
ar
X

iv
:2

30
6.

05
58

8v
2

 [
cs

.D
S]

 1
4

Ju
n

20
23

An Improved Algorithm for Finding Maximum Outerplanar

Subgraphs

Gruia Calinescu∗ Hemanshu Kaul † Bahareh Kudarzi‡

June 16, 2023

Abstract

We study the NP-complete Maximum Outerplanar Subgraph problem. The
previous best known approximation ratio for this problem is 2/3. We propose a new
approximation algorithm which improves the ratio to 7/10.

Keywords. Outerplanar graph, Maximum subgraph, Approximation algorithm, Matroid
parity.

1 Introduction

A graph is planar if it can be drawn in the 2-dimensional plane such that no two edges
meet in a point other than a common end. A planar graph is outerplanar if it can be drawn
in a way in which every vertex lies on the boundary of the same connected region of the
plane. Let G be a simple graph, and G′ be a subgraph of G. We say that G′ is a maximum
outerplanar subgraph of G if it is outerplanar and there is no outerplanar subgraph G′′ such
that |E(G′′)| > |E(G′)|. Given a graph G, finding an outerplanar subgraph of G with the
maximum number of edges is called the Maximum Outerplanar Subgraph problem.

While outerplanar graphs have been investigated in-depth for their applications [18] and
theoretical properties [26, 13, 25, 16, 38, 19, 7, 29], the problem of finding large outerplanar
subgraphs of a graph has not been studied as much.

Most problems which are NP-hard on arbitrary graphs become polynomial on outerplanar
graphs[15, 1]. An in-depth exploration of practical algorithms for Maximum Outerplanar

Subgraph was done by Poranen [33]. His main experimental result is that simulated an-
nealing with initial solution taken from the greedy triangular cactus approximation algorithm
(which we discuss below) yields the best known heuristic for the Maximum Outerplanar

Subgraph problem.

∗Department of Computer Science, Illinois Institute of Technology, Chicago, IL 60616. E-mail:
calinescu@iit.edu

†Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616. E-mail:
kaul@iit.edu

‡Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616. E-mail:
bkudarzi@hawk.iit.edu

1

http://arxiv.org/abs/2306.05588v2

Maximum Outerplanar Subgraph problem is NP-hard, [42, 15]. Hence, instead of solving
the problem exactly, we use polynomial-time approximation algorithms. An algorithm’s
approximation ratio is the worst-case ratio between the result obtained by the algorithm and
the optimal solution. For maximization problems, the approximation ratio is smaller than 1,
and the closer we are to 1, the better.

Previous Work. By constructing a spanning tree of a given graph (recall, a tree is an
outerplanar graph), one obtains an approximation ratio for the Maximum Outerplanar

Subgraph problem of 1/2 [9]. The approximation ratio was improved by using the concept
of triangular cactus, discussed in Section 2 and depicted in Figure 1. The greedy triangular
cactus approximation algorithm from [3] results in a non-trivial approximation ratio of 7/12.
Furthermore, [3] used the fact that computing a triangular cactus with maximum number of
triangles can be done in polynomial time based on Matroid Parity [23, 14, 39, 8, 30] to
obtain a 2/3 approximation ratio.

Utilizing an outerplanarity testing algorithm [2, 37, 27, 36, 41], a greedy technique to
approximate the maximum outerplanar subgraph involves adding edges to an outerplanar
subgraph as long as the subgraph stays outerplanar. Cimikowski and Coppersmith [9] showed
that after constructing the spanning tree, using this greedy technique does not improve the
approximation ratio of 1/2. Poranen [33] claimed the same for the 7/12 ratio obtained by
the greedy triangular cactus. There are examples that this holds for the 2/3 approximation
as well. All these bounds assume that the greedy technique adds the worst possible edge if
it has a choice. In practice, this greedy technique is effective [32, 33, 34].

Related Work. The Maximum Induced Outerplanar Subgraph problem is the
task of finding the size of the largest subset of vertices in a graph that induces an outerplanar
subgraph. This problem is known to be NP-hard [42] and does not admit good approxima-
tions [24, 12]. Morgan and Farr [28] presented an efficient algorithm that finds an induced
outerplanar subgraph with at least 3n/(d + 5/3) vertices for graphs of n vertices with max-
imum degree at most d. Donkers et al. [10] study the Outerplanar Deletion problem,
in which one wants to remove at most k vertices from a graph to make it outerplanar, and
showed that this problem is fixed-parameter tractable.

Another related problem is Maximum Planar Subgraph, in which one wants to find
a planar subgraph of the input graph with the maximum number of edges. This problem
is also known to be NP-hard [22], and it has many applications (see e.g. [21, 35, 33, 34]).
For this problem, constructing a spanning tree of a given graph gives an approximation ratio
of 1/3, the greedy triangular cactus approximation algorithm has ratio 7/18, and the best
known approximation is 4/9 and is obtained by computing a triangular cactus with maximum
number of triangles [3].

Maximum Weight Outerplanar Subgraph, in which one wants to find an outer-
planar subgraph with the maximum weight of the input edge-weighted graph, admits an
approximation ratio of 1/2 by considering the maximum weight spanning tree. This has been
improved by [5] to 7/12, and by combining Theorem 29 of [5] with the recent algorithm for
Weighted Matroid Parity [17], one immediately obtains a (2/3)-approximation algo-
rithm. A (2/3)-approximation was also claimed in the Master thesis of Osipov [31].

