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Abstract

Uniform hypergraphs have a natural one-to-one correspondence to tensors. In this

paper, we investigate the Estrada index and subgraph centrality of an m-uniform

hypergraph H via the adjacency tensor. We establish some bounds for the Estrada

index and give expressions of the subgraph centrality in terms of graph parameters

of the multi-digraphs associated with H. When H is 2-uniform, the above Estrada

index and subgraph centrality are the Estrada index and subgraph centrality of a

graph.
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1. Introduction

For a simple undirected graph H , its Estrada index

EE(H) =
n∑

i=1

eλi ,

where λ1, λ2, . . . , λn are all the eigenvalues of the adjacency matrix of H [1]. The

study of Estrada index has attracted extensive attention[2, 3, 4, 5, 6]. The Estrada

index of graphs has wide applications in biology [1], chemistry [7] and complex

networks [8, 9]. The Estrada index of graphs is closely related to the subgraph

centrality of a vertex in graphs and the trace of the adjacency matrix of graphs

[2, 8].
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Let A be the adjacency matrix of the graph H and µd(j) = (Ad)jj. Then µd(j)

is the number of closed walks of length d starting and ending at the vertex j in H

[10].

C(j) =
∞∑

d=0

µd(j)

d!
(1.1)

is called the subgraph centrality of a vertex j in H [8]. The subgraph centrality is

a topological parameter to measure the importance of nodes in networks, which is

widely used in the real-world network analysis [8, 11].

The dth order spectral moment of H is the sum of d powers of all the eigenvalues

of A, denoted by Sd(H). Since the trace tr(Ad) =
∑n

j=1 µd(j) = Sd(H) [10],

n∑

j=1

C(j) =

∞∑

d=0

n∑

j=1

µd(j)

d!
=

∞∑

d=0

tr(Ad)

d!
=

∞∑

d=0

n∑

i=1

λd
i

d!
=

n∑

i=1

eλi = EE(H). (1.2)

Since uniform hypergraphs have a natural one-to-one correspondence to tensors,

in this paper, we investigate the Estrada index and subgraph centrality of hyper-

graphs via tensors. Next, we introduce some notations and concepts for tensors and

hypergraphs. Let [n] = {1, 2, . . . , n}, [n]m = {i1i2 · · · im| ik ∈ [n], k = 1, . . . , m} and

C be complex field. An order m dimension n complex tensor

T = (tα) , for α ∈ [n]m, tα ∈ C,

is a multidimensional array with nm entries. When m = 2, T is an n × n matrix

[12, 13].

A hypergraph H = (V (H), E(H)) is called m-uniform if |e| = m ≥ 2 for all

e ∈ E(H). For e = {i1, i2, . . . , im} ∈ E(H), e is also written i1i2 · · · im in this paper.

For an m-uniform hypergraph H, its adjacency tensor is the order m dimension n

tensor AH = (hα), where

hα =





1
(m−1)!

, if α ∈ E(H),

0, otherwise.

Clearly, AH is the adjacency matrix of H when H is 2-uniform. The eigenvalues of

AH are also called the eigenvalues of H [14].

In 2005, the concept of eigenvalues of tensors was proposed by Qi [12] and Lim
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[13], independently. The eigenvalues of tensors and related problems are important

research topics of spectral hypergraph theories [15, 16, 17, 18], especially the trace

of tensors [18, 19, 20, 21, 22].

Morozov and Shakirov gave an expression of the dth order trace Trd(T ) of a

tensor T [19]. Hu et al. proved that Trd(T ) is equal to the sum of d powers of

all eigenvalues of T [20]. For a uniform hypergraph H, the sum of d powers of all

eigenvalues of AH is called the dth order spectral moment of H, denoted by Sd(H).

Then Trd(AH) = Sd(H). Shao et al. established some formulas for the dth order

trace of tensors in terms of some graph parameters [21]. Clark and Cooper expressed

the spectral moments of hypergraphs by the numbers of Veblen multi-hypergraphs

and used this result to give the “Harary-Sachs” coefficient theorem for hypergraphs

[18]. Chen et al. gave a formula for the spectral moment of a hypertree in terms of

the numbers of some subhypertrees [22].

