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THE ITERATED LOCAL TRANSITIVITY MODEL FOR HYPERGRAPHS

NATALIE C. BEHAGUE, ANTHONY BONATO, MELISSA A. HUGGAN, REHAN MALIK,
AND TRENT G. MARBACH

Abstract. Complex networks are pervasive in the real world, capturing dyadic interactions
between pairs of vertices, and a large corpus has emerged on their mining and modeling.
However, many phenomena are comprised of polyadic interactions between more than two
vertices. Such complex hypergraphs range from emails among groups of individuals, scholarly
collaboration, or joint interactions of proteins in living cells. Complex hypergraphs and their
models form an emergent topic, requiring new models and techniques.

A key generative principle within social and other complex networks is transitivity, where
friends of friends are more likely friends. The previously proposed Iterated Local Transitivity
(ILT) model incorporated transitivity as an evolutionary mechanism. The ILT model prov-
ably satisfies many observed properties of social networks, such as densification, low average
distances, and high clustering coefficients.

We propose a new, generative model for complex hypergraphs based on transitivity, called
the Iterated Local Transitivity Hypergraph (or ILTH) model. In ILTH, we iteratively apply the
principle of transitivity to form new hypergraphs. The resulting model generates hypergraphs
simulating properties observed in real-world complex hypergraphs, such as densification and
low average distances. We consider properties unique to hypergraphs not captured by their
2-section. We show that certain motifs, which are specified subhypergraphs of small order,
have faster growth rates in ILTH hypergraphs than in random hypergraphs with the same
order and expected average degree. We show that the graphs admitting a homomorphism
into the 2-section of the initial hypergraph appear as induced subgraphs in the 2-section of
ILTH hypergraphs. We consider new and existing hypergraph clustering coefficients, and show
that these coefficients have larger values in ILTH hypergraphs than in comparable random
hypergraphs.

1. Introduction

Complex networks are an effective paradigm for pairwise interactions between objects in real-
world systems. Such networks capture dyadic interactions in many phenomena, ranging from
friendship ties in Facebook, to Bitcoin transactions, to interactions between proteins in living
cells. Complex networks evolve via a number of mechanisms such as preferential attachment or
copying that predict how links between vertices are formed over time. Structural balance theory
cites mechanisms to complete triads (that is, subgraphs consisting of three vertices) in social
and other complex networks [16, 19]. A central mechanism in balance theory is transitivity : if
x is a friend of y, and y is a friend of z, then x is a friend of z; see, for example, [24].

The Iterated Local Transitivity (ILT ) model introduced in [11, 12] and further studied in [8, 9,
25], simulates structural properties in complex networks emerging from transitivity. Transitivity
gives rise to the notion of cloning, where an introduced vertex x is adjacent to all of the neighbors
of some pre-existing vertex y. Note that in the ILT model, the vertices have local influence
within their neighbor sets. Although graphs generated by the model evolve over time, there is a
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memory of the initial graph hidden in the structure. The ILT model simulates many properties
of social networks. For example, as shown in [11], graphs generated by the model densify over
time and exhibit bad spectral expansion. In addition, the ILT model generates graphs with the
small-world property, which requires graphs to have low diameter and high clustering coefficient
compared to random graphs with the same number of vertices and expected average degree.

Dyadic relationships do not always fully capture the dynamics of interactions between larger
groups of vertices. For example, interactions among groups of vertices occur in scholarly collab-
orations, tags attached to the same web post, or metabolic interactions between more than two
reactants. In these examples, a polyadic view of interactions is more accurate, giving rise to
hypergraphs. A hypergraph is a discrete structure with vertices and hyperedges, which consists
of sets of vertices. Graphs are special cases of hypergraphs, where each hyperedge has cardinal-
ity two. While hypergraph theory is less developed than graph theory, it is an emerging topic
in the study of complex, real-world systems; see, for example, [2, 4, 15, 17, 18, 21, 27]. For a
recent article discussing the important role of hypergraphs and other higher-order methods for
studying complex networks, see [3].

In the present paper, we consider a deterministic model for complex hypergraph networks
based on transitivity. The model is analogous to the ILT model, although it has its own
unusual features. While every hypergraph can be reduced to its 2-section graph, replacing
each hyperedge by a clique, not all hypergraph properties are captured by the 2-section. As we
demonstrate, the ILT hypergraph model we introduce has properties not evident in its 2-section.
Further, the model simulates several properties, such as clustering and motif evolution, more
robustly when compared to random hypergraphs with analogous characteristics. For simplicity,
we consider throughout k-uniform hypergraphs, where each hyperedge has cardinality k for a
fixed positive integer k ≥ 2.

The Iterated Local Transitivity Hypergraph (ILTH ) model is defined formally as follows. The
model is deterministic and generates k-uniform hypergraphs over discrete time-steps. The sole
parameter of the model is the initial k-uniform hypergraph H =H0. For a nonnegative integer t,
the hypergraph Ht represents the hypergraph at time-step t. To form Ht+1, for each x ∈ V (Ht),
add a new vertex x′ called the clone of x. We refer to x as the parent of x′, and x′ as the
child of x. For every hyperedge e of Ht containing x, we add the hyperedge e′ to Ht+1 formed
by replacing x with x′. Observe that e′ = (e ∖ {x}) ∪ {x′}; we simply write e′ = e − x + x′. Note
that all existing hyperedges in Ht are also included in Ht+1. See Figure 1. We refer to Ht as an
ILTH hypergraph, and we sometimes write Ht =ILTHt(H) to emphasize the initial hypergraph
H. Note that ILTHt(H) is k-uniform for all t ≥ 0. We sometimes refer to the formation of the
hypergraphs Ht as the ILTH process.

The clones form an independent set in Ht+1, resulting in a doubling of the order of Ht. Unlike
in the ILT model, a clone and its parent are not in a hyperedge. For a vertex x in Ht, we will
sometimes use the notation x∗ to mean any descendant of x; that is, x∗ is either x or x′ in
Ht+1. Similarly, if e is a hyperedge in Ht, then e∗ represents one of the descendant hyperedges
e or e − x + x′ in Ht+1.

As we will demonstrate, the ILTH model simulates many properties observed in complex
hypergraphs, including the small-world property and motif counts. In Section 2, we derive a
densification power law for ILTH hypergraphs, and show that distance and spectral properties
follow by properties of the 2-section. We then consider subhypergraphs and motifs in Section 3.
Motifs are certain hypergraphs with a small number of vertices and hyperedges. In [21], it was
shown that several real-world, complex hypergraphs have motif counts dramatically higher
than comparable random hypergraphs. We show that for certain motifs arising in k-uniform
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Figure 1. The ILTH model with H0 a hyperedge with k = 3.
hypergraphs from the list in [21] of 26 motifs formed from three hyperedges, ILTH has a provably
higher count than in a random hypergraph with the same average degree. We prove that the
2-section contains isomorphic copies of all graphs admitting a homomorphism to the 2-section
of H0 in Theorem 3 and contains only such graphs; as a consequence, certain motifs will be
excluded in the ILTH process unless they appear in H0.

In Section 4, we provide a rigorous analysis of various clustering coefficients for ILTH hy-
pergraphs. Our study of clustering coefficients further validates the small-world property of
ILTH hypergraphs, and leads to interesting combinatorial analysis. We consider two clustering
coefficients HC1 and HC2 and their asymptotic order in ILTH. The clustering coefficient HC1

was first studied in [17]. We introduce the new parameter HC2 that is a variant of one that first
appeared in [27], although we argue it is more natural and amenable to analysis. In the case
of HC1, we show that these clustering coefficients provide higher clustering than is expected in
random hypergraphs with the same average degrees. We show an analogous result for HC2 in a
variation of the ILTH model, where clones and parents are adjacent. We finish with a summary
of our results along with open problems on the ILTH model.