In this paper, we present,

Theorem 1. There exists a polynomial-time (7/10)-approximation algorithm for the Maxi-

mum Outerplanar Subgraph problem.

2

Our algorithm has a greedy phase of adding appropriate induced 4-cycles after the main
phase of the (2/3)-approximation of [3]. While the algorithm is very simple (except for the
Matroid Parity part already used by the previous best work), the tight analysis we provide
is nice and elementary, and may have wider applications.

Applying a greedy method after matching methods (Matroid Parity is an extension of
graph matching) is new to us; applying matching methods after greedy methods was done
before in [20], while [11] combines local improvement with matching.

In Section 2 we introduce further definitions and notation. Our algorithm and the proof
of Theorem 1 appears in Section 3. In Section 4 we discuss some limitations of our method
and conclude with some open questions.

2 Preliminaries

In this paper all graphs are nonempty, finite, simple graphs unless otherwise noted. Gen-
erally speaking we follow West [40] for terminology and notation.

Given a graph G = (V,E), V ′ ⊆ V , and E′ ⊆ E, we denote by G[V ′], the induced
subgraph of G with vertex set given by V ′, and we denote by G[E′] = (V,E′), the spanning
subgraph of G with edge set given by E′. A triangle in a graph is C3, a cycle of length three
and a square in a graph is an induced C4, a cycle of length four.

A plane graph is defined as an embedding of an planar graph with a mapping from every
vertex to a point in the 2-dimensional plane, and from every edge to a curve on the plane,
such that the extreme points of each curve are the points mapped from its end vertices, and
all curves are disjoint except on their extreme points. The plane graph divides the plane into
a set of connected regions, called faces. Each face is bounded by a closed walk called the
boundary of the face. The outer face is the unbounded region outside the whole embedding.
An outerplane graph is a plane graph where every vertex is mapped to a point on the boundary
of the outer face. Any other face is called an inner face of the outerplane graph.

An outeredge in an outerplane graph is an edge which is in the boundary of the outer face
and an inneredge in an outerplane graph is an edge which is not an outeredge. The boundary
of the outer face of a biconnected outerplane graph is a cycle. An inner triangle is a triangle
that is the boundary of an inner face. An inner square is a square that is the boundary of
an inner face.

Let H be a biconnected outerplane graph and uv be an edge of H and w ∈ V (H)\{u, v}.
Consider the path P from u to v using only outeredges of H that does not contain w and let
H1 = H[V (P)]. We say that the subgraph H1 of H is split from w by uv. As an example,
in Figure 2, H1 is split from y by xz. Note that if uv is an outeredge, then H1 will be the
graph ({u, v}, {uv}).

A triangular cactus is a graph whose cycles (if any) are triangles and such that all edges
appear in some cycle. A triangular cactus in a graph G is a subgraph of G which is a
triangular cactus. A triangular cactus in a graph G is maximum if it has maximum number
of triangles. A square-triangular cactus is a graph whose cycles (if any) are triangles or
squares and such that all edges appear in some cycle. A square-triangular cactus in a graph
G is a subgraph of G which is a square-triangular cactus. A square-triangular structure is a
graph whose cycles (if any) are triangles or squares. Note that every square-triangular cactus
is a square-triangular structure, but not vice versa. See Figure 1.

3

(c)

PSfrag replacements

(a) (b)

Figure 1: Figure (a) is a triangular cactus. Figure (b) is a square-triangular cactus. Figure
(c) is a square-triangular structure.

3 The Approximation Algorithm

In this section we describe our algorithm, which we call STS for square-triangular struc-
ture, and give its approximation ratio analysis.

Input to the algorithm below is a graph G.

Algorithm STS

The algorithm has three phases, as numbered below:

1. Find M0 a maximum triangular cactus in G.

2. Starting with E1 = E(M0), repeatedly (as long as possible) find a square S whose
vertices are in different components of G[E1], and add the edges of S to E1. Let
M1 := G[E1].

3. Starting with E2 = E(M1), repeatedly (as long as possible) find an edge e in G whose
endpoints are in different components of G[E2], and add e to E2.

Output G[E2].

Algorithm STS produces a square-triangular structure in the given graph G. This is
indeed an outerplanar graph.

The (2/3)-approximation algorithm of [3] has only two phases corresponding to our Phase
1 and Phase 3.

Phase 1 of the algorithm can be implemented to run in polynomial time as explained
in [3]. This is done by an immediate reduction to the Graphic Matroid Parity problem, for
which [23, 14, 39, 8, 30] provide polynomial-time algorithms.

Phase 2 can be implemented in time O(n4) as we try all possible subsets of four vertices to
see if they form a square that can be added. Within the same time bounds, we also maintain
the connected components of G[E1] - these components need to be updated only O(n) times.

4

To complete the proof of Theorem 1, it only remains to show the approximation ratio of
7/10.

3.1 Approximation Ratio Analysis

To establish the approximation ratio, we first prove a lemma about the structure of
biconnected outerplanar graphs. This is a generalization of Lemma 3.1 of [3].

Lemma 2. Let H be a biconnected outerplane graph. Suppose that H has t inner triangles.
Then, the following holds:

1. If t is even, then for every outeredge xy in H, there is a triangular cactus C in H with
at least t

2 triangles such that x and y are in different components of C.

2. If t is odd, then there is a triangular cactus C in H with at least ⌈ t
2⌉ triangles, and for

every outeredge xy in H, there is a triangular cactus C in H with at least ⌊ t
2⌋ triangles

such that x and y are in different components of C.