In this paper, we define the Estrada index and subgraph centrality of a uniform

hypergraph H via the adjacency tensor. The bounds for the Estrada index are

established. We give two expressions of the subgraph centrality by the number

of Eulerian closed walks of the multi-digraphs associated with H and the number

of arborescences of the multi-digraphs associated with H, respectively. Similar to

the Estrada index of a graph as in Equation (1.2), the Estrada index of a uniform

hypergraph H is equal to the sum of the subgraph centrality measures of all vertices

in H.

2. Preliminaries

Let Cn be the set of n-dimension complex vectors and C[m,n] be the set of complex

tensors with order m dimension n. For a tensor T = (tiα) ∈ C[m,n] and x =

(x1, . . . , xn)
T ∈ Cn, T xm−1 is a vector in Cn whose i-th component is

(T xm−1)i =
∑

α∈[n]m−1

tiαx
α,

where xα = xi1xi2 · · ·xim−1 for α = i1i2 · · · im−1. A number λ ∈ C is called an

eigenvalue of T if there exists a nonzero vector x ∈ Cn such that

T xm−1 = λx[m−1],
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where x[m−1] =
(
xm−1
1 , . . . , xm−1

n

)T
. The number of eigenvalues of T is k = n(m −

1)n−1 [12, 13]. Let ρ = max{|λ1|, |λ2|, . . . , |λk|} be the spectral radius of T , where

λ1, λ2, . . . , λk are all the eigenvalues of T .

The dth order trace Trd(T ) of a tensor T = (tα) ∈ C[m,n] is expressed as follows

[19]:

Trd(T )

= (m− 1)n−1
∑

d1+···+dn=d

n∏

i=1

1

(di(m− 1))!
(

∑

αi∈[n]m−1

tiαi

∂

∂aiαi

)ditr(Ad(m−1)), (2.1)

where A = (aij) is an n × n auxiliary matrix, d1, . . . , dn are nonnegative integers

and ∂
∂aiαi

:= ∂
∂aii2

· · · ∂
∂aiim

for αi = i2 · · · im.
In [14], the dth order traces of the adjacency tensor of an m-uniform hypergraph

were given for d = 0, 1, 2, . . . , m.

Lemma 2.1. [14] Let H be an m-uniform hypergraph with n vertices and q edges.

Then

(1) Tr0(AH) = n(m− 1)n−1;

(2) Trd(AH) = 0 for d = 1, 2, . . . , m− 1;

(3) Trm(AH) = qmm−1(m− 1)n−m.

Since uniform hypergraphs have a natural one-to-one correspondence to tensors,

we define the Estrada index and subgraph centrality of a uniform hypergraph via

the adjacency tensor.

Definition 2.2. For an m-uniform hypergraph H with n vertices,

k∑

i=1

eλi

is called the Estrada index of H, denoted by EE(H), where λ1, λ2, . . . , λk are all the

eigenvalues of AH.

Clearly, when H is 2-uniform, the above index is the Estrada index of a graph

[1].

Let H = (V (H), E(H)) be an m-uniform hypergraph with n vertices. For j ∈
V (H), let µd(j) be the term corresponding to the vertex j in Trd(AH) which is
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expressed by Equation (2.1), that is

µd(j) = (m− 1)n−1
∑

d1+···+dn=d

n∏

i=1

1

(di(m− 1))!
(

∑

αi∈[n]m−1

hiαi

∂

∂aiαi

)di(Ad(m−1))jj. (2.2)

Thus,
n∑

j=1

µd(j) = Trd(AH). (2.3)

Definition 2.3. For an m-uniform hypergraph H with n vertices,

∞∑

d=0

µd(j)

d!
(2.4)

is called the subgraph centrality of a vertex j in H, denoted by C(j), where µd(j) is

given by Equation (2.2).

By Equation (2.2), we know C(j) is a real number. When H is 2-uniform, since

µd(j) = (Ad
H)jj [19], C(j) is the subgraph centrality of a graph as in Equation (1.1).