Throughout the paper, we consider finite, simple, undirected graphs and hypergraphs. For
a general reference on graph theory, see [26]. For a reference on hypergraphs, see [5, 6]. For
background on social and complex networks, see [7, 13, 14]. We define terms and notation for
hypergraphs when they first appear throughout the article.

2. Densification, eigenvalues, and distances

Many examples of complex networks densify in the sense that the ratio of their number of
edges to vertices tends to infinity over time; see [22]. In this section, we show that the ILTH
model always generates hypergraphs that densify, and we give a precise statement below of its
densification power law.

Let n(t) be the number of vertices in Ht and let e(t) be the number of hyperedges in Ht, re-
spectively. We establish elementary though important recursive formulas for these parameters.

Theorem 1. For a nonnegative integer t, we have the following.

(1) n(t) = 2tn(0).
(2) e(t) = (k + 1)te(0).
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In particular, we have that e(t) = Θ (n(t)log2 (k+1)).
Proof. For item (1), for each vertex v in Ht, there are two vertices v and v′ in Ht+1. Hence,
n(t + 1) = 2n(t).

For item (2), notice that for each hyperedge e in Ht, we add to Ht+1 the hyperedge e and each
of the k hyperedges e− x + x′ where x is a vertex in e. We then have that e(t + 1) = (k + 1)e(t)
for all t. The result follows. �

As a consequence, the average vertex degree of ILTHt(H) is given by

ke(t)
n(t) = (

k + 1
2
)t ke(0)

n(0) ,
which increases exponentially with t. Hence, we have a densification power law for ILTH
hypergraphs.

We next turn to the 2-section of ILTH hypergraphs. For this, we consider a variant on the
ILT model for graphs, which we call ILT′. Given a graph G = G0, iteratively construct ILT′t(G),
where t ≥ 1 as follows. Suppose that we have ILT′t(G). For each v ∈ V (ILT′t(G)), the vertices
v and v′ are included in ILT′t+1(G). For each uv ∈ E(ILT′t(G)), the edges uv, uv′ and u′v are
included in ILT′t+1(G). We have the following lemma, whose proof is immediate.

Lemma 2. For a nonnegative integer t, we have that ILT′t(G) is the 2-section of ILTHt(H).
We use the notation nt and et for the order and size of ILT′t(G). Observe that nt = 2tn0

and et = 3te0 edges. An implication of Lemma 2 is that any hypergraph property that depends
solely on the 2-section behaves the same way for the hypergraph model ILTH as it does for the
graph model ILT′. Such properties are not truly exploiting the hypergraph structures evident
in ILTH. We briefly discuss some of these properties, including the adjacency matrix, the
diameter, and the average distance.

The adjacency matrix A(H) for a hypergraph H has rows and columns indexed by the
vertices of H and entry 1 if u ≠ v and there is some hyperedge of H containing both u and v,
and 0 otherwise. It is evident that this is the same as the adjacency matrix of the 2-section
of H . In particular, to analyse the adjacency matrix of ILTHt(H) we need only consider the
adjacency matrix of ILT′t(G), where G is the 2-section of H .

If ILT′t(G) has n × n adjacency matrix A, then ILT′t+1(G) has 2n × 2n adjacency matrix

(A A

A 0
) ,

where 0 is the n × n all-zeros matrix. It is straightforward to verify that if A has eigenvalue ρ

with associated eigenvector v, then (A A
A 0
) has eigenvalues 1±√5

2
ρ with associated eigenvectors

( 1±
√

5

2
v

v
). In particular, given the eigenvalues for the graph G, one can calculate the eigenvalues

for ILT′t(G).
We next consider distance in ILTH hypergraphs. A walk of length k connecting two vertices

u and v in a hypergraph is a sequence of hyperedges e1, e2, . . . , ek such that u ∈ e1, v ∈ ek and
ei∩ei+1 ≠ ∅, for all 1 ≤ i < k. We say that the distance between two vertices u, v, written d(u, v),
is the minimum length of a walk connecting u and v. This is the same as the distance between
two vertices u and v in the 2-section of the hypergraph. In particular, to analyze distances
within ILTHt(H) we could only consider distances in ILT′t(G), where G is the 2-section of H ,
but it is equally convenient to analyse ILTH directly.

Consider vertices u, v in Ht with u ≠ v. Let d = d(u, v) and let e1, e2, . . . , ed be a minimum
length walk connecting them. We then have that in Ht+1,
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(1) d(u, v) = d, using the walk e1, e2, . . . , ed;
(2) d(u, v′) = d, using the walk e1, e2, . . . , ed − v + v′;
(3) d(u′, v) = d, using the walk e1 − u + u′, e2, . . . , ed;
(4) d(u′, v′) = d if d ≥ 2, using the walk e1 − u + u′, e2, . . . , ed − v + v′; and
(5) d(u′, v′) = 2 if d = 1, using the walk e1 − u + u′, e1 − v + v′, so long as k ≥ 3.

Note that in the case of the final item, there is no walk of length one as there is no hyperedge
containing two clones. In the other cases, there can be no walks of length less than d else the
predecessors of these edges would form a walk from u to v in Ht of length less than d.

The diameter of a hypergraph is the maximum distance between any pair of vertices. We
find immediately that the diameter of Ht+1 is the maximum of 2 and the diameter of Ht, and,
iterating this, is the maximum of 2 and the diameter of H0. In either case, the diameter is a
constant, independent of t.

To end this section, we determine the average distance between any pair of vertices in Ht.
Let W (t) be the sum of the distances in Ht or Wiener index, written

W (t) = ∑
u,v∈V (Ht)

d(u, v).
Assuming that H0 has no isolated vertices and so Ht has no isolated vertices for all t ≥ 1, by
our calculations pertaining to distances above, we obtain that:

W (t + 1) = ∑
u,v∈V (Ht+1)

d(u, v)
= ∑

u≠v∈V (Ht)
d(u, v) + d(u′, v) + d(u, v′) + d(u′, v′) + ∑

u∈V (Ht)
d(u,u′) + d(u′, u)

= 4⎛⎝ ∑
u,v∈V (Ht)

d(u, v)⎞⎠ + ∣{u ≠ v ∈ V (Ht) ∶ d(u, v) = 1}∣ + 4n(t)
= 4W (t) + 2e(t) + 4n(t).

Solving this recurrence gives that

W (t) = 4t(W (0) + 2e(0) + 2n(0)) − 2e(t) − 2n(t)
= 4t(W (0) + 2e(0) + 2n(0)) − 2 ⋅ 3te(0) − 2t+1n(0).

Thus, the average distance is given by

2W (t)
n(t)(n(t) − 1)) =

4t(2W (0) + 4e(0) + 4n(0)) − 4 ⋅ 3te(0) − 2t+12n(0)
4tn(0)2 − 2tn(0) ,

which tends to 2W (0)+4e(0)+4n0

n(0)2 as t tends to infinity. We therefore have that ILTH hypergraphs

exhibit a constant average distance, as is found in many real-world hypergraphs; see [15].

3. Subhypergraphs and motifs

We next consider subhypergraphs of the ILTH model, and our first approach is to consider
the induced subgraphs of the 2-section. In Theorem 3, it is shown that a graph appears in
the 2-section of an ILTH hypergraph exactly when it admits a homomorphism to the 2-section
of H0. The theorem guarantees the absence of many kinds of induced subhypergraphs; for
example, no hypergraph clique appears in an ILTH hypergraph with larger order than H0. We
then turn to counting certain small order subhypergraphs, or motifs. Motifs are important in
complex networks, as they are one measure of similarity for graphs. For example, the counts
of 3− and 4−vertex subgraphs gives a similarity measure for distinct graphs; see [10, 23] for
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implementations of this approach using machine learning. Hypergraph motifs were studied
by several authors; see for example, [1, 4, 21]. In [21], motif counts were analyzed across
various real-world complex hypergraphs and compared to random hypergraphs. We show in
this section that in ILTH hypergraphs, the growth rate for certain motifs is higher than in
comparable random hypergraphs.

