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Abstract

The transmission of a vertex v of a (chemical) graph G is the sum of distances from
v to other vertices in G. If any two vertices of G have different transmissions, then G is
a transmission irregular graph. It is shown that for any odd number n ≥ 7 there exists a
transmission irregular chemical tree of order n. A construction is provided which generates
new transmission irregular (chemical) trees. Two additional families of chemical graphs
are characterized by property of transmission irregularity and two sufficient condition
provided which guarantee that the transmission irregularity is preserved upon adding a
new edge.
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1 Introduction

In chemical graph theory, molecules are naturally represented by (chemical) graphs. In the
next step, the graph distance function is an obvious tool for exploring chemical graphs,
which in turn reflect the physico-chemical properties of the corresponding (organic) com-
pounds, cf. [32]. The Wiener index [36] is a famous example, but many other distance-based
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(possibly combined with vertex degrees) topological indices have been studied such as Schultz
index [33, 29], hyper-Wiener index [31], Gutman index [23, 29], vertex-Szeged index [23], PI
index [26], edge-Wiener index [27], edge-Szeged index [24], Wiener polarity index [2, 25], and
more. The area is still very active; for a survey on graphs extremal with respect to distance-
based topological indices see [39], and for a selection of recent developments with a focus on
applications see [8, 9, 15, 17, 34, 35, 40, 41].

Exploring all these indices can be interesting from a mathematical point of view, but
it is also much important from a chemical point of view, as it turns out in practice that
several indices need to be combined to determine the properties of molecules. Moreover, this
approach has found applications in many other areas such as communication theory, facility
location, crystallography, and even in ornithology. As a point of interest for the latter we
mention that it was shown in [11] that the interaction between a flock of birds depends more
intimately on the topological distance rather than the Euclidian distance.

If G = (V (G), E(G)) is a graph and x, y ∈ V (G), then dG(x, y) denotes the shortest-path
distance between x and y in G. The sum of all distances from a vertex x to other vertices
is a basic building block in exploration of metric properties of a graph and is called the
transmission of x and denoted by TrG(x). That is,

TrG(x) =
∑

u∈V (G)\{x}

dG(x, u) .

That the transmission of a vertex is indeed a fundamental concept is demonstrated by the
fact that it is also known by several other names, such as the status of a vertex [1, 30] and
the total distance of a vertex [16, 28].

The transmission set of G is

Tr(G) = {TrG(x) : x ∈ V (G)} .

If |Tr(G)| = n(G) holds, where n(G) denotes the order of G, then G is transmission irreg-
ular, TI for short. Recalling that the Wiener complexity of a G is the number of different
transmission of its vertices [3], see also [22, 37], we can equivalently say that TI graphs are
the graphs with maximum Wiener complexity.

Since almost no graph is transmission irregular [4], the search for such graphs has become
of interest to several groups of researchers. Results to date have been presented in [5, 6, 7, 12,
13, 18, 19, 20, 21, 38]. In this paper we continue this line of research with a focus on chemical
graphs. In the next section we list definitions needed, recall some known results, and prove
a couple of results to be used later. In Section 3 we investigate transmission irregularity of
chemical trees while in Section 4 we consider families of chemical graphs containing a few
short cycles. We conclude the paper with some open problems.

2 Preliminaries

All graphs considered in this paper are finite, simple and, unless stated otherwise, also con-
nected. For X ⊆ V (G), let G − X be the subgraph of G obtained from G by removing
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the vertices from X and the edges incident with them, in particular, G− {v} will be briefly
denoted by G−v. Similarly, for F ⊆ E(G), G−F is the spanning subgraph of G obtained by
removing the edges of F and if e ∈ E(G) then we will write G−e for G−{e}. The eccentricity
eccG(v) of a vertex v ∈ V (G) is the maximum distance from v to all other vertices in G. If
uv ∈ E(G), then nu (or nG(u) if the graph G is necessarily mentioned) is the number of
vertices in G closer to u than to v and nv (or nG(v) for completeness) is similarly defined.

A vertex v with degG(v) = 1 is called a pendant vertex (also leaf whenG is a tree) inG, and
the edge incident with a pendant vertex is called a pendant edge. A path P := ukuk−1 · · · u2u1
with natural adjacency relation in a graph G is a proper pendant path in G if degG(uk) ≥ 3,
degG(u1) = 1, and degG(ui) = 2 for i ∈ {2, 3, . . . , k− 1}, where uk is its root. If both uk and
u1 in P have degrees at least 3 and each of uj with j ∈ {2, 3, . . . , k− 1} has degree 2, then P

is an internal path in G with two terminals uk and u1. Specially, if u1 and uk have degrees
at least 2, then the above P is a weak internal path with two weak terminals u1 and uk.

The definition of a chemical graph is still a matter of debate, but we will stick to the most
common and simple one: A graph G is a chemical graph if its maximum degree is at most 4.
A vertex of degree at least 3 is a branching vertex. A tree with a unique branching vertex v

is starlike. A starlike tree T with branching vertex v will be denoted by T = T (n1, . . . , nk) if
T − v consists of k disjoint paths of orders n1, . . . , nk, respectively. And the pendant path of
length ni from v is called an ni-arm in it.