Since the dth order trace of the adjacency tensor Trd(AH) =
∑k

i=1 λ
d
i [20] and

Equation (2.3),

n∑

j=1

C(j) =

∞∑

d=0

n∑

j=1

µd(j)

d!
=

∞∑

d=0

Trd(AH)

d!
=

k∑

i=1

∞∑

d=0

λd
i

d!
=

k∑

i=1

eλi = EE(H),

where λ1, λ2, . . . , λk are all the eigenvalues of AH.

3. Bounds for the Estrada index of hypergraphs

The spectrum of an m-uniform hypergraph is said to be m-symmetric if this

spectrum is invariant under a rotation of an angle 2π/m in the complex plane [21].

In this section, for a 3-uniform hypergraph H whose spectrum is 3-symmetric, we

give an upper bound for the Estrada index in terms of energy of H. And for m-

uniform hypergraphs, we establish some bounds for the Estrada index.

The spectra of m-uniform power hypergraphs and hypertrees have attracted

extensive attention [23, 24]. Their spectra are all m-symmetric [14, 21, 24, 25].

Lemma 3.1. [21] LetH be an m-uniform hypergraph whose spectrum ism-symmetric.

If m ∤ d, then Trd(AH) = 0.
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Let H be an m-uniform hypergraph with n vertices and λ1, λ2, . . . , λk be all the

eigenvalues of AH. In this paper,
∑k

j=1 |λj| is called the energy of H, denoted by

E(H). When m = 2, bounds for the Estrada index of a graph H were given by

energy of H [2, 26, 27].

For a 3-uniform hypergraph H whose spectrum is 3-symmetric, we establish an

upper bound by energy of H for the Estrada index.

Theorem 3.2. Let H be a 3-uniform hypergraph with n vertices and q edges (q ≥ 1).

If the spectrum of H is 3-symmetric, then

EE(H) ≤ 2(cosh ρ− 1)

3ρ
E(H) + k,

where ρ is the spectral radius of AH and k = 2n−1n.

Proof. It follows from Lemma 3.1 that

EE(H) =

∞∑

d=0

Trd(AH)

d!
=

∞∑

l=0

Tr3l(AH)

(3l)!
=

∞∑

l=0

k∑

j=1

λ3l
j

(3l)!
≤

k∑

j=1

∞∑

l=0

|λj|3l
(3l)!

, (3.1)

where λ1, λ2, . . . , λk are all the eigenvalues of AH.

Let S(x) =
∑∞

l=0
x3l

(3l)!
, where x is a real variable. We have d3S

dx3 =
∑∞

l=1
x3l−3

(3l−3)!
=

∑∞
l=0

x3l

(3l)!
.

Hence, we get the differential equation d3S
dx3 − S = 0 satisfying the conditions

S(0) = 1, dS
dx

|x=0= 0 and d2S
dx2 |x=0= 0. Then S(x) = 2

3
e−

x
2 cos(

√
3
2
x) + 1

3
ex.

We have

S(|λj|) =
2

3
e−

|λj |

2 cos(

√
3

2
|λj|) +

1

3
e|λj |

≤ 2

3

e−|λj | + (cos(
√
3
2
|λj|))2

2
+

1

3
e|λj |

≤ 1

3
(e−|λj | + e|λj |) +

1

3
=

2

3
cosh |λj |+

1

3
.

Let f(x) = coshx−1
x

, x ∈ (0, ρ]. We have df(x)
dx

= x sinhx−coshx+1
x2 . Let g(x) =

x sinh x − cosh x + 1, x ∈ [0, ρ]. We have dg(x)
dx

= x cosh x ≥ 0 and dg(x)
dx

= 0

if and only if x = 0. Thus, g(x) is strictly monotone increasing function. For

0 < x ≤ ρ, we have g(x) > g(0) = 0. Hence, df(x)
dx

> 0, x ∈ (0, ρ]. Then f(x)

is strictly monotone increasing function. So cosh x−1
x

≤ cosh ρ−1
ρ

, x ∈ (0, ρ], that is
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cosh x ≤ cosh ρ−1
ρ

x+1, x ∈ (0, ρ]. When x = 0, the above inequality obviously holds.

