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Abstract. We present a O(n
3
2 )-time algorithm for the shortest (diagonal)

flip path problem for lattice triangulations with n points, improving over pre-
vious O(n2)-time algorithms. For a large, natural class of inputs, our bound

is tight in the sense that our algorithm runs in time linear in the number of

flips in the output flip path. Our results rely on an independently interest-
ing structural elucidation of shortest flip paths as the linear orderings of a

unique partially ordered set, called a minimum flip plan, constructed by a

novel use of Farey sequences from elementary number theory. Flip paths be-
tween general (not necessarily lattice) triangulations have been studied in the

combinatorial setting for nearly a century. In the Euclidean geometric setting,

finding a shortest flip path between two triangulations is NP-complete. How-
ever, for lattice triangulations, which are studied as spin systems, there are

known O
(
n2

)
-time algorithms to find shortest flip paths. These algorithms,

as well as ours, apply to constrained flip paths that ensure a set of constraint
edges are present in every triangulation along the path. Implications for deter-

mining simultaneously flippable edges, i.e. finding optimal simultaneous flip
paths between lattice triangulations, and for counting lattice triangulations

are discussed.

1. Introduction and Motivation

Given a set of points P in R2 and a simple, closed polygonal region Ω with
vertices in P , a triangulation of the point-set P ∩ Ω is an embedding of a graph
into R2 with vertex set P ∩Ω and non-intersecting straight-line edges that contain
exactly two points in P ∩Ω, including the boundary edges of Ω, such that each face
of Ω is a triangle. Note that Ω need not be convex (see also Section 8). See Figure
1 for examples. Throughout this paper we let S = P ∩Ω and refer to triangulations
of the point-set S. When S is clear from context, we just refer to triangulations.

Definition 1 (Diagonal Flip and Flip Path). For some convex quadrilateral in a
triangulation that is formed by two triangles that share an edge, a (diagonal) flip is
an operation that exchanges the diagonals of the quadrilateral (Figure 1d). Thus, a
flip transforms one triangulation into another.

A flip path is a starting triangulation along with a sequence of flips (equivalently,
the corresponding sequence of triangulations) ending with a target triangulation
(Figures 1c - 1g).

Flip paths between triangulations have been studied in the combinatorial setting
for nearly a century. Here, a triangulation of a surface is a simple graph that can be
embedded on the surface such that each face is a triangle and any two faces share at
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(a) (b) (c) (d) (e) (f) (g)

Figure 1. All figures show triangulations of a point-set bounded
by simple, closed polygons. (a) The integer lattice and a lattice tri-
angulation (see below). (b) An affine transformation of (a), yield-
ing the equilateral lattice and the transformed triangulation. (c)
- (g) Triangulations along a flip path (Definition 1) between the
triangulations in (c) and (g). (d) The first flip along this flip path,
performed on the red quadrilateral, which replaces the edge (v2, v4)
with the edge (v1, v3). See Sections 1.1 and 2.

most one edge. For some 4-cycle of the triangulation that contains a single chordal
edge, a combinatorial flip replaces this chordal edge with the other chordal pair of
vertices of the 4-cycle. We say that there exists a combinatorial flip path between
two triangulations T and T ′ of a surface if there exists a sequence of combinatorial
flips that transforms T into T ′.

In the combinatorial setting, Wagner [1] was the first to show that there exists
a combinatorial flip path between any two triangulations of the plane, with the
same number of vertices. This result was extended to triangulations of the torus
[2], the projective plane and Klein bottle [3], and, for triangulations whose graphs
have sufficiently many vertices, closed surfaces in general [4]. See [5] for a survey
of combinatorial flip paths between triangulations of surfaces.

Of interest in distance geometry is a simple constructive proof of the Koebe-
Andreev-Thurston circle packing theorem [6] that relies on the existence of a com-
binatorial flip path between any two triangulations of the plane. More generally,
length and other structural properties of shortest flip paths - i.e., flip paths of
minimum length - are metrics on the space of triangulations.

Returning to our geometric setting in the plane, consider a point-set S = P ∩
Ω. Lawson [7] was the first to prove the existence a flip path between any two
triangulations of S when the bounding polygon Ω is simple, closed, and convex. An
extension of this result to the case where Ω is simple and closed, but not necessarily
convex, is given in [8], and is attributed to Edelsbrunner. Alternative proofs of the
previous two results using only simple geometric properties of polygons can be
found in [9]. See [10] for a broad treatment of flip paths between triangulations of
a point-set.

Apart from existence results, some work has gone into finding a shortest flip
path between two triangulations. This problem was shown to be NP-hard even for
triangulations of a point-set consisting only of the vertices of a simple and closed
polygon [11]. Lawson [7] gave an algorithm to find some flip path between any
two triangulations of a point-set S that contains O(n2) flips, where n = |S|. This
bound was later proven to be tight [12].
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Finally, in both the combinatorial [13, 14] and geometric [15, 16] settings, prop-
erties of simultaneous flips - i.e., operations that perform multiple flips at once -
and optimal simultaneous flip paths have also been studied.

Our focus in this paper is the shortest flip path problem when the desired flip
path is between lattice triangulations - i.e. triangulations of a lattice point-set
S = L ∩ Ω, where L is an affine transformation of the integer lattice (Figures 1a
and 1b). This special case has only recently been studied, and it turns out to be very
different from the general problem. In particular, there are known polynomial-time
algorithms to solve this problem. While not the focus of this paper, a byproduct of
our results solves optimal simultaneous flip path problems for lattice triangulations,
which we discuss in Section 8.

1.1. Previous Results on Shortest Flip Paths Between Lattice Triangu-
lations. The first O(n2)-time algorithm to find a shortest flip path between two
lattice triangulations of an n point-set was given in [17]. This algorithm also solves
the more general problem of finding a shortest flip path between two (not neces-
sarily lattice) triangulations of a point-set that contains no empty, strictly convex
pentagon and whose bounding polygon is convex. Lattice point-sets bounded by
convex polygons have this property.

Another O(n2)-time algorithm for this problem was presented in [18]. The mo-
tivation in this paper was to use Markov chains to generate (and count) random
lattice triangulations, which define a spin system. The algorithm does not require
that the bounding polygon of the lattice point-set be convex. Furthermore, it finds
a shortest flip path even when all triangulations along the path must contain a
given set of point-pairs - i.e., pairs of points - as edges. These point-pairs are re-
ferred to as constraint edges and the flip path is called constrained. The fact that
constrained flip paths always exists between lattice triangulations is not trivial, and
is proved in [18], along with an upper-bound on the length of a constrained shortest
flip path between lattice triangulations whose point-sets are rectangular, i.e. a set
S = {(x, y) ∈ Z2 : 0 ≤ x ≤ l and 0 ≤ y ≤ m}, where l and m are any positive
integers.

Lemma 1 ([18], Lemma 3.7). The length of a constrained shortest flip path between

two lattice triangulations of a rectangular lattice point-set with n points is O(n
3
2 ).

Another important result from [18] is that an edge in a lattice triangulation can
be flipped to a shorter edge if and only if the bounding point-pairs of its minimum
parallelogram are edges in the triangulation. We call this parallelogram the Farey
parallelogram for the edge (Definition 11), because of its relation to Farey sequences
[19], as detailed in Section 3.1. For example, the four edges bounding each red edge
in Figures 1d - 1g all form Farey parallelograms, since the red edges can clearly be
flipped to shorter edges.

Both [17] and [18] prove the uniqueness of the set of flips in any shortest flip
path between two lattice triangulations. However, the structure of this set has not
been studied. We give algorithms that compute a special partial order on this set
with the property that each linear ordering of the set that is consistent with the
partial order - i.e., each flip in the linear ordering comes after its children in the
partial order - is a shortest flip path. While out of the scope of this paper, it is
not difficult to show that the converse is also true, i.e., every shortest flip path is
consistent with this partial order.
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Lastly, although the point-sets of lattice triangulations in [17] and [18] are all
of the form S = L ∩ Ω, where L is the integer lattice Z2, it is easy to see that
the results in these papers apply even when L is any affine transformation of Z2.
Additionally, the algorithm in [17] can be modified to handle non-convex bounding
polygons and constraint edges while achieving the same time complexity.

2. Contributions and Guide to Reading

From here on, all triangulations are lattice triangulations of a lattice point-set
S = L ∩ Ω. Recall that we let n = |S|.

Note 1. Since a lattice point-set is a finite subset of a lattice, much of the geometric,
algebraic, and partially ordered set (poset) structure of lattices does not play a role.
However, we judiciously exploit a connection between lattices and Farey sequences
[19].

We study the following problem: given two triangulations of a lattice point-set
and a set F of constraints edges (see Section 1.1) in both triangulations, compute
the shortest flip path constrained by F between these triangulations. The following
main theorems are proved in Section 7.

Theorem 1 (Unique Constrained Shortest Flip Paths). The shortest constrained
flip path between two lattice triangulations of a lattice point-set is unique, up to
reordering flips.

In Section 7, we give a large class of inputs for which the shortest flip path in
the above theorem can be found in time linear in its length (Proposition 5). We
sketch the proof of Theorem 1 below.

Theorem 2 (Complexity for Rectangular Lattice Point-sets). There is an O(n
3
2 )-

time algorithm to compute the shortest constrained flip path between two lattice
triangulations of an n-point rectangular lattice point-set.

Theorem 2 bridges the gap between the O(n2)-time algorithms in [17] and [18]

and the Ω(n
3
2 )-time lower-bound implied by Lemma 1. The proof of this theorem

follows from Proposition 4 (Section 7) and Lemma 1 (Section 2.1). In the next
section, we compare our algorithm to those in [17] and [18].

Next, we sketch the proof ideas of Theorem 1. First, we show (Proposition 3) that
any triangulation T of a lattice point-set S is a so-called minimum triangulation
of S (Definition 16), which is a unique triangulation (Lemma 14) containing a
certain minimum subset G of edges in T . Specifically, in Section 6, we characterize
the minimum set G of edges in T that uniquely determines T (Definition 15).
We observe an analogy to (the equivalence class of) ground state triangulations
constrained by G defined in [18] as triangulations of S that contain G as edges and
minimize the sum of the l1-lengths of their edges. Thus, the theorem is proved
by showing that it holds for any two minimum triangulations (Theorem 7). This
step relies on our new structural result for flip paths between lattice triangulations,
which is our third main theorem, proved in Section 5. We require the following
definitions to state this theorem.

A consistent linear ordering of a poset, or a linear ordering consistent with a
poset, is a linear ordering of the elements of the poset such that each element
comes after its children. For example, see Figure 2.
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(a) (b) (c) (d) (e)

Figure 2. (a) A minimum flip plan (Definition 2) that starts from
an equilateral triangulation and forces the point-pair (u, v) in (b)
to become an edge. Each node is a flip on a Farey parallelogram
(Definition 11). The red numbers indicate the order of flips in
a consistent linear ordering of the flip plan, which is a flip path.
(b)-(e) Triangulations along this flip path. The red numbers corre-
spond to those in (a) and indicate the edges removed by each flip
in the flip plan. See below and Section 4.

Definition 2 (Flip plan). A flip plan is a poset of flips with the property that all
of its consistent linear orderings are flip paths between the same two triangulations.
The starting and target triangulations of a flip plan are the starting and target
triangulations of these flip paths.

For example, a flip path is a flip plan with a unique consistent linear ordering.
We are interested in minimum flip plans, i.e., flip plans whose consistent linear
ordering are all shortest flip paths. Figure 2 shows such a flip plan along with
one of its consistent linear orderings, which is a flip path, and triangulations along
this path. Note that all the flips in each level of this flip plan can be performed
simultaneously.

The equilateral triangulation of a lattice point-set S, if it exists, is the triangu-
lation that contains only unit-length edges (Definition 8). For example, see Figure
2b. A lattice point-set that admits an equilateral triangulation is an equilateral
lattice point-set.

Finally, a flip path that starts from a triangulation T of an equilateral lattice
point-set S and forces a point-pair (u, v) in S to become an edge is a flip path
between T and some triangulation in which (u, v) is an edge. This flip path is
shortest if it also has minimum length over all target triangulations in which (u, v)
as an edge. If the consistent linear orderings of a flip plan are all flip paths of this
type, then the flip plan starts from T and forces (u, v) to become an edge.

For example, Figure 2 shows a minimum flip plan that starts from an equilateral
triangulation and forces the point-pair (u, v) to become an edge. Also, returning to
the shortest flip path between the triangulations in Figures 1c and 1g, the following
3 sets of flips can be performed simultaneously: those that add the red edges in
Figure 1e, those that add the red edges in Figure 1f, and the two that add the 2
red edges in Figure 1g. These sets hint at a minimum flip plan that starts from the
equilateral triangulation in Figure 1c and forces the point-pairs of the last 2 red
edges to become edges.

Theorem 3 (A Minimum Flip Plan that Starts from an Equilateral Triangulation
and Forces a Point-pair to Become an Edge). There is an algorithm that computes
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a minimum flip plan that starts from an equilateral triangulation and forces a point-
pair to become an edge, and it runs in time linear in the number of flips in the flip
plan.

The algorithm in Theorem 3 is the fundamental tool that we use to compute
minimum flip plans between two triangulations. To the best of our knowledge,
this algorithm is the first to exploit the relationship between lattices and Farey
sequences [19]. Most of the work in this paper is focused on generalizing Theorem
3. In Section 5, we generalize to a set of point-pairs (Theorem 5). Then, in Section
6, we allow the starting triangulation to be a minimum triangulation (Theorem 6).

Notably, all the above results follow from simple number-theoretic and geometric
concepts, such as the connection between lattices and Farey sequences.