For an induced subgraph H of G, we say that the transmission set of H in G is TrG(H) =
{TrG(u) : u ∈ V (H)}. In particular, TrG(G) = Tr(G). For an induced subgraph H of a
graph G, if |TrG(H)| = n(H), then H is a partially transmission irregular subgraph of G.

For a positive integer k we use the notation [k] = {1, . . . , k} and [k]0 = {0, 1, . . . , k}. For a
set A of integers and i ∈ Z, we denote by A+i the usual coset, that is, A+i = {a+i : a ∈ A}.

For any tree T and its subtree T0 with a non-leaf vertex v ∈ V (T0), we denote by Vj

the set of vertices at distance j from v in T0. Let a = eccT0
(v). Then V (T ∗) = ∪a

j=1Vj is
a distance-based partition of the forest T0 − v at v. If min

u∈Vj+1

TrT (u) ≥ max
u∈Vj

TrT (u) for any

j ∈ [a−1] in the above partition, then T0 is a distance-based transmission monotonic (DBTM
for short) subtree of T at v. See an example of a DBTM subtree in Fig. 1. In particular, if
T0 = T , then T is a DBTM tree. If min

u∈Vj+1

TrT (u) ≥ max
u∈Vj−1

TrT (u) for any j ∈ [a− 1] \ [1] in

the above distance-based partition of T at v ∈ V (T ), then T is a 2-DBTM tree at v. If T is
a DBTM tree at v ∈ V (T ), then min

u∈Vj+1

TrT (u) ≥ max
u∈Vj

TrT (u) ≥ min
u∈Vj

TrT (u) ≥ max
u∈Vj−1

TrT (u),

which implies that T is a 2-DBTM tree at v. Therefore DBTM tree is a special 2-DBTM
tree with the same root.

A set of positive integers is odd (even, resp.) if it consists of odd (even, resp.) integers.
A family A = ∪k

i=1Ai of sets of positive integers has intersecting parity if Ap and Ap+1 have
different parities for any p ∈ [k − 1]. Moreover, similarly as above, if minAj+1 ≥ maxAj−1

for any j ∈ [k − 1] \ [1], then A is 2-distance monotonic.

Lemma 2.1 Let A = ∪k
i=1Ai be a 2-distance monotonic family of sets of positive integers.

If A has intersecting parity, then the sets Ai are pairwise disjoint.
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T

v
T0

Figure 1: Tree T with a DBTM subtree T0 rooted at v.

Proof. Without loss of generality, we assume that A1 is odd. From the condition that A

has intersecting parity, we deduce that Aj has the same parity with its subscript j for any
j ∈ [k]. Then Ap ∩Aq = ∅ if p, q ∈ [k] have different parities. It follows that A(1) ∩A(2) = ∅
where A(1) is the union of sets Ai with odd i ∈ [k] and A(2) is the union of sets Ai with even
i ∈ [k]. In view of the 2-distance monotonic property of A, we conclude that both A(1) and
A(2) are pairwise disjoint. Thus the result follows immediately. �

From Lemma 2.1, the following result is obvious.

Corollary 2.2 Let A = ∪k
i=1Ai be a 2-distance monotonic family of sets of positive integers,

and let t be an even positive integer. If A has intersecting parity, then both ∪k
i=1(Ai+ it) and

∪k
i=1(Ai + a) are pairwise disjoint, where a is a constant.

Lemma 2.3 [10] If G is a graph with n(G) > 2 and uv ∈ E(G), then Tr(u)−Tr(v) = nv−nu.

Lemma 2.4 [38] Let G be a graph with n(G) = n and v a vertex with deg(v) ≥ 3. If
P = uv1v2 · · · vx−1v is a pendant path with natural adjacency relation attaching at v, where
deg(u) = 1 and x < n

2 , then Tr(vx−1)− Tr(v) = n− 2x.

Lemma 2.5 Let G be a graph with n(G) = n and P = vv1v2 · · · vkv
∗ is a weak internal

path in G with two weak terminals v and v∗ such that each edge in P is a cut edge. If
Tr(v1)−Tr(v) = a > 0, then Tr(vj)− Tr(v) = j(a+ j − 1) for any j ∈ [k].

Proof. By Lemma 2.3, we have nv − nv1 = a. Since each edge in P is a cut edge, we have
nv1 − nv2 = a + 2, nv2 − nv3 = a+ 4, . . ., nvj−1

− nvj = a + 2(j − 1). From Lemma 2.3, we
have Tr(v2)− Tr(v1) = a+ 2, Tr(v3)− Tr(v2) = a+ 4, . . ., Tr(vj)− Tr(vj−1) = a+ 2(j − 1).
Note that vp−1 = v if p = 1. It follows that

Tr(vj)−Tr(v) =

j
∑

p=1

(

Tr(vp)− Tr(vp−1)
)

= j(a + j − 1),

completing the proof. �
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3 Transmission irregular chemical trees

In [5, 38] some TI starlike trees are determined, in particular, the TI starlike trees with
maximum degree 3 are characterized in [5] with a complicated condition. It is proved in [38]
that T = T (a, a + 1, . . . , a + k) is TI if n(T ) is odd. A tree Hk(a1, a2; b1, b2) is obtained
by attaching two pendant paths of lengths b1, b2, respectively, at a leaf on the k-arm of
T (a1, a2, k), see Fig. 2.

