1 is oriented towards w1, the
edges of the path w2, x1, x2, . . . , x5 are oriented towards x5, and the edge y1w3 is
oriented towards w3. Notice that the edges of the (x5, y1)-path change their direction
twice as the path is traversed, hence Dk is zig-zag.
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uk2/9

u2

u1

x1

x2

x3

x4

x5

y1

w1 w2 w3 w4 w5 wk

Figure 2: The orientation of Dk of Tk.

It will be convenient to consider mixed graphs, which are a common generalisa-
tion of graphs and digraphs. A mixed graph consists of a set of vertices and a set of
edges, where each edge may or may not have a direction. For vertices u, v of a mixed
graph G, a (u, v)-path is a sequence v0, v1, . . . , vk of vertices with u = v0 and v = vk
so that for each i ∈ {0, 1, . . . , k − 1}, the directed edge −−−→vivi+1 or the undirected
edge vivi+1 is in G. As usual, the distance from u to v is the minimum number of
edges on a (u, v)-path, which we denote by dG(u, v). By a partial orientation of a
mixed graph G we mean a mixed graph obtained from G by orienting some of the
undirected edges of G.

In order to compare the Wiener index of a tree and its (partial) orientations,
we introduce the following modification of the Wiener index For a mixed graph G
define

Wmax(G) :=
∑

{u,v}⊆V

max{dG(u, v), dG(v, u)}.

For disjoint subsets A,B ⊆ V we use the notationWmax
G (A,B) :=

∑

a∈A,b∈B max{dG(a, b), dG(b, a)}.

Lemma 1. (a) If T is a tree, then

Wmax(T ) = W (T ).

(b) If D is an orientation of a tree T , then

Wmax(D) = W (D).

(c) If D1 is a partial orientation of z tree T , and D2 a partial orientation of D1,
then

Wmax(D2) ≤ Wmax(D1) ≤ W (T ).

4



(d) Let T be a tree, D1 a partial orientation of T , and D2 a partial orientation of
D1. If A and B are disjoint sets of vertices of T such that there is no path in D2

between a vertex in A and a vertex in B in either direction, then

Wmax(D2) ≤ Wmax(D1)−Wmax
D1

(A,B).

Proof: We denote the vertex set of T and its (partial) orientations by V .

(a) Since T is an undirected graph, we have dT (u, v) = dT (v, u) = max{dT (u, v), dT (v, u)}
for any two vertices u, v of T . Summation over all subsets {u, v} ⊆ V yields that
Wmax(T ) = W (T ).

(b) If u, v ∈ V are two vertices of T , then the (u, v)-path and the (v, u)-path are
unique in T . At most one these two paths is also a path in D, thus dD(u, v) = 0
or dD(v, u) = 0. Hence max{dD(u, v), dD(v, u)} = dD(u, v) + dD(v, u). Summation
over all subsets {u, v} ⊆ V yields the statement of (b).

(c) Let u, v be two vertices of T . If there is a (u, v)-path in D2, then this path is
also a (u, v)-path in D1, and if there is a (u, v)-path in D1, then this path is also a
(u, v)-path in T . In all cases, the (u, v)-path is unique if it exists. It follows that
dD2

(u, v) ≤ dD1
(u, v) ≤ dT (u, v). Hence, for all u, v ∈ V ,

max{dD2
(u, v), dD2

(v, u)} ≤ max{dD1
(u, v), dD1

(v, u)} ≤ dT (u, v). (1)

Summation over all subsets {u, v} ⊆ V (T ) yields (c).

(d) Let C be the set of all 2-vertex subsets of V which do not consist of a vertex
of A and a vertex of B. Then max{dD2

(u, v), dD2
(v, u)} = 0 whenever {u, v} /∈ C.

Hence, by (1),

Wmax(D2) =
∑

{u,v}∈C

max{dD2
(u, v), dD2

(v, u)}

≤
∑

{u,v}∈C

max{dD1
(u, v), dD1

(v, u)}

= Wmax(D1)−Wmax
D1

(A,B),

as desired. ✷

Theorem 2. Let k ∈ N be a multiple of 3. Let Dk be the orientation of Tk as defined
above, and let D be any orientation of Tk. If k is sufficiently large, then

W (D) ≤ W (Dk), (2)

with equality if and only if D equals Dk or the converse of Dk.

Proof: We first determine the Wiener indices of Tk and Dk. Tedious but
straightforward calculations show that

W (Tk) =
11

162
k4 +

2

9
k3 +

55

9
k2 +

35

6
k + 61 (3)
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and

W (Dk) =
1

18
k4 +

2

9
k3 +

59

18
k2 −

5

3
k + 56. (4)

It suffices to prove the theorem for orientations of Tk of maximum Wiener index. Let
D be such an orientation of Tk. Then Wmax(D) is maximum among all orientations
of Tk by Lemma 1(b). We may further assume that −−−→w1w2 ∈ E(D); otherwise we
consider the converse of D. We prove that D = Dk for sufficiently large values of k.

