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On the distance-edge-monitoring numbers of graphs ∗

Chengxu Yang †, Ralf Klasing, ‡ Yaping Mao, § Xingchao Deng ¶

Abstract

Foucaud et al. [Discrete Appl. Math. 319 (2022), 424–438] recently introduced and initiated the

study of a new graph-theoretic concept in the area of network monitoring. For a set M of vertices

and an edge e of a graph G, let P (M, e) be the set of pairs (x, y) with a vertex x of M and a

vertex y of V (G) such that dG(x, y) 6= dG−e(x, y). For a vertex x, let EM(x) be the set of edges

e such that there exists a vertex v in G with (x, v) ∈ P ({x}, e). A set M of vertices of a graph

G is distance-edge-monitoring set if every edge e of G is monitored by some vertex of M , that

is, the set P (M, e) is nonempty. The distance-edge-monitoring number of a graph G, denoted by

dem(G), is defined as the smallest size of distance-edge-monitoring sets of G. The vertices of M

represent distance probes in a network modeled by G; when the edge e fails, the distance from x to

y increases, and thus we are able to detect the failure. It turns out that not only we can detect it,

but we can even correctly locate the failing edge. In this paper, we continue the study of distance-

edge-monitoring sets. In particular, we give upper and lower bounds of P (M, e), EM(x), dem(G),

respectively, and extremal graphs attaining the bounds are characterized. We also characterize the

graphs with dem(G) = 3.

Keywords: Distance; Metric dimension; Distance-edge-monitoring set.
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1 Introduction

Foucaud et al. [8] recently introduced a new concept of network monitoring using distance probes,

called distance-edge-monitoring. Networks are naturally modeled by finite undirected simple connected

graphs, whose vertices represent computers and whose edges represent connections between them. We

wish to be able to monitor the network in the sense that when a connection (an edge) fails, we can

detect this failure. We will select a (hopefully) small set of vertices of the network, that will be called

probes. At any given moment, a probe of the network can measure its graph distance to any other

vertex of the network. The goal is that, whenever some edge of the network fails, one of the measured

distances changes, and thus the probes are able to detect the failure of any edge. Probes that measure
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distances in graphs are present in real-life networks, for instance this is useful in the fundamental task

of routing [7, 9]. They are also frequently used for problems concerning network verification [1, 3, 5].

We will now present the formal definition of the concept of distance-edge-monitoring sets, as

introduced by Foucaud et al. [8]. Graphs considered are finite, undirected and simple. Let G = (V,E)

be a graph with vertex set V and edge set E, respectively. We denote by dG(x, y) the distance between

two vertices x and y in a graph G. For an edge e of G, we denote by G − e the graph obtained by

deleting e from G.

Definition 1. For a set M of vertices and an edge e of a graph G, let P (M,e) be the set of pairs

(x, y) with a vertex x of M and a vertex y of V (G) such that dG(x, y) 6= dG−e(x, y). In other words,

e belongs to all shortest paths between x and y in G.

Definition 2. For a vertex x, let EM(x) be the set of edges e such that there exists a vertex v in G with

(x, v) ∈ P ({x}, e), that is EM(x) = {e | e ∈ E(G) and ∃v ∈ V (G) such that dG(x, v) 6= dG−e(x, v)},

or EM(x) = {e | e ∈ E(G)and P ({x}, e) 6= ∅}. If e ∈ EM(x), we say that e is monitored by x.

Definition 3. A set M of vertices of a graph G is distance-edge-monitoring set if every edge e of G

is monitored by some vertex of M , that is, the set P (M,e) is nonempty. Equivalently,
⋃

x∈M
EM(x) =

E(G).

One may wonder about the existence of such an edge detection set M . The answer is affirmative.

If we take M = V (G), then

E(G) ⊆
⋃

x∈V (G)

N(x) ⊆
⋃

x∈V (G)

EM(x).

Therefore, we consider the smallest cardinality of M and give the following parameter.

Definition 4. The distance-edge-monitoring number dem(G) of a graph G is defined as the smallest

size of a distance-edge-monitoring set of G, that is

dem(G) = min

{

|M |
∣

∣

∣

⋃

x∈M

EM(x) = E(G)

}

.