· · ·

· ·
·

· ·
·

· · ·
· · ·

k

a1 b1

a2 b2

Figure 2: The tree Hk(a1, a2; b1, b2)

Before stating our first main result, we make the following comment which will be used
frequently in the subsequent proof.

Remark 3.1 Let a < b be two positive integers. If b2 − a2 is even (odd, resp.), then b − a

and b+ a are both even (odd, resp.).

Proof. Clearly, b2 − a2 = (b+ a)(b− a). Note that b+ a and b− a have a same parity since
(b+ a) + (b− a) = 2b is even. Thus our result follows immediately. �

By a computer search we find that there is no TI tree of order at most 6. On the other
hand, we have the following result.

Theorem 3.2 If n ≥ 7 is an odd integer, then there exists a TI chemical tree of order n.

Proof. TI chemical trees of order 7 and 9 are displayed in Fig. 3, where, for each vertex, we
also give its transmission.

In the rest we assume that n ≥ 11 is odd.
If n = 4a+ 3, then a ≥ 2. Now we consider the tree T = H2(a− 1, a; a, a + 1) and prove

that T is TI. Let u be the vertex of degree 3 in T at which two pendant paths of lengths a,
a+ 1, respectively, are attached. Assume that TrT (u) = x and uv ∈ E(T ) with degT (v) = 2
and vw ∈ E(T ). Then w is the other vertex of degree 3 in T with TrT (v) = x + 1, and
TrT (w) = x + 4. Let A1 and A3 be the sets of transmissions of vertices on the pendant
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Figure 3: Sporadic TI chemical trees

paths of lengths a − 1 and a, respectively, attached at w, and let A2 and A4 be the sets of
transmissions of vertices on the pendant paths of lengths a and a+ 1, respectively, attached
at u. From the structure of T and Lemma 2.5 we have

A1 = {2ka+ (k + 2)2 : k ∈ [a− 1]}+ x,

A2 = {2ka+ (k + 1)2 − 1 : k ∈ [a]}+ x,

A3 = {2ka+ (k + 1)2 − 1 : k ∈ [a]}+ 4 + x,

A4 = {2ka+ k2 : k ∈ [a+ 1]} + x.

Next we prove that Ai∩Aj = ∅ for any i, j ∈ [4]. If 2k1a+(k1+2)2 = 2k2a+(k2+1)2−1 with
k1 ∈ [a− 1] and k2 ∈ [a], then k1 < k2. It follows that 2(k2 − k1)a− 1 = (k1 +2)2 − (k2 +1)2.
By Remark 3.1, k1 − k2 + 1 is odd, that is, k1 − k2 ≤ −2 is even. However, we have
2(k2 − k1)a − 1 > 0 > (k1 + k2 + 3)(k1 − k2 + 1) as a contradiction. Thus A1 ∩ A2 = ∅.
Similarly as above, we have A1∩A3 = ∅. If 2k1a+(k1+2)2 = 2k2a+k22 with k1 ∈ [a−1] and
k2 ∈ [a+ 1], then 2(k2 − k1)a = (k1 + 2)2 − k22 with k2 > k1. Note that k1 − k2 ≤ −2 is even
from Remark 3.1. But 2(k2 − k1)a > 0 ≥ (k1 + k2 + 2)(k1 − k2 + 2) is a clear contradiction.
Therefore A1 ∩ A4 = ∅. Note that A3 = A2 + 4. Then A2 ∩ A3 = ∅ since |s − t| > 2a ≥ 4
for any s, t ∈ A2. If 2k1a + (k1 + 1)2 − 1 = 2k2a + k22 with k1 ∈ [a] and k2 ∈ [a + 1], then
(k1 + 1)2 − k22 = 2(k2 − k1)a+ 1 with k2 > k1, which implies that k1 − k2 ≤ −2 is even from
Remark 3.1. But 2(k2−k1)a+1 > 0 > (k1+k2+1)(k1−k2+1) occurs contradictorily. Thus
A2 ∩A4 = ∅. Similarly as above, we have A3 ∩A4 = ∅ as desired.

If n = 4b+1, then b ≥ 3. We consider the tree T = H2(b−2, b−1; b, b+1) and prove that
T is TI. Let z1 be the vertex of degree 3 in T at which two pendant paths of lengths b, b+1,
respectively, are attached, z1z2 ∈ E(T ) with degT (z2) = 2 and z2z3 ∈ E(T ). Assume that
TrT (z1) = y. Then, by Lemma 2.3, we have TrT (z2) = y+3 and TrT (z3) = y+8. Denote by
Bi the set of transmissions of vertices on the pendant path of length b+ 2− i attached at z1
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or z3 with i ∈ [4]. From the structure of T and Lemma 2.5 we have

B1 = {2ka + k2 − 2k : k ∈ [b+ 1]}+ y,

B2 = {2ka + k2 : k ∈ [b]}+ y,

B3 = {2ka + (k + 1)2 − 1 : k ∈ [b− 1]}+ 8 + y,

B4 = {2ka + (k + 2)2 − 4 : k ∈ [b− 2]}+ 8 + y.