Proof. This proof uses ideas from the proof of Lemma 3.1 of [3], with many extra cases. We
will prove this by induction on n + t, where n is the number of vertices of H and t is the
number of inner triangles of H. Note that n is at least 3.

Fact 3. Before we prove the base cases, we note that if a graph H ′ consists of only one edge
xy and therefore it has t = 0 inner triangles, then there is triangular cactus in H ′ which has
r = 0 ≥ t

2 triangles and the vertices x and y are in different components of the triangular
cactus. The same argument applies when the graph H is biconnected with n ≥ 3 but has zero
inner triangles.

The case n + t = 3 cannot happen since if n = 3 then the biconnected H has an inner
triangle.

Now let n + t = 4. By Fact 3 we can assume that H has one inner triangle uvw. Now
C = H[{u, v, w}] is a triangular cactus with r = 1 triangle and we have r ≥ ⌈ t

2⌉ = 1. For
the outeredge xy, subgraph C = ∅ is a triangular cactus in H with r = 0 such that x and
y are not in the same component of C. Then we have r ≥ ⌊ t

2⌋ = 0. Now assume that the
statements are true for any n′ and t′ such that n′ + t′ < n + t. We will prove the statements
for n + t.

In the first part of the proof, we assume that t is even.
Let f be the inner face such that its boundary contains the edge xy. Note that f is not

all of H because in that case H must have less than two inner triangles. There are two cases:
the boundary of f is a triangle or not.

Case 1: Suppose that the boundary of f is a triangle consisting of vertices x, y, z.
Let H1 be the subgraph of H that is split from vertex y by edge xz and H2 be the

subgraph that is split from vertex x by edge yz. See Figure 2. H1 ∪ H2 has t − 1 inner
triangles. Since t is even, WLOG, let H1 have an even number of inner triangles t1 and H2

have an odd number of inner triangles t2. By applying the induction hypothesis or Fact 3 to
H1 with outeredge xz, there exists a triangular cactus C1 with r1 ≥ t1

2 triangles such that
vertices x and z are in different components of C1. By applying the induction hypothesis to
H2, there exists a triangular cactus C2 with r2 ≥ ⌈ t22 ⌉ triangles. Since x and z are in different

5

z

yx

H2H1 H2

H1 x

yz

Figure 2: Case 1, f is triangular face xyz

components of C1, we can conclude that C1 ∪ C2 is a triangular cactus in which vertices x
and y are in different components and has r triangles where r = r1 + r2 ≥

t1
2 + ⌈ t22 ⌉ = t

2 .

PSfrag replacements

x = v11 y = v42

H1

H2

H3

H4

e

e1

e2

e3

e4

v12 = v21

v32

v22 = v31

v41

Figure 3: An illustration of Case 2, where straight segments are inneredges of H.

Case 2 : Suppose that the boundary of f is not a triangle. If t = 0, using Fact 3 we are
done. From now on in this case we assume that t > 0. Consider all of the inneredges of f
and name them as e1, e2, ..., ek. Note that since t > 0 so k > 0. For each i = 1, .., k, assume
that ei = vi1vi2 and let vertex vi ∈ V (f) \ {vi1 , vi2}. Then, let Hi be the subgraph which is
split from vertex v′i by edge ei. See Figure 3 for an example. Assume that Hi has ti inner
triangles.

For graph Hi, we have ti + ni < t + n for each i ∈ [k].
If all ti are even, by applying induction hypothesis to each Hi, we get that there exists

a triangular cactus Ci in which vi1 and vi2 are in different components of Ci with ri ≥
ti
2

triangles. Now consider the subgraph C =
⋃k

i=1 Ci which is a triangular cactus, because the
vertices vi1 and vi2 of the edge ei are in different components of Ci for each i, and therefore,
in different components of C. Hence, x and y cannot be in the same component of C.

If some tj is odd, then there must be another tl which is odd. By applying induction on

6

u

wv
H2

H3 H1

u

wv

H2

H1H3
H2

H1H3
u

wv

Figure 4: t ≥ 1 is odd, H has at least one inner triangle, uvw.

Hj, we get that there is a triangular cactus Cj with rj ≥ ⌈
tj
2 ⌉ triangles. Then by applying

induction on Hl with outeredge (for Hl) el, we get that, there is a triangular cactus Cl which
has rl ≥ ⌊ tl2 ⌋ triangles such that vl1 and vl2 are not in the same component of Cl. For
i ∈ [k] \ {j, l}, by applying induction to Hi there is a triangular cactus Ci with at least ti

2

triangles. Now consider subgraph C =
⋃k

i=1 Ci which is a triangular cactus because its cycles

can only be triangles and C has r =
∑k

i=1 ri triangles and r ≥
∑

i∈[k]\{j,l}
ti
2 +⌈

tj
2 ⌉+⌊ tl2 ⌋ = t

2 .
Note that x and y are not in the same component of C since vl1 and vl2 are not in the same
component of Cl.

This completes the first part of the proof when t is even.
For the second part of the proof, we consider that t is odd. We will first prove that there

exists a triangular cactus C with r ≥ ⌈ t
2⌉ triangles.