3.1. Induced subgraphs of the 2-section. For all t ≥ 0, Ht is an induced subhypergraph of
Ht+1. There exists a homomorphism ft from Ht+1 to Ht by mapping each clone to its parent,
and fixing all other vertices. Note that Ft = f1 ○ f2 ○ ⋅ ⋅ ⋅ ○ ft is a homomorphism from Ht to
H0. As a result, the clique and chromatic numbers of Ht are bounded above by those of H0.

This observation puts limitations on the kinds of subgraphs that Ht contains. For additional
background on graph homomorphisms, the reader is directed to [20].

The age of a hypergraph is its set of isomorphism types of induced subhypergraphs. As each
Ft is a homomorphism, we have that no Ht contains k-uniform cliques larger than those in H0.
In particular, the set of ages of an ILTH hypergraph does not contain all hypergraphs. This
contrasts with the ILT model, where all graphs occur in the set of ages of ILT-graphs; see [8].

Characterizing the ages of ILTH hypergraphs remains an open problem. The next result
solves the analogous problem for the ages of 2-sections of ILTH hypergraphs. For a fixed graph
G and family of graphs G, we say that G is G-hom-universal if the set of ages of G consists of
all finite graphs admitting a homomorphism to G.

Theorem 3. A graph G admits a homomorphism to G(H0) if and only if G is an induced

subgraph of G(Ht), for some integer t ≥ 0 and where G(H0) is the 2-section of H0. In particular,

the set of ages of 2-sections of hypergraphs in ILTH(H0) is G(H0)-hom-universal.

Proof. The reverse direction follows since for an induced subgraph G of G(Ht), the inclusion
map is a homomorphism from G to G(Ht). Composing with Ft gives a homomorphism from G

to G(H0).
For the forward direction, suppose that G admits a homomorphism f to G(H0). Let u, v ∈

V (G) be two vertices such that f(u) = f(v). Define the homomorphism f ′ to G(H1) as
f ′(x) = f(x) if x ≠ v, and f(v) is the clone of the vertex f(u). We then note that the number
of vertices in the codomain of f ′ is one larger than the number of vertices in the codomain of f .
We may repeat this procedure until we find an injective homomorphism fi from G to G(Hi),
for some i ≥ 0.

Suppose that there are two vertices u, v in G which are not neighbors but such that fi(u)fi(v)
is an edge in G(Hi). We can define a new injective homomorphism fi+1 to G(Hi+1) by fi+1(x) =
fi(x) if x ∉ {u, v}, fi+1(u) is the clone of fi(u), and fi+1(v) is the clone of fi(v). We then
have that the induced subgraph of fi(G) and fi+1(G) differ only in the edge fi(u)fi(v), as
this edge does not exist in fi+1(G). We can repeat this procedure to construct an injective
homomorphism fj from G to G(Hj) for some j, with the property that for all u, v ∈ V (G) if
fj(u)fj(v) is an edge in G(Hj), then uv is an edge in G. Hence, the subgraph induced by the
vertices in fj(G) in G(Hj) is isomorphic to G. �

3.2. Motifs. We now turn to counting motifs, which are certain types of subhypergraphs.
In [21], 26 distinct motifs were studied for three interacting hyperedges e1, e2, and e3. Motif
counts may be viewed as a similarity measure for hypergraphs, such as when we are comparing
real-world hypergraphs and synthetic ones derived from models.
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The different types of motifs emerge by considering which of the following seven regions are
nonempty:

e1 ∖ (e2 ∪ e3), e2 ∖ (e1 ∪ e3), e3 ∖ (e1 ∪ e2), e1 ∩ e2 ∖ e3, e2 ∩ e3 ∖ e1, e1 ∩ e3 ∖ e2, e1 ∩ e2 ∩ e3.
We may compactly reference motifs by a binary sequence

i1i2i3i4i5i6i7,

so that for all j, ij = 1 exactly when there is at least one element in the corresponding region.
We refer to the different motifs as motif types. See Figure 2 for an example. We may generalize

e
1

e
2

e
3

e
1

e
2

e
3

Figure 2. The motif type 11 or 1011101. On the left, we represent this motif
via a Venn diagram, where the vertex in a region implies it is nonempty. On the
right, we have an example of a 3-uniform hypergraph realizing this motif.

this notation to a tuple of nonnegative integers, quantifying the number of elements in each
region. The cardinality vector of a motif composed of the three hyperedges e1, e2, e3 is defined
as the 7-tuple:

(a, b, c, d, e, f, g) = (∣e1∖(e2∪e3)∣, ∣e2∖(e1∪e3)∣, ∣e3∖(e1∪e2)∣, ∣e1∩e2∖e3∣, ∣e2∩e3∖e1∣, ∣e1∩e3∖e2∣, ∣e1∩e2∩e3∣).

Note that a motif contains a+b+c+d+e+f+g vertices. Further, we have that ∣e1∣ = a+d+f+g = k,∣e2∣ = b + d + e + g = k, and ∣e3∣ = c + e + f + g = k.
In general hypergraphs, there are 26 non-isomorphic motif types; however, we note that only

11 motif types occur in k-regular hypergraphs. With numbering taken from [21], these motif
types are:

(1) Motif type 2: 1110001,
(2) Motif type 6: 1110101,
(3) Motif type 11: 1011101,
(4) Motif type 12: 1111101,
(5) Motif type 13: 0001111,
(6) Motif type 14: 1001111,
(7) Motif type 15: 1011111,
(8) Motif type 16: 1111111,
(9) Motif type 24: 1001110,
(10) Motif type 25: 1011110,
(11) Motif type 26: 1111110.
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We keep the numbering from [21] for brevity; for example, we refer to motif 11 rather than
1011101. We focus on these motif types since they always occur in the ILTH model and have
higher counts when compared to random hypergraphs, as we describe below. Interestingly,
motifs 11 and 12 are more prevalent in the co-authorship hypergraphs compared to random hy-
pergraphs, as shown in [21]. The same conclusion holds for motif 16 for tag hypergraphs. These
observations lend credence to the view that ILTH hypergraphs simulate properties observed in
real-world, complex hypergraphs.

Let αi be the maximum number of vertices that can occur in a motif of type i in a k-
uniform hypergraph. Each value of αi can be calculated explicitly, and each calculation is
straightforward. For example, we may calculate α14 as follows. Suppose that the motif in
question has cardinality vector (a,0,0, d, e, f, g). Without loss of generality we have that

k = a + d + f + g = d + e + g = e + f + g,
as each hyperedge contains k vertices. It therefore immediately follows that d = f . The total
number of vertices is

a + d + e + f + g = k + (k − d − g),
which is maximized when d = f = g = 1 (as d, g, f > 0 in a motif of type 14), yielding α14 = 2k−2.
As the remaining calculations are similar to the above, we omit them, and present the results
in Table 1.

i 2 6 11 12 13 14 15 16 24 25 26
αi 3k − 2 3k − 3 2k − 1 3k − 4 ⌊3

2
k − 1⌋ 2k − 2 2k − 2 3k − 5 2k − 1 2k − 1 3k − 3

Table 1. The maximum number of vertices αi in a motif of type i possible in a
k-uniform hypergraph.