Now it suffices to prove that Bi∩Bj = ∅ for any i, j ∈ [4]. If 2k1b+k21−2k1 = 2k2b+k22 with
k1 ∈ [b+ 1] and k2 ∈ [b], then 2(k1 − k2)b− 1 = k22 − (k1 − 1)2 with k1 > k2. By Remark 3.1,
k2 − k1 ≤ −2 is even, which implies that 2(k1 − k2)b − 1 > 0 > (k2 − k1 + 1)(k2 + k1 − 1)
as a contradiction. This yields that B1 ∩ B2 = ∅. If 2k1b + k21 − 2k1 = 2k2b + (k2 + 1)2 + 7
with k1 ∈ [b + 1] and k2 ∈ [b − 1], then 2(k1 − k2)b − 8 = (k2 + 1)2 − (k1 − 1)2 with
k1 > k2. Using Remark 3.1 again, we find that k2 − k1 ≤ −2 is even. If k2 − k1 = −2,
then we have b = 2, contradicting to the fact that b ≥ 3. If k2 − k1 ≤ −4, we have
2(k1 − k2)b− 8 ≥ 8b− 8 > 0 > (k2 − k1 + 2)(k2 + k1) as a contradiction, again. Thus we get
B1 ∩ B3 = ∅. If 2k1b + k21 − 2k1 = 2k2b + (k2 + 2)2 + 4 with k1 ∈ [b + 1] and k2 ∈ [b − 2],
then 2(k1 − k2)b− 5 = (k2 + 2)2 − (k1 − 1)2 with k1 > k2. By Remark 3.1, we observe that
k2 − k1 ≤ −2 is even. If k2 − k1 = −2, then 2(k1 − k2)b − 5 = 4b − 5 = 2k2 + 3, that is,
k2 = 4b − 8 > b − 2, contradicting to the fact k2 ∈ [b − 2] with b ≥ 3. If k2 − k1 ≤ −4,
then 2(k1 − k2)b − 5 ≥ 4b − 5 > 0 > (k2 + 2)2 − (k1 − 1)2 as a clear contradiction again.
Therefore B1 ∩ B4 = ∅. If 2k1b + k21 = 2k2b + (k2 + 1)2 + 7 with k1 ∈ [b] and k2 ∈ [b − 1],
then 2(k1 − k2)b − 7 = (k2 + 1)2 − k21 with k1 > k2, which implies that k2 − k1 ≤ −2 is
even from Remark 3.1. But we deduce that 2(k1 − k2)b − 7 ≥ 4b − 7 > 0 > (k2 + 1)2 − k21
as a contradiction. Thus B2 ∩ B3 = ∅. Similarly as above, we have B2 ∩ B4 = ∅. If
2k1b+ (k1 + 1)2 + 7 = 2k2b+ (k2 + 2)2 + 4 with k1 ∈ [b − 1] and k2 ∈ [b − 2], then we have
2(k1 − k2)b + 3 = (k2 + 2)2 − (k1 + 1)2 with k1 > k2. Taking Remark 3.1 into account, we
observe that k2−k1 ≤ −2 is even. However, 2(k1−k2)b+3 ≥ 4b+3 > 0 > (k2+2)2−(k1+1)2

is a contradiction, again, implying that B3 ∩B4 = ∅. �

We next provide a method for constructing a TI tree from a tree with a DBTM subtree.

Theorem 3.3 Let T0 be a tree of order n ≥ 7 containing a proper pendant path P of length
k, where vk+1 is its root. Let T ∗

0 be the subtree of T0 obtained by removing all the vertices
of P but vk+1, and let T ′

0 be a copy of T0 with the vertex v′1 ∈ V (T ′
0) corresponding to v1.

Let T be the tree obtained by joining the vertices v1 and v′1, and by attaching a new leaf
w at v1. See Fig. 4. If T ∗

0 is a partially transmission irrgular DBTM subtree of T0 and

2n ∈
(

j2 + 1, (j + 1)2
)

with j ∈ [k], then T is transmission irregular.

Proof. From the structure of T , we have n(T ) = 2n + 1. Set TrT (v1) = x. Let P =
vk+1vk · · · v2v1 and let P ′ = v′k+1v

′
k · · · v

′
2v

′
1 be the corresponding pendant path in T ′

0. Then
TrT (w) = x+ 2n− 1 and TrT (v

′
1) = x+ 1 by Lemma 2.3.
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· · ·
vk+1 v1 wT ∗

0

T0

P

T

v′1

T ′
0

Figure 4: The construction of the tree T in Theorem 3.3

Note that P and v1v
′
1P

′ are two internal paths of lengths k and k+ 1, respectively, in T .
Then nT (vi)− nT (vi+1) = nT (v

′
i)− nT (v

′
i+1) = 2i + 1 for i ∈ [k] from the structure of T . In

view of Lemma 2.3 and TrT (v1) = x, we have TrT (v
′
i) = x+ i2 and TrT (vi) = x+ i2 − 1 for

i ∈ [k + 1], that is, TrT (P ) = {i2 − 1 : i ∈ [k + 1]}+ x with TrT (P
′) = TrT (V (P )) + 1.