2.1. Comparison with Previous Results. Consider the algorithms in [17] and
[18] that compute the constrained shortest flip path between two lattice triangu-
lations. Most of the work in these algorithms is in processing the input pair of
triangulations. Note that a triangulation of a lattice point-set S is an assignment
of edges to the midpoints of S [10]. The algorithm in [17] constructs a forest such
that each tree corresponds to a midpoint of S and each vertex corresponds to an
edge assignment. Constructing this forest takes O(n2) time, where n = |S| ([17],
Theorem 4). The algorithm in [18] computes the set of midpoints of S whose edge
assignments differ between the input triangulations, which clearly takes O(n2) time.

In contrast, the main work in our algorithm is in computing minimum flip plans
that force point-pairs to become edges. As a result, our algorithm runs in O(n

3
2 )-

time (Theorem 2). Additionally, as mentioned in Section 2, for a large class of
inputs, our algorithm runs in time linear in the number of flips in the output flip
plan (Proposition 5).

3. Basic Tools and Definitions

In this section, we present the definitions and notation that will be used through-
out the paper and we explore an important relationship between lattices and Farey
sequences [19].

Figure 3. A three-direction lattice and its pseudo-basis
{b1, b2, b3} along with point-pairs originating at the point u repre-
sented using their respective defining coordinate pairs (Definition
3). All the point-pairs belong to the equivalence class (1, 2) (Defi-
nition 7). See below and Section 3.1.
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Let L be an affine transformation of the integer lattice Z2. We can treat L as a
three-direction lattice as follows. Consider the standard basis vectors b1 and b2 of
L. Let b3 be the shorter of b1 − b2 and b1 + b2. If neither vector is shorter, then
choose one arbitrarily. The set {b1, b2, b3} is the pseudo-basis of L. Observe that
any vector g in L can be written as an integer linear combination of any two distinct
pseudo-basis vectors bi and bi, i.e., g = xbi + ybj , where x and y are integers. Also,
note that we only care about the values of the coefficients x and y, and never the
values of any pseudo-basis vector.

Definition 3 (Defining Coordinate Pair). Let g be a vector in a three-direction
lattice L whose pseudo-basis is {b1, b2, b3}. If g is not a pseudo-basis vector, then
its defining coordinate pair is the counter-clockwise ordered pair (bi, bj) of distinct
pseudo-basis vectors such that g = xbi + ybj and |x|+ |y| is minimized. Otherwise,
the defining coordinate pair of g is any counter-clockwise ordered pair (bi, bj) of
distinct pseudo-basis vectors such that g is either bi or bj.

Note that the defining coordinate pair of a pseudo-basis vector g is not unique,
by definition, however one coordinate of any such pair is fixed and carries all the
information we need to uniquely identify g.

Definition 4 (A Point-pair as a Pair of Vectors). We represent a point-pair (u, v)
in a three-direction lattice L as (g, u), where g = v−u is a vector represented using
its defining coordinate pair (bi, bj), i.e., g is written as (x, y) where g = xbi + ybj.
We refer to g as the vector, u as the originating point, and (bi, bj) as the defining
coordinate pair of (g, u). Additionally, the line-segment of (g, u) is the line-segment
between u and v.

Consider the point-pairs in Figure 3 that originate from the same point u. Each of
these point-pairs is represented using its defining coordinate pair, which is indicated
by the colors of the coordinates. Given a vector g, an originating point u, and a
defining coordinate pair, the point-pair (g, u) is unique. Throughout this paper,
the defining coordinate pair of a point-pair is always clear from context and is
almost never explicitly specified or used. Similar representations of point-pairs
using vectors in three-direction lattices appear in the study of box-splines [20, 21].

Note 2. Unless stated otherwise, all vectors discussed from here on are vectors
in a three-direction lattice. If a vector is expressed with only two coordinates, it
is assumed to be represented using its defining coordinate pair. Furthermore, if a
point-pair is an edge of a lattice triangulation, then the coordinates of its vector
either are relatively prime or each has magnitude at most 1, as discussed below.
Thus, unless stated otherwise, the coordinates of any vector discussed either are
relatively prime or each has magnitude at most 1.

Finally, consider any point-pair (g, u) in a lattice point-set S. If the coordinates
of g are not relatively prime and the magnitude of at least one coordinate is greater
than 1, then it is easy to see that some point of S other than u or u+g is incident on
the line-segment of (g, u). Hence, combining this with the fact that triangulations
are embeddings of graphs into R2 which are maximally planar implies that (g, u)
is an edge of some triangulation of S if and only if the coordinates of g either are
relatively prime or each has magnitude at most 1. In the next section, we explore
how this property connects edges in triangulation to fractions in Farey sequences
[19].
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3.1. The Farey Plan for a Vector. In this section, we give an algorithm that
maps a vector g to a sequence of fractions obtained from Farey sequences, called the
Farey plan for g. First, we define Farey sequences and state two of their properties.

Figure 4. Farey sequences (Definition 5) of orders 1, 2, and 3.
The pairs of blue and red fractions in each Farey sequence are
those in the sequence described in Lemma 2 for the fraction 2

3 .
The fractions in the Farey plan (Definition 9) for any vector in the
equivalence class (2, 3) is shown in red. See below.

Definition 5 (Farey Sequence). A Farey sequence [19] of order m, denoted by
Fm, is a strictly-increasing sequence containing 0

1 ,
1
1 , and all fully-reduced fractions

(relatively prime pairs of nonnegative integers) in the range [0, 1] with denominators
of at most m. Given a fully-reduced fraction f = x

y with 0 ≤ f ≤ 1, we let Ff denote

the lowest order Farey sequence containing f , which is Fy.

Property 1 (Mediant of Farey Neighbors [19]). For all m ≥ 1, each fraction
fi =

x
y in the Farey sequence Fm, other than 0

1 and 1
1 , is the mediant of its Farey

neighbors, which are the fractions fi−1 = a
b and fi+1 = c

d , i.e.,
x
y = a+c

b+d .

Property 2 (Computing Farey Sequences [19]). The Farey sequence Fi+1 contains
the fractions in the Farey sequence Fi and the mediant of each pair of consecutive
fractions in Fi whose denominators sum to i+ 1.

For examples, see Figure 4. As noted at the end of the previous section, if a
point-pair (g, u) is an edge of a triangulation, then the coordinates of g either are
relatively prime or each has magnitude at most 1. We will use this fact to map g to
a fraction in a Farey sequence. Then, we will use Properties 1 and 2 to construct
the Farey plan for g (Definition 9), which will be used in the next section as a
roadmap to construct a flip plan.

Next, we prove several properties about Farey sequences.

Lemma 2 (Unique Intervals Containing a Fraction). Let f be a fraction and let
m ≥ 2 be an integer such that Ff = Fm. There exists a sequence (f1,1, f1,2), . . . ,
(fm−1,1, fm−1,2) of pairs of fractions such that, for each 1 ≤ i ≤ m− 1, (fi,1, fi,2)
is the unique pair of fractions that are adjacent in Fi with fi,1 < f < fi,2. Further-
more, if f ′ is the mediant of fi,1 and fi,2, then either

(1) f ′ = f or
(2) the first pair in the above sequence that is not equal to (fi,1, fi,2) is either

(fi,1, f
′) or (f ′, fi,2).

Proof. Since the fractions in each Farey sequence are ordered from least to greatest,
the first part of the lemma is immediate. For the second part, consider the pair
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(fi,1, fi,2), for any 1 ≤ i ≤ m − 1, and let f ′ be the mediant of this pair. By
Property 2, {fi,1, f ′, fi,2} is a contiguous subsequence of Ff ′ = Fj , where j > i.
Furthermore, f ′ is the only fraction in any Farey sequence of order at most j that
lies between fi,1 and fi,2. Thus, either f = f ′ or the first pair in the sequence
given in the lemma statement that is not equal to (fi,1, fi,2) is either (fi,1, f

′) or
(f ′, fi,2). □

Lemma 3 (Sequence of Mediants). Consider a fraction f such that the Farey
sequence Ff has order at least 2. Also, consider the sequence of pairs of fractions
given by Lemma 2 for f and let

(f1,1, f1,2), . . . , (fn,1, fn,2)

be the subsequence of all distinct pairs. Finally, let f0, f1, . . . , fn be the sequence of
fractions where f0 = 1

1 and fi is the mediant of (fi,1, fi,2), for all 1 ≤ i ≤ n. Then,
fn = f and fi is the mediant of fi−1 and a Farey neighbor of fi−1 in the Farey
sequence Ffi−1

, for all 1 ≤ i ≤ n.

Proof. By Lemma 2, we have fn = f . Next, consider the fractions fi−1 and fi, for
any 1 ≤ i ≤ n. If i = 1, then f1 = 1

2 and the lemma is immediate. Otherwise,
Lemma 2 tells us that (fi,1, fi,2) is either (fi−1,1, fi−1) or (fi−1, fi−1,2). Further-
more, by Property 2, fi−1,1 and fi−1,2 are the Farey neighbors of fi−1 in the Farey
sequence Ffi−1

. Therefore, fi is the mediant of fi−1 and a fraction adjacent to fi−1

in Ffi−1
. □

The following is a map between vectors and fractions in Farey sequences, which
allows us to define equivalence relations on vectors and point-pairs.

Definition 6 (Farey-Flip Map). Given a vector g = (x, y), the Farey-Flip map ϕg

sends g to the fraction |x|
|y| if |x| ≤ |y|, or to the fraction |y|

|x| otherwise. For any

vector g′ = (x′, y′), ϕg sends g′ to the fraction |x′|
|y′| if ϕg(g) =

|x|
|y| , or to the fraction

|y′|
|x′| otherwise.

The inverse Farey-Flip map ϕ−1
g takes a fraction a

b to a vector g′′ = (c, d) such
that (i) g′′ and g have the same defining coordinate pair, (ii) the signs on the
coordinates of g′′ and g match, and (iii) |c| = |a| and |d| = |b|, if |x| ≤ |y|, or
|c| = |b| and |d| = |a|, otherwise.

For example, for the vector g = (−5, 3), we have ϕg(g) =
3
5 , ϕ

−1
g ( 35 ) = (−5, 3),

ϕ−1
g

(
7
8

)
= (−8, 7), and ϕg(−8, 7) = 7

8 , where all vectors have the same defining
coordinate pair. The Farey-Flip map allows us to talk about a Farey sequence
containing a vector g, which is a Farey sequence containing the fraction ϕg(g). We
let Fg denote the lowest order Farey sequence containing g. In any Farey sequence
Fm, where m ≥ 1, we define the Farey neighbor vectors of g as the vectors obtained
by applying the inverse Farey-Flip map ϕ−1

g on the Farey neighbors of ϕg(g) in Fm.

Definition 7 (Equivalence Relation on Vectors/Point-pairs). Two vectors g and
g′ are equivalent if and only if ϕg(g) = ϕg′(g′), and two point-pairs to be equivalent
if and only if their vectors are equivalent. We let (x, y) denote the equivalence class
of vectors g (resp. point-pairs (g, u)) such that ϕg(g) =

x
y .

For example, Figure 3 shows point-pairs in the equivalence class (1, 2).
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Definition 8 (Unit-Length Vectors/Point-pairs). A vector (resp. point-pair) is
unit-length if it belongs to the equivalence class (0, 1).

The above definition formalizes the notion of a unit-length vector, and hence the
definition an equilateral triangulation discussed in Section 2. We end this section
by defining the Farey plan for a vector and presenting an algorithm to compute it.

Definition 9 (Farey Plan for a Vector). The Farey plan C for a vector g is the
sequence of fractions defined as follows. If ϕg(g) = 0

1 , then C is empty. Also, if

ϕg(g) =
1
1 , then C = { 1

1}. Otherwise, C is the sequence for ϕg(g) given in Lemma
3.

For example, the Farey plans for the vectors (−6, 1) and (3, 5) are { 1
1 ,

1
2 , . . . ,

1
5 ,

1
6}

and { 1
1 ,

1
2 ,

2
3 ,

3
5}, respectively. Also, see Figure 4.

Algorithm Farey Plan takes a vector g = (x, y) as input and outputs the Farey plan
C for g. The sequence C is initially empty. If g is unit-length, then C is empty.
Otherwise, consider the fraction f = ϕg(g), the sequence X = F1 =

{
0
1 ,

1
1

}
, and

the fraction d = 1
1 . Repeat the following steps until C contains f .

(1) Add the fraction d to the end of C. If C contains f , then output C.
(2) Otherwise, if f > d, then assign to d the mediant of d and the fraction

directly after d in the sequence X; if f < d, then assign to d the mediant
of d and the fraction directly before d in the sequence X.

(3) Insert d into the sequence X such that X is in increasing order.

Proposition 1 (Correctness and Complexity of Algorithm Farey Plan). On an
input vector g, Algorithm Farey Plan outputs the Farey plan for g in time linear in
the order of the Farey sequence Fg.

Proof. The proposition is immediate if g belongs to the equivalence class (0, 1) or
(1, 1). Otherwise, observe that Algorithm Farey Plan computes the sequence for
ϕg(g) given in Lemma 3. Furthermore, the algorithm clearly runs in time linear
in the length of this sequence, which is at most the order of the Farey sequence
Fg. □

4. A Minimum Flip Plan for a Point-pair

In this section, we present an algorithm that takes a point-pair and the Farey
plan for its vector as inputs and outputs a flip plan that starts from an equilateral
triangulation and forces the point-pair to become an edge (until Section 6, the
starting triangulation is always an equilateral triangulation). We refer to this as a
flip plan for the point-pair. We start by presenting a convenient representation of
flips and flip plans.

Definition 10 (A Quadrilateral for a Vector/Point-pair). A quadrilateral Qg for
a vector g is a sequence of four vectors g1, g2, g3, and g4 such that g = g1 + g2 =
g3 + g4. Notice that the vectors g and g1 − g3 are the diagonals of Qg. If g1 = g4
and g2 = g3, then Qg is called a parallelogram and is denoted by Pg = {g1, g2}.