Lemma 4. If Ht contains x motifs of type i with cardinality vector (a, b, c, d, e, f, g), then Ht+1
contains at least x(g + (c + 1)d + (b + 1)f + (a + 1)e + (a + 1)(b + 1)(c + 1)) motifs of type i with

cardinality vector (a, b, c, d, e, f, g).
Proof. For a motif in Ht of type i with cardinality vector (a, b, c, d, e, f, g) formed by the hyper-
edges e1, e2, e3, we choose a set S of up to three vertices contained in the motif to clone such
that each hyperedge of the motif contains at most one cloned vertex. Consider the motif in Ht+1
formed by the hyperedges e′1, e

′
2, e
′
3, where e′i is the hyperedge obtained from ei by replacing

each vertex that is also in S with its clone and leaving other vertices unchanged. This motif
is of type i and has cardinality vector (a, b, c, d, e, f, g). Each motif developed in this way is
unique. We must therefore find how many ways there are of choosing S, which is

g + (c + 1)d + (b + 1)f + (a + 1)e + (a + 1)(b + 1)(c + 1),
and the proof follows. �

We have the following theorem.

Theorem 5. If the initial hypergraph contains at least one hyperedge, then the number of motifs

of type 11 in the ILTH model is Ω(k2t).
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Proof. A motif of type 11 has cardinality vector (a,0, c, d, e,0, g), where a + d + g = d + e + g =
c + e + g = k, which yields a = e and c = d. For each motif of type 11 in Ht, there will be

g + (c + 1)d + (a + 1)e + (a + 1)(c + 1) = g + 2a + 2c + c2 + a2 + ac + 1
= (k − g)2 − ac + 2k − g + 1,

motifs of type 11 in Ht+1, which is maximized when g = 1 and either a = 1 or c = 1 (as a, c, g > 0)
yielding a maximum value k2

− k + 3.
Let e1 be a hyperedge in H0. For some u ∈ e1, there is a hyperedge e2 = e1 ∪ {u′} ∖ {u}

in H1. For some v ∈ e1 ∖ {u}, there is a hyperedge e3 in Hk−2 with e3 ∩ e2 ∩ e1 = {u} and
e3 ∩e1 = {u, v}. These three hyperedges form a motif of type 11 in Hk−2 with cardinality vector(1,0, k−2, k−2,1,0,1). As such, by Lemma 4 there are at least (k2

−k+3)t−k+2 = Ω(k2t) motifs
of type 11 in Ht with cardinality vector (1,0, k − 2, k − 2,1,0,1). �

We can also perform a similar analysis of the other motif types that grow rapidly.

Theorem 6. If the initial hypergraph contains at least one hyperedge, then the number of each

motif of types 2, 6, 12, 16, and 26 in the ILTH model is Ω(k3t).
Proof. It is straightforward to verify that H3k contains a motif of type i containing αi ver-
tices, for i ∈ {2,6,11,12,16}. Suppose that the motif in question has cardinality vector(a, b, c, d, e, f, g), and so αi = a + b + c + d + e + f + g. As αi = Ω(k3) for these values of i,
by Lemma 4, there are at least (αi)-times more of this motif type and cardinality vector in
each iteration of the ILTH process. Hence, there are at least (αi)t−3k = Ω(k3t) of this motif
type in Ht, and the result follows. �

Our analysis so far does not apply to motif types 13, 14, 15, 24, and 25, as each of these
motif types will not be generated in the ILTH process on one hyperedge. However, if one of
these motif types occurs within the starting hypergraph, then we will have exponential growth
of these, as shown in the following theorem.

Theorem 7. If H0 contains a motif of type i ∈ {13,14,15,24,25} that contains m vertices, then

motif i occurs at least (m + 1)t times in Ht.

Proof. The proof follows by Lemma 4. �

We contrast the motif counts for ILTH with comparable random hypergraphs. Let G(n, k, p)
be the random hypergraph where each possible k-set is included as a hyperedge with probability
p. If we fix two vertices u and w, then the expected number of hyperedges e containing both
u and w is (n−2

k−2)p.
We consider the k-uniform hypergraph with n = n(t) = 2tn(0) = Θ (2t) vertices and

p = e(t)
(n(t)

k
) = Θ (2(log2(k+1)−k)t) .

We expect Θ(nαip3) motifs of type i with αi vertices. To see this, give each vertex in a motif
with αi vertices a label between 1 and αi, and define three k-sets with these labels e1, e2, and
e3 from the three hyperedges in the motif with these labels. We select αi vertices from the
set of n vertices in the k-uniform random hypergraph, labeling the ith choice by the label i.
There are n!

(n−αi)! ∼ n
αi possible ways to make these choices. The sets of vertices e1, e2, and e3

are hyperedges in the k-uniform random hypergraph with probability p3. There is systematic
double counting of occurrences of the motif but this only changes the expectation by a multiple
of some function of k, which is a constant. The motifs of type i with fewer than αi vertices will
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occur o(nαip3) times, so the total number of motifs of type i that have any number of vertices
is Θ(nαip3).

Therefore, we expect

Θ(nαip3) = Θ(2(αi−3(k−log2(k+1)))t)
many occurrences of motif i. If αi < 3 (k − log2(k + 1)) , then the expected number of motifs of
type i will tend to 0 exponentially fast, and if αi > 3 (k − log2 k + 1) , then the expected number
of motifs of type i grows exponentially. In particular, it will be useful to note that if αi ≤ 2k−1
and k ≥ 9, then the expected number of motifs of type i will tend to 0 exponentially fast, and if
αi = 3k−c with c ∈ {2,3,4,5}, then the expected number of motifs of type i grows exponentially
fast.

As a consequence, we expect motifs 2, 6, 12, 16, and 26 to occur an exponential number
of times each in a random hypergraph. We expect that other motifs will rarely occur, with
the probability that we see any diminishing when k ≥ 9 and t increases. As a consequence of
Theorems 5 and 6, the growth rates of the motif types 2, 6, 11, 12, 16, and 26 is faster in ILTH
than in a comparable random k-uniform hypergraph.

We finish the section with precise motif counts for ILTH with initial hypergraph a single hy-
peredge. We ran the ILTH model on a computer, starting with a single hyperedge of cardinality
k, for 3 ≤ k ≤ 6 and 1 ≤ t ≤ 10 − k.

See Tables 2 to 5 below for the motif counts of these ILTH hypergraphs.

t 2 6 11 26
1 3 1
2 45 126 75 45
3 3447 4770 1083 1141
4 161451 115146 12675 22365
5 5981355 2301930 133563 382981
6 195870195 41818266 1326675 6071085
7 5993456427 720709290 12718443 91888021

Table 2. The number of motifs generated by the ILTH model starting with a
hyperedge of cardinality 3.

t 2 6 11 12 16 26
1 6 4
2 90 504 474 504 188 276
3 16660 75168 14010 42192 5116 34248
4 2651330 6088680 305682 1920888 107712 2341332
5 305991860 369517680 5764506 67434480 2026684 122766120
6 28267339810 19173430584 100158594 2066592024 34911788 1285323380

Table 3. The number of motifs generated by the ILTH model starting with a
hyperedge of cardinality 4.
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t 2 6 11 12 16 26
1 10 10
2 150 1110 1490 2100 1870 420
3 40210 356670 82030 540720 189610 234360
4 13613610 77687610 3114650 71894820 12725950 50062740
5 4067088850 12719703750 97894510 6831291600 680649610 7078307400

Table 4. The number of motifs generated by the ILTH model starting with a
hyperedge of cardinality 5.

t 2 6 11 12 16 26
0
1 15 20
2 229 2070 3285 5040 7680 120
3 79096 994680 301515 2610180 1983740 576720
4 388621215 409931190 18710325 815537880 346117200 370671840

Table 5. The number of motifs generated by the ILTH model starting with a
hyperedge of cardinality 6.