Since t ≥ 1 is odd, then H has at least one inner triangle, uvw. Let H1 be the subgraph
of H that is split from vertex v by edge uw, H2 be the subgraph of H that is split from
vertex u by edge vw, and H3 be the subgraph of H that is split from vertex w by edge uv.
See Figure 4. These three subgraphs together have exactly t − 1 inner triangles of H. Let
H1, H2, and H3 have t1, t2 and t3 inner triangles, respectively. Because t− 1 is even, there
are two possibilities: either, each of these three subgraph has even number of inner triangles,
or exactly two subgraphs have odd number of inner triangles.

For the first possibility, we apply the induction hypothesis or Fact 3 to H1 with outeredge
uw, H2 with outeredge vw, and H3 with outeredge uv. For H1, there is a triangular cactus C1

with r1 ≥
t1
2 triangles such that u and w are in different components of C1. Similarly for H2

and H3, there is a triangular cactus C2 with r2 ≥
t2
2 triangles such that v and w are in different

components of C2 and there is a triangular cactus C3 with r3 ≥
t3
2 triangles such that u and v

are in different components of C3, respectively. We claim that C =
⋃3

i=1Ci∪H[{u, v, w}] is a
triangular cactus. Indeed, since u, v, and w are in different components of each cactus (or they
are not in the cacti at all) by putting them together u, v, w are still in different components
allowing us to add the triangle uvw and maintain the property of being a triangular cactus.
Obviously C has r = r1 + r2 + r3 + 1 triangles and t1 + t2 + t3 = t − 1 which is even, so
r ≥ t1

2 + t2
2 + t3

2 + 1 = ⌈ t
2⌉.

For the second possibility, WLOG, assume that t1 is even while t2 and t3 are odd. We
apply the induction hypothesis or Fact 3 to H1 with outeredge uw which tells there is a
triangular cactus C1 with r1 ≥

t1
2 triangles such that u and w are in different components of

C1. Applying the induction hypothesis to H2 and H3, there is a cactus in Hi with ri ≥ ⌈ ti2 ⌉

7

triangles, for i = 1, 2. Because u and w are in two different components of C1, the subgraph
C =

⋃3
i=1Ci is a triangular cactus with r = r1+r2+r3 triangles and r ≥ t1

2 +⌈ t22 ⌉+⌈ t32 ⌉ = ⌈ t
2⌉.

Finally, we consider the situation t is odd and xy be an outeredge. We have proved that
there is a triangular cactus C with r ≥ ⌈ t

2⌉ triangles. If x and y are in different components
of C we are done. If x and y are in the same component of C we can remove one of the
triangles in that component such that x and y are not in the same component any more.
Let C ′ be the subgraph after removing the triangle. C ′ is a triangular cactus with at least
⌈ t
2⌉ − 1 = ⌊ t

2⌋ triangles. This concludes the proof of Lemma 2. �

We need the following consequence of the lemma.

Corollary 4. Let H be an outerplane graph with t inner triangles. Then there exists a
triangular cactus in H with ⌈t/2⌉ triangles.

Proof. Assume that H has k components, H1,H2, ...,Hk. Suppose that Hi has ti inner
triangles and li blocks, Bi1, ..., Bili . Using Lemma 2, every Bij with tij inner triangles has a

triangular cactus Cij as subgraph with at least ⌈
tij
2 ⌉ triangles. The subgraph Ci =

⋃li
j=1Cij

is a triangular cactus in Hi since the union does not add any new cycle. Ci has at least
∑li

j=1⌈
tij
2 ⌉ ≥ ⌈ ti2 ⌉ triangles, since ti =

∑li
j=1 tij. Now consider subgraph C =

⋃k
i=1Ci,

which is a triangular cactus in H and it has at least
∑k

i=1⌈
ti
2 ⌉ ≥ ⌈t/2⌉ triangles as we have

t =
∑k

i=1 ti. �

We are now ready to establish the approximation ratio.

Theorem 5. The approximation ratio of Algorithm STS is 7
10 .

Proof. First we show that the approximation ratio is at most 7/10. Take a triangulated
outerplanar graph with vertex set Q and q vertices such that q is odd. For each outeredge
uv of Q, add two new vertices auv and buv and the three edges uauv, auvbuv, and buvv in
the outer face of Q such that it remains outerplanar. Name this new graph H, it has 3q
vertices, and (2q − 3) + 3q = 5q − 3 edges. Figure 5 presents a drawing of H with q = 7.
Consider H as the input to the algorithm. Note that H is the optimum solution. Phase 1
of the algorithm finds a triangular cactus M0 with ⌊q/2⌋ triangles connecting all the vertices
of Q. One can easily check that no square can be added to M0 in Phase 2 of the algorithm.
So the algorithm’s output has 3q − 1 + ⌊q/2⌋ edges, as every triangle of M0 adds one more
edge compared to a spanning tree. By letting q → ∞ the ratio of number of edges in output
divided by the number of edges in the optimum converges to 7

10 .
Let OPT denote a maximum outerplanar subgraph of the input graph G and let opt

denote the number of edges of OPT (opt is the value of the objective). We assume that the
input graph is connected (or else we can run the algorithm on every connected component)
and therefore OPT is also connected. Also, we fix an embedding of OPT , so that it becomes
an outerplane graph. Let t and s denote respectively the number of inner triangles and inner
squares in OPT . Let r and c be respectively the number of triangles and squares in the
algorithm’s output.

From Corollary 4 and the fact that Phase I finds a cactus with maximum number of
triangles in the input graph:

t ≤ 2r. (1)

8

PSfrag replacements

(a)
(b)

u

v

auv

buv

e

Figure 5: An example of the graph H used to upper bound the approximation ratio of the
algorithm.