Thus, cosh x ≤ cosh ρ−1
ρ

x+ 1, x ∈ [0, ρ].

So,

S(|λj|) ≤
2

3
cosh |λj|+

1

3

≤ 2

3
(
cosh ρ− 1

ρ
|λj|+ 1) +

1

3
=

2(cosh ρ− 1)

3ρ
|λj|+ 1. (3.2)

By Equation (3.1) and (3.2), we have

EE(H) ≤
k∑

j=1

S(|λj|)

≤ 2(cosh ρ− 1)

3ρ

k∑

j=1

|λj|+ k =
2(cosh ρ− 1)

3ρ
E(H) + k.

The following is a lower bound for the Estrada index of m-uniform hypergraphs.

Theorem 3.3. Let H be an m-uniform hypergraph with n vertices and q edges.

Then

EE(H) ≥ qmm−2(m− 1)n−m−1

(m− 2)!
+ n(m− 1)n−1, (3.3)

equality holds if and only if H is an empty hypergraph.

Proof. From Lemma 2.1, we have

EE(H) =

∞∑

d=0

Trd(AH)

d!
= n(m− 1)n−1 +

∞∑

d=m

Trd(AH)

d!

≥ n(m− 1)n−1 +
Trm(AH)

m!
= n(m− 1)n−1 +

qmm−2(m− 1)n−m−1

(m− 2)!
.

When H is an empty hypergraph, all eigenvalues of AH are 0. It is easy to see

EE(H) =
∑k

i=1 e
0 = k = n(m− 1)n−1. Then the equality of Inequality (3.3) holds.

On the other hand, if the equality of Inequality (3.3) holds, it follows from the
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proof of the above inequality that Trd(AH) = 0 for all d ≥ m+ 1, that is

k∑

j=1

λd
j = 0, for all d ≥ m+ 1, (3.4)

where λ1, λ2, . . . , λk are all the eigenvalues ofAH. Without loss of generality, suppose

that λ1, λ2, . . . , λs are all the distinct eigenvalues among λ1, λ2, . . . , λk, and li ≥ 1 is

the multiplicity of λi, i = 1, 2, . . . , s.

If s = 1, then all the eigenvalues of AH are the same. Since Tr1(AH) = 0, all

the eigenvalues of AH are 0.

If s ≥ 2, let M =




1 1 · · · 1

λ1 λ2 · · · λs

· · · · · · · · · · · ·
λs−1
1 λs−1

2 · · · λs−1
s


. By Equation (3.4), we have

M(l1λ
m+1
1 , l2λ

m+1
2 , . . . , lsλ

m+1
s )T = 0. Since det(M) 6= 0, (l1λ

m+1
1 , l2λ

m+1
2 , . . . ,

lsλ
m+1
s )T = 0, that is λj = 0, j = 1, 2, . . . , s. It contradicts s ≥ 2.

So all the eigenvalues of AH are 0. Then the spectral radius of AH is 0. The

spectral radius is greater than or equal to the average degree of H [14]. Hence, the

average degree is equal to 0, that is H is an empty hypergraph.

Thus, equality holds in Inequality (3.3) if and only if H is an empty hypergraph.

Next we establish an upper bound for the Estrada index of m-uniform hyper-

graphs with m ≥ 3.

Theorem 3.4. Let H be an m-uniform hypergraph with n vertices, q edges and

m ≥ 3. Then

EE(H) ≤ k − 1 + er +
qmm−2(m− 1)n−m−1

(m− 2)!
−

m∑

d=1

rd

d!
, (3.5)

where r =
√

2
∑k

j=1(Re(λj))2, λ1, λ2, . . . , λk are all the eigenvalues of AH, k =

n(m− 1)n−1. Equality holds if and only if H is an empty hypergraph.

Proof. Let λj = αj + iβj, αj , βj ∈ R, j = 1, 2, . . . , k, i2 = −1. From Tr2(AH) =

8



∑k
j=1 λ

2
j and Lemma 2.1 (2), we have

Tr2(AH) =

k∑

j=1

(α2
j − β2

j ) + i

k∑

j=1

2αjβj = 0.