4. Hypergraph clustering coefficients

The small-world property in complex networks demands low average distance and high clus-
tering coefficients, relative to random graphs with the same expected average degree; see [7]
for a discussion. An analogous definition holds for small-world hypergraphs, comparing their
properties to a random hypergraph G(n, k, p) with the same order n and p chosen so that they
have the same expected average degree. As we demonstrated in Section 2, ILTH hypergraphs
have constant average distance. Hence, a natural next step in our investigation is to consider
clustering coefficients of ILTH hypergraphs.

There are a variety of hypergraph clustering coefficients we may consider; see [18] for nine
distinct coefficients. We focus on a clustering coefficient introduced in [17], along with a new
one that is a variant of the one studied in [27]. We discuss these clustering coefficients by
considering graphs. For a graph G, the global clustering coefficient is

C(G) = 6 × (number of triangles in G)
number of paths of length two in G

.

Note that C(G) is a rational number in the interval [0,1].
There are several different ways to generalize the definition of clustering coefficient to hyper-

graphs. We discuss three of these in the context of the ILTH model.
We define a path of length two in a hypergraph to be a 5-tuple (u, e1, v, e2,w) where u, v,w

are distinct vertices, e1, e2 are distinct hyperedges, and u, v ∈ e1, v,w ∈ e2. Similarly, we define
a hypertriangle to be a 6-tuple (u, e1, v, e2,w, e3) where u, v,w are distinct vertices, e1, e2, e3 are
distinct hyperedges, and u, v ∈ e1, v,w ∈ e2, w,u ∈ e3. We have the following generalization of
the clustering coefficient to hypergraphs, appearing first in [17]:

HC1(H) = 6 × (number of hypertriangles in H)

number of paths of length two in H
.

Note that HC1(H) = C(H) in the case that H is a graph. However, for general hypergraphs
H , the values of HC1(H) need no longer be in the interval [0,1]. For example, the complete
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k-uniform hypergraph on n vertices has HC1(GK
(k)
n ) = (n−2k−2). The reason for this difference

with the graph case is because a given path of length two (u, e1, v, e2,w) can be extended to
a hypertriangle in many different ways. The hyperedge e3 can be any hyperedge so long as it
includes u and w. The clustering coefficient HC1 counts the average number of hypertriangles
that are extensions of a path of length two.

We prove the following theorem on HC1 in Subsection 4.1.

Theorem 8. For a nonnegative integer t, we have that

HC1(Ht) = Θ(((k − 1)3 + 3(k − 1)
k2
+ 1

)t) .
We can show that Ht has a higher value of HC1 than the random k-uniform hypergraph with

the same number of vertices and the same expected average degree. See the discussion at the
end of Subsection 4.1.

There are other ways to express the clustering coefficient on graphs that lead to different
generalisations to hypergraphs. One such equivalent definition is that C is the probability that
given a path of length two, the end vertices are adjacent:

C(G) = P (uv is an edge ∶ (u, e1,w, e2, v) a path of length two) .
We say two vertices u, v in a hypergraph are adjacent, written u ∼ v, if there is some hyperedge
e containing both. There is then a natural way to generalize this definition of C to hypergraphs,
which we think we are, surprisingly, the first to propose.

HC2(H) = P (u ∼ v ∶ (u, e1,w, e2, v) a path of length two in H)
= number of paths (u, e1,w, e2, v), where u ∼ v

number of paths of length two
.

Note that since HC2 is a probability, this clustering coefficient is bounded between 0 and 1.
Further, HC2 matches the clustering coefficient C on graphs.

A different generalization of the clustering coefficient to hypergraphs, due to [27], also retains
the property that the clustering coefficient is between 0 and 1, and is closely related to HC2.
Let I be the set of pairs of intersecting edges in H . For a (e, f) ∈ I , define

A(e, f) = ∣{u ∈ e − f ∶ for some w ∈ f − e with u ∼ w}∣.
For e1, e2 ∈ I define

EO(e1, e2) = A(e1, e2) +A(e2, e1)∣e1 − e2∣ + ∣e2 − e1∣ .

The extra overlap attempts to capture the number of connections between vertices u ∈ e1 − e2
and w ∈ e2 − e1. It is evident that 0 ≤ EO(e1, e2) ≤ 1. The following clustering coefficient from
[27] is the average extra overlap over all intersecting pairs of edges:

HC3(H) = 1

∣I ∣ ∑(ei,ej)∈IEO(ei, ej).
The goals of the authors in [27] were to define a clustering coefficient on hypergraphs that i)

took values in [0,1], ii) matches the normal clustering coefficient when applied to graphs, and
iii) reflects the extent of connectivity among neighbors of v due to hyperedges other than ones
connecting v with those neighbors. These three goals are satisfied by HC3, but they are also all
satisfied by HC2, which we believe to be a more natural definition given that it can be simply
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expressed as a probability without recourse to the notion of extra overlap. For these reasons,
we focus on the new clustering coefficient parameter HC2.

We prove the following theorem on HC2 in Subsection 4.2.

Theorem 9. For a nonnegative integer t, we have that

HC2(Ht) = Θ(( k2

k2 + 1)
t) .

We show that Ht has a lower value of HC2 than the random k-uniform hypergraph with the
same number of vertices and the same expected average degree, and so by this measure, it has
less clustering. This is in contrast to the clustering coefficient HC1, and we include a discussion
of this phenomenon at the end of the section. We introduce a modified version of ILTH where
clones and their parents are in certain hyperedges. For the modified ILTH model, HC2 has
higher values than in random hypergraphs.

The following lemma will prove useful in our study of hypergraph clustering coefficients.

Lemma 10. Suppose that v ∈ V (Ht−1) and e ∈ E(Ht−1) with v /∈ e. Let v∗ ∈ V (Ht) be a

descendant of v and e∗ ∈ E(Ht) be a descendant of e. We then have that v∗ /∈ e∗.
Proof. Take some v ∈ V (Ht−1) and e ∈ E(Ht−1) with v /∈ e. The descendants of e are e and
e − x + x′ for each x ∈ e. Since v /∈ e, it is evident that v and v′ are not contained in any of the
descendants of e. �

Lemma 10 is more useful for our purpose in its contrapositive form.

Lemma 11. Suppose that v∗ ∈ V (Ht) and e∗ ∈ E(Ht) with v∗ ∈ e∗. If v ∈ V (Ht−1) and

e ∈ E(Ht−1) are their respective predecessors, then v ∈ e.
4.1. The clustering coefficient HC1. This subsection is devoted to proving Theorem 8. To
that end, we prove two combinatorial lemmas finding the asymptotic order of the number of
paths of length two and the number of hypertriangles in Ht, respectively.

Lemma 12. The number of paths of length two in Ht is Θ ((k2 + 1)t).
Proof. Let P ′(t) = {(e1, v, e2) ∶ v ∈ V (Ht), e1, e2 ∈ E(Ht), v ∈ e1 ∩ e2}. Note that, while closely
related, this is not the same as the set of paths of length two as we do not include endpoints.
We include the degenerate case where e1 = e2. We find an exact value for ∣P ′(t)∣ in terms of t
and ∣P ′(0)∣, which will enable us to bound the number of paths of length two.