.
We need the following claim.

Claim 6.

4t + s ≤ 10r + 6c (2)

Proof. Let M1 (from the pseudocode of the algorithm) have q non-trivial connected compo-
nents A1, A2, . . . , Aq. Let ri, ci be the number of triangles and squares in Ai, respectively.
This implies that the number of vertices in the component Ai is exactly 3ci + 2ri + 1. We
have r =

∑q
j=1 rj and c =

∑q
j=1 cj .

Let Bi = OPT [V (Ai)] and let Bj
i , j = 1, 2, . . . ji be the connected components of Bi,

and let bji = |V (Bj
i)|. If bji > 1, let Bj

i (l), for l = 1, 2, . . . lji , be the blocks of Bj
i , and let

bji (l) = |V (Bj
i (l))|. Note that bji (l) ≥ 2. We have

l
j
i

∑

l=1

bji (l) = bji + (lji − 1). (3)

Notice that all the inner faces of all the Bi are faces of some block Bj
i (l). Consider an

inner square S of OPT . At the end of Phase 2 of the algorithm, S will satisfy exactly one of
the following conditions.

9

1. S is the boundary of an inner face of some Bj
i (l) (we say that S is of Type I)

2. S is not of Type I and has one edge that is also an edge of some Bj
i (l) (we say that S

is of Type II)

3. S is not of Type I or II and is such that two non-consecutive vertices belong to the
same Bi (we say that S is of Type III).

If none of these three conditions holds, then S can be added to E1 in Phase 2 of the algorithm,
and becomes a inner square of Type I. See Figure 6. Let s′1, s

′
2, and s′3 be the number of

inner squares of OPT of types I, II, and III respectively. Then s = s′1 + s′2 + s′3.
No triangle T can be added to E1 while keeping a square-triangular cactus, since otherwise

M0 would not be a triangular cactus with maximum number of triangles. Using this, we
classify the inner triangles of OPT into Type I and Type II,

1. T is the boundary of an inner face of some Bj
i (l) (we say that T is of Type I)

2. T is not of Type I and has at least one edge that is also an edge of some Bj
i (l) (we say

that T is of Type II).

PSfrag replacements

B1
1(1)

B1
1(2) B1

1(3)

B2
1(1)

B2
1(2)

Type I

Type I Type I

Type II

Type II

Type II
Type III

Type I
Type I

Type II

buv

e

Figure 6: An example of the different type of inner squares. Filled black circles are vertices
in B1 and empty circles are vertices not in B1. Here we have two connected components of
B1: B1

1 and B2
1 . Furthermore, B1

1 has three blocks: B1
1(1) with 8 vertices, B1

1(2) with only
two vertices, and B1

1(3), with three vertices. Similarly, B2
1 has two blocks:B2

1(1) and B2
1(2).

Let t′1 and t′2 be the number of inner triangles of OPT of types I and II respectively. Then
t = t′1 + t′2.

10

Block Bj
i (l) has at most bji (l) − 2 inner faces. We obtain:

t′1 + s′1 ≤
∑

i,j,l

(bji (l) − 2). (4)

We associate with each inner triangle (inner square, respectively) of OPT of Type II an
edge of some Bj

i (l), precisely the edge that is both in Bj
i (l) and in the inner triangle (inner

square, respectively).
If bji (l) > 2, there are exactly bji (l) edges on the outer face of Bj

i (l). Any such edge e can
be associated with at most one inner triangle or inner square of Type II, as we argue below.
For illustration look at edge e in Figure 6. Every edge of OPT participates in at most two
inner faces of OPT . On one side of e lies an inner face of Bj

i (l) and this is also an inner face
of OPT , based on the following fact.

Fact 7. Let H be a outerplane graph. Let H ′ be an induced subgraph of H. Then, an inner
face of H ′ is also an inner face of H.

Thus one of the at most two inner triangles or inner squares of OPT that could be
associated with e is in fact an inner triangle or an inner square of Type I, and not of Type
II.

Inneredges of Bj
i (l) are not associated with any inner triangles or inner squares of Type

II, since the boundary of two faces of OPT on both sides of such an inneredge of Bj
i (l) are

of Type I, based on the reasoning above.
If bji (l) = 2, there exists exactly one edge in Bj

i (l) and this edge can be associated with
at most two inner triangles or inner squares of Type II, since every edge of OPT participates
in at most two inner faces of OPT . As an illustration, please look at B2

1(2) in Figure 6.
Based on these arguments, we conclude:

t′2 + s′2 ≤
∑

i,j,l

bji (l). (5)

We continue by counting the inner squares of Type III of OPT . Let S be such a square
with vertices u, v, w, x in clockwise order. We must have that some Bi contains two non-
consecutive of these four vertices, and does not contain the other two, or else S would be of
Type I or Type II. WLOG, let u,w ∈ V (Bi) and x, v 6∈ V (Bi). Note that u and w are not
adjacent in OPT , since there is no edge inside this square, and an edge outside this square
will make either x or v not on the outer face of OPT , contradicting outerplanarity. By the
same reasoning, OPT does not have a path from u to w that does not pass through either x
or v. So u and w are in different components of Bi. We associate with S the pair of vertices
u,w (recall that uw is not an edge in OPT). We claim that the total number of inner squares
of Type III of OPT whose corresponding pair of vertices are in different components of Bi

is at most ji − 1 (recall that ji is the number of components of Bi), as we argue in the next
paragraph.