Let V be the common vertex set of Tk, Dk and D. We partition V into four
sets, U , W , X and Y , where U = {u1, u2, . . . , uk2/9}, W = {w1, w2, . . . , wk}, X =
{x1, x2, x3, x4, x5}, and Y = {y1}.

Claim 1: D contains a (w1, w4)-path.
Suppose to the contrary that D contains no (w1, w4)-path. Since −−−→w1w2 ∈ E(D),
there is also (w4, w1)-path in D. Hence D contains no path between a vertex in U
and a vertex in W − {w1, w2, w3} in either direction. Applying Lemma 1(c) to the
two suborientations Tk and D of Tk we obtain that

Wmax(D) ≤ Wmax(Tk)−Wmax
Tk

(U,W − {w1, w2, w3}).

An easy calculation shows that Wmax
Tk

(U,W − {w1, w2, w3}) = 1
18
k4 + 1

18
k3 − 2

3
k2.

Since Wmax(Tk) = W (Tk) by Lemma 1(a), we thus obtain from (3) that

Wmax(D) ≤
( 11

162
k4 +

2

9
k3 +

55

9
k2 +

35

6
k + 61

)

−
( 1

18
k4 +

1

18
k3 −

2

3
k2
)

=
2

162
k4 +

1

6
k3 +

61

9
k2 +

35

6
k + 61.

Comparing this with the right hand side of (4), it is easy to see that Wmax(D) <
Wmax(Dk) for sufficiently large k. This contradiction to the maximality of Wmax(D)
proves Claim 1.
Claim 2: D contains a (w1, wk)-path.
Suppose to the contrary that D does not contain a (w1, wk)-path. Let i be the small-
est value for which there exists no (w1, wi)-path. By Claim 1 we have i ≥ 5. Then
wi−1 is adjacent from wi−2 and wi, and not adjacent to any vertex in D. Reversing
all arcs along the path wi−1, wi, . . . , wk does not reduce max{dD(u, v), dD(v, u)} for
any pair of vertices, but increases max{dD(wi−2, wi), dD(wi, wi−2)}, contradicting
the maximality of Wmax(D). Claim 2 follows.

Claim 3:
−−→uiw1 ∈ E(D) for all i ∈ {1, 2, . . . , k2

9
}.

Suppose to the contrary that −−→w1ui ∈ E(D) for some i. Reversing the arc −−→w1ui creates

paths from ui to all vertices of W , whose total length is
∑k

j=1 dTk
(ui, wj) =

k(k+1)
2

,
but destroys only paths from vertices in {w1}∪ (U −{ui}) to ui, whose total length

is not more than 1 + 2(|U | − 1) = 2
9
k2 − 1. Since k(k+1)

2
> 2k2

9
− 1, reversing the arc

−−→w1ui increases the Wiener index, a contradiction to the maximality of Wmax(D).
Claim 3 follows.

Let D′
k be the partial orientation of Tk in which for i = 1, 2, . . . , k − 1 the edge

wiwi+1 receives the orientation −−−−→wiwi+1, and for each uj ∈ U the edge ujw1 received

6



the orientation −−→ujw1, while the remaining edges have not been oriented. It follows
from Claims 2 and 3 that D is a suborientation of D′

k. A simple calculation shows
that

Wmax(D′
k) =

1

18
k4 +

2

9
k3 +

56

9
k2 +

35

6
k + 61.

Claim 4: D contains a (w2, x5)-path.
We first show that −−→w2x1 ∈ E(D). Suppose to the contrary that −−→x1w2 ∈ E(D). Then
D contains no path between a vertex of X and a vertex of U in either direction.
Applying Lemma 1(d) to D′

k and D yields

Wmax(D) ≤ Wmax(D′
k)−Wmax

D′

k

(U,X)

=
( 1

18
k4 +

2

9
k3 +

56

9
k2 +

35

6
k + 61

)

−
25

9
k2

=
1

18
k4 +

2

9
k3 +

31

9
k2 +

35

6
k + 61,

and so, since Wmax(Dk) = 1
18
k4 + 2

9
k3 + 59

18
k2 + O(k), it follows that Wmax(D) <

Wmax(Dk) for sufficiently large k, a contradiction to the maximality of Wmax(D).
Hence −−→w2x1 ∈ E(D). Similar arguments as in the proof of Claim 2 now prove that
D contains a path from w2 to x5. Claim 4 follows.