A quadrilateral Qg,u for a point-pair (g, u) is a set of four point-pairs (g1, u),
(g2, u+ g1), (g3, u), and (g4, u+ g3) such that the sequence g1, g2, g3, g4 is a quadri-
lateral Qg. Since we can obtain Qg,u given the originating point u and Qg, we
sometimes refer to Qg,u as Qg originating at u. A parallelogram Pg,u is defined
similarly, and the longer point-pairs in Pg,u are the two with the longest vectors.
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(a) (b)

Figure 5. (a) The Farey parallelogram (Definition 11) for the
point-pair ((3, 2), u), which contains the point-pairs ((2, 1), u),
((2, 1), v), ((1, 1), u), and ((1, 1), w). (b) The adjacent Farey par-
allelograms for the point-pairs ((2, 1), u) and ((2, 1), v). See below.

In the above definition, note that a quadrilateral Qg,u for a point-pair (g, u) is
a quadrilateral whose longer diagonal is (g, u). Hence, any quadrilateral for the
shorter diagonal of Qg,u is distinct from Qg,u. We define a flip on Qg,u to be the
flip that replaces the shorter diagonal of Qg,u with (g, u). We will construct flip
plans containing flips on quadrilaterals originating at points in a lattice point-set.
More precisely, these flip plans will contain flips on parallelograms of the following
type.

Definition 11 (The Farey Parallelogram for a Vector/Point-pair). The Farey par-
allelogram Pg for a non-unit-length vector g is the unique parallelogram for g con-
taining

(1) unit-length vectors if g belongs to the equivalence class (1, 1), or
(2) the Farey neighbor vectors of g in the Farey sequence Fg otherwise.

The Farey parallelogram for a point-pair (g, u) is Pg at u.

(a) (b)

Figure 6. Minimum flip plans for the point-pairs (a)
((1, 6), (0, 0)) and (b) ((3, 5), (0, 0)). All flips are performed on
Farey parallelograms (Definition 11). Originating points are dis-
played above each flip. See the discussion below.

For example, see Figure 5.
We denote a flip plan for a point-pair (g, u) by πg,u(T ), where T is the starting

triangulation. When T is clear from context, we just write πg,u. The flip that is
maximal with respect to the partial order on πg,u is called the maximal flip of πg,u.
The number of flips in πg,u is denoted by |πg,u|.
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For example, Figure 2a shows a minimum flip plan π(3,2),(0,0) and Figure 6 shows
minimum flip plans (a) π(1,6),(0,0) and (b) π(3,5),(0,0). These flip plans consist of
flips on Farey parallelograms. Also, consider the equilateral triangulation in Figure
7a. Figures 7 (a)-(f) show all the Farey parallelograms in the latter two flip plans.
Figure 7g shows a triangulation containing ((1, 6), (0, 0)) and ((3, 5), (0, 0)) as edges.

(a) (b) (c) (d) (e)

(f) (g)

Figure 7. Triangulations resulting from performing the flips in
the flip plans in Figure 6 one level at a time. Flips on Farey par-
allelograms with at least three red edges are contained in the flip
plan for the edge (1, 6) at the point (0, 0), flips on Farey parallelo-
grams with at least three blue edges are contained in the flip plan
for the edge (3, 5) at the point (0, 0), and flips on Farey parallelo-
grams with two blue and two red edges are contained in both flip
plans.

Next, we prove several properties of Farey parallelograms, stated as Lemmas 4,
5, and 6, below. Figures 4 and 5 illustrate these properties.

Lemma 4 (Obtaining Farey Parallelograms from Farey Plans). Let g be a vector
whose Farey plan is C = {f1, . . . , fn}, with n ≥ 2, and let g1 = ϕ−1

g (fn−1) and
g2 = g − g1. Then,

(1) the Farey parallelogram for g is Pg = {g1, g2} and
(2) the Farey parallelogram for g1 is Pg1 = {g2, g1−g2}, and hence g1 is longer

than g2.
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Proof. Using Lemma 3, it is easy to see that g1 and g2 are the Farey neighbor
vectors of g in Fg. Hence, Statement (1) is true. Next, by the same lemma, g1 and
g2 are adjacent in Fg1 . Thus, the Farey neighbor vectors of g1 in Fg1 are g2 and
g1 − g2, by Property 1. This proves Statement (2). □

Lemma 5 (Farey Plan for Longer Farey Neighbor Vector). Let g be a vector whose
Farey plan is C = {f1, . . . , fn}, with n ≥ 2, and let g1 be the longer vector in the
Farey parallelogram for g. Then, the Farey Plan for g1 is C \ {fn}.

Proof. By Lemma 4, we have g1 = ϕ−1(fn−1). The lemma now follows from the
observation that all but the last step of Algorithm Farey Plan on inputs g and g1
are identical. □

To state the next lemma, we require the following terminology. We call two
distinct Farey parallelograms Pg,u and Pg,v adjacent if they share a point-pair. We
call two distinct point-pairs adjacent if their Farey parallelograms are adjacent.

Lemma 6 (Decomposing a Farey Parallelogram). Let (g, u) be a point-pair such
that the Farey plan for g has length at least 2, let the longer vector in the Farey
parallelogram Pg be g1, and let g2 = g − g1. Also, let v = u + g2 and w = u + g1.
Then, the Farey parallelogram Pg,u contains the point-pairs (g1, u), (g2, u), (g1, v),
and (g2, w). Furthermore, Pg,u is contained in the region bounded by the adjacent
Farey parallelograms Pg1,u and Pg1,v, Pg1,u contains (g2, u) and (g1 − g2, v), and
Pg1,v contains (g2, w) and (g1 − g2, v).

Proof. Using Lemma 4, we see that the Farey parallelogram Pg,u contains the point-
pairs (g1, u), (g2, u), (g1, v), and (g2, w). Next, since the Farey plan for g has length
at least 2, g does not belong to the equivalence classes (0, 1) or (1, 1). This implies
that g1 is not unit-length, and so the Farey parallelogram Pg1 exists. By the lemma
above, the Farey parallelogram Pg1,u contains (g2, u). Hence, Pg1,u also contains
the point-pair (g1 − g2, v). Similarly, Pg1,v contains (g1 − g2, v) and (g2, w).

Finally, the discussion above shows that Pg1,u and Pg1,v are adjacent and the
region bounded by them contains Pg,u. □

We are now ready to present our algorithm.

Algorithm Flip Plan takes a point-pair (g, u) and the Farey plan C = {f1, . . . , fn}
for g as inputs and outputs a flip plan πg,u for (g, u). The algorithm is recursive
and uses a perfect hash table X to keep track of the poset computed thus far to
avoid redundant recursive calls. The hash table is initially empty.

Base Cases: If C is empty, then the poset πg,u is empty. If C =
{

1
1

}
, then add a

flip on the Farey parallelogram for the vector ϕ−1
g ( 11 ) originating at u to πg,u.

Recursive Step: Insert (g, u) into X indexed by its vector, defining coordinate pair,
and originating point. Consider the vectors g1 = ϕ−1

g (fn−1) and g2 = g − g1. Add
a flip s on the Farey parallelogram Pg = {g1, g2} originating at u to πg,u. The
children of s are the maximal flips of the posets that result from recursing on the
point-pair (g1, u) with Farey plan C \ fn and the point-pair (g1, u+ g2) with Farey
plan C \ fn. If X contains either (g1, u) or (g1, u+ g2), then this recursive call has
already been made, and so s is added as a parent to the corresponding maximal
flip.
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Given a point-pair, we can compute the Farey plan for its vector. Hence, we
often refer to the poset output by Algorithm Flip Plan on the input point-pair,
omitting mention of the input Farey plan. The remainder of this section is focused
on proving the correctness and complexity of this algorithm, which follow from
Theorem 4, stated below. We require the following definitions to state the theorem.

Definition 12 (Poset Union). The poset union π ∪ π′ of two posets of flips π and
π′ is the poset containing all the flips in π and π′ such that two flips are related if
and only if they are related in either π or π′.

For example, the flip plan that starts from the triangulation in Figure 7a and
forces the point-pairs of the blue and red edges in Figure 7g to become edges is the
union of the flip plans in Figure 6. In other words, a single flip plan forces multiple
point-pairs to become edges.

Next, two flip plans πg,u and πg,v are adjacent if their maximal flips are on
adjacent Farey parallelograms. For example, the two posets in Figure 6a rooted
at the flips on the Farey parallelograms P(1,5),(0,0) and P(1,5),(0,1) are adjacent, as
shown in Figure 7e.

Theorem 4 (A Flip Plan for Adjacent Point-pairs). Let (g, u) and (g, v) be adjacent
point-pairs that are edges in some triangulation of an equilateral lattice point-set
and let πg,u and πg,v be the posets output by Algorithm Flip Plan when given these
point-pairs as inputs, respectively. Then, πg,u ∪ πg,v is a flip plan for (g, u) and
(g, v).

Theorem 4 is proved at the end of this section using Lemmas 7 and 8 and a
corollary of Lemma 9, below. The following is a corollary of this theorem.

Corollary 1 (A Flip Plan for a Point-pair). Let (g, u) be a point-pair that is an
edge in some triangulation of an equilateral lattice point-set. Then, on input (g, u),
Algorithm Flip Plan outputs a flip plan πg,u for (g, u) in O(|πg,u|) time.

Proof. If (g, u) is unit-length, then it is contained in the equilateral triangulation
and πg,u is empty, and so the Corollary is true. Otherwise, by Theorem 4, πg,u

is a flip plan for (g, u). Lastly, for the complexity statement, we show that the
algorithm makes O(|πg,u|) recursive calls, each taking O(1) time to complete. This
proves the corollary.

Observe that two point-pairs have the same index in the hash table X if and
only if they are the same point-pair. Hence, X is a perfect hash table, and so
look-up takes O(1) time. Therefore, it is easy to see that each recursive call takes
O(1) time. Finally, each recursive call adds one flip to πg,u, and so exactly |πg,u|
recursive calls are made. □

Lemma 7 (The Structure of a Poset Output by Algorithm Flip Plan). Consider a
point-pair (g, u) such that the Farey plan for g has length at least 2. Let the longer
point-pairs in the Farey parallelogram for (g, u) be (g1, u1) and (g1, u2). Also, let
πg,u, πg1,u1

, and πg1,u2
be the posets output by Algorithm Flip Plan when these

point-pairs are given as inputs, respectively. Then, πg1,u1 and πg1,u2 are adjacent
and πg1,u1 ∪ πg1,u2 is the poset πg,u with its maximal flip removed.

Proof. Since the Farey plan for g has length at least 2, the posets πg,u, πg1,u1
, and

πg1,u2
are non-empty. Additionally, by Lemma 6, we have u2 = u+ g − g1. Hence,

the two child flips of the maximal flip in πg,u are flips on the Farey parallelograms
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for (g1, u1) and (g1, u2). Furthermore, by the same lemma, these parallelograms are
adjacent. The lemma now follows from the recursive step in Algorithm Flip Plan
and Lemma 5. □

Lemma 8 (Extending Flip Plans). Let (g, u) and (g, v) be adjacent point-pairs in an
equilateral lattice point-set such that the Farey plan for g has length at least 2. Also,
let (g1, u1) and (g1, u2) be the longer point-pairs in the Farey parallelogram for (g, u)
and let (g1, u3) and (g1, u4) be the longer point-pairs in the Farey parallelogram for
(g, v). Lastly, on inputs (g, u), (g, v), and (g1, ui), let πg,u, πg,v, and πi be the posets
output by Algorithm Flip Plan, respectively, for all 1 ≤ i ≤ 4. Then, Statements
(1) and (2) imply Statement (3) below:

(1) πi is a flip plan for (g1, ui), for all 1 ≤ i ≤ 4.
(2) πi ∪πj is a flip plan for (g1, ui) and (g1, uj), for all 1 ≤ i, j ≤ 4 with i ̸= j.
(3) πg,u ∪ πg,v is a flip plan for (g, u) and (g, v).

The proof of Lemma 8 can be found in A.1.
To state Lemma 9, we need the following definition. Let (g, u) be a point-

pair with g = (x, y) that is not unit-length. The bounding region for (g, u) is the
rectangular lattice point-set whose extreme points are u, u+ (x, 0), u+ (0, y), and
u+ g.

Lemma 9 (Bounding Regions Contain All Flips). If a non-unit-length point-pair
(g, u) is given as input to Algorithm Flip Plan, then the Farey parallelograms of the
flips in the output poset are contained in the bounding region for (g, u).

The proof of Lemma 9 can be found in A.2.

Corollary 2 (A Flip Plan for Point-pairs with Non-intersecting Bounding Regions).
Let G = {(g1, u1), . . . , (gn, un)} be a set of point-pairs such that are edges in some
triangulation of an equilateral lattice point-set. Also, let the poset πgi,ui

output by
Algorithm Flip Plan on input (gi, ui) be a flip plan for (gi, ui), for all (gi, ui) in
G. If the bounding regions for any two point-pairs in G do not have intersecting
interiors, then πg1,u1

∪ · · · ∪ πgn,un
is a flip plan for G.

Proof. The corollary follows immediately from Lemma 9. □

Proof of Theorem 4. We proceed by induction on the size n of the Farey plan for the
vector g. Since (g, u) and (g, v) are adjacent, their Farey parallelograms exist, so n
is at least 1. When n = 1, (g, u) and (g, v) belong to the equivalence class (1, 1) and
their Farey parallelograms contain unit-length point-pairs. The point-pairs in these
Farey parallelograms and the unit-length diagonals of these parallelograms are edges
in the equilateral triangulation, and the regions bounded by these parallelograms
are disjoint. Hence, flips on both parallelograms can be performed, as specified by
πg,u ∪ πg,v, and so the base case holds.