Then
k∑

j=1

(α2
j − β2

j ) = 0.

So

k∑

j=1

|λj|2 =
k∑

j=1

(α2
j + β2

j ) = 2
k∑

j=1

α2
j . (3.6)

Note that EE(H), Trd(AH) are nonnegative real numbers, d = 0, 1, 2, . . . , and∑∞

d=0
|λj |d
d!

is convergent. We have

EE(H) =
m∑

d=0

Trd(AH)

d!
+

∞∑

d=m+1

∑k
j=1 λ

d
j

d!

≤
m∑

d=0

Trd(AH)

d!
+

∞∑

d=m+1

1

d!

k∑

j=1

|λj |d .

For |λj| , j ∈ [k] and integer d ≥ 2, by Cauchy-Schwarz Inequality, we have

(
k∑

j=1

|λj |d)2 = (
k∑

j=1

(|λj|d−1 |λj|))2

≤
k∑

j=1

|λj |2(d−1)
k∑

j=1

|λj|2 =
k∑

j=1

(|λj |2)(d−1)
k∑

j=1

|λj|2

≤ (
k∑

j=1

|λj |2)d−1
k∑

j=1

|λj|2 = (
k∑

j=1

|λj|2)d,

9



that is
∑k

j=1 |λj|d ≤ (
∑k

j=1 |λj |2)
d
2 . So,

EE(H) ≤
m∑

d=0

Trd(AH)

d!
+

∞∑

d=m+1

1

d!
(

k∑

j=1

|λj|2)
d
2 .

It follows from Equation (3.6) that

EE(H) ≤
m∑

d=0

Trd(AH)

d!
+

∞∑

d=m+1

1

d!
(2

k∑

j=1

α2
j )

d
2

=
m∑

d=0

Trd(AH)

d!
+ e

√
2

k∑
j=1

α2
j −

m∑

d=0

(2
k∑

j=1

α2
j )

d
2

d!
.

By Lemma 2.1, we have

EE(H) ≤ k − 1 + e

√
2

k∑
j=1

α2
j

+
Trm(AH)

m!
−

m∑

d=1

(2
k∑

j=1

α2
j )

d
2

d!
,

where Trm(AH) = qmm−1(m− 1)n−m. Thus, we obtain Inequality (3.5).

If H is an empty hypergraph, all eigenvalues of AH are 0. It is easy to see

EE(H) =
∑k

i=1 e
0 = k. Then the equality in Inequality (3.5) holds.

On the other hand, suppose the equality in Inequality (3.5) holds. From the

proof of the above inequality, we have
∑∞

d=m+1
1
d!
(
∑k

j=1 |λj|d −
∑k

j=1 λ
d
j ) = 0 and

note that
∑k

j=1 λ
d
j is a nonnegative real number, d = m+ 1, m+ 2, . . . . Then

k∑

j=1

λd
j =

k∑

j=1

|λj|d, d = m+ 1, m+ 2, . . . .

Let λj = |λj|eiθj , j = 1, 2, . . . , k. We have

k∑

j=1

|λj|d(1− cos(θjd)) = 0, d = m+ 1, m+ 2, . . . .

Then |λj|d(1 − cos(θjd)) = 0, d = m + 1, m + 2, . . . , and j = 1, 2, . . . , k. Thus, we

have λj = 0 or cos(θjd) = 1, d = m+ 1, m+ 2, . . . , for each j ∈ [k]. If there exists

10



j ∈ [k] such that cos(θjd) = 1, d = m + 1, m + 2, . . . . Then we have θjd = 2ldπ,

where ld is an integer and d = m+ 1, m+ 2, . . . . So,

θj =
lm+1

m+ 1
2π =

lm+2

m+ 2
2π = · · · .

Let lm+1

m+1
= lm+2

m+2
= · · · = t. Then

lm+2 = t(m+ 2) = t(m+ 1) + t = lm+1 + t.