Let D′′
k be the partial orientation of D′

k in which the edges of the (w2, x1)-path are
oriented towards x5.

It follows from Claims 1 to 4 that D is an orientation of D′′
k .

Claim 5: D = Dk.
Only the edge y1w3 of D′′

k has not received an orientation. Hence D′′
k has two

orientations. Dk (in which y1w3 receives the orientation −−→y1w3) and the orientation
in which y1w3 receives the orientation −−→w3y1, which we denote by D′′′

k . Clearly,
dDk

(u, v) = dD′′′

k
(u, v) for all u, v ∈ V − {y1}. Hence

Wmax(Dk)−Wmax(D′′′
k ) = Wmax

Dk
({y1}, V − {y1})−Wmax

D′′′

k

({y1}, V − {y1})

=
∑

v∈{w3,w4,...,wk}

dDk
(y1, v)−

∑

v∈U∪X∪{w1,w2,w3}

dD′′′

k
(v, y1)

= (
1

2
k2 − 2k +

3

2
)− (

4

9
k2 − 6),

which is positive for k sufficiently large. Hence Wmax(Dk) > Wmax(D′′′
k ). Claim 5

and thus the theorem follows. ✷

Since by Theorem 2 the only orientations of Tk that maximise the Wiener index
are Dk and its converse, and both are zigzag, it follows that Conjecture 1 is not true
in general.
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3 Complexity of finding an orientation of maxi-

mum Wiener index

In this section we consider the problem of finding a (not necessarily strong) orien-
tation of a given graph that maximises the Wiener index. Knor, S̆krekovski and
Tepe [7] asked whether this problem is NP-hard, and we answer this question in the
affirmative. Specifically, we consider the decision problem

Wiener-Orientation: Given a graph G and an integer M . Does G have a (not
necessarily strong) orientation D with W (D) ≥ M?

We prove the NP-completeness of Wiener-Orientation by a transformation from
the NP-complete problem Hamiltonian (a, b)-Path, defined below.

Hamiltonian (a, b)-path: Given a graph G and two vertices a and b of G. Does
G have a Hamiltonian path that begins in a and ends in b?

In our proof we use the following notation. Let D be a digraph with vertex set V and
let A and B be disjoint subsets of V . Then we writeWD(A,B) for

∑

a∈A,b∈B dD(a, b),
and WD(A) for

∑

(a1,a2)∈A×A dD(a1, a2).

Given a graph G of order n and two vertices a and b of G, we define Ga,b to
be the graph of order n3 + n + 2 obtained from G by adding 2n3 + 2 new vertices
a0, a1, . . . , an3 and b0, b1, . . . , bn3 and edges aa0 and bb0, as well as edges a0ai and b0bi
for i = 1, 2, . . . , n3. A sketch of the graph Ga,b is given in Figure 3.

an3

a2

a1

a0 a

bn3

b2

b1

b b0G

Figure 3: The graph Ga,b.

Lemma 2. Let M(n) := n7+3n6+2n4+4n3+n+1. Then there exists N0 ∈ N such
that for every graph G of order n, where n ≥ N0, with vertices a, b, the following
are equivalent:
(i) G has a Hamiltonian path from a to b,
(ii) Ga,b has an orientation D with W (D) ≥ M(n).

Proof: Denote the sets {a0, a1, . . . , an3} by A and {b0,1 , . . . , bn3} by B, and the
vertex set of G by V .
To prove the forward implication assume that G has a Hamiltonian path P :

8



v1, v2, . . . , vn, where v1 = a and vn = b. Orient each edge vivi+1 of P forward,
i.e., as −−−→vivi+1, and orient all edges of the form vivj with i < j − 1 backward, i.e.,
as −−→vjvi. In the resulting orientation we have d(v1, vn) = n− 1. Now orient a0a and

bb0 as −→a0a and
−→
bb0, and orient the edges aia0 towards a0 and the edges bib0 towards

bi for i = 1, 2, . . . , n3. Denote the resulting digraph by D. Then dD(ai.bj) = n + 3,
dD(a0, bj) = dD(ai, b0) = n + 2 and dD(a0.b0) = n + 1 for all i, j ∈ {1, 2, . . . , n3}.
Hence

W (D) ≥ WD(A,B) = n6(n+ 3) + 2n3(n + 2) + n+ 1 = M(n),

as desired.
For the converse assume that G has order n, with n ≥ N0 (with N0 to be

determined later) and that Ga,b has an orientation D with W (D) ≥ M(n). We may
assume that −→a0a ∈ D since otherwise, if −→aa0 ∈ E(D) we consider the converse of D.
In order to show that G has Hamiltonian path from a to b it suffices to show that

dD(a, b) = n− 1.