Fix some (e1, v, e2) ∈ P ′(t − 1). We wish to count the number of descendants (e∗1 , v∗, e∗2) this
has in P ′(t). If v∗ = v′, then for v∗ ∈ e∗1 ∩ e∗2 we must have e∗1 = e1 − v + v′ and e∗2 = e2 − v + v′,
so there is one descendant (e∗1 , v∗, e∗2) in P ′(t), where v∗ = v′. If v∗ = v, then for v ∈ e∗1 ∩ e∗2 we
cannot have e∗1 ≠ e1 − v + v′ and e∗2 ≠ e2 − v + v′. All of the k other descendants of e1 and the k

other descendants of e2 contain v so there are k2 descendants (e∗1 , v∗, e∗2) in P ′(t), where v∗ = v.
In total, each (e1, v, e2) ∈ P ′(t − 1) has k2 + 1 descendants (e∗1 , v∗, e∗2) in P ′(t), giving

∣P ′(t)∣ ≥ (k2 + 1)∣P ′(t − 1)∣.
Next, suppose we have some (e∗1 , v∗, e∗2) ∈ P ′(t), so in particular, v∗ ∈ e∗1 ∩ e∗2 . Consider

their respective predecessors e1, v, and e2 in Ht−1. Lemma 11 provides that v ∈ e1 and v ∈ e2,
so (e1, v, e2) ∈ P ′(t − 1). Hence, every triple in P ′(t) is a descendant of a triple in P ′(t − 1),
and in particular, ∣P ′(t)∣ = (k2 + 1)∣P ′(t − 1)∣. Iterating this process, we derive that ∣P ′(t)∣ =(k2 + 1)t ∣P ′(0)∣.
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Now, let P (t) be the set of paths of length two in Ht. Recall that a path of length two
is (u, e1, v, e2,w) where u, v,w ∈ V (Ht) are distinct, e1, e2 ∈ E(Ht) are distinct, and u, v ∈ e1,
v,w ∈ e2.

For 0 ≤ i ≤ k, let Pi(t) be the set of ordered pairs (e1, e2) of hyperedges with ∣e1∩e2∣ = i. Note
that ∣Pk(t)∣ = e(t). We then have that ∣P ′(t)∣ = ∑k

i=1 i∣Pi(t)∣ and P (t) = ∑k−1
i=1 i(k − i)2∣Pi(t)∣.

This gives that

∣P ′(t)∣ − ke(t) = k−1∑
i=1

i∣Pi(t)∣ ≤ ∣P (t)∣ ≤ (k − 1)2∣P ′(t)∣
(k2 + 1)t ∣P ′(0)∣ − k(k + 1)te(0) ≤ ∣P (t)∣ ≤ (k − 1)2 (k2 + 1)t ∣P ′(0)∣,

which completes the proof. �

We next have the following lemma.

Lemma 13. The number of hypertriangles in Ht is Θ (((k − 1)3 + 3(k − 1))t).
Proof. Let

T ′(t) = { (u, e1, v, e2,w, e3) ∶ u, v,w ∈ V (Ht) distinct, e1, e2, e3 ∈ E(Ht)
u ∈ e1 ∩ e3, v ∈ e1 ∩ e2,w ∈ e2 ∩ e3 } .

Note that, while closely related, this is not the same as the set of hypertriangles as we do not
insist that the edges e1, e2 and e3 are distinct. We find an exact value for ∣T ′(t)∣ in terms of t
and ∣T ′(0)∣, which will enable us to bound the number of hypertriangles.

Fix some (u, e1, v, e2,w, e3) ∈ T ′(t − 1). We wish to count the number of descendants

(u∗, e∗1 , v∗, e∗2 ,w∗, e∗3)
has in T ′(t). If v∗ = v′, then for v∗ ∈ e∗1 ∩ e∗2 we must have e∗1 = e1 − v + v′ and e∗2 = e2 − v + v′.
Since u′ /∈ e1 − v + v′ and w′ ∈ e2 − v + v′ this means that u∗ = u and w∗ = w. Since u∗ and w∗ are
in e∗3 , e

∗
3 must be e3 or e3 − x + x′ for some x ∈ e3 not equal to u or w, and indeed each of these

k − 1 choices for e∗3 gives a (u∗, e∗1 , v∗, e∗2 ,w∗, e∗3) in T ′(t).
An analogous argument in the cases u∗ = u′ and w∗ = w′ show that if one of u∗, v∗,w∗ is a

clone then the other two are not, and there are 3(k − 1) descendants (u∗, e∗1 , v∗, e∗2 ,w∗, e∗3) in
T ′(t) of this form.

Otherwise, none of u∗, v∗,w∗ is a clone. We then have that e∗1 must be e1 or e1−x+x′ for some
x ∈ e1−u−v, e∗2 must be e2 or e2−y+y′ for some y ∈ e2−v−w, and e∗3 must be e3 or e3−z+z′ for some
z ∈ e3 −u−w. Any combination of these gives a (u∗, e∗1 , v∗, e∗2 ,w∗, e∗3) in T ′(t), and so there are(k−1)3 contributing to the count. In total, each (u, e1, v, e2,w, e3) ∈ T ′(t−1) has (k−1)3+3(k−1)
descendants (u∗, e∗1 , v∗, e∗2 ,w∗, e∗3) in T ′(t) giving ∣T ′(t)∣ ≥ ((k − 1)3 + 3(k − 1)) ∣T ′(t − 1)∣.

In the other direction, suppose we have some (u∗, e∗1 , v∗, e∗2 ,w∗, e∗3) in T ′(t). Consider their
respective predecessors u, e1, v, e2,w and e3 in Ht−1. We know that u, v,w must be distinct: if
say u = v then either u∗ = v∗, contradicting that (u∗, e∗1 , v∗, e∗2 ,w∗) ∈ T ′(t), or {u∗, v∗} = {v, v′}.
This in turn contradicts that there is a hyperedge e∗1 containing both. An analogous argument
shows that v ≠ w and w ≠ u. Lemma 11 provides that u ∈ e1 ∩ e3, v ∈ e1 ∩ e2 and w ∈ e2 ∩ e3,
so (u, e1, v, e2,w, e3) ∈ T ′(t − 1). Hence, every 6-tuple in T ′(t) is a descendant of a 6-tuple in
T ′(t − 1), and in particular, ∣T ′(t)∣ = ((k − 1)3 + 3(k − 1)) ∣T ′(t − 1)∣. Iterating this, we obtain
that ∣T ′(t)∣ = ((k − 1)3 + 3(k − 1))t ∣T ′(0)∣.

Now, let T (t) be the set of hypertriangles in Ht. Note that ∣T (t)∣ is the number of 6-tuples(u, e1, v, e2,w, e3) in T ′(t), where e1, e2 and e3 are all distinct. Hence, we have that

∣T (t)∣ ≤ ∣T ′(t)∣ = ((k − 1)3 + 3(k − 1))t ∣T ′(0)∣.
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For a lower bound, we count the number of 6-tuples where e1, e2 and e3 are not distinct.
If e1 = e2 ≠ e3, then u and w are distinct elements in e1 ∩ e3 = e2 ∩ e3 and v ∈ e1 − u − w.
Recalling that ∣Pi(t)∣ is the number of pairs of edges intersecting in i vertices, we find that
there are ∑k−1

i=2 i(i − 1)(k − 2)∣Pi(t)∣ such 6-tuples. Similarly, there are ∑k−1
i=2 i(i − 1)(k − 2)∣Pi(t)∣

with e2 = e3 ≠ e1 and with e3 = e1 ≠ e2.
Finally, note that when e1 = e2 = e3 then we just have u, v,w distinct vertices in e1 and so

there are k(k − 1)(k − 2)e(t) 6-tuples in T ′(t) with e1 = e2 = e3. Putting these together gives∣T ′(t)∣ = ∣T (t)∣ + 3∑k−1
i=2 i(i − 1)(k − 2)Pi(t) + k(k − 1)(k − 2)e(t).