Assume that the theorem holds when n = k, for any k ≥ 1, and we will prove
it holds when n = k + 1. Let (g1, u1) and (g1, u2) be the longer point-pairs in the
Farey parallelogram Pg,u and let (g1, u3) and (g1, u4) be the longer point-pairs in
the Farey parallelogram Pg,v, where u1 = u and u3 = v. Also, let πi be the posets
output by Algorithm Flip Plan on input (g1, ui), for all 1 ≤ i ≤ 4. It suffices to
show that the posets πi satisfy Statements (1) and (2) of Lemma 8. Then, applying
Lemma 8 proves the theorem by induction.
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(a) (b) (c) (d) (e) (f)

Figure 8. (a) The two cases for the equivalence class of the point-
pair shared between adjacent Farey parallelograms whose longer
diagonals belong to the equivalence class g1. (b) The cases g′ and
g′′ for the equivalence class of the vector g such that the longer
diagonal of the Farey parallelogram for g is g1. See the proof of
Theorem 4. (c)-(f) The four cases for the configuration of adjacent
point-pairs such that their vectors are g and the longer vector in
the Farey parallelogram for g is g1. These cases result from the
cases in (a) and (b). See the proof of Theorem 4.

To show that Statement (1) is true, consider the poset π1 ∪ π2. By Lemma 5,
the Farey plan for the vector g1 has length k. Also, by Lemma 7, π1 ∪ π2 is πg,u

with its maximal flip removed, and the maximal flips in π1∪π2 are on the adjacent
Farey parallelograms for (g1, u1) and (g1, u2). Hence, by the inductive hypothesis,
π1 ∪ π2 is a flip plan for (g1, u1) and (g1, u2). Similarly, π3 ∪ π4 is a flip plan for
(g1, u3) and (g1, u4). Therefore, πi is a flip plan for (g1, ui), for all 1 ≤ i ≤ 4.

Next, we show that Statement (2) is true. We have already shown that π1 ∪ π2

is a flip plan for (g1, u1) and (g1, u2) and π3 ∪ π4 is a flip plan for (g1, u3) and
(g1, u4). For the other posets, consider the adjacent Farey parallelograms Pg1,u1

and Pg1,u2
. Note that there are two cases for the equivalence class of the point-

pair shared between Pg1,u1
and Pg1,u2

. These cases correspond to two cases for
the vector g1, as shown in Figure 8 (a) and (b). Likewise, there are two cases for
the equivalence class of the point-pair shared between Pg,u and Pg,v. Therefore,
without loss of generality, there are four cases for the configuration of (g, u) and
(g, v) in the lattice point-set, as shown in Figure 8.

In cases (c) and (e), the shared point-pair belongs to the equivalence class g −
g1. Hence, the point-pairs (g1, u1), (g1, u2), (g1, u3), and (g1, u4) are distinct and,
without loss of generality, the point-pairs (g1, u2) and (g1, u3) are adjacent. By
the inductive hypothesis, π2 ∪ π3 is a flip plan for (g1, u2) and (g1, u3). Also,
observe that (g1, u3) and (g1, u4) can be obtained from (g1, u1) by translating its
origin point by g1 and g, respectively. Similarly, (g1, u4) can be obtained from
(g1, u2) by translating its origin point by g1. Since bounding regions are convex by
definition, this implies that the bounding regions for the point-pairs in each pair
((g1, u1), (g1, u3)), ((g1, u1), (g1, u4)), and ((g1, u2), (g1, u4)) do not have intersecting
interiors. Therefore, by Corollary 2, π1 ∪ π3, π1 ∪ π4, and π2 ∪ π4 are flip plans for
their respective pairs of point-pairs.

Finally, in cases (d) and (f), the shared point-pair belongs to the equivalence
class g1. Hence, without loss of generality, the point-pairs (g1, u2) and (g1, u3) are
the same. Hence, by the argument above, π1 ∪ π2 and π2 ∪ π3 are flip plans are
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flip plans for their respective pairs of point-pairs. Lastly, by transitivity, the poset
π1 ∪ π3 is a flip plan (g1, u1) and (g1, u3). Thus, Statement (2) of Lemma 8 is true,
and the proof is complete. □

5. A Minimum Flip Plan for a Set of Point-pairs

In this section, we present an algorithm that takes a set G of point-pairs that are
edges in some triangulation of a lattice point-set and the Farey plans for the vectors
of G as inputs and outputs a flip plan that starts from an equilateral triangulation
and forces G to become edges. Moreover, we show that this is a minimum flip for
G, and that all minimum flip plans for G contain the same set of flips. This proves
Theorem 3 in Section 2.

(a) (b) (c)

Figure 9. (a) A triangulation containing the set G =
{((1, 3), (0, 0)), ((2, 3), (0, 0))} of point-pairs as edges. (b) A mini-
mum flip plan πG for G whose target triangulation is the one in (a).
The poset of blue and pink flips is the flip plan π((1,3),(0,0)) and the
poset of green and pink flips is the flip plan π((1,3),(0,0)). The poset
of pink flips is π((1,3),(0,0))∩π((2,3),(0,0)) (Definition 17) blue flips is
π((1,3),(0,0))\π((2,3),(0,0)), and green flips is π((2,3),(0,0))\π((1,3),(0,0)).
(c) The poset π((1,3),(0,0))||π((2,3),(0,0)). See Definition 13 and be-
low.

Note 3. From here on, unless otherwise specified, πg,u denotes the flip plan output
by Algorithm Flip Plan on an input point-pair (g, u).

Algorithm Multi Flip Plan takes a set G = {(g1, u1), . . . , (gn, un)} of point-pairs
and the Farey plans for the vectors of G as inputs and outputs the poset of flips
πG = πg1,u1

∪ · · · ∪ πgn,un
. The algorithm uses a perfect hash table similar to the

one in Algorithm Flip Plan to keep track of the poset computed thus far so that
no redundant recursive calls or calls to Algorithm Flip Plan are made.

Theorem 5 (A Minimum Flip Plan for a Set of Point-pairs). Let G be a set of
point-pairs that are edges in some triangulation of an equilateral lattice point-set.
On input G, Algorithm Multi Flip Plan outputs a minimum flip plan πG for G, and,
if G contains only distinct non-unit-length point-pairs, then this algorithm runs in
O(|πG|) time.
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Theorem 5 is proved at the end of this section using a corollary of Lemma 10
along with Lemmas 11, 12, and 13, below. The following property of minimum flip
plans is a byproduct of the proof of this theorem.

Proposition 2 (All Minimum Flip Plans have the Same Set of Flips). Let G be
a set of point-pairs that are edges in some triangulation of an equilateral lattice
point-set. All minimum flip plans for G have the same set of flips.

Figure 10. The Farey parallelogram and the regions that do not
include a lattice point in the proof Lemma 10.

Lemma 10 (The Unique Flippable Parallelogram for a Point-Pair). The Farey par-
allelogram for a point-pair is the unique parallelogram such that the region bounded
by its point-pairs does not contain a lattice point.

Proof. Consider a point-pair (g, u). Corollary 1 shows that the Farey parallelogram
Pg,u does not contain a lattice point. Consider any other parallelogram P ′

g,u and
refer to the depiction of Pg,u in Figure 10. Let the Farey parallelogram Pg =
{g1, g2}, with ϕg(g1) < ϕg(g2), and let g′1 be the longer vector in the parallelogram
P ′
g. If the region bounded by P ′

g,u does not contain a vertex of Pg,u, then a vertex
of P ′

g,u must lie in one of the shaded circular arcs, excluding their boundaries.
This implies that either ϕg(g1) < ϕg(g

′
1) < ϕg(g) or ϕg(g) < ϕg(g

′
1) < ϕg(g2).

However, since the denominator of ϕg(g
′
1) is less than the denominator of ϕg(g),

one of the Farey neighbors of ϕg(g) in Fg is not adjacent to ϕg(g) in Fg, which is
a contradiction. Thus, the region bounded by P ′

g,u contains a vertex of Pg,u, and
the lemma is proved. □

Corollary 3 (The Unique Flippable Quadrilateral for a Point-Pair). The Farey
parallelogram for a point-pair (g, u) is the unique quadrilateral for (g, u) such that
the region bounded by its point-pairs does not contain a lattice point.

This corollary shows that the Farey parallelogram for an edge is the minimal
parallelogram defined in [18], and discussed in Section 1.1.

Lemma 11 (Farey Parallelogram Intersection). Consider a non-unit-length point-
pair (g, u) and the flip plan πg,u. The shorter diagonal of the Farey parallelogram
of any flip in πg,u and (g, u) have intersecting line-segments.

The proof of Lemma 11 is given in B.1
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Lemma 12 (Point-pair Flip Plan Intersection). Consider two point-pairs (g, u)
and (g, v) and the flip plans πg,u and πg,v. If πg,u and πg,v both contain a flip on
the Farey parallelogram for a point-pair (h, y), then they both contain the flip plan
πh,y as a subposet.

Proof. The lemma follows by observing that, on inputs (g, u) and (g, v), Algorithm
Flip Plan will recurse on (h, y). □

We require the following definitions to state Lemma 13.

Definition 13 (Poset Difference and Concatenation). Let π and π′ be posets of
flips. The difference π\π′ is the poset containing the flips in π that are not contained
in π′ such that two flips in π \ π′ are related if and only if they are related in π.

The concatenation π||π′ is the poset π∪(π′\π) with additional relations to ensure
that each maximal flip in π is performed before any flip in π′ \ π.

For example, see Figure 9.

Remark 1 (Complexity of Computing the Difference of Flip Plans). In Section 7,
we will want to quickly compute the difference π′ \ π of two posets of flips π and
π′. This can be achieved in O(|π|+ |π′|) time via a simple algorithm that (1) stores
all flips in π′ in a perfect hash table X, similar to the one in Algorithm Flip Plan,
and (2) outputting the poset obtained from π by iterating through all its flips and
removing those contained in X.

Definition 14 (Independent Set of Point-pairs). A set G = {(g1, u1), . . . ,
(gn, un)} of point-pairs is independent if and only if each point-pair in G is not
unit-length and πgi,ui

is not a subposet of πgj ,uj
, for all 1 ≤ i, j ≤ n with i ̸= j.

Observe that any set G of point-pairs has a unique maximal independent sub-
set which, we call the maximum independent subset of G. For example, if G =
{((1, 3)(0, 0)), ((2, 3)(0, 0)), ((1, 2)(0, 0))}, then Figure 9b shows that the maximum
independent subset of G is {((1, 3)(0, 0)), ((2, 3)(0, 0))}.

Lemma 13 (A Flip Plan for Independent Point-pairs). Let G = {(g1, u1), . . . ,
(gn, un)} be a set of point-pairs in an equilateral lattice point-set S and let G′ be
its maximum independent subset. If G′ are edges in some triangulation of S, then
τG = πg1,u1 || . . . ||πgn,un is a flip plan for G′.

The proof of Lemma 13 is given in Appendix B.2. We are now ready to prove
Theorems 5 and 3.

Proof of Theorem 5. The proof has 3 parts proving (1) the complexity of the algo-
rithm, (2) that the output πG is a flip plan for G, and (3) that πG is a minimum
flip plan.

For (1), assume that G contains only distinct non-unit-length point-pairs and let
(g, u) be the point-pair in G that is currently under consideration in the algorithm.
Since the hash table is perfect, checking if it contains (g, u) takes O(1) time. If the
hash table contains (g, u), then the algorithm moves onto the next point-pair in G,
and so the total time spent on (g, u) is O(1). Otherwise, (g, u) is given as input to
Algorithm Flip Plan.

Let H be the subset of point-pairs in G for which a call to Algorithm Flip Plan
is made and let H ′ = G \ H. Since (g, u) is not unit-length, πg,u is non-empty.
Hence, πG contains a flip that adds (g, u) as an edge. Combining this with the fact
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that all edges in G are distinct implies that |H ′| = O(|πG|). Therefore, the total
time spent on point-pairs in H ′ is O(|πG|). Finally, a call to Algorithm Flip Plan is
made for each point-pair in H, and each recursive call in this algorithm takes O(1)
time. Observe that a recursive call adds a flip to πG. Thus, O(|πG|) total recursive
calls are made, and the total run-time for Algorithm Multi Flip Plan on input G is
O(|πG|) +O(|πG|), which proves the bound.

For (2), we first show that any consistent linear ordering p = p1 . . . pm of πG is
a flip path. Let H = {(h1, y1), . . . , (hm, ym)} be the indexed set of point-pairs such
that the flip pi adds the edge (hi, yi). Also, let H ′ be the maximum independent
subset of H. Observe that H ′ is a subset of G, and so it is a subset of edges of some
triangulation, by assumption. Hence, by Lemma 13, πH = πh1,y1

|| . . . ||πhm,ym
is

a flip plan for H ′. By Lemma 12, we see that πhi,yi
is the subposet of πG whose

maximal flip is pi. Consequently, since p is a consistent linear ordering of πG, we
have pi = πhi,yi \ (πh1,y1 || . . . ||πhi−1,yi−1). Therefore, by definition, πH is the linear
ordering p, and so p is a flip path.

Next, we show that p is a flip path for G. Consider any point-pair (gi, ui) in
G \ H ′ and let T ′ be the target triangulation of p. If (gi, ui) is unit-length, then
it is contained in the starting triangulation of p. Otherwise, by the definition of
H ′, some flip in p adds (gi, ui) as an edge. Furthermore, since the line segment of
(gi, ui) does not intersect the line segment of any other point-pair in G, no flip in
p removes (gi, ui), by Lemma 11. Therefore, the target triangulation of p contains
G as edges.

For (3), since πG is a flip plan, it suffices to show that some shortest flip path
contains all the flips in πG. We prove a stronger statement that every shortest flip
path contains all the flips in πG, which proves Proposition 2. Let q = q1, . . . , qr be
any shortest flip path for G. If πG is empty, then q is empty and the theorem is
proved. Otherwise, G contains at least one non-unit-length edge.