The vertices of M represent distance probes in a network modeled by G, distance-edge-monitoring

sets are very effective in network fault tolerance testing. For example, a distance-edge-monitoring

set can detect a failing edge, and it can correctly locate the failing edge by distance from x to y,

because the distance from x to y will increases when the edge e fails. Concepts related to distance-

edge-monitoring sets have been considered e.g. in [1, 2, 3, 4, 10, 11, 12, 13, 14, 15, 16]. A detailed

discussion of these concepts can be found in [8].

Foucaud et al. [8] introduced and initiated the study of distance-edge-monitoring sets. They showed

that for a nontrivial connected graph G of order n, 1 ≤ dem(G) ≤ n− 1 with dem(G) = 1 if and only

if G is a tree, and dem(G) = n−1 if and only if it is a complete graph. They derived the exact value of

dem for grids, hypercubes, and complete bipartite graphs. Then, they related dem to other standard

graph parameters. They showed that dem(G) is lower-bounded by the arboricity of the graph, and

upper-bounded by its vertex cover number. It is also upper-bounded by twice its feedback edge set
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number. Moreover, they characterized connected graphs G with dem(G) = 2. Then, they showed

that determining dem(G) for an input graph G is an NP-complete problem, even for apex graphs.

There exists a polynomial-time logarithmic-factor approximation algorithm, however it is NP-hard

to compute an asymptotically better approximation, even for bipartite graphs of small diameter and

for bipartite subcubic graphs. For such instances, the problem is also unlikely to be fixed parameter

tractable when parameterized by the solution size.

In this paper, we continue the study of distance-edge-monitoring sets. In particular, we give upper

and lower bounds of P (M,e), EM(x), dem(G), respectively, and extremal graphs attaining the bounds

are characterized. We also characterize the graphs with dem(G) = 3.

2 Preliminaries

Graphs considered are finite, undirected and simple. Let G = (V,E) be a graph with vertex set V

and edge set E, respectively. The neighborhood set of a vertex v ∈ V (G) is NG(v) = {u ∈ V (G) |uv ∈

E(G)}. Let NG[v] = NG(v) ∪ {v}. The degree of a vertex v in G is denoted by d(v) = |NG(v)|. δ(G),

∆(G) is the minimum, maximum degree of the graph G, respectively. For a vertex subset S ⊆ V (G),

the subgraph induced by S in G is denoted by G[S] and similarly G[V \S] for G\S or G−S. vk+ is a

vertex v whose degree is at least k. In a graph G, a vertex is a core vertex if it is v3+. A path with all

internal vertices of degree 2 and whose end-vertices are core vertices is called a core path (note that

we allow the two end-vertices to be equal, but all other vertices must be distinct). A core path that

is a cycle (that is, both end-vertices are equal) is a core cycle. The base graph Gb of a graph G is the

graph obtained from G by iteratively removing vertices of degree 1. Clearly, dem(G) = dem(Gb).

Foucaud et al. [8] showed that 1 ≤ dem(G) ≤ n − 1 for any G with order n, and characterized

graphs with dem(G) = 1, 2, n − 1.

Theorem 2.1. [8] Let G be a connected graph with at least one edge. Then dem(G) = 1 if and only

if G is a tree.

For two vertices u, v of a graph G and two non-negative integers i, j, we denote by Bi,j(u, v) the

set of vertices at distance i from u and distance j from v in G.

Theorem 2.2. [8] Let G be a connected graph with at least one cycle, and let Gb be the base graph of

G. Then, dem(G) = 2 if and only if there are two vertices u, v in Gb such that all of the following

conditions (1)-(4) hold in Gb:

(1) for all i, j ∈ {0, 1, 2, · · · }, Bi,j(u, v) is an independent set.

(2) for all i, j ∈ {0, 1, 2, · · · }, every vertex x in Bi,j(u, v) has at most one neighbor in each of the

four sets Bi−1,j(u, v) ∪ Bi−1,j−1(u, v), Bi−1,j(u, v) ∪ Bi−1,j+1(u, v), Bi,j−1(u, v)∪ Bi−1,j−1(u, v) and

Bi,j−1(u, v) ∪Bi+1,j−1(u, v).

(3) for all i, j ∈ {1, 2, · · · }, there is no 4-vertex path zxyz′ with z ∈ Bi−1,a(u, v), z
′ ∈ Ba′,j(u, v),

x ∈ Bi,j(u, v), y ∈ Bi−1,j+1(u, v), a ∈ {j − 1, j + 1}, a′ ∈ {i− 2, i}.