Next we consider the transmissions of vertices from V (T ) \ (V (P ) ∪ V (P ′) ∪ {w}). Set
V ∗
0 = V (T ∗

0 ) and let Vi be the set of vertices in V ∗
0 at distance i from vk+1 in T0. Then

V ∗
0 = ∪a

j=0Vj, where a = eccT ∗

0
(vk+1). For any edge st ∈ E(T ∗

0 ), without loss of generality, we
may assume that dT0

(s, vk+1) > dT0
(t, vk+1). Since nT (t) = nT0

(t)+n+1 and nT (s) = nT0
(s),

we have
nT (t)− nT (s) = nT0

(t)− nT0
(s) + n+ 1. (1)

Assume that TrT0
(u)−TrT0

(vk+1) = h for any vertex u ∈ Vj ⊆ V (T ∗
0 ). By Lemma 2.3 and (1)

we have TrT (u) = TrT (vk+1) + h+ j(n+ 1) with TrT (vk+1) = TrT0
(vk+1) + (k + 1)(n+ 1) +

TrT0
(v1), that is, TrT (u) = TrT0

(vk+1) + (k + j + 1)(n + 1) + TrT0
(v1) + h. It follows that

TrT (u) = TrT0
(u) + j(n + 1) + c (2)

for any vertex u ∈ Vj where c = (k + 1)(n + 1) + TrT0
(v1).

Note that TrT0
(T ∗

0 ) is pairwise disjoint by the assumption. Let s, t be arbitrary vertices
of T ∗

0 . Then TrT (s) 6= TrT (t) for any {s, t} ⊆ Vj with j ∈ [a] because of (2) and the fact that
TrT0

(s) 6= TrT0
(t). Assume that s ∈ Vj, t ∈ Vℓ with j, ℓ ∈ [a] and j 6= ℓ. Then TrT (s) 6= TrT (t)

holds by (2) and the fact that T ∗
0 is a DBTM subtree of T0. Therefore TrT (T

∗
0 ) is pairwise

disjoint.
Note that V (T0) = V (T ∗

0 ) ∪ V (P ). Set A0 = TrT (T0). From the structure of T , we have
TrT (u) > TrT (vk+1) = x+(k+1)2−1 for any vertex u ∈ V (T ∗

0 )\{vk+1}. Then A0 is pairwise
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disjoint. By symmetry, we have TrT (T
′
0) = A0 + 1, which is also pairwise disjoint. In view

of Lemma 2.3 and the structure of T , the absolute value of the difference between any two
elements in A0 is greater than 1. Therefore A0 ∩ A1 = ∅ where A1 = A0 + 1. Recall that

TrT (w) = x + 2n − 1. Since 2n ∈
(

j2 + 1, (j + 1)2
)

with j ∈ [k], we have TrT (w) ∩ A = ∅

with A = A0 ∪A1. �

Let T be a transmission irregular chemical tree of order n with a DBTM subtree T0

obtained by removing all the non-root vertices of a pendant path of length k such that

2n ∈
(

j2 + 1, (j + 1)2
)

with j ∈ [k]. By using the method in Theorem 3.3, we can construct

another transmission irregular chemical tree of order 2n+ 1.
The condition that T ∗

0 is a DBTM subtree of T0 in Theorem 3.3 is not necessary for
obtaining a transmission irregular tree T . See an example in Fig. 5 of T0 with a subtree T ∗

0

rooted at vertex v which is not DBTM. It is routine that the tree T , constructed from T0

with the method in Theorem 3.3, is transmission irregular.

T0
v

T ∗
0

Figure 5: Tree T0 with a non-DBTM subtree T ∗
0 rooted at v.

4 Cycle-containing TI graphs

Let Z0 be the graph obtained from K4 be removing one of its edges. For an integer a ≥ 2,
we denote by Z0(a−1, a+1; a−2, a+2) the graph obtained from Z0 by attaching a pendant
path of length a−1 to a vertex of degree 3, a pendant path of length a+1 at the other vertex
of degree 3, a pendant path of length a − 2 at a vertex of degree 2, and a pendant path of
length a+ 2 at the other vertex of degree 2, see Fig. 6.

Theorem 4.1 If a ≥ 2, then Z0(a− 1, a + 1; a − 2, a + 2) is TI if and only if a is odd with
a 6= 1 mod 3.

Proof. Set Z = Z0(a− 1, a+ 1; a− 2, a+ 2). It is straightforward to check that Z is not TI
for a = 2. Assume in the rest that a ≥ 3. Let u1 and u2 be the vertices in Z of degree 3, and
let P1 and P2 be the paths of lengths a+2 and a− 2 attached at u1 and u2, respectively. Let
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· · ·· · ·

...