Let Fi denote the set of all edges uw for each pair of vertices u,w of Bi corresponding to
some square of Type III. OPT with Fi added is still outerplanar, and cannot contain a path
from u to w (except for the edge uw) that does not go through the corresponding v or x.

11

Since v and x are not added to Bi, if we add Fi to Bi, then this new graph (V (Bi), E(Bi)∪Fi)
does not contain any cycle which is not in Bi. We conclude that |Fi| ≤ ji − 1.

Thus, it follows that

s′3 ≤

q
∑

i=1

(ji − 1). (6)

By adding up Equation (5) and Equation (4) we get that

t′1 + s′1 + t′2 + s′2 ≤

q
∑

i=1

∑

j∈[ji],b
j
i>1

l
j
i

∑

l=1

(2bji (l) − 2). (7)

Using Equation (3), we have that
∑l

j
i

l=1(2b
j
i (l) − 2) = 2bji − 2. Therefore, Inequality (7)

simplifies to

t′1 + s′1 + t′2 + s′2 ≤

q
∑

i=1

∑

j∈[ji],b
j
i>1

(2bji − 2),

Since for bji = 1 we have 2bji − 2 = 0 we can add them to the sum without changing the
amount. Hence,

t′1 + s′1 + t′2 + s′2 ≤

q
∑

i=1

∑

j∈[ji]

(2bji − 2).

Note that since Bj
i are components of Bi and the set of vertices of Bi is the same as the

set of vertices of Ai, we will have
∑

j∈[ji]
bji = |V (Bi)| = |V (Ai)| which, recall, is equal to

3ci + 2ri + 1. Hence,

t′1 + s′1 + t′2 + s′2 ≤

q
∑

i=1

(2(3ci + 2ri + 1) − 2ji).

Now by adding Equation (6) to equation above we get that

t′1 + s′1 + t′2 + s′2 + s′3 ≤

q
∑

i=1

(2(3ci + 2ri + 1) − 2ji + ji − 1).

Recall that t = t′1 + t′2 and s = s′1 + s′2 + s′3, hence,

t + s ≤
∑

i

(2(3ci + 2ri) − ji + 1) ≤
∑

i

(4ri + 6ci) = 4r + 6c.

Multiplying Equation (1) by 3 and adding it to equation above, we obtain Equation (2):

4t + s ≤ 10r + 6c.

This concludes the proof of Claim 6 �

12

We continue with the proof of Theorem 5.
Let OPT have blocks H1,H2, . . . ,Hk, and let nj = |V (Hj)| and mj = |E(Hj)|. Recall

that OPT is connected. Then n := |V | = |V (G)| = |V (OPT)| =
(

∑k
j=1 nj

)

− (k − 1). We

also have that opt = |E(OPT)| =
∑k

j=1mj . Let f j
i be the number of internal faces of length i

in Hj, and tj and sj be respectively f j
3 and f j

4 . We have that nj = 2+tj +2sj +
∑

i≥5(i−2)f j
i ,

and mj = 1 + 2tj + 3sj +
∑

i≥5(i− 1)f j
i .

Note that Phase 3 makes the output subgraph connected. The algorithm outputs a
solution with (n − 1) + r + c edges, as every triangle or square increases the cyclomatic
number1 of the output by 1. We have

n− 1 + r + c = r + c− k +

k
∑

j=1

nj

= r + c− k +
k

∑

j=1



2 + tj + 2sj +
∑

i≥5

(i− 2)f j
i





= r + c + k + t + 2s +
k

∑

j=1

∑

i≥5

(i− 2)f j
i ,

and

opt =

k
∑

j=1



1 + 2tj + 3sj +
∑

i≥5

(i− 1)f j
i



 = k + 2t + 3s +

k
∑

j=1

∑

i≥5

(i− 1)f j
i .

For i ≥ 5, we get that 10(i − 2) ≥ 7(i − 1). By Inequality (2), we have 10r + 10c ≥ 4t + s
and we also have 10k ≥ 7k. Hence, one can easily check that

10



r + c + k + t + 2s +

k
∑

j=1

∑

i≥5

(i− 2)f j
i



 ≥ 7



k + 2t + 3s +

k
∑

j=1

∑

i≥5

(i− 1)f j
i



 .

Therefore we showed that n−1+r+c
opt

≥ 7
10 . This finishes the proof of Theorem 5. �

4 Concluding Remarks

In this paper we presented an algorithm which improved the ratio of Maximum Outer-

planar Subgraph to 7/10. It is natural to ask if this algorithm can be improved. Some
obvious modifications to the algorithm do not help.

Observe that adding pentagons or larger outerplanar graphs after Phase 2 of Algorithm
STS will not make the ratio better than 7/10. The example used in the first part of the proof
of Theorem 5 illustrates this. See Figure 5. There are no pentagons or any other structure

1the cyclomatic number (also called circuit rank, cycle rank, or nullity) of an undirected graph is the
minimum number of edges that must be removed from the graph to break all its cycles, making it into a tree
or forest.

13

Figure 7: The vertices of H1 are solid, and the newly added vertices of H2 are the empty
small circles.

in the optimum that have their vertices in different components of the graph M1 from the
algorithm.

We believe that the greedy technique of adding edges to an outerplanar subgraph as long
as the subgraph stays outerplanar does not improve the ratio provided that the worst possible
edge is chosen.