Suppose not. Then dD(a, b) ≤ n − 2. We obtain a contradiction by showing that
this implies that W (D) < M(n). Since −→a0a ∈ E(D), there is no path from a vertex
in V ∪B to a vertex in A, so WD(V,A) = WD(B,A) = 0. Hence

W (D) = WD(A ∪B) +WD(V ) +WD(A, V ) +WD(B, V ) +WD(V,B). (5)

We first bound WD(A ∪ B). Clearly, WD(A ∪ B) = WD(A) +WD(B) +WD(A,B).
Let x be the number of out-neighbours of a0 in A, and Let y be the number of
in-neighbours of b0 in B. Then a0 has n3 − x in-neighbours in A, and b0 has n3 − x
out-neighbours in B. Then A contains x(n3 − x) pairs of vertices at distance 2 and
n3 pairs of vertices at distance 1, hence WD(A) = 2x(n3 − x) + n3. Similarly we
have WD(B) = 2y(n3 − y) + n3. Now dD(a0, b0) ≤ n and the distance between the
in-neighbours of a0 in A and the out-neighbours of b0 in B is at most n + 2. By a
straighforward calculation we thus get WD(A,B) ≤ (n3 + 1 − x)(n3 + 1 − y)(n +
2)− (2n3 − x− y + 2). In total we thus obtain

WD(A∪B) ≤ 2x(n3 − x) + 2y(n3 − y) + (n3 +1− x)(n3 +1− y)(n+2)+ x+ y− 2,

It is easy to see that for 0 ≤ x, y ≤ n3 the right hand side of the above inequality is
maximised if x = y = 0. Hence

WD(A ∪B) ≤ (n3 + 1)2(n+ 2)− 2 = n7 + 2n6 +O(n5). (6)

Each of the remaining terms on the right hand side of (5) is O(n5). Indeed, WD(V )
is a sum of n(n − 1) terms, each of which is at most n − 1. Also WD(A, V ) is the
sum of (n3+1)n terms, each of which is not more than n+1, so WD(A, V ) = O(n5).
Similarly WD(B, V ) = O(n5) and WD(V,B) = O(n5). Therefore, (5) implies that

W (D) ≤ n7 + 2n6 +O(n5). (7)
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Since M(n) = n7+3n6+O(n5), there exists N0 ∈ N such that for every n ∈ N with
n ≥ N0, the right hand side of (7) is less than M(n). If n ≥ N0, we thus have

W (D) < M(n),

contradicting our assumption that W (D) ≥ M(n). The lemma follows. ✷

Theorem 3. Wiener-Orientation is NP-complete.

Proof: Our proof is by transformation from Hamiltonian (a, b)-path. Let N0

and M(n) be as in Lemma 2.
Given a graph G of order n and vertices a, b of G,
If n < N0, then we can determine in constant time if G has a Hamiltonian

(a, b)-path, for example by considering all sequences of n vertices if they form an
(a, b)-path.

If n ≥ N0, then consider Ga,b. Clearly, Ga,b can be obtained from G in polynomial
time. Using Ga,b and M(n) as an instance for Wiener Orientation, we decide if
Ga,b has an orientation of Wiener index at least M(n). By Lemma 2, graph G has
a Hammiltonian (a, b)-path if and only if Ga,b has an orientation of Wiener index at
least M(n). ✷

4 Orientations of minimum Wiener index

We conclude this paper by briefly discussing the corresponding minimisation prob-
lem, also raised in [7]: Given a graph G, find a (not necessarily strong) orientation
of G that minimises the Wiener index. It was shown by Plesńık [8] that this problem
becomes NP-complete if we allow only strong orientations.

We do not know if the problem of finding a (not necessarily strong) orientations
of minimum Wiener index of a given graph is NP-hard. However, it is easy to see
that every orientation of a graph G with m edges has Wiener index at least m, and
below we show that it can be decided in polynomial time if a given graph with m
edges has an orientation of Wiener index m

A digraph D is transitive if it has the property that whenever there is a path
from a vertex u to a vertex v in D, then D contains the edge −→uv. The following
observation is straightforward.

Observation 1. Let D be a digraph with m edges. Then W (D) ≥ m, with equality
if and only if D is transitive.

For a given graph G of order n and size m it follows thus that every orientation
has Wiener index at least m, and that there exists an orientation with Wiener index
m if and only if G has a transitive orientation. It can be decided in time O(n2)
(see for example [9]) if a given graph has a transitive orientation. It follows there
exists an algorithm of time complexity O(n2) that decides if G has an orientation of
Wiener index m.
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