...

a+ 2a− 2

a+ 1

a− 1

u1

u2

v1

v2
P1P2

Q1

Q2

Figure 6: The graph Z0(a− 1, a+ 1; a− 2, a+ 2)

v1 and v2 be the vertices of degree 4, and let Q1 and Q2 be the paths of lengths a + 1 and
a− 1 attached to v1 and v2, respectively. See Fig. 6 again.

Note that n(Z) = 4a + 4. Let TrZ(v1) = x. From the structure of Z and Lemma 2.3,
we have TrZ(v2) = x + 2, TrZ(u1) = a − 2 + x, and TrZ(u2) = a + 6 + x. By Lemma 2.4,
the transmissions of vertices lying on the pendant paths P1, P2, Q1, and Q2 including their
roots, respectively form the following sets:

A1 = {(2j + 1)a+ (j − 2)(j + 1) : j ∈ [a+ 2]0}+ x,

A2 = {(2j + 1)a+ (j + 6)(j + 1) : j ∈ [a− 2]0}+ x,

B1 = {2ja + j(j + 1) : j ∈ [a+ 1]0}+ x,

B2 = {2ja + j(j + 5) + 2 : j ∈ [a− 1]0}+ x.

Set A = A1 ∪A2 and B = B1 ∪B2. Therefore Z is transmission irregular if and only if A∪B

is pairwise disjoint.
If a is even, we select (2k + 1)a + (k − 2)(k + 1) ∈ A1 and 2ka + k(k + 1) ∈ B1 with

k ∈ [a+ 1]. Then (2k + 1)a+ (k − 2)(k + 1) = 2ka+ k(k + 1) if k = a−2
2 ∈ [a+ 1]. It follows

that A ∩ B 6= ∅, that is, Z is not transmission irregular. Next we turn to the case when a

is odd. Note that A consists of odd numbers and B consists of even numbers in this case.
Therefore A ∩ B = ∅ holds. To characterizing the TI property of Z for odd a, it suffices to
determine the condition of a such that A1 ∩A2 = ∅ and B1 ∩B2 = ∅.

For any two elements 2sa + s(s + 1) ∈ B1 with s ∈ [a + 1]0 and 2ta + t(t + 5) + 2 ∈ B2

with t ∈ [a− 1]0, if 2sa+ s(s+ 1) = 2ta+ t(t+ 5) + 2, then

(s− t)(2a + s+ t+ 1) = 4t+ 2 (3)
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with s − t > 0. If s − t = 1, then 2a + 2t + 2 = 4t + 2, that is, t = a. This contradicts the
range of t. If s− t = 2, we have 2(2a + 2t+ 3) = 4t+ 2, which implies that a = −1. This is
impossible. While s − t ≥ 3, we have s + t ≥ 3. From (3) we have (s − t)(2a + s + t+ 1) ≥
3(2a + 4) = 6a + 12 > 4a − 2 = 4(a − 1) + 2 ≥ 4t + 2. A clear contradiction occurs again.
Therefore B1 ∩B2 = ∅ holds for any odd number a.

For any two elements (2s+1)a+(s− 2)(s+1) ∈ A1 with s ∈ [a+2]0 and (2t+1)a+(t+
1)(t+6) ∈ A2 with t ∈ [a− 2]0, if (2s+1)a+ (s− 2)(s+1) = (2t+1)a+ (t+1)(t+6), then

(s− t)(2a + t+ s− 1) = 8t+ 8 (4)

with s > t. If s− t ≥ 4, then s+ t ≥ 4, which implies that

(s− t)(2a+ t+ s− 1) ≥ 4(2a+ 3) = 8a+ 12 > 8a− 8 ≥ 8(a− 2) + 8 ≥ 8t+ 8.

Therefore, (4) does not hold. If s− t = 3, then by (4) we have 3(2a + 2t+ 2) = 8t+ 8, that
is, t = 3a− 1 > a− 2, contradicting the fact that t ∈ [a− 2]0. If s− t = 2, from (4), we have
2(2a+2t+1) = 8t+8, that is, t = a− 3

2 . This is impossible since t is an integer. For s−t = 1,
similarly as above, we have 2a+ 2t = 8t+ 8, that is, t = a−4

3 . Therefore, A1 ∩A2 = ∅ if and
only if a 6= 1 mod 3. This completes the proof. �

Denote by K4(k1, k2, k3, k4) the graph obtained from the complete graph K4 by respec-
tively attaching pendant paths of lengths ki ≥ 0, i ∈ [4], to its vertices.

Theorem 4.2 If a ≥ 2, then K4(a− 2, a− 1, a+ 1, a+ 2) is TI if and only if a 6= 2 mod 3.

Proof. Set K = K4(a − 2, a − 1, a + 1, a + 2). For a = 2, it can be easily checked that the
vertex of degree 3 has the same transmission as the vertex of degree 2 adjacent to the vertex
of degree 4 at which a pendant path of length 4 is attached. Therefore K is not TI for a = 2.