Since lm+1, lm+2 are integers, t is an integer. So, θj is equal to an integer multiple of

2π. Hence, λj is a nonnegative real number. Since Tr1(AH) = 0, all eigenvalues of

AH are 0. In the proof of Theorem 3.3, we proved that H is an empty hypergraph

when all eigenvalues ofAH are 0. Thus, we getH is an empty hypergraph. Therefore,

the equality holds in Inequality (3.5) if and only if H is an empty hypergraph.

4. Expressions for the subgraph centrality of hypergraphs

In this section, for a uniform hypergraph H, we give two expressions of the sub-

graph centrality by the number of Eulerian closed walks of the multi-digraphs associ-

ated with H and the number of arborescences of the multi-digraphs associated with

H, respectively. The explicit expression of µd(j) of H is given for d = 0, 1, 2, . . . , m.

For an integer d > 0, let α = i1 · · · id ∈ [n]d. If α satisfies i1 ≤ · · · ≤ id, then α

is called ascending order. Let

Fd = {(i1α1, . . . , idαd)| 1 ≤ i1 ≤ · · · ≤ id ≤ n, αk ∈ [n]m−1, k = 1, . . . , d}.

Let F = (i1α1, . . . , idαd) ∈ Fd, where ikαk = ikj
(k)
1 · · · j(k)m−1, k = 1, 2, . . . , d. Let

the set of arcs from ik to j
(k)
1 , j

(k)
2 , . . . , j

(k)
m−1 be

E(ikαk) = {(ik, j(k)1 ), (ik, j
(k)
2 ), . . . , (ik, j

(k)
m−1)}.

Let the arc multi-set

Ẽ(F ) =
d⋃

k=1

E(ikαk).

Let multi-digraph D(F ) = (V (Ẽ(F )), Ẽ(F )). An Eulerian tour of the multi-

digraph D(F ) is a closed walk that traverses each arc of D(F ) exactly once [28].

Let ǫ(F, j) be the set of all Eulerian tours starting and ending at the vertex j in
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D(F ). For any arc (i, j) from i to j in D(F ), let ω(i, j) be multiplicity of arc (i, j).

Let D̂(F ) be the digraph formed by removing duplicate arcs of D(F ). In this paper,

an Eulerian closed walk of the multi-digraph D(F ) is a closed walk that uses each

arc (i, j) of D̂(F ) exactly ω(i, j) times. Let W(F, j) be the set of all Eulerian closed

walks of D(F ) starting and ending at the vertex j. The multi-digraph D(F ) is called

Eulerian if D(F ) has Eulerian closed walks.

For F = (i1α1, . . . , idαd) ∈ Fd, let the differential operator ∂(F ) :=
∏d

k=1
∂

∂aikαk

.

Lemma 4.1. Let F ∈ Fd. Then

∂(F )(Ad(m−1))jj = b(F )|W(F, j)|,

where A is an auxiliary matrix of order n, and b(F ) is the product of the factorials

of the multiplicities of all the arcs in D(F ).

Proof. For the matrix A = (aij), we have

∂(F )(Ad(m−1))jj =
n∑

l2,...,ld(m−1)=1

∂(F )(ajl2al2l3 · · · ald(m−1)j).

Since ajl2al2l3 ···ald(m−1)j is a polynomial of degree d(m−1), ∂(F )(ajl2al2l3 ···ald(m−1)j) 6=
0 if and only if ∂(F )(ajl2al2l3 · · · ald(m−1)j) = b(F ). And in this case, the arc multi-set

{(j, l2), (l2, l3), . . . , (ld(m−1), j)} = Ẽ(F ), that is there exists an Eulerian closed walk

of D(F ) starting and ending at the vertex j. Hence,

∂(F )(Ad(m−1))jj =
n∑

l2,...,ld(m−1)=1

∂(F )(ajl2al2l3 · · · ald(m−1)j) = b(F )|W(F, j)|.

Let H = (V (H), E(H)) be an m-uniform hypergraph with n vertices, where

V (H) = {1, . . . , n}. Let Fd(H) = {(i1α1, . . . , idαd) ∈ Fd|ikαk ∈ E(H), αk is

ascending order, k = 1, . . . , d}.
Let F (j)

d (H) = {F ∈ Fd(H)|D(F ) is Eulerian and contains the vertex j}.