An outerplanar k-restricted structure is a simple graph whose blocks are outerplanar
and each has at most k vertices. In this paper, outerplanar 4-restricted structures are used
by our approximation algorithm. The outerplanar k-restricted ratio is the infimum, over
simple outerplanar graphs H, of the ratio of the number of edges in a maximum k-restricted
structure subgraph of H to the number edges of H. It is proved in [4] that, as k tends to
infinity, the outerplanar k-restricted ratio tends to 1. This could be useful in improving the
approximation ratio for Maximum Outerplanar Subgraph, although we do not know if
there is a polynomial time algorithm for finding an outerplanar 4-restricted structure with
maximum number of edges that is a subgraph of the input graph.

A d iamond is a cycle of size four with exactly one chord and is an outerplanar graph.
Note that a diamond is not a square-triangular structure. A diamond has five edges and four
vertices, therefore, it is a better structure than a square since it has more edges and also a
better structure than two triangles since it has fewer vertices. Since K4 is not outerplanar,
the only blocks that an outerplanar 4-restricted structure can have are bridges, triangles,
squares and diamonds.

One way to use diamonds is to add them greedily (as long as the four vertices are in
different connected components), followed by triangles as in [6]. We could also add squares
and pentagons after this. And after this, one employs Phase 3 of Algorithm STS. This
approach does not lead to an approximation ratio better than 2/3, as the following series
of examples shows. The optimum solutions Hk are taken from Theorem 4 of [4]. and H2

is illustrated in Figure 7. H0 is a triangle. To obtain Hk from Hk−1 duplicate and then

14

subdivide every outeredge. Thus Hk has 3 · 2k vertices and is triangulated with 2 · 3 · 2k − 3
edges. We also have a separate diamond cactus Dk with d diamonds that includes all the
vertices of Hk that came from Hk−1, plus another one vertex. Here, d = 2k−1, as one diamond
structure with d diamonds has 1 + 3d vertices. Given an input that has both the edges of
Hk and of Dk, the algorithm can select Dk by greedily adding diamonds, after which it goes
directly to Phase 3 as the vertices of Hk that are not in Dk form an independent set and
therefore cannot make any triangle, square, pentagon, or larger block that one can greedily
add to Dk. The output of this greedy algorithm has 3 · 2k − 1 + 2d edges, as every diamond
increases the cyclomatic number by 2. Recall that d = 2k−1 and that the optimum has
2 · 3 · 2k − 3 edges. The ratio of the output to optimum converges to 2/3 as k goes to infinity.

The question of how large an approximation ratio for the Maximum Outerplanar

Subgraph problem can be achieved remains open. Is there a linear-time algorithm with
approximation ratio 1/2+ǫ? Is there an approximation algorithm for the Maximum Weight

Outerplanar Subgraph problem with a ratio better than 2/3?

References

[1] Brenda S. Baker. Approximation algorithms for NP-complete problems on planar graphs.
J. ACM, 41(1):153–180, jan 1994.

[2] W. Brehaut. An efficient outerplanarity algorithm. In Proceedings of the 8th South-
Eastern Conference on Combinatorics, Graph Theory, and Computing, pages 99–113,
1977.

[3] G. Călinescu, C.G. Fernandes, U. Finkler, and H. Karloff. A better approximation
algorithm for finding planar subgraphs. Journal of Algorithms, 27(2):269–302, 1998.

[4] Gruia Călinescu and Cristina G. Fernandes. On the k-structure ratio in planar and
outerplanar graphs. Discrete Mathematics & Theoretical Computer Science, 10(3), 2008.

[5] Gruia Călinescu, Cristina G. Fernandes, Howard Karloff, and Alexander Zelikovsky. A
new approximation algorithm for finding heavy planar subgraphs. Algorithmica, 36:179–
205, 2003.

[6] Parinya Chalermsook and Andreas Schmid. Finding triangles for maximum planar sub-
graphs. In Sheung-Hung Poon, Md. Saidur Rahman, and Hsu-Chun Yen, editors, WAL-
COM: Algorithms and Computation, pages 373–384, 2017.

[7] Chandra Chekuri, Anupam Gupta, Ilan Newman, Yuri Rabinovich, and Alistair Sinclair.
Embedding k-outerplanar graphs into L1. SIAM Journal on Discrete Mathematics,
20(1):119–136, 2006.

[8] Ho Yee Cheung, Lap Chi Lau, and Kai Man Leung. Algebraic algorithms for linear
matroid parity problems. ACM Transactions on Algorithms (TALG), 10(3):1–26, 2014.

[9] Robert Cimikowski and Don Coppersmith. The sizes of maximal planar, outerplanar,
and bipartite planar subgraphs. Discrete Mathematics, 149(1-3):303–309, 1996.

15

[10] Huib Donkers, Bart Jansen, and Micha l W lodarczyk. Preprocessing for outerplanar
vertex deletion: An elementary kernel of quartic size. Algorithmica, 84(11), 2022.

[11] Rong-chii Duh and Martin Fürer. Approximation of k -set cover by semi-local opti-
mization. In Frank Thomson Leighton and Peter W. Shor, editors, Proceedings of the
Twenty-Ninth Annual ACM Symposium on the Theory of Computing, El Paso, Texas,
USA, May 4-6, 1997, pages 256–264. ACM, 1997.