To bound ∑k−1
i=2 i(i−1)∣Pi(t)∣, we use that ∑k

i=1 i∣Pi(t)∣ = ∣P ′(t)∣ = (k2 +1)t∣P ′(0)∣ as calculated
in the proof of Lemma 12. In particular, we have that

k−1∑
i=2

i(i − 1)∣Pi(t)∣ ≤ (k − 2)( k∑
i=1

i∣Pi(t)∣) ≤ (k − 2)(k2 + 1)t∣P ′(0)∣.
We next have that

∣T (t)∣ = ∣T ′(t)∣ − 3(k − 2) k−1∑
i=2

i(i − 1)∣Pi(t)∣ − k(k − 1)(k − 2)e(t)
≥ ((k − 1)3 + 3(k − 1))t ∣T ′(0)∣ − 3(k − 2)2(k2 + 1)t∣P ′(0)∣ − k(k − 1)(k − 2)(k + 1)te(0),

which completes the proof. �

As an immediate consequence of Lemmas 12 and 13, we obtain Theorem 8 on the value of
the HC1 clustering coefficient on ILTH hypergraphs. To contextualize the result of Theorem 8,
we compare HC1(Ht) to HC1 for other k-uniform hypergraphs. For the complete k-uniform

hypergraph K
(k)
n it is straightforward to derive by counting choices of u, v,w and the edges

containing them that

HC1 (K(k)n ) = (
n

3
) ((n−2

k−2))3
(n
3
) ((n−2

k−2))2
= (n − 2

k − 2).

When n = n(t) = 2tn(0), this gives HC1(K(k)n ) = Θ (2(k−2)t), which is larger than HC1(Ht), as
expected.

We consider the expected value of HC1 in the random hypergraph G(n, k, p). Here, given a
path (u, e1, v, e2,w) of length two, the expected number of hypertriangles of the form (u, e1, v, e2,w, e)
is (n−2

k−2)p . This gives

E (HC1(G(n, k, p))) = (n − 2
k − 2)p.

Let n = n(t) = 2tn(0) and p = (k+1)te(0)(n
k
) . We then have that

E (HC1(G(n, k, p))) = (
n−2
k−2)(k + 1)te(0)(n

k
) = k(k − 1)(k + 1)te(0)

2tn(0)(2tn(0) − 1) = Θ((
k + 1
4
)t) .

As k+1
4
< (k−1)3+3(k−1)

k2+1 , the clustering coefficient HC1 forHt grows faster than that for the random
hypergraph of the same expected average degree.
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4.2. The clustering coefficient HC2. In this subsection, we prove Theorem 9. We first
introduce a useful set of 5-tuples:

A(t) = { (u, e1, v, e2,w) ∶ u, v,w ∈ V (Ht) distinct, e1, e2 ∈ E(Ht),
for some e3 ∈ E(Ht) such that u ∈ e1 ∩ e3, v ∈ e1 ∩ e2,w ∈ e2 ∩ e3 } .

One view of a 5-tuple in A(t) is as a (possibly degenerate) path of length 2 that can be
completed to a (possibly degenerate) hypertriangle. We have the following lemma counting the
elements of A(t), which will greatly assist in estimating HC2 in ILTH hypergraphs.

Lemma 14. For all nonnegative integers t, ∣A(t)∣ = (k2)t ∣A(0)∣.
Proof. For a fixed 5-tuple (u, e1, v, e2,w) ∈ A(t − 1), we count the number of descendants(u∗, e∗1 , v∗, e∗2 ,w∗) this has in A(t). If v∗ = v′, then for v∗ ∈ e∗1 ∩ e∗2 we must have e∗1 = e1 − v + v′
and e∗2 = e2 − v + v′. Since u′ /∈ e1 − v + v′ and w′ ∈ e2 − v + v′ this means that u∗ = u and
w∗ = w, and we know there is a hyperedge e3 containing both. Thus, there is one descendant(u∗, e∗1 , v∗, e∗2 ,w∗) in A(t) with v∗ = v′.

Otherwise, suppose v∗ = v. We cannot have both u∗ = u′ and w∗ = w′ as there does not exist
any hyperedge in E(Ht) containing both u′ and w′. We can have u∗ = u′ and w∗ = w, as the
hyperedge e3 − u + u′ ∈ e(Ht) contains both. In this case, e∗1 must be e1 − u+ u′ and e∗2 must be
e2 or e2 − y + y′ for some y ∈ e2 − v −w, giving k − 1 descendants in A(t). Similarly, we can have
u∗ = u and w∗ = w′, and there are a further k − 1 descendants in A(t) of this form.

Finally, we can have u∗ = u and w∗ = w as we know the hyperedge e3 contains both. In
this case e∗1 must be e1 or e1 − x + x′ for some x ∈ e1 − v − u and e∗2 must be e2 or e2 − y + y′
for some y ∈ e2 − v − w, giving (k − 1)2 descendants in A(t) of this form. In total, each(u, e1, v, e2,w) ∈ A(t−1) has k2 descendants (u∗, e∗1 , v∗, e∗2 ,w∗) in A(t) giving ∣A(t)∣ ≥ k2∣A(t−1)∣.

In the other direction, suppose we have some (u∗, e∗1 , v∗, e∗2 ,w∗) in A(t). Let e∗3 be a hyper-
edge in Ht containing both u∗ and w∗. Consider their respective predecessors u, e1, v, e2,w and
e3 in Ht−1. We know that u, v,w must be distinct: if say u = v then either u∗ = v∗, contra-
dicting (u∗, e∗1 , v∗, e∗2 ,w∗) ∈ A(t), or {u∗, v∗} = {v, v′}, contradicting that there is a hyperedge
e∗1 containing both. An analogous argument shows that v ≠ w and w ≠ u. Applying Lemma 10
shows that u ∈ e1 ∩ e3, v ∈ e1 ∩ e2 and w ∈ e2 ∩ e3, so (u, e1, v, e2,w) ∈ A(t − 1). Hence, every
5-tuple in A(t) is a descendant of a 5-tuple in A(t − 1), and in particular, ∣A(t)∣ = k2∣A(t − 1)∣.
Iterating this, we have that ∣A(t)∣ = (k2)t ∣A(0)∣. �

We can now use Lemma 14 to prove Theorem 9.

Proof of Theorem 9. Recall that

HC2(H) = number of paths (u, e1,w, e2, v), where u and v are in a hyperedge

number of paths of length two
.

Let Λ(t) be the number of paths (u, e1, v, e2,w), where u ∼ w. We then have that Λ(t) ⊆ A(t).
Also, a 5-tuple (u, e1, v, e2,w) is in A(t) but not Λ(t) if and only if e1 = e2, and there are
k(k − 1)(k − 2)e(t) such 5-tuples. Thus, we have that

∣Λ(t)∣ = ∣A(t)∣ − k(k − 1)(k − 2)e(t) = k2t∣A0∣ − k(k − 1)(k − 2)(k + 1)te(0) = Θ (k2t) .
Combining this with Lemma 12, we derive that HC2 = Θ(( k2

k2+1)t) , as required. �

We contextualize these results by comparing them to the random k-uniform hypergraph
G(n, k, p) with the same expected average degree. We derive a lemma computing the expected
value of HC2 on random hypergraphs.
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Lemma 15. For a given k and p, we have that

E (HC2(G(n, k, p))) = 1 − (1 − p)(n−2k−2
).

Proof. Suppose that we are given a path (u, e1, v, e2,w) and we wish to know the probability
that the two vertices u,w lie in some hyperedge. There are (n−2

k−2) k-sets containing both u and

w and the probability that none of them is a hyperedge of G(n, k, p) is (1 − p)(n−2k−2
). Thus, the

probability that u ∼ w is 1 − (1 − p)(n−2k−2
). �

We compare Ht to a random hypergraph with the same number of vertices and the same
expected average degree. Set n = 2tn(0) and choose p such that (n

k
)p = (k + 1)te(0). We then

have that

E (HC2(G(n, k, p))) ≥ 1 − (1 − p)(n−2k−2
) ≥ 1 − exp(−p(n − 2

k − 2))
≥ 1 − exp(−c(k + 1

4
)t),

where c depends only on k, n(0), and e(0). Hence, we conclude that E (HC2(G(n, k, p))) is at
least 1 − exp (−c (k+1

4
)t). For k ≥ 4, this quantity tends to 1 as t tends to infinity, and it does

so doubly exponentially fast. On the other hand, we have that HC2(Ht) = O (( k2

k2+1)t) which
tends to 0 exponentially fast as t tends to infinity. Thus, we find that by this measure the
clustering for Ht is extremely low compared to the random hypergraph with the same expected
average degree. If k = 3, then E (HC2(G(n, k, p))) is at least the constant 1−e−c, which is larger

than HC2(Ht) = O (( 9
10
)t).