In the following assume that a ≥ 3. Let v1, v2, v3, and v4 be the vertices of degree
4, and let P (1), P (2), P (3), and P (4) be respective attached paths of lengths a + 2, a + 1,
a − 1, and a − 2. Let Tr(v1) = x. By Lemma 2.3, we have Tr(v2) = x + 1, Tr(v3) = x + 3,
and Tr(v4) = x + 4. Note that n(K) = 4a + 4. By Lemma 2.4, the set of transmissions of
vertices on P (1) including v1 is {2ja + j(j − 1) : j ∈ [a + 2]0} + x. Similarly, the sets of
transmissions of vertices on P (2), P (3), and P (4), respectively including v2, v3, and v4, are
{2ja + j(j + 1) + 1 : j ∈ [a + 1]0} + x, {2ja + (j + 1)(j + 4) − 1 : j ∈ [a − 1]0} + x and
{2ja+j(j+7)+4 : j ∈ [a−2]0}+x. For convenience, we set A1 = {2ja+j(j−1) : j ∈ [a+2]0},
A2 = {2ja + j(j + 1) + 1 : j ∈ [a + 1]0}, A3 = {2ja + (j + 1)(j + 4) − 1 : j ∈ [a − 1]0},
A4 = {2ja + j(j + 7) + 4 : j ∈ [a− 2]0}, and A = ∪4

i=1Ai. Then K is transmission irregular
if and only if the sets Ai, i ∈ [4], are pairwise disjoint.

Note that each of A1 and A4 consists of even numbers and each of A2 and A3 consists
of odd numbers. Clearly Ap ∩ Aq = ∅ for any p ∈ {1, 4} and q ∈ {2, 3}. Next we show
that A2 ∩ A3 = ∅. Otherwise, there are two elements s = 2ka + k(k + 1) + 1 ∈ A2 and
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t = 2ja+ (j + 1)(j + 4) − 1 ∈ A3 with k ∈ [a+ 1]0, j ∈ [a − 1]0 and s = t. Clearly, we have
k > j. Then (k − j)(2a + k + j) = 5j − k + 2, that is,

(k − j)(2a + k + j − 1) = 4j + 2. (5)

If k − j ≥ 2, then (k − j)(2a + k + j − 1) > 4a + 2 and 4j + 2 ≤ 4a − 2 since j ∈ [a − 1]0.
Therefore (5) does not hold. If k− j = 1, we have 2a+2j = 4j+2 from (5). Then a = j+1,
which is impossible since j ∈ [a− 1]0. Therefore A2 ∩A3 = ∅ follows immediately.

Now we determine the non-empty property of A1 ∩ A4. Choosing any two elements
s = 2ka+ k(k − 1) ∈ A1 and t = 2ja+ j(j + 7) + 4 ∈ A4 with k ∈ [a+ 2]0 and j ∈ [a− 2]0,
we have s− t = (k − j)(2a + k + j + 7)− (8k + 4). If s = t, then

(k − j)(2a + k + j + 7) = 8k + 4 (6)

with k > j. If k − j ≥ 4, then (k − j)(2a + k + j + 7) > 8a+ 28 and 8k + 4 ≤ 8a+ 20 since
k ∈ [a+ 2]0. So (6) does not hold. If k − j = 3, then 6a+ 6j + 30 = 8j + 28 from (6), that
is, 6a = 2j − 2. Since j ∈ [a− 2]0, we have 6a ≤ 2a− 6, contradicting the assumption a ≥ 3.
If k − j = 2, similarly as above, we have 4a ≤ 4a− 6 as a contradiction, again. If k − j = 1,
from Equality (6), we have 2a+ 2j + 8 = 8j + 12, that is, a = 3j + 2. Therefore s 6= t, that
is, A1 ∩A4 = ∅ if and only if a 6= 2 mod 3. �

Z0(a− 1, a+1; a− 2, a+2) can be changed into K4(a− 2, a− 1, a+1, a+2) by adding an
edge between the two vertices of degree 3. By Theorems 4.1 and 4.2, if a is an odd multiple of
3, the TI property remains from Z0(a−1, a+1; a−2, a+2) to K4(a−2, a−1, a+1, a+2) by
inserting a new edge. In our last result we provide two sufficient conditions which guarantee
that the transmission irregularity is preserved after inserting a new edge.

Theorem 4.3 Let G be a TI graph with TrG(v1) > TrG(v2) > TrG(v3) as the first three
largest transmissions.

(i) If v1, v2, and v3 lie on a pendant path v4v3v2v1 with natural adjacency relation, where
v4 is the root and v1 is a pendant vertex, then G+ v2v4 is transmission irregular.

(ii) If v1 and v2 are both pendant vertices with v1v3 ∈ E(G), v2 and v3 have a common
neighbor and TrG(v3) − 1 > TrG(z) for any z ∈ V (G) \ {v1, v2, v3}, then G + v2v3 is
transmission irregular.