[12] Uriel Feige and Shimon Kogan. The hardness of approximating hereditary properties.
2005. Available on: http://research.microsoft.com/research/theory/feige/ homepage-
files/hereditary.pdf.

[13] Stefan Felsner, Giuseppe Liotta, and Stephen Wismath. Straight-line drawings on re-
stricted integer grids in two and three dimensions. In Petra Mutzel, Michael Jünger, and
Sebastian Leipert, editors, Graph Drawing, pages 328–342, Berlin, Heidelberg, 2002.
Springer Berlin Heidelberg.

[14] H.N. Gabow and M. Stallmann. Efficient algorithms for graphic matroid intersection
and parity. In 12th Colloq. on Automata, Language and Programming, pages 210–220,
1985.

[15] M.R. Garey and D.S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-completeness. Mathematical Sciences Series. W. H. Freeman, 1979.

[16] D. Gonçalves. Edge partition of planar graphs into two outerplanar graphs. In 37th
Annual ACM Symposium on Theory of Computing, pages 504–512, 2005.

[17] Satoru Iwata and Yusuke Kobayashi. A weighted linear matroid parity algorithm. SIAM
Journal on Computing, 51(2):238–280, 2022.

[18] Goos Kant. Augmenting outerplanar graphs. Journal of Algorithms, 21(1):1–25, 1996.

[19] Kiran S. Kedlaya. Outerplanar partitions of planar graphs. Journal of Combinatorial
Theory, Series B, 67(2):238–248, 1996.

[20] Samir Khuller, Balaji Raghavachari, and Neal Young. Approximating the minimum
equivalent digraph. SIAM J. Comput., 24(4):859–872, 1995.

[21] Annegret Liebers. Planarizing graphs—a survey and annotated bibliography. In Graph
Algorithms And Applications 2, pages 257–330. World Scientific, 2004.

[22] P.C. Liu and R.C. Geldmacher. On the deletion of nonplanar edges of a graph.

In 10th Southeastern Conference on Combinatorics, Graph Theory, and Computing,
pages 727–738, 1977.

[23] L. Lovász and M. D. Plummer. Matching Theory. Elsevier Science, 1986.

[24] Carsten Lund and Mihalis Yannakakis. The approximation of maximum subgraph prob-
lems. In International Colloquium on Automata, Languages and Programming, 1993.

16

http://research.microsoft.com/research/theory/feige/

[25] Anil Maheshwari and Norbert Zeh. External memory algorithms for outerplanar graphs.
In Algorithms and Computation, pages 307–316, Berlin, Heidelberg, 1999. Springer Berlin
Heidelberg.

[26] Joseph Manning and Mikhail J. Atallah. Fast detection and display of symmetry in
outerplanar graphs. Discrete Applied Mathematics, 39(1):13–35, 1992.

[27] Sandra L. Mitchell. Linear algorithms to recognize outerplanar and maximal outerplanar
graphs. Information Processing Letters, 9(5):229–232, 1979.

[28] Kerri Morgan and Graham Farr. Approximation algorithms for the maximum induced
planar and outerplanar subgraph problems. Journal of Graph Algorithms and Applica-
tions, 11(1):165–193, 2007.

[29] Haruko Okamura and Paul D Seymour. Multicommodity flows in planar graphs. Journal
of Combinatorial Theory, Series B, 31(1):75–81, 1981.

[30] James B Orlin. A fast, simpler algorithm for the matroid parity problem. In International
Conference on Integer Programming and Combinatorial Optimization, pages 240–258.
Springer, 2008.

[31] Vitali Osipov. A polynomial time randomized parallel approximation algorithm for
finding heavy planar subgraphs. Master’s thesis, Universität des Saarlandes, August
2006.

[32] Timo Poranen. A simulated annealing algorithm for the maximum planar subgraph
problem. International Journal of Computer Mathematics, 81(5):555–568, 2004.

[33] Timo Poranen. Heuristics for the maximum outerplanar subgraph problem. J. Heuristics,
11:59–88, 01 2005.

[34] Timo Poranen. Two new approximation algorithms for the maximum planar subgraph
problem. Acta Cybernetica, 18(3):503–527, Jan. 2008.

[35] Mauricio GC Resende and Celso C Ribeiro. A grasp for graph planarization. Networks:
An International Journal, 29(3):173–189, 1997.

[36] Maciej M Sys lo and Masao Iri. Efficient outerplanarity testing. Fundamenta Informati-
cae, 2(1):261–275, 1979.

[37] M.M. Syslo. Outerplanar graphs: characterizations, testing, coding and counting. Bull.
Acad. Polon. Sci., Ser. Sci. Math. Astronom. Phys., 26:675–684, 1978.

[38] Maciej M. Sys lo. Characterizations of outerplanar graphs. Discrete Mathematics,
26(1):47–53, 1979.

[39] Z. Szigeti. On the graphic matroid parity problem. J. Combin. Theory Ser. B, 88:247–
260, 2003.

[40] Douglas B. West. Introduction to Graph Theory.

17

[41] M. Wiegers. Recognizing outerplanar graphs in linear time. In Graph-Theoretic Concepts
in Computer Science, International Workshop WG’86, 246(1):165–176, 1984.

[42] M. Yannakakis. Node- and edge-deletion NP-complete problems. In ACM Symposium
on Computational Geometry, pages 253–264, 1978.

18

	Introduction
	Preliminaries
	The Approximation Algorithm
	Approximation Ratio Analysis

	Concluding Remarks