Theorem 4.2. Let H = (V (H), E(H)) be an m-uniform hypergraph with n vertices.

Then

C(j) =

∞∑

d=0

µd(j)

d!
,

12



where

µd(j) = (m− 1)n−1
∑

F∈F(j)
d

(H)

b(F )

c(F )
|W(F, j)|,

j ∈ V (H), b(F ) is the product of the factorials of the multiplicities of all the arcs

in D(F ), c(F ) is the product of the factorials of the outdegrees of all the vertices

in D(F ) and W(F, j) is the set of all Eulerian closed walks of D(F ) starting and

ending at the vertex j.

Proof. Let V (H) = {1, . . . , n}, the adjacency tensor AH = (hα), F = (i1α1, . . . ,

idαd) ∈ Fd and πF (AH) =
∏d

k=1 hikαk
. Using Formula (2.9) in [21]

∑

d1+···+dn=d

n∏

i=1

1

(di(m− 1))!
(

∑

αi∈[n]m−1

hiαi

∂

∂aiαi

)di =
∑

F∈Fd

1

c(F )
πF (AH)∂(F ),

we get

µd(j) = (m− 1)n−1
∑

F∈Fd

1

c(F )
πF (AH)∂(F )(Ad(m−1))jj.

By Lemma 4.1, we have

µd(j) = (m− 1)n−1
∑

F∈Fd

b(F )

c(F )
πF (AH)|W(F, j)|. (4.1)

According to the definition of adjacency tensors, we have

πF (AH) =

d∏

k=1

hikαk
=





1
((m−1)!)d

, if ikαk ∈ E(H), k = 1, . . . , d,

0, otherwise.

Then the F in Equation (4.1) such that πF (AH) 6= 0 if and only if ikαk ∈ E(H),

k = 1, . . . , d. For F = (i1α1, . . . , idαd) ∈ Fd(H), αk is ascending order, k = 1, . . . , d.

Thus, each F ∈ Fd(H) corresponds to ((m− 1)!)d elements in Fd.
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Hence,

µd(j) = (m− 1)n−1
∑

F∈Fd(H)

((m− 1)!)d
b(F )

c(F )

1

((m− 1)!)d
|W(F, j)|

= (m− 1)n−1
∑

F∈Fd(H)

b(F )

c(F )
|W(F, j)|

= (m− 1)n−1
∑

F∈F(j)
d

(H)

b(F )

c(F )
|W(F, j)|. (4.2)

Substituting Equation (4.2) into Equation (2.4), we obtain the expression of C(j)

by the number of Eulerian closed walks of the multi-digraphs associated with H.

For a uniform hypergraph H, the following is the expression of C(j) by the

number of arborescences of the multi-digraphs associated with H.

Theorem 4.3. Let H = (V (H), E(H)) be an m-uniform hypergraph with n vertices.

Then

C(j) =

∞∑

d=0

µd(j)

d!
,

where

µd(j) = (m− 1)n−1
∑

F∈F(j)
d

(H)

t(F )∏
v∈V (Ẽ(F ))/{j}

d+(v)
,

j ∈ V (H), d+(v) is the outdegree of a vertex v in D(F ) and t(F ) is the number of

arborescences of D(F ).

Proof. Let V (H) = {1, . . . , n} and F ∈ F (j)
d (H). Since F ∈ F (j)

d (H), D(F ) is

Eulerian and contains the vertex j. In order to get the Theorem 4.3, we first give

the representation of |W(F, j)|. Let ǫ(F, e1) be the set of all Eulerian tours starting

with a fixed arc e1 in D(F ). Farrell and Levine [28] proved

|ǫ(F, e1)| =

∑
e∈Ẽ(F )

|ǫ(F, e)|
∑

v∈V (Ẽ(F ))

d+(v)
. (4.3)

By Equation (4.3), we have |ǫ(F, e1)| = |ǫ(F, e2)|, for all e1, e2 ∈ Ẽ(F ). Thus,

|ǫ(F, j)| = d+(j)|ǫ(F, e1)|.