Measured by the clustering coefficient HC1, the hypergraph Ht has higher clustering than in
comparable hypergraphs, but this fails for HC2. The reason for the discrepancy is that the two
clustering coefficients are counting different structures. Given a pair of intersecting edges e1, e2,
the value of HC2 counts how many pairs of vertices u ∈ e1 − e2,w ∈ e2 − e1 there are that are
contained in some hyperedge e3. As this is low for Ht compared to random hypergraphs, fewer
of those pairs are contained in any hyperedge than we might expect. The value of HC1 roughly
counts how many edges e3 intersect both e1 and e2 to make a hypertriangle. As this is large
for Ht when compared to random hypergraphs, there are more of these edges than we might
expect. Hence, relative to the random hypergraph, fewer pairs of vertices u ∈ e1 − e2,w ∈ e2 − e1
are contained in a hyperedge, but those that are contained in an hyperedge must be contained
in many hyperedges.

4.3. A variant of ILTH with large HC2 values. To remedy the situation with ILTH having
lower HC2 values than random hypergraphs, we consider a variant of the model where clones
and their parents are in certain hyperedges. Such a variant is a natural one, as we may expect
newly formed hyperedges to include both parent and child vertices.

Let H
(2)
0 be a fixed k-uniform hypergraph and we iteratively construct H

(2)
t , where t ≥ 1 as

follows. Suppose that we have H
(2)
t . For each v ∈ V (H(2)t ), add k vertices v and v1, v2, . . . , vk−1

to H
(2)
t+1. We call these vi the clones of v. For each e ∈ E(H(2)t ), add to H

(2)
t+1 the hyperedge

e and each of the edges e − x + xi, where x is a vertex in e and 1 ≤ i ≤ k − 1. In addition, for

each v ∈ V (H(2)t ) add to H
(2)
t+1 the hyperedge {v, v1, v2, . . . , vk−1} to H

(2)
t+1. We refer to the model

as ILTH 2, and hypergraphs generated by the model are ILTH2 hypergraphs. See Figure 3.
The ILTH2 model is motivated by the desire to have clones and parent adjacent, as in the
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x y z

x x1 2

Figure 3. The ILTH2 model applied to cloning x in the hyperedge xyz.

original ILT model. While the models are distinct, ILTH2 hypergraphs share properties with
the ILTH hypergraphs such as densification and low distances. One key difference between
ILTH and ILTH2 is the clustering coefficient HC2. We have the following theorem, whose proof
is analogous to the one of Theorem 9 and so is omitted.

Theorem 16. For nonnegative integers t, we have that

HC2(H(2)t ) = Θ⎛⎝(1 −
(k − 1)2

(k2 − 2k + 1)2 + k − 1)
t⎞
⎠ .

We compare H
(2)
t to the random hypergraph with the same number of vertices and the same

expected averaged degree. Set n = ktn(0) and choose p such that the expected number of edges(n
k
)p is e(t). In particular, we have that

p = Θ((k2 − k + 1
kk

)t) .
Applying Lemma 15, we have that

E (HC2(G(n, k, p))) = Θ((k2 − k + 1
k2

)t) .
For all k ≥ 2, we find that

k2 − k + 1
k2

= 1 − k − 1
k2
< 1 − (k − 1)2

(k2 − 2k + 2)2 + k − 1 ,
so the clustering coefficient HC2 is larger for H

(2)
t than in random hypergraphs.

5. Further directions

We introduced the new ILTH model for complex hypergraphs. We found that ILTH hyper-
graphs densify over time and have low average distances. We considered motifs and found that
for those occurring in the ILTH model, their counts grow faster than in random hypergraphs
with the same expected average degree. The 2-sections of ILTH hypergraphs were shown to
contain isomorphic copies of all graphs admitting a homomorphism to the 2-section of H0 in
Theorem 3. We finished with an analysis of clustering coefficients, and it was shown that HC1

was larger in ILTH hypergraphs than in random hypergraphs. A similar result was proven for
HC2 applied to a variant of ILTH, where parents are adjacent to their clones.
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Several questions remain surrounding ILTH hypergraphs. We may consider variants of the
model, and study properties of hypergraphs generated by the model. For example, we may allow
hyperedges that are non-uniform orders, or randomize the model by adding random hyperedges
to sets of clones. An open problem is to determine the age of ILTH hypergraphs; that is, what
are the induced subhypergraphs of ILTH hypergraphs?

Another direction is to consider other notions of clustering in ILTH hypergraphs. Several
hypergraph clustering coefficients were investigated in [17], for example, and it would be inter-
esting to consider their values in the ILTH model.

References

[1] S.G. Aksoy, C. Joslyn, C.O. Marrero, B. Praggastis, E. Purvine, Hypernetwork science via high-order
hypergraph walks, EPJ Data Science 9 16, 2020.

[2] A.R. Benson, R. Abebe, M.T. Schaub, A. Jadbabaie, J. Kleinberg, Simplicial closure and higher-order link
prediction, Proceedings of the National Academy of Sciences 115 (2018) E11221–E11230.

[3] A.R. Benson, D.F. Gleich, D.J. Higham, Higher-order network analysis takes off, fueled by old ideas and
new data, SIAM News, https://cutt.ly/gkwhM9w, last accessed January 29, 2021.

[4] A.R. Benson, D.F. Gleich, J. Leskovec, Higher-order organization of complex networks, Science 353 (2016)
163–166.

[5] C. Berge, Graphs and Hypergraphs, Elsevier, New York, 1973.
[6] C. Berge, Hypergraphs: The Theory of Finite Sets, North-Holland, Amsterdam, 1989.
[7] A. Bonato, A Course on the Web Graph, American Mathematical Society, Providence, Rhode Island, 2008.
[8] A. Bonato, H. Chuangpishit, S. English, B. Kay, E. Meger, The iterated local model for social networks,

Discrete Applied Mathematics 284 (2020) 555–571.
[9] A. Bonato, D.W. Cranston, M.A. Huggan, T. Marbach, R. Mutharasan, The Iterated Local Directed

Transitivity model for social networks, In: Proceedings of WAW’20, 2020.
[10] A. Bonato, D.F. Gleich, M. Kim, D. Mitsche, P. Pra lat, A. Tian, S.J. Young, Dimensionality matching of

social networks using motifs and eigenvalues, PLOS ONE 9(9):e106052, 2014.
[11] A. Bonato, N. Hadi, P. Horn, P. Pra lat, C. Wang, Models of on-line social networks, Internet Mathematics

6 (2011) 285–313.
[12] A. Bonato, N. Hadi, P. Pra lat, C. Wang, Dynamic models of on-line social networks, In: Proceedings of

WAW’09, 2009.
[13] A. Bonato, A. Tian, Complex networks and social networks, invited book chapter in: Social Networks,

editor E. Kranakis, Springer, Mathematics in Industry series, 2011.
[14] F.R.K. Chung, L. Lu, Complex Graphs and Networks, American Mathematical Society, Providence, Rhode

Island, 2006.
[15] M.T. Do, S. Yoon, B. Hooi, K. Shin, Structural patterns and generative models of real-world hypergraphs.

In: Proceedings of Knowledge Discovery in Databases (KDD), 2020.
[16] D. Easley, J. Kleinberg, Networks, Crowds, and Markets Reasoning about a Highly Connected World,

Cambridge University Press, 2010.
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