Claim: all flips in q replace edges with longer ones.
Assuming the claim, q contains all maximal flips in πG, by Corollary 3. Let π′

G

be πG with its maximal flips removed and consider any maximal flip in πG, and
let it be performed on the Farey parallelogram Pgi,ui . If the longer point-pairs in
Pgi,ui

are not unit-length, then q must contain flips on their Farey parallelograms.
These are the maximal flips in π′

G, by Lemma 7. By repeating this argument, we
see that q contains all flips in πG. Since πG is a flip plan and q is a shortest flip
path, q does not contain any other flips. This proves Theorem 5 and Proposition
2.

We conclude the proof by proving the above claim. Assume that some flip in q
replaces an edge with a shorter one and let qt be the first such flip, which replaces the
edge (h, y). Since (h, y) is not unit-length, the Farey parallelogram Ph,y exists, and
qt is a flip on Ph,y, by Corollary 3. Also, since all edges in the starting triangulation
of q are unit-length, we have t > 1. Hence, by the same corollary, some flip qs,
with 1 ≤ s < t, is on Ph,y and adds (h, y) as an edge. The discussion above
implies that the triangulations resulting from qs and qt−1 contain the point-pairs
in Ph,y as edges. Therefore, since each flip between qs and qt replace an edge with
a longer one, by assumption, the triangulation resulting from this flip also contains
the point-pairs in Ph,y as edges. If neither (h, y) nor the shorter diagonal of Ph,y is
a point-pair in G, then removing qs and qt from q yields a shorter flip path between
the equilateral triangulation and T ′′. Otherwise, we can obtain a similar outcome
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by removing either qs from q if the shorter diagonal of Ph,y is a point-pair in G, or
qt from q if (h, y) is a point-pair in G. Thus, in all cases we contradict the fact that
q is a shortest flip path, proving the claim. □

Proof of Theorem 3. If the given point-pair is unit-length, then the fact that its
flip plan is minimum follows from Theorem 5 and the complexity statement follows
from Corollary 1. Otherwise, the theorem follows from Theorem 5. □

6. Minimum Flip Plans Starting from Any Minimum Triangulation

In this section, we generalize Theorem 5 by allowing the starting triangulation
to be any minimum triangulation (Definition 16). Then, we show that any triangu-
lation is a minimum triangulation containing a set of edges, as discussed in Section
2.

Note 4. From here on, unless otherwise specified, πG denotes the flip plan output
by Algorithm Multi Flip Plan on an input set G of point-pairs.

Additionally, consider a lattice point-set S = L ∩ Ω. We can treat the boundary
line-segments of the polygon Ω as a set of point-pairs. We denote this set by Ω,
and it will be clear from context whether we are referring to a polygon or a set of
point-pairs.

We begin with definitions and then state the main theorem of this section.

(a) (b) (c) (d)

Figure 11. (a) and (c) Minimum triangulations (Definition 16).
(b) A minimum triangulation containing the set of blue and red
point-pairs as edges. (d) A minimum triangulation containing the
set of green point-pairs as edges. The blue edges from (b) are the
polygonal boundary edges in (c) and (d). See below.

Definition 15 (Point-pairs that are independent in a Particular Lattice Point-set).
A set G = {(g1, u1), . . . , (gn, un)} of point-pairs in a lattice point-set S = L ∩ Ω
is independent in S if and only if G does not contain any point-pair in Ω and the
maximum independent subset of G ∪ Ω contains G.

For any set of point-pairs G and any lattice point-set S, note that G has a unique
maximal subset that is independent in S, which we call the maximum subset of
G that is independent in S. If S admits an equilateral triangulation, then G is
independent in S if and only if it is independent as in Definition 14. Additionally,
the maximum independent set of a triangulation T of S is the maximum subset of
edges in T that is independent in S.



22 WILLIAM SIMS1 AND MEERA SITHARAM1,2

For example, consider Figure 11 and let G be the set of red edges in (b), G′ be
the set of green edges in (d), Ω be the set of blue edges in (b)-(d), and Ω′ be the
subset of all non-unit-length edges in Ω. Also, let S be the lattice point-set in (a)
and (b) and let S′ be the lattice point-set in (c) and (d). The set G′∪Ω′ is both the
maximum independent subset of G ∪ Ω and the maximum subset of G ∪ Ω that is
independent in S. The set G′ is the maximum subset of G∪Ω that is independent
in S′.

Definition 16 (Minimum Triangulations). Let G be a set of point-pairs that are
edges in some triangulation of a lattice point-set S and let G′ be its maximum subset
that is independent in S.

• A minimum triangulation, denoted by MT (S), is a triangulation such that
each of its edges is either unit-length or some point-pair in the Farey par-
allelogram for the edge is not an edge in MT (S).

• A minimum triangulation containing G as edges, denoted by MT (S,G), is
a triangulation containing G as edges such that G′ is the set of all edges for
which the point-pairs in their Farey parallelograms are edges in MT (S,G).
If G′ is empty, then MT (S,G) = MT (S).

See Figure 11 for examples of these triangulations. Lemma 14, below, shows
that these triangulations are unique. Given their uniqueness, we can state the
main theorem of this section as follows. Recall that a set of constraint edges is a
set of point-pairs that must be edges in all triangulations along a flip path.

Theorem 6 (Constrained Minimum Flip Plans that Start from Minimum Trian-
gulations). Let F be a set of constraint edges and let G be a set of point-pairs in a
lattice point-set S = L ∩ Ω such that F ∪ G are edges in some triangulation of S.
Also, consider the flip plans πΩ, πF , and πG. Then, the following statements are
true.

(1) πG \ (πΩ ∪ πF ) is a minimum flip plan constrained by F that starts from
the minimum triangulation MT (S, F ) and forces G to become edges,

(2) πG \ (πΩ ∪πF ) is a minimum flip plan constrained by F between MT (S, F )
and the minimum triangulation MT (S, F ∪G), and

(3) all minimum flip plans of the above types have the same set of flips.

The theorem is proved using Lemmas 14 and 15, below. The proofs of these
lemmas are given in C.1 and C.2, respectively.

Lemma 14 (Unique Minimum Triangulations). Consider a set G of point-pairs
that are edges in some triangulation of a lattice point-set S. The minimum trian-
gulation of S containing G as edges is unique.

The proof of Lemma 14 goes as follows. First, we prove the Lemma when
S = L ∩ Ω admits an equilateral triangulation (Lemma 24). In the case where S
does not admit such a triangulation, we consider a point-set S′ that contains S
and which does admit an equilateral triangulation. Then, we show that removing
the points in S′ \ S from the unique minimum triangulation MT (S′,Ω ∪G) yields
a minimum triangulation MT (S,G). Finally, we prove that MT (S,G) is unique
by showing that distinct triangulations of S that contain G as edges correspond to
distinct minimum triangulations of S′ that differ in their edges between points in
S. As an illustration of this proof, refer to the minimum triangulations in Figure
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11 (b) and (d) and let G be the red edges and Ω be the blue edges. The set of green
edges is the maximum subset of G that is independent in point-set in Figure 11(d).

Lemma 15 (Constrained Minimum Flip Plans Starting from an Equilateral trian-
gulation). Let F be a set of constraint edges and a let G be a set of point-pairs in a
lattice point-set S such that F ∪G is a subset of edges of some triangulation of S.
Also, consider the flip plans πF and πG. Then, the following statements are true.

(1) πG \ πF is a minimum flip plan constrained by F that starts from the min-
imum triangulation MT (S, F ) and forces G to become edges,

(2) πG \ πF is a minimum flip plan constrained by F between MT (S, F ) and
the minimum triangulation MT (S, F ∪G), and

(3) all minimum flip plans of the above types have the same set of flips.

To prove Lemma 15, we use the above-mentioned Lemma 24 to show that if any
of the lemma statements is false, then so is Theorem 5, which is a contradiction.

We are now ready to prove the Theorem 6.

Proof of Theorem 6. Consider a lattice point-set S′ that contains S and admits an
equilateral triangulation. Since F ∪ G is a subset of edges of some triangulation
of S, and all triangulations of S contain Ω as edges, Ω ∪ F ∪ G is a subset of
edges of some triangulation of S′. Hence, πG \ (πΩ ∪ πF ) is a minimum flip plan
constrained by Ω ∪ F that starts from the minimum triangulation MT (S′,Ω ∪ F )
and forces G to become edges, by Lemma 15. Additionally, the target triangulation
of πG \ (πΩ ∪ πF ) is the minimum triangulation MT (S′,Ω ∪ F ∪G).

Next, as in the proof of Lemma 14 (see C.1 and above proof sketch), removing
the points in S′ \ S from these triangulations yields the minimum triangulations
MT (S, F ) and MT (S, F ∪G). We will show that all flips in πG \ (πΩ ∪ πF ) are on
Farey parallelograms contained in S. This demonstrates that πG \ (πΩ ∪ πF ) is a
flip plan constrained by F that starts from the MT (S, F ) and forces G to become
edges. Moreover, its target triangulation is MT (S, F ∪G).

Assume to the contrary that some flip in πG\(πΩ∪πF ) is on a Farey parallelogram
Ph,y, for a point-pair (h, y), with a vertex in S′ \ S. Since each point-pair in G is
between points in S, this implies that the line-segments of a point-pair in Ph,y and
a point-pair in Ω intersect. Hence, these point-pairs cannot both be edges in the
same triangulation. However, as noted above, πG \ (πΩ ∪ πF ) is constrained by
Ω ∪ F , and so this is a contradiction.

Finally, if πG \ (πΩ ∪ πF ) is not a minimum flip plan as described by either
Statement (1) or (2), then we can easily obtain a contradiction as in the proof of
Lemma 15. □

We conclude this section with the following proposition.

Proposition 3 (Identity Map Between Triangulations and Minimum Triangula-
tions). Let T be a triangulation of a lattice point-set S and let G′ be its maximum
independent set. Then, the map that takes T to the the minimum triangulation of
S containing G′ as edges is the identity map.

Proof. Let S = L∩Ω and let G be the set of all edges in T . It suffices to show that
the composition of the map that sends T to G′ and the map that sends G′ to the
minimum triangulation MT (S,G′) is the identity map. First, observe that these
maps are well-defined. Second, by Statements (1) of Theorem 6, T is the target
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triangulation of πG \ πΩ. Furthermore, by Statement (2) of this theorem, T is the
minimum triangulation MT (S,G). Finally, by definition, MT (S,G) is MT (S,G′).
Thus, the second map sends G′ to T . □

7. A Constrained Minimum Flip Plan Between Two Triangulations

In this section, we prove Theorems 1 and 2, stated in Section 2. Theorem 1
follows from Theorem 7 and Lemma 16, below. We require the following definitions
to state and prove Theorem 7.

(a) (b) (c)

(d) (e) (f)

Figure 12. (d) and (f) Minimum flip plans π1 and π2 that start
from an equilateral triangulation and end with the triangulations in
(a) and (c), respectively. The poset π1∩π2 (Definition 17) is shown
in purple, π1 \ π2 is shown green, and π2 \ π1 is shown in blue. (e)
The minimum flip plan π−1

1 ||π2 between the triangulations in (a)
and (c), where concatenation is handled using a dummy flip (see
proof of Proposition 4). Inverse flips are denoted by a superscript
“−1.” (b) The target triangulation of π−1

1 . See Definition 18 and
below.

Definition 17 (Poset Intersection). The intersection π∩π′ of two posets π and π′

of flips is the maximum-size poset contained in both π and π′.

For example, see Figure 9.

Definition 18 (Inverse Flip and Inverse Flip Plan). The inverse of a flip on a
Farey parallelogram Pg,u that adds the point-pair (g, u) as an edge is the flip on
Pg,u that replaces the edge (g, u) with the shorter diagonal of Pg,u.
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The inverse π−1 of a flip plan π, whose flips are on Farey parallelograms and
replace edges with longer ones, is obtained from π be reversing all relations in its
partial order and inverting all of its flips.

For example, consider the flip plans π(1,6),(0,0) and π(3,5),(0,0) in Figure 6. The in-
verses of these flip plans contain inverse flips on the Farey parallelograms P(1,6),(0,0)

and P(3,5),(0,0) as minimal elements. Furthermore, the union of these inverse flip
plans is a flip plan whose starting triangulation is the one in Figure 7g and whose
target triangulation is the equilateral triangulation in Figure 7a.

Theorem 7 (Constrained Minimum Flip Plan Between Minimum Triangulations).
Let F be a set of constraint edges and let G ∪ F and G′ ∪ F be sets of point-pairs
that are each edges in some triangulation of a lattice point-set S = L ∩ Ω. Then,
the poset

(πG \ (πΩ ∪ πF ∪ πG′))−1||(πG′ \ (πΩ ∪ πF ∪ πG)),

is a minimum flip plan constrained by F between the minimum triangulations
MT (S, F ∪ G) and MT (S, F ∪ G′). Furthermore, all minimum flip plans between
these triangulations contain the same set of flips.

Proof. Let π be the poset given by the theorem and consider the flip plans πΩ,
πF , πG, πG′ , and πH = πG ∩ πG′ , where H is the set of point-pairs added by the
maximal flips in this intersection. First, we show that π is a flip plan between
the minimum triangulations MT (S, F ∪ G) and MT (S, F ∪ G′). By the Theorem
6, πG \ (πΩ ∪ πF ) is a minimum flip plan constrained by F between the minimum
triangulationsMT (S, F ) andMT (S, F∪G). Similarly, πG′\(πΩ∪πF ) is a minimum
flip plan constrained by F between MT (S, F ) and MT (S, F ∪ G′). Since πH is a
subposet of both πG and πG′ , πH \ (πΩ ∪ πF ) is a minimum flip plan constrained
by F between MT (S, F ) and the minimum triangulation MT (S, F ∪ H). Hence,
we get that πG′ \ (πΩ ∪ πF ∪ πH) is a minimum flip plan constrained by F between
MT (S, F ∪H) and MT (S, F ∪G′). Similarly, πG′ \ (πΩ ∪ πF ∪ πH) is a minimum
flip plan constrained by F between MT (S, F ∪ H) and MT (S, F ∪ G′). The fact
that π is a flip plan between MT (S, F ∪G) and MT (S, F ∪G′) follows easily from
the observations that πG \ πG′ = πG \ πH and πG′ \ πG = πG′ \ πH .