14



Let E(F ) be the set of all Euler circuits in D(F ). There are |Ẽ(F )||E(F )| Euler
tours in Ẽ(F ) [18]. Then

∑
e∈Ẽ(F ) |ǫ(F, e)| = |Ẽ(F )||E(F )|.

Thus,

|W(F, j)| = |ǫ(F, j)|
b(F )

=

d+(j) |Ẽ(F )||E(F )|∑

v∈V (Ẽ(F ))

d+(v)

b(F )
=

d+(j)|E(F )|
b(F )

,

where b(F ) is the product of the factorials of the multiplicities of all the arcs in

D(F ).

Tutte et al.[29] and Aardenne-Ehrenfest et al.[30] proved the BEST Theorem

|E(F )| = t(F )
∏

v∈V (Ẽ(F ))

(d+(v)− 1)!.

Then

|W(F, j)| =
d+(j)t(F )

∏
v∈V (Ẽ(F ))(d

+(v)− 1)!

b(F )
. (4.4)

By Theorem 4.2, Equation (4.4) and c(F ) =
∏

v∈V (Ẽ(F )) d
+(v)!, we get

µd(j) = (m− 1)n−1
∑

F∈F(j)
d

(H)

b(F )d+(j)t(F )
∏

v∈V (Ẽ(F ))(d
+(v)− 1)!

c(F )b(F )

= (m− 1)n−1
∑

F∈F(j)
d

(H)

t(F )∏
v∈V (Ẽ(F ))/{j}

d+(v)
. (4.5)

Substituting Equation (4.5) into Equation (2.4), we obtain the expression of C(j)

by the number of arborescences of the multi-digraphs associated with H.

Next, we give the following explicit formula of µd(j) (d = 0, 1, 2, . . . , m) for

m-uniform hypergraphs.

Theorem 4.4. Let H = (V (H), E(H)) be an m-uniform hypergraph with n vertices.

Then

µd(j) =





mm−2(m− 1)n−md(j), if d = m,

0, if d = 1, 2, . . . , m− 1,

(m− 1)n−1, if d = 0,

where j ∈ V (H) and d(j) is the degree of j in H.
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Proof. Let V (H) = {1, . . . , n} and Ej(H) = {e ∈ E(H)|j ∈ e}. Since F (j)
m (H) =

{(i1i2 · · · im, i2i1i3i4 · · · im, . . . , imi1i2 · · · im−1)|i1i2 · · · im ∈ Ej(H), i1i2 · · · im is

ascending order}, we have |F (j)
m (H)| = d(j).

For F ∈ F (j)
m (H), D(F ) is a complete digraph with m vertices. We have∏

v∈V (Ẽ(F ))/{j} d
+(v) = (m− 1)m−1. The number of arborescences of D(F ) is mm−2

( Cayley’s formula [31]). By Theorem 4.3 and the above discussion, we get

µm(j) =
(m− 1)n−1d(j)mm−2

(m− 1)m−1
= mm−2(m− 1)n−md(j).

From Lemma 2.1 (2), we know Trd(AH) = 0, d = 1, 2, . . . , m − 1, by Equation

(2.3), we know
∑n

j=1 µd(j) = Trd(AH) and by Theorem 4.2, we get µd(j) ≥ 0, d =

1, 2, . . . , m− 1. Thus, we have

µd(j) = 0, d = 1, 2, . . . , m− 1.

By Equation (2.2), we easily get µ0(j) = (m− 1)n−1.

For an m-uniform hypergraph H with n vertices and m ≥ 2, the subgraph

centrality C(j) =
∑∞

d=0
µd(j)
d!

, by Theorem 4.4, we have
∑m

d=0
µd(j)
d!

= (m − 1)n−1 +
mm−3(m−1)n−m−1d(j)

(m−2)!
, j = 1, 2, . . . , n. The ranking from taking

∑m
d=0

µd(j)
d!

as centrality

is the same as degree centrality for the m-uniform hypergraph.
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