(4) for all i, j ∈ {1, 2, · · · }, x ∈ Bi,j(u, v) has neighbors in at most two sets among Bi−1,j+1(u, v),

Bi−1,j−1(u, v), Bi+1,j−1(u, v).

Theorem 2.3. [8] dem(G) = n− 1 if and only if G is the complete graph of order n.
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3 Results for P (M, e)

For the parameter P (M,e), we have the following monotonicity property.

Proposition 3.1. For two vertex sets M1,M2 and an edge e of a graph G, if M1 ⊂ M2, then

P (M1, e) ⊂ P (M2, e).

Proof. For any (x, y) ∈ P (M1, e) with x ∈ M1 and y ∈ V (G), we have dG(x, y) 6= dG−e(x, y). Since

M1 ⊂ M2, it follows that x ∈ M2. Since dG(x, y) 6= dG−e(x, y), we have (x, y) ∈ P (M2, e), and so

P (M1, e) ⊂ P (M2, e).

From Proposition 3.1, one may think P (M1, e) * P (M2, e) if M1 * M2.

Proposition 3.2. For two vertex sets M1,M2 and an edge e of a graph G, if P (M1 ∩M2, e) 6= ∅,

then M1 ∩M2 = ∅ if and only if P (M1, e) ∩ P (M2, e) = ∅.

Proof. If M1 ∩M2 = ∅, then it follows from the definition of P (M,e) that P (M1, e) ∩ P (M2, e) = ∅.

Conversely, we suppose that P (M1, e)∩P (M2, e) = ∅. Assume that M1∩M2 6= ∅. Let M1 ∩M2 = M .

Clearly, M ⊂ M1 and M ⊂ M2. From Proposition 3.1, we have P (M,e) ⊂ P (M1, e) and P (M,e) ⊂

P (M2, e), and hence P (M,e) ⊆ P (M1, e) ∩ P (M2, e). Obviously, P (M1, e) ∩ P (M2, e) ⊆ P (M,e) and

hence P (M1, e) ∩ P (M2, e) = P (M,e). Since P (M,e) 6= ∅, it follows that P (M1, e) ∩ P (M2, e) 6= ∅, a

contradiction. So, we have M1 ∩M2 = ∅.

3.1 Upper and lower bounds

The following observation is immediate.

Observation 3.1. [8] Let M be a distance-edge-monitoring set of a graph G. Then, for any two

distinct edges e1 and e2 in G, we have P (M,e1) 6= P (M,e2).

For any graph G with order n, if |M | = 1, then we have the following observation.

Observation 3.2. Let G be a graph with order n, and v ∈ V (G). Then

0 ≤ |P ({v}, uw)| ≤ n− 1.

Moreover, the bounds are sharp.

In terms of order of a graph G, we can derive the following upper and lower bounds.

Proposition 3.3. Let G be a graph of order n. For a vertex set M and an edge e of a graph G, we

have

0 ≤ |P (M,e)| ≤ n(n− 1).

Moreover, the bounds are sharp.

Proof. Clearly, |P (M,e)| ≥ 0. From Proposition 3.1, we have P (M,e) ⊂ P (V (G), e). Let M = V (G).

Then the number of ordered pairs is n(n− 1) in G, and hence |P (M,e)| ≤ n(n− 1), as desired.

To show the sharpness of the bounds in Proposition 3.3, we consider the following examples.
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Example 1. For any graph H, let G = Kn ∨H. Let M = V (Kn) and e ∈ E(H). If x, y ∈ M , then

dG(x, y) = dG−e(x, y) = 1, and so (x, y) /∈ P (M,e). If x ∈ V (Kn) and y ∈ V (H), then dG(x, y) =

dG−e(x, y) = 1, and hence (x, y) /∈ P (M,e). Clearly, P (M,e) = ∅, and hence |P (M,e)| = 0. If

G = K2, then |P (M,e)| = n(n− 1), which means that the bounds in Proposition 3.3 are sharp.

The double star S(n,m) for integers n ≥ m ≥ 0 is the graph obtained from the union of two stars

K1,n and K1,m by adding the edge e between their centers.

Proposition 3.4. Let G be a graph of order n with a cut edge e. For any vertex set M , we have

2(n− 1) ≤ |P (M,e)| ≤ 2⌊n/2⌋⌈n/2⌉.

Moreover, the bounds are sharp.