Next, we prove that π is a minimum flip plan that starts from MT (S, F ∪G) and
ends withMT (S, F∪G′) by demonstrating that any shortest flip path p = p1, . . . , pn
that starts from MT (S, F ∪ G) and ends with MT (S, F ∪ G′) contains all flips in
π. It suffices to show that p contains all flips in π′ = (πG \ (πΩ ∪ πF ∪ πG′))−1. If
this is true, then swapping the roles of G and G′ shows that p contains all flips in
πG′ \ (πΩ ∪ πF ∪ πG, and hence π. This proves the theorem.

We now complete the proof by showing that p contains all flips in π′. If π′ is
empty, then we are done. Otherwise, let s−1 be any inverse flip in π′, where s−1 is
the inverse of some flip s in πG \ (πΩ ∪ πF ∪ πG′). Also, consider the triangulations
T0, . . . , Tn resulting from each flip in p and let πi be the minimum flip plan that
starts from the minimum triangulation MT (S) and forces the maximum indepen-
dent set of Ti to become edges, given by Theorem 6. As in the proof of Proposition
3, Ti is the target triangulation of πi. Hence, it is easy to see that each flip in
πG \ (πΩ ∪ πF ∪ πG′), including s, is contained in π0 but not πn. Additionally, note
that πi and πi+1 differ by a single maximal flip, for all 0 ≤ i ≤ n− 1. These facts
imply the existence of an integer 0 ≤ j ≤ n− 1 such that s is contained in πj but
not πj+1 and πj+1 can be obtained from πj be deleting s. This implies that s−1 is
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the unique flip that transforms Tj into Tj+1. Thus, p contains s−1, and the proof
is complete. □

Lemma 16 (Constrained Minimum Flip Plan Between Triangulations). Let T and
T ′ be any two triangulations of a lattice point-set whose edge sets are G and G′,
respectively, and whose maximum independent sets are H and H ′, respectively.
Also, let F be a set of constraint edges of both T and T ′. Then, the minimum flip
plan obtained by applying Theorem 7 to either F , G, and G′ or F , H, and H ′ is a
minimum flip plan constrained by F between T and T ′.

Proof. By Proposition 3, T and T ′ are the minimum triangulations MT (S,H) and
MT (S,H ′), respectively. Also, by definition, we haveMT (S,H) = MT (S, F∪H) =
MT (S, F∪G) andMT (S,H ′) = MT (S, F∪H ′) = MT (S, F∪G′). Thus, the lemma
follows by applying Theorem 7 to either F , G, and G′ or F , H, and H ′. □

Proof of Theorem 1. The theorem follows immediately from applying Lemma 16 to
the given triangulations. □

Next, Proposition 5 gives a large class of pairs of triangulations such that the
constrained minimum flip plan between them can be computed in time linear its
total number of flips. The proof of this proposition requires Proposition 4, below.

Proposition 4 (Overall Complexity of Computing Constrained Minimum Flip
Plans). Consider a lattice point-set S = L ∩ Ω and a set F of constraint edges.
Given the maximum independent subset Ω′ of point-pairs in Ω and the maximum
independent sets G and G′ of two triangulations T and T ′ of S, respectively, a
constrained minimum flip plan between T and T ′ can be computed in O(|πΩ| +
|πG|+ |πG′ |) time.

Proof. By Lemma 16, the minimum flip plan π obtained by applying Theorem 7
to F , G, and G′ is a constrained minimum flip plan between T and T ′. Hence, it
suffices to show that we can compute π in the desired time. By definition, Ω′, G,
and G′ are each a set of distinct non-unit-lengths edges. Consequently, by Theorem
5, the flip plans πΩ′ , πG, and πG′ can be computed in O(|πΩ′ |+ |πG|+ |πG′ |) time.
Observe that πΩ = πΩ′ and πF is a subposet of both πG and πG′ . Therefore,
|πΩ| = |πΩ′ | and we can rewrite π as

(πG \ (πΩ ∪ πG′))−1||(πG′ \ (πΩ ∪ πG)).

The poset unions and inversion in π can clearly be computed in O(|πΩ|+|πG|+|πG′ |)
time. Additionally, as discussed in Remark 1 in Section 5, the poset differences in
π can also be computed in this time. Lastly, poset concatenation can be handled
in the desired time by adding a dummy flip to π that is the parent of all maximal
flips in (πG \ (πΩ ∪ πG′))−1 and the child of all minimal flips in πG′ \ (πΩ ∪ πG).
This completes the proof. □

Proposition 5 (Output Sensitive Complexity). Let T and T ′ be triangulations
of a lattice point-set S = L ∩ Ω whose maximum independent sets are G and G′,
respectively. If πΩ and πG ∩ πG′ are empty, then a constrained minimum flip plan
π between T and T ′ can be found in O(|π|) time.

Proof. Assume that πΩ and πG ∩ πG′ are empty and let F be a set of constraint
edges of both T and T ′. By Lemma 16, the minimum flip plan π obtained by
applying Theorem 7 to F , G, and G′ is a minimum flip plan constrained by F
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between T and T ′. Hence, it suffices to show that π can be computed in O(|π|)
time.

By our assumptions, π can be rewritten as π−1
G ||πG′ . Since G and G′ each contain

only distinct non-unit-length edges, by definition, Theorem 5 tells us that πG and
πG′ can be computed in O(|πG| + |πG′ |) time, and hence in O(|π|) time. Finally,
the poset union, inversion, and concatenation in π can be computed in O(|π|) time,
as noted in the proof of Proposition 4. This proves the proposition. □

Finally, we prove Theorem 2.

Proof of Theorem 2. Let T and T ′ be triangulations of an n-point rectangular lat-
tice point-set S = L ∩ Ω. Since a triangulation of any point-set with n points
contains O(n) edges, for any standard representation of a triangulation (e.g., a
doubly connected edge list), it is easy to see that we can obtain the sets G and G′

of all edges in T and T ′, respectively, represented as point-pairs in a three-direction
lattice in O(n) time. Let F be a set of constraint edges contained in both G and
G′ and let H and H ′ be the maximal independent sets of T and T ′, respectively.
By Lemma 16, the minimum flip plan π obtained by applying Theorem 7 to F , H,
and H ′ is a minimum flip plan constrained by F between T and T ′. Therefore, it
suffices to show that we can compute π in O(n

3
2 ) time.

By definition, the edges in H and H ′ are the only ones in either T or T ′ such that
the point-pairs in their Farey parallelograms are also edges. Hence, since G and G′

contain all edges in T and T ′, respectively, it is easy to see that we can compute H
and H ′ in O(n) time. Furthermore, since S is rectangular, Ω contains only unit-
length edges. This implies that the maximum independent subset of point-pairs in
Ω is empty. Therefore, by Proposition 4, π can be computed in O(|πH | + |πH′ |)
time. Finally, since πH and πH′ are both flip plans that start from the equilateral
triangulation of S, Lemma 1 tells us that |πH |+ |πH′ | = O(n

3
2 ), which proves the

theorem. □

8. Conclusion and Further Works

We have elucidated the structure of constrained, shortest flip paths between
lattice triangulations, given algorithms with improved complexity over previous
algorithms, and given output-sensitive algorithms to compute these paths. While
the exposition uses closed polygonal regions Ω, this restriction can be removed and
we can simply treat the point-pairs of Ω as constraint edges. In fact, all our results
can be restated for infinite lattice triangulations that differ by finitely many edges
from the infinite equilateral lattice triangulation.

While out of the scope of this paper, significant consequences of our structural
result are that any minimum flip plan generated by our algorithms (or simple
modifications of them) is in fact unique, as it the least-restrictive (minimum height)
poset: i.e. not only are all of its consistent linear orderings shortest flip paths, by
definition, but in fact every shortest flip path is consistent with the minimum flip
plan. Both the size and height of the least-restrictive minimum flip plans given
in this paper are in fact metrics on the space of lattice triangulations (satisfy the
triangle inequality). This solves the optimal simultaneous flip path problems for
lattice triangulations according to the measures studied in both the combinatorial
[13, 14] and geometric [15, 16] settings.
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The motivation in [18] for studying lattice triangulations is to prove bounds
for the mixing times of Markov chains over weighted lattice triangulations. This
weighting determines whether the Markov chain favors transitions to lattice trian-
gulations containing short edges or to those containing long edges. In both cases,
mixing time bounds expressed in terms of the size of the point-set are conjectured,
and weak versions of these conjectures are proved. It is suggested that a deeper
look into the structure of flip paths between lattice triangulations is necessary to
prove the full conjecture, and we believe that the structural results about flip plans
proved in this paper are sufficient for this purpose.
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Appendix A. Proof Details for Section 4

A.1. Proof of Lemma 8. The proof of Lemma 8 requires Lemmas 17, 18, and 19,
below.

Lemma 17 (Flippable Farey Parallelograms). Consider a point-pair (g, u) in an
equilateral lattice point-set such that the Farey plan for g has length at least 2. Let
the longer point-pairs in the Farey parallelogram for (g, u) be (g1, u) and (g1, v) and
let g2 = g − g1. If some flip path p between an equilateral triangulation and some
triangulation T ′ contains flips on the Farey parallelograms Pg1,u and Pg1,v and if
(g1, u), (g2, u), (g1, v), (g2, u+ g1), and (g1 − g2, v) are edges in T ′, then a flip on
Pg,u can be performed in T ′.

Proof. Since the Farey plan for g has length at least 2, the point-pairs in the Farey
parallelogram Pg,u are edges in T ′, by Lemma 6. Also, since g does not belong to the
equivalence classes (0, 1) or (1, 1), g1 is not unit-length and the Farey parallelogram
Pg1 exists. Consider the two triangulations T1 and T2 resulting from the flips in
p on the Farey parallelograms Pg1,u and Pg1,v, respectively. Since these flips were
able to be performed, the regions in T1 bounded by Pg1,u and Pg1,v contain only the
edges (g1, u) and (g1, v), respectively. Thus, by Lemma 6, the region in T ′ bounded
by Pg,u contains only the shorter diagonal edge of Pg,u, and so a flip on Pg,u can
be performed in T ′. □

Lemma 18 (Length-increasing Flips). Consider the poset πg,u output by Algorithm
Flip Plan on an input point-pair (g, u).

(1) All flips in πg,u replace edges with longer ones.
(2) All flips in πg,u that are not minimal add edges that are longer than the

edges added by their child flips.
(3) The only flip in πg,u that adds an edge that is longer than a longer point-pair

in the Farey parallelogram Pg,u is the flip on Pg,u.

Proof. Statement (1) is immediate from the construction of the poset πg,u. State-
ment (2) follows directly from repeated application of Lemma 7. Lastly, Statement
(3) is a consequence of Statement (2). □

Lemma 19 (Extending Adjacent Flip Plans). Let (g, u) and (g, v) be adjacent
point-pairs in an equilateral lattice point-set such that the Farey plan for g has
length at least 2. Also, let (g1, u1) and (g1, u2) be the longer point-pairs in the
Farey parallelogram for (g, u) and let (g1, u3) and (g1, u4) be the longer point-pairs
in the Farey parallelogram for (g, v). Lastly, on inputs (g, u) and (g, v), let πg,u and
πg,v be the posets output by Algorithm Flip Plan, respectively. Then, Statement (1)
implies Statement (2) below:

(1) The poset πg,u ∪ πg,v with its two maximal flips removed is a flip plan for
(g1, u1), (g1, u2), (g1, u3), and (g1, u4).

(2) The poset πg,u ∪ πg,v is a flip plan for (g, u) and (g, v).

Proof. Assume Statement (1) is true and consider any consistent linear ordering p
of πg,u ∪ πg,v. This sequence of flips can be split into subsequences p = p1p

′p2p
′′

such that p′ and p′′ are flips on the Farey parallelograms Pg,u and Pg,v, respectively.
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By assumption, p1 is a flip path that starts from the equilateral triangulation T .
We will show that (i) p1p

′, (ii) p1p
′p2, and (iii) p1p

′p2p
′′ are flip paths starting from

T one at a time. Then, since the target triangulation of the flip path p1p
′ contains

(g, u) and no flip in πg,u ∪πg,v removes (g, u), by Lemma 18 (1) and (3), the target
triangulation of p contains (g, u) and (g, v). Thus, the lemma is proved.

For (i), observe that p1 contains all flips in the poset πg,u, except for the maximal
flip on Pg,u. Since the Farey plan for g has length at least 2, the Farey parallelogram
for g1 exists. Hence, by Lemma 7, p1 contains a flip s on Pg1,u1 , and the triangu-
lation resulting from s contains (g1, u1) and the point-pairs in Pg1,u1 as edges. If
some flip in p1 after s removes one of these edges, then the Farey parallelogram of
the first flip that does so contains (g1, u1), by Lemma 18 (1). The edge added by
this flip is longer than (g1, u1), so, by Lemma 18 (3), this flip must be p′, which
is a contradiction. Therefore, no flip in p1 after s removes (g1, u1) or an edge in
Pg1,u1 This implies that the target triangulation T ′ of p1 contains (g1, u1) and the
point-pairs in Pg1,u1

as edges. Similarly, T ′ contains (g1, u2) and the point-pairs in
Pg1,u2

as edges. Consequently, by Lemma 17, the flip p′ can be performed after p1,
and so (i) is true.