Proof. We first deal with (i). For convenience, we set G′ = G + v2v4 and let G0 be the
subgraph of G induced by V0, where V0 = V (G) \{v1, v2, v3}. Note that the vertices v2, v3, v4
form a triangle in G′. For any vertex u ∈ V0, we have dG′(u, vi) = dG(u, vi)−1 for i ∈ [2], and
dG′(u,w) = dG(u,w) for any vertex w in (V0∪{v3})\{v1, v2, u}. Therefore we have TrG′(u) =
TrG(u)−2 for any vertex u ∈ V0, that is, TrG′(G0) = TrG(G0)−2. Set TrG(v4) = x. Then, by
Lemma 2.3, we have TrG(v3) = x+n− 6, TrG(v2) = x+2n− 10, and TrG(v1) = x+3n− 12.

Thus we have Tr(G) = TrG(G0) ∪
(

{n− 6, 2n − 10, 3n − 12}+ x
)

.
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From the structure of G′ and the above argument, we have TrG′(v4) = x− 2, TrG′(v3) =
x+ n− 6, TrG′(v2) = x+ n− 7, and TrG′(v1) = x+ 2n− 9, which imply that

Tr(G′) =
(

TrG(G0)− 2
)

∪
(

{n− 6, n − 7, 2n − 9}+ x
)

.

From the assumption, we have x+ n− 6 > y for any y ∈ TrG(G0), that is,

x+ n− 7 > y − 1 > y − 2

for any y − 2 ∈ TrG(G0) − 2. Moreover,
(

TrG(G0) − 2
)

∩
(

{n − 6, n − 7, 2n − 9} + x
)

= ∅

with TrG(G0)− 2 being pairwise disjoint. So G′ is transmission irregular as desired.
Now we turn to (ii). Assume that v4 is the unique common neighbor of v2 and v3.

Let G∗ = G + v2v3 and TrG(v4) = y. By Lemma 2.3, we have TrG(v3) = y + n − 4,
TrG(v2) = y + n − 2, and TrG(v1) = y + 2n − 6. Note that v2, v3, and v4 form a triangle
in G∗. From the structure of G∗, we have dG∗(u,w) = dG(u,w) for any two vertices u,w ∈
V (G) \ {v1, v2, v3} and dG∗(u, z) = dG(u, z) for any z ∈ {v1, v2, v3}. Thus TrG∗(u) = TrG(u)
for any vertex u ∈ V (G) \ {v1, v2, v3} with TrG∗(v3) = y + n− 5, TrG∗(v2) = y + n − 4, and
TrG∗(v1) = y + 2n− 7.

Let G1 = G− {v1, v2, v3}. Then TrG∗(G) = TrG(G1) ∪
(

{n− 5, n− 4, 2n − 7}+ y
)

from

the above argument. From the assumptions, TrG(G1) is pairwise disjoint and y + n − 5 > t

for any t ∈ TrG(G1). Therefore G∗ is transmission irregular. �

Two examples of graphs of order 21 satisfying the conditions of (i) and (ii), respectively, in
Theorem 4.3 are provided in Figs. 7 and 8 where a specific vertex v is given with TrG(v) = x

and Tr(G) = {au : u ∈ V (G)} + x for all the values of au being labelled. That is, the
transmission of v is x, and the transmission of every other vertex is equal to the sum of x
and the value next to the vertex.

x 7 16 27 40

55

72 91

1913

2948

30

15

32
51

1126

2843

45 v

G

Figure 7: Graph G satisfying the condition (i) in Theorem 4.3.
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19 3 8 15 24 35 48

67

65 84

1332 30 49

9

22

5738

28

39

v

x

G

Figure 8: Graph G satisfying the condition (ii) in Theorem 4.3.

5 Concluding remarks

In this paper we prove the TI property of some chemical graphs and provide the method of
construct new TI graphs.

Note that there are some transmission irregular chemical graphs of even order n = 4a+4
with a 6= 2 mod 3. Combining this fact with Theorem 3.2, we pose the following problem.

Problem 5.1 Does there exist a TI chemical graph of every even order?

Note that Theorem 3.2 implicitly provides a method constructing TI chemical trees from
known TI ones by attaching a pendant vertex at each of their leaves. Theorem 4.3 naturally
leads to the following two problems.

Problem 5.2 Establish additional methods for constructing TI graphs from known TI graphs.

Problem 5.3 Characterize TI chemical graphs G which preserve TI property after joining
two nonadjacent vertices.
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[4] Y. Alizadeh, S. Klavžar, On graphs whose Wiener complexity equals their order and on
Wiener index of asymmetric graphs, Appl. Math. Comput. 328 (2018) 113–118.
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[31] M. Randić, Novel molecular descriptor for structure-property studies, Chem. Phys. Lett.
211 (1993) 478–483.

16



[32] D.H. Rouvray, R.B. King, Topology in Chemistry: Discrete Mathematics of Molecules,
Elsevier, 2002.

[33] H.P. Schultz, Topological organic chemistry. 1. Graph theory and topological indices of
alkanes, J. Chem. Inf. Comput. Sci. 29 (1989) 227–228.

[34] S. Shirakol, M. Kalyanshetti, S.M. Hosamani, QSPR analysis of certain distance based
topological indices, Appl. Math. Nonlinear Sci. 4 (2019) 371–385.
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