For (ii), if p2 is empty, then (ii) follows from (i). Otherwise, assume that some
flip along p1p

′p2 cannot be performed, and let s be the first such flip, which adds the
edge (h, y). By (i), s is contained in both p2 and πg1,v. Additionally, by assumption,
s can be performed along the flip path p1p2. Hence, the point-pairs in the Farey
parallelogram Ph,y are edges of the triangulation preceding s in p1p2. The facts
above imply that the flip p′ on Pg,u removes one of these edges, which must be the
shorter diagonal of Pg,u. However, as argued above, T ′ contains (g1, u1), (g1, u2),
Pg1,u1 , and Pg1,u2 as edges. A similar argument shows that no flip in p1p2 removes
any of these edges, so they are edges in the triangulation preceding s along p1p2.
Therefore, Ph,y contains one of the longer point-pairs in Pg,u. This implies that s
adds an edge whose vector is longer than the vector of this point-pair, and so s is
the flip p′′, by Lemma 18 (3). This is a contradiction, so (ii) is true.

For (iii), we can use (ii) and an argument similar to (ii) to show that the point-
pairs in Pg,v and the shorter diagonal of Pg,v are edges in the target triangulation
of the flip path p1p

′p2 and no flip in this flip path removes an edge in Pg,v or the
shorter diagonal of Pg,v. Thus, (iii) follows from Lemma 17, and the lemma is
proved. □

Proof of Lemma 8. It suffices to show that Statements (1) and (2) imply Statement
(1) of Lemma 19, and then the lemma follows by applying By Lemma 19. Let π′

be the poset πg,u ∪ πg,v with its maximal two flips removed and let p = p1, . . . , pn
be any consistent linear ordering of π′. Assume that, starting from the equilateral
triangulation T , pt is the first flip in p that cannot be performed, and let (h, y) be
the edge added by this flip. By assumption, the subsequence p′ = p1, . . . , pt−1 is a
flip path that starts from T . Note that if t = n, then we can use Lemma 18 (1) and
(3) to show that Statement (1) of Lemma 19 is true, and so we are done. Hence,
assume that t < n.

Next, if pt is a minimal flip in π′, then (h, y) belongs to the equivalence class
(1, 1) and its Farey parallelogram Ph,y consists of unit-length point-pairs. Observe
that the point-pairs in Ph,y are edges of T , and the region bounded by these edges
contains only a unit-length edge. Hence, some flip in p′ must remove an edge in
Ph,y. The first flip that does so adds an edge whose Farey parallelogram contains
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some edge in Ph,y and the shorter diagonal of Ph,y. This implies that the defining
coordinate pair of the added edge is different than that of (h, y). However, by
construction, all edges added by flips in π′ have the same defining coordinate pair,
so we get a contradiction.

Therefore, assume that pt is not a minimal flip in π′. Also, let Ph,y = {(h1, y), (h2, y+
h1), (h2, y), (h1, y+h2)}, where h1 is longer than h2. Since pt is not a minimal flip,
the Farey plan for h has length at least 2, and so the Farey parallelograms Ph1,y

and Ph1,y+h2 exist. Hence, the shorter diagonal of Ph,y is (h1 − h2, y + h2), and
it is shared by Ph1,y and Ph1,y+h2 , by Lemma 6. By Lemma 7, p′ contains a flip
ps on Ph1,y, and the triangulation resulting from ps contains (h1, y), (h2, y), and
(h1 − h2, y+ h2) as edges. Similarly, some triangulation resulting from another flip
in p′ contains (h1, y + h2), (h2, y + h1), and (h1 − h2, y + h2) as edges.

Finally, if the target triangulation T ′ of p′ contains the point-pairs in Ph,y and
the shorter diagonal of Ph,y as edges, then p′pt is a flip path that starts from T , by
Lemma 17, and we are done. Otherwise, some flip pr in p′, with s+ 1 ≤ r ≤ t− 1,
removes either (h1, y), (h2, y), or (h1 − h2, y + h2). Consider the case where some
flip plan πi contains both pr and pt, for some integer 1 ≤ i ≤ 4. Then, the maximal
subsequence p′′pt of p′pt containing only flips in πi is a flip path that starts from
T , by assumption. However, since p′′ contains pr, Lemma 18 (1) tells us that the
target triangulation of p′′ does not contain either some point-pair in Ph,y or the
shorter diagonal of Ph,y as an edge. This implies that p′′pt is not a flip path, which
is a contradiction. We arrive at a similar contradiction if some flip plan πi ∪ πj

contains both pr and pt, for some distinct integers 1 ≤ i, j ≤ 4. Since these cases
are exhaustive, the lemma is proved. □

A.2. Proof of Lemma 9.

Proof of Lemma 9. We proceed by induction on the size n of the Farey plan for
the vector g. Let πg,u be the poset output by Algorithm Flip Plan on input (g, u).
Since (g, u) is not unit-length, n is at least 1 and πg,u is non-empty. When n = 1,
(g, u) belongs to the equivalence class (1, 1) and its bounding region is its Farey
parallelogram. The only flip in πg,u is on this parallelogram, so the base case holds.

Next, assume the lemma holds when n = k, for any k ≥ 1, and we will show it
holds for n = k + 1. Clearly, the Farey parallelogram of the maximal flip in πg,u is
contained in the bounding region for (g, u). Consider the longer point-pairs (g1, u)
and (g1, v) in the Farey parallelogram Pg,u. By Lemma 5, the Farey plan for g1 has
size k. Therefore, by Lemma 7 and the inductive hypothesis, the bounding regions
for (g1, u) and (g1, v) contain all Farey parallelograms of the flips in πg,u, except for
the Farey parallelogram Pg,u of the maximal flip. Lastly, by the definition of the
inverse Farey-Flip map, (g1, u) and (g1, v) have the same defining coordinate pair
as (g, u), so their bounding regions are clearly contained in the bounding region for
(g, u). Thus, the lemma is proved by induction. □

Appendix B. Proof Details for Section 5

B.1. Proof of Lemma 11.

Proof of Lemma 11. We proceed by induction on the length of the Farey plan for
the vector g, say n. Since g is not unit-length, n is at least 1. When n = 1, (g, u)
belongs to the equivalence class (1, 1) and the flip plan πg,u contains a single flip
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on the Farey parallelogram Pg,u. Clearly, the line-segment of (g, u) intersects the
line-segment of the shorter diagonal of Pg,u.

Next, assume the lemma is true when n = k, for any k ≥ 1, and we will show
it is true when n = k + 1. The maximal flip in πg,u is on Pg,u, so the line-segment
of (g, u) intersects the line-segment of the shorter diagonal of Pg,u. Let (g1, u) and
(g1, v) be the longer point-pairs in Pg,u and consider the flip plans πg1,u and πg1,v.
By Lemma 5, the inductive hypothesis states that the line-segment of the shorter
diagonal of every Farey parallelogram in πg1,u and πg1,u intersects the line-segments
of (g1, u) and (g1, v), respectively. Wlog, if one of the line-segments of the shorter
diagonal of some Farey parallelogram P in πg1,u does not intersect the line-segment
of (g, u), then either P is not contained the the bounding region for (g1, u) or we
can use Lemma 6 to show that the region bounded by Pg,u contains a lattice point.
The former case contradicts Lemma 9 and the latter case contradicts Corollary
3. Therefore, the shorter diagonal of every Farey parallelogram in πg1,u and πg1,u

intersects the line-segments of (g, u). Finally, by Lemma 7, πg1,u∪πg1,v is πg,u with
its maximal flip removed, and so the lemma is proved by induction. □

B.2. Proof of Lemma 13. The proof of Lemma 13 requires a theorem given in
[8] and Lemmas 11, 20, and 21, below. The idea is to show that if two point-pairs
(g, u) and (g, v) do not have intersecting line-segments, then the line segment of
(g, u) does not intersect the line-segment of a point-pair added by a flip in the flip
plan πg,v.

Theorem 8 ([8], Theorem 2.1). Let (g, u) be a point-pair that is an edge in some
triangulation of in a lattice point-set S. Then, for any triangulation T of S, there
exists a flip path p that starts from T and forces (g, u) to become an edge such that
all edges removed by flips in p intersect the line-segment of (g, u).

Lemma 20 (The Farey Parallelograms Resulting from Algorithm Multi Flip Plan).
Let G be a set of point-pairs that are edges in some triangulation of an equilateral
lattice point-set and let G′ be its maximum independent subset. Also, let πG be the
poset output by Algorithm Multi Flip Plan on input G. If some consistent linear
ordering p of πG is a flip path for G, then G′ is the set of all non-unit-length edges
of the target triangulation T ′ of p such that the point-pairs in each of their Farey
parallelograms are edges of T ′. Furthermore, if G′ is empty, then every edge of T ′

is unit-length.

Proof. If G′ is empty, then πG is empty. This implies that T ′ = T is the equilateral
triangtulation. Hence, by definition, every edge of T ′ is unit-length, and so the
lemma is proved.

Therefore, assume G′ is non-empty. Then, the maximal flips in πG are on the
Farey parallelograms for point-pairs in G′, by definition. Hence, for any point-
pair (gi, ui) in G′, the triangulation resulting from the maximal flip on the Farey
parallelogram Pgi,ui

contains the point-pairs in Pgi,ui
as edges. If T ′ does not

contain the point-pairs in Pgi,ui
as edges, then some flip in πG removes an edge in

Pgi,ui
. By Lemma 18 (1), the first flip to do so is performed on a Farey parallelogram

containing (gi, ui) as a longer point-pair. Consequently, Lemma 7 implies that the
flip on Pgi,ui is not maximal in πG, which is a contradiction. Thus, T ′ contains the
point-pairs in the Farey parallelograms for the point-pairs in G′ as edges.

To see that these are the only non-unit-length edges in T ′ such that the point-
pairs in their Farey parallelograms are edges of T ′, first recall that every edge of
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T is unit-length. Hence, the only candidate edges are those added by flips in πG,
other than the ones added by the maximal flips. However, using Lemma 11, we see
that some edge in G′ intersects the line-segment of some point-pair in the Farey
parallelogram for each of these edges. Thus, for each of these edges, some point-pair
in its Farey parallelogram is not an edge of T ′, and so the lemma is proved. □

Lemma 21 (Extending Flip Paths for Point-pairs). Let G = {(g1, u1), . . . ,
(gn+1, un+1)} be an independent set of point-pairs that are edges in some triangu-
lation of a lattice point-set and let πGn

be the poset output by Algorithm Multi Flip
Plan on input Gn = G \ {(gn+1, un+1)}. Also, let some consistent linear ordering
of πGn

be a flip path between an equilateral triangulation and a triangulation T ′

that contains Gn, but not (gn+1, un+1), as edges. Then, there exists a flip path p
that starts from T ′ and forces (gn+1, un+1) to become an edge such that all edges
replaced by flips in p intersect the line-segment of (gn+1, un+1) and p contains all
flips in πgn+1,un+1

\ πGn
.

Proof. Let π′ = πgn+1,un+1
\ πGn

. Since G is independent, (gn+1, un+1) is not unit-
length, and so π′ is non-empty. Also, since G are edges in some triangulation,
Theorem 8 tells us that there exists a flip path p = p1, . . . , pm that starts from
T ′ and forces (gn+1, un+1) to become an edge such that all edges replaced by flips
in p intersect the line-segment of (gn+1, un+1). Note that p is non-empty, since
(gn+1, un+1) is not an edge of T ′.

First, we show that we can remove flips from p to obtain a sequence p′ such that
all flips in p′ replace edges with longer ones and p′ is a flip path that starts from
T ′ and forces (gn+1, un+1) to become an edge. Assume that pt is the first flip in
p that replaces an edge (h, y) with a shorter one. By Corollary 3, pt is a flip on
a Farey parallelogram. Using Lemma 20, we see that Gn is the set of all edges of
T ′ such that the point-pairs in their Farey parallelograms are edges of T ′. Also,
since all edges replaced by flips in p intersect the line-segment of (gn+1, un+1), no
point-pair in Gn is removed by a flip in p, by our assumptions. The facts above
imply that t > 1 and some flip ps in p, with 1 ≤ s < t, adds the edge (h, y) that is
removed by pt.

Next, if (h, y) is (gn+1, un+1), then p′ = p1, . . . , ps is the desired flip path. Other-
wise, observe that the triangulations resulting from ps and pt contain the point-pairs
in Ph,y as edges. Furthermore, since all flips between ps and pt replace edges with
longer ones, (h, y) and the point-pairs in Ph,y must be edges in the triangulations
resulting from these flips. Thus, removing ps and pt from p yields a flip path be-
tween the same triangulations as p and containing 1 less flip that replaces an edge
with a shorter one. We can repeat this process to obtain the desired flip path p′.

Finally, we show that p′ contains the flips in π′. Using Lemma 18 (1) and
Corollary 3, we see that T ′ does not contain any edge added by a flip in π′. Since
the flips in p′ replace edges with longer ones, Corollary 3 tells us that p′ contains a
flip on the Farey parallelogram Pgn+1,un+1 . Note that this is the maximal flip in π′.
Next, let π′

1 be π′ with this flip removed. If π′
1 is non-empty, then the triangulation

T ′ does not contain some longer point-pair in Pgn+1,un+1
as an edge, by Lemma 7.

Hence, p′ must contain a flip on the Farey parallelogram for this point-pair, which
is a maximal flip in π′

1. By repeating this argument, it is clear that p′ contains all
flips in π′. □
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Proof of Lemma 13. We proceed by induction on n = |G|. When n = 1, if G′

is empty, then τG is empty, and the lemma is immediate. Otherwise, we have
G′ = {(g1, u1)} and τG = πg1,u1 , and so the lemma holds by Corollary 1. Next, for
any integers k ≥ 1 and 1 ≤ j ≤ k, assume that the lemma holds when n = j. We
will prove the lemma when n = k+1. Consider the set Gk = {(g1, u1), . . . , (gk, uk)},
the poset τGk

= πg1,u1
|| . . . ||πgk,uk

, and the maximum independent subset G′
k of

Gk. By the inductive hypothesis, τGk
is a flip plan for G′

k.
There are two cases.

Case 1: (gk+1, uk+1) is not contained in G′.

In this case, we have G′
k = G′. Along with the definition of an independent set,

this implies that τGk
= τG. Hence, the lemma follows from the fact that τGk

is a
flip plan for G′

k.

Case 2: (gk+1, uk+1) is contained in G′.

In this case, (gk+1, uk+1) is not unit-length, by the definition of G′. Consider
the set H of point-pairs (gi, ui) ∈ G such that πgi,ui is a subposet of πgk+1,uk+1

but not a subposet of πgj ,uj
, for any (gj , uj) ∈ Gk \ {(gi, ui)}. Then, we have

G′
k = (G′ ∪ H) \ {(gk+1, uk+1)}. Observe that each point-pair in H is added as

an edge by some flip in πgk+1,uk+1
, and no two of these flips are comparable in

this flip plan. This implies that, for any two point-pairs in H, some consistent
linear ordering of πgk+1,uk+1

contains two consecutive flips that add two of these
point-pairs as edges, and the triangulation resulting from the second flip contains
both point-pairs as edges. Hence, no two point-pairs in H have intersecting line-
segments, and so H are edges of some triangulation.

Next, if I = G′ \ {(gk+1, uk+1)} = {(g′1, u′
1), . . . , (g

′
ℓ, u

′
ℓ)} is empty, then G′ =

{(gk+1, uk+1)} and τG = πgk+1,uk+1
, and so the lemma follows from Corollary 1.

Otherwise, since no two point-pairs in I have intersecting line-segments, by assump-
tion, I is a subset of edges of some triangulation. Hence, applying the inductive
hypothesis to I shows that τI = πg′

1,u
′
1
|| . . . ||πg′

ℓ,u
′
ℓ
is a flip plan that starts from T

and forces I to become edges. Observe that (i) I ∪ {(gk+1, uk+1)} is independent
and is a subset of edges of some triangulation, (ii) any consistent linear ordering
of τI is a consistent linear ordering of the poset output by Algorithm Multi Flip
Plan on input I, and (iii) the target triangulation T ′ of τI contains I, but not
(gk+1, uk+1), as edges. Therefore, by Lemma 21, there exists a flip path r that
starts from T ′ and forces (gk+1, uk+1) to become an edge. Moreover, r contains the
flips in πgk+1,uk+1

\ τI and all edges removed by flips in r intersect the line-segment
of (gk+1, uk+1).

Finally, since I ∪ {(gk+1, uk+1)} is an independent set of point-pairs, no point-
pair in I is removed by a flip in r. Hence, since each point-pair in H is added as
an edge by a flip in r, the line-segment of this point-pair does not intersect the
line-segment of any point-pair in I. This implies that G′

k = I ∪ H is a subset of
edges of some triangulation. Therefore, we can apply the inductive hypothesis to
G′

k to get that τGk
is a flip plan that starts from T and forces G′

k to become edges.
Let T ′′ be the target triangulation of τGk

. By the definition of poset concatenation,
we must show that π′ = πgk+1,uk+1

\ τGk
is a flip plan that starts from T ′′ and

forces (gk+1, uk+1) to become an edge such that the target triangulation contains
G′ as edges. Observe that no flip in π′ removes a point-pair in G′, or else the line-
segments of (gk+1, uk+1) and this point-pair intersect, by Lemma 11, contradicting
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our assumption. Consequently it suffices to show that π′ is a flip plan that starts
from T ′′ and forces (gk+1, uk+1) to become an edge.

Assume to the contrary that π′ is not a flip plan that starts from T ′′ and
forces (gk+1, uk+1) to become an edge. Then, some consistent linear ordering
p = p1, . . . , pm of π′ is not a flip path that starts from T ′′ and forces (gk+1, uk+1)
to become an edge. Let pt is the first flip in p that cannot be performed, and let
(h, y) be the edge that it adds. Note that since τGk

is a flip plan that starts from
T and forces G′

k to become edges, p′ = p1, . . . , pt−1 is a flip path that starts from
T ′′ and forces H to become edges. There are two subcases.

Subcase 1: pt is not a minimal flip in π′ and its child flips in πgk+1,uk+1
are

contained in π′.

By assumption, p′ contains the child flips of pt. Using Lemmas 6 and 7, we see
that the triangulations resulting from each child flip contains half of the point-pairs
in the Farey parallelogram Ph,y as edges. If any flip in p′ removes any one of these
edges, then the target triangulation of p′ does not contain some point-pair in Ph,y

as an edge, by Lemma 18 (1). However, since all flips in p′ are contained in π′, this
implies that πgk+1,uk+1

is not a flip plan, contradicting Corollary 1.

Subcase 2: pt is either a minimal flip in π′ or at least one of its child flips in
πgk+1,uk+1

is not contained in π′.

Let q be any consistent linear ordering of τGk
. If pt is a minimal flip in πgk+1,uk+1

,
then Ph,y and its shorter diagonal are unit-length point-pairs that are edges in T .
Otherwise, the child flips of pt are contained in qp′, and the triangulations resulting
from these flips each contain half of the point-pairs in Ph,y as edges, by Lemmas 6
and 7. Hence, in either case, each point-pair in Ph,y is an edge in some triangulation
along the flip path qp′. If the target triangulation of qp′ contains the point-pairs in
Ph,y as edges, then p′pt is a flip path starting from T ′′. Otherwise, some flip qs in
qp′ is the first to remove one of these edges, say (h1, y1).

Next, if qs is contained in πgk+1,uk+1
, then we arrive at a contradiction similar

to the one in Subcase 1. Hence, qs is contained in πg′
i,u

′
i
\ πgk+1,uk+1

, for some

(g′i, u
′
i) ∈ I. By Lemma 11, the line-segments of (g′i, u

′
i) and (h1, y1) intersect. This

implies that any flip path that starts from a triangulation containing (g′i, u
′
i) as an

edge and contains a flip is on Ph,y must contain a flip that removes (g′i, u
′
i).

Finally, recall from the discussion above that the triangulation T ′ contains I, and
hence (g′i, u

′
i), as edges, and the flip path r starts from T ′ and forces (gk+1, uk+1)

to become an edge. Additionally, r contains the flips in π′, which includes a flip
on Ph,y. Hence, by the argument above, r contains a flip that removes (g′i, u

′
i).

However, by construction, all edges removed by flips in r intersect the line-segment
of (gk+1, uk+1). Thus, the line-segments (g′i, u

′
i) and (gk+1, uk+1) intersect, which

contradicts our assumption.

The subcases above are exhaustive, and the contradictions imply that π′ is a
flip plan that starts from T ′′ and forces (gk+1, uk+1) to become an edge. This
completes Case 2. Thus, since the above cases are exhaustive, the lemma is proved
by induction. □
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Appendix C. Proof Details for Section 6

C.1. Proof of Lemma 14. We require Lemmas 24 and 25 to prove Lemma 14.
The following lemmas are used to prove these lemmas. Recall the definition of the
maximum independent set of a triangulation, given in Section 6.

Lemma 22 (Target Triangulation of Flip Plans). If T is a triangulation of an
equilateral lattice point-set whose maximum independent set is G, then T is the
target triangulation of the flip plan πG.

Proof. Consider the set G′ of all edges in T and the flip plan πG′ . By Theorem
5, T is the target triangulation of πG′ . The lemma follows by observing that
πG = πG′ . □

Lemma 23 (Bijection Between Triangulations and Independent Sets of Point–
pairs). The map that takes a triangulation of an equilateral lattice point-set S to its
maximum independent set is a bijection between triangulations of S and the union
of the empty-set and all sets of point-pairs that are (i) independent in S and (ii)
edges in some triangulation of S.

Proof. First, note that the map is well-defined. Next, for injectivity, assume that
two triangulations of S are mapped to the same set of point-pairs. Then, Lemma
22 shows that these triangulations are the same. Finally, for surjectivity, consider
any (possibly empty) set G of point-pairs satisfying (i) and (ii). Theorem 5 and
Lemma 20, in B.2, show that G is the maximum independent set of the minimum
triangulation containing G as edges. □

Lemma 24 (Target Triangulations of Flip Plans are Minimum Triangulations). If
G is a set of point-pairs that are edges in some triangulation of an equilateral lattice
point-set, then the target triangulation of the flip plan πG is the unique minimum
triangulation containing G as edges.

Proof. By Lemma 20, in B.2, the target triangulation T of πG is a minimum trian-
gulation containing G as edges. Consider any other triangulation T ′ containing G
as edges. By Lemma 23, T and T ′ have distinct maximum independent sets H and
H ′, respectively. Also, by Lemma 22, T ′ is the target triangulation of flip plan πH′

and, by Lemma 20, T ′ contains an edge in H ′ \ H that is contained in its Farey
parallelogram. Thus, T ′ is not a minimum triangulation containing G as edges. □

Lemma 25 (Identity Map Between Triangulations and Minimum Triangulations of
an Equilateral Point-set). If T is a triangulation of an equilateral lattice point-set S
whose maximum independent set is G, then the map that takes T to the minimum
triangulation of S containing G as edges is the identity map.

Proof. It suffices to show that the composition of the map that sends T to G and
the map that sends G to the minimum triangulation MT (S,G) is the identity map.
First, observe that these maps are well-defined. Second, by Lemmas 22 and 24, the
second map sends G to T . □

Proof of Lemma 14. Let the lattice point-set S = L ∩ Ω and let G be a set of
point-pairs that are edges in some triangulation of S. If S admits an equilateral
triangulation, then the lemma follows immediately from Lemma 24. Otherwise,
consider a lattice point-set S′ containing S that admits an equilateral triangulation.
Also, consider the set Ω ∪G and let G′ be its maximum subset of point-pairs that
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is independent in S′. Observe that G′ \Ω is the maximum subset of point-pairs in
G that is independent in S, by definition.

Since G is a subset of edges of some triangulation of S, and all triangulations of
S contain Ω as edges, Ω∪G is a subset of edges of some triangulation of S′. Hence,
by Lemma 24, πΩ∪πG is a flip plan between the equilateral triangulation of S′ and
the minimum triangulation MT (S′,Ω ∪G). Also, by definition, the point-pairs in
G′ are the only edges of MT (S′,Ω ∪ G) such that the point-pairs in their Farey
parallelograms are edges of MT (S′,Ω ∪G).

Next, consider the triangulation T of S obtained by deleting the lattice points
in S′ \ S from MT (S′,Ω∪G). Observe that the Farey parallelogram for each edge
of T in Ω contains a vertex in S′ \ S, and so some point-pair in this parallelogram
is not an edge of T . On the other hand, consider the Farey parallelogram Pg,u

for any edge (g, u) of T in G′ \ Ω. If Pg,u is not contained in S, then the line
segment of one of its point-pairs intersects the line-segment of a point-pair in Ω.
This implies that some point-pair in Pg,u is not an edge of MT (S′,Ω∪G), which is
a contradiction. Hence, since each point-pair in Pg,u is an edge of MT (S′,Ω ∪G),
it is an edge of T . Lastly, since some point-pair in the Farey parallelogram for any
edge of MT (S′,Ω∪G) that is not contained in G′ is not an edge of MT (S′,Ω∪G),
by definition, it is also not an edge of T . Therefore, G′ \ Ω is the set of all edges
of T such that the point-pairs in their Farey parallelograms are edges of T . By
definition, this implies that T is a minimum triangulation MT (S,G).

Finally, we show that MT (S,G) is unique. Let T ′ be any other triangulation of
S containing G as edges. Also, consider the triangulation T ′′ of S′ obtained from
T ′ by adding the points and edges that we removed from MT (S′,Ω ∪ G), above.
By Lemma 25, T ′′ is the minimum triangulation for its maximum independent
set, which is distinct from G′, since T ′′ is not MT (S′,Ω ∪ G). Since T ′′ and
MT (S′,Ω ∪G) differ only in their edges between points in S, this implies that T ′′

contains some edge between points in S that is not contained in G′ \ Ω and such
that the point-pairs in its Farey parallelogram are edges of T ′′. Thus, this is also
true of T ′, and so T ′ is not a minimum triangulation of S containing G as edges. □

C.2. Proof of Lemma 15.

Proof of Lemma 15. First, we prove Statement (1). By Theorem 5, πF ∪ πG is a
minimum flip plan that starts from the equilateral triangulation T and forces F ∪G
to become edges. Also, by Lemma 24, the target triangulation of πF is the minimum
triangulation MT (S, F ). Hence, πG\πF is a flip plan that starts from the minimum
triangulation MT (S, F ) and forces G to become edges. Additionally, since the line-
segments of any point-pair in F and any point-pair in G do not intersect, no flip
in πG \ πF removes a point-pair in F , by Lemma 11. Consequently, πG \ πF is
constrained by F . Lastly, if πG \ πF is not a minimum flip plan, then let π be
such a minimum flip plan. Clearly, πF ||π is a flip plan that starts from T and
forces F ∪ G to become edges. Furthermore, it contains fewer flips than πF ∪ πG,
contradicting Theorem 5. Therefore, Statement (1) is proved. Additionally, if
some other minimum flip plan contains a different set of flips, then we get a similar
contradiction.

Next, we prove Statement (2). By Lemma 24, the target triangulation of πF ∪πG

is the minimum triangulation MT (S, F ∪G). Hence, πG \ πF is clearly a flip plan
between MT (S, F ) and MT (S, F ∪G), and it is constrained by F as shown above.
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If it is not also a minimum flip plan, then let π′ be such a minimum flip plan. By
definition, MT (S, F ∪G) contains F ∪G as edges, so we get the same contradiction
as above by considering the flip plan πF ||π′. Therefore, Statement (2) is true.

Finally, if Statement (3) is false, then it is easy to argue that the minimum flip
plan starting from an equilateral triangulation and forcing G to become edges is not
unique, contradicting Theorem 5. Thus, Statement (3) is true, and so the lemma
is proved. □
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