Proof. Let G1, G2 be the two components of G \ e, and let |V (G1)| = n1 and |V (G2)| = n2. For any

x ∈ V (G1) and y ∈ V (G2), since e is cut edge, it follows that dG(x, y) 6= dG−e(x, y). If M = V (G),

then P (M,e) = {(x, y), (y, x)|x ∈ V (G1) and y ∈ V (G2)}, and hence |P (M,e)| = 2|V (G1)||V (G2)| =

2n1n2 = 2n1(n − n1) ≤ 2⌊n2 ⌋⌈
n
2 ⌉, and so |P (M,e)| ≤ 2⌊n2 ⌋⌈

n
2 ⌉. Since |P (M,e)| = 2n1(n − n1) ≥

2(n − 1), it follows that |P (M,e)| ≥ 2(n− 1).

Example 2. Let G be the double star S(⌊n/2⌋ − 1, ⌈n/2⌉ − 1). If M = V (G), then dG(x, y) 6=

dG−e(x, y) for any x ∈ V (K1,⌊n/2⌋−1) and y ∈ V (K1,⌊n/2⌋−1). Then (x, y), (y, x) ∈ P (M,e), and

hence |P (M,e)| ≥ 2⌊n/2⌋⌈n/2⌉. From Proposition 3.4, we have |P (M,e)| ≤ 2⌊n/2⌋⌈n/2⌉ and hence

|P (M,e)| = 2⌊n/2⌋⌈n/2⌉.

In fact, we can characterize the graphs attaining the lower bounds in Proposition 3.3.

Proposition 3.5. Let G be a graph with uv ∈ E(G) and M ⊂ V (G). Then |P (M,uv)| = 0 if and

only if one of the following conditions holds.

(i) M = ∅;

(ii) dG(x, u) = dG(x, v) for any x ∈M .

(iii) for any x ∈M and dG(x, u) = dG(x, v) + 1, we have dG−uv(x, u) = dG(x, u).

Proof. Suppose that |P (M,uv)| = 0. Since

P (M,uv) = {(x, y)|dG(x, y) 6= dG−uv(x, y), x ∈M,y ∈ V (G)} = ∅,

it follows that M = ∅ or there exists a vertex set M ∈ V (G) and an edge uv ∈ E(G) such that

dG(x, y) = dG−uv(x, y) for any x ∈ M and y ∈ V (G). For the fixed x, if y = u and y = v, then

we only need to consider the path from x to y through uv, and hence dG(x, u) = dG−uv(x, u) and

dG(x, v) = dG−uv(x, v). Clearly, we have |dG(x, v) − dG(x, u)| ≤ 1. Without loss of generality, let

dG(x, u) ≥ dG(x, v). For any x ∈M , if dG(x, u) = dG(x, v), then (ii) is true.

Claim 1. If dG(x, u) = dG(x, v) + 1, then dG−uv(x, u) = dG(x, u).

Proof. Assume, to the contrary, that dG−uv(x, u) > dG(x, u). For u ∈ V (G), we have dG−uv(x, u) 6=

dG(x, u), and hence (x, u) ∈ P (M,uv) = ∅, a contradiction.
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Conversely, if M = ∅, then |P (M,uv)| = 0. For any x ∈ M , suppose that dG(x, u) = dG(x, v),

then dG(x, y) = dG−uv(x, y) for any y ∈ V (G), and hence (x, y) /∈ P (M,uv). For any x ∈ M ,

if dG(x, u) = dG(x, v) + 1 then dG−uv(x, u) = dG(x, u) and hence dG(x, y) = dG−uv(x, y) for any

y ∈ V (G). It follows that (x, y) /∈ P (M,uv). From the definition of P (M,e), we have P (M,e) = ∅,

and hence |P (M,e)| = 0.

In fact, we can characterize the graphs attaining the upper bounds in Proposition 3.4.

Proposition 3.6. Let G be a graph with a cut edge v1v2 ∈ E(G) and M = V (G). Then |P (M,v1v2)| =

2⌊n2 ⌋⌈
n
2 ⌉ if and only if there are two vertex disjoint subgraphs G1 and G2 with V (G) = V (G1)∪V (G2)

and ||V (G1)| − |V (G2)|| ≤ 1, where vi ∈ V (Gi), i = 1, 2. In addition, G1 and G2 is connected by a

bridge edge v1v2.

Proof. Suppose that |P (M,v1v2)| = 2⌊n2 ⌋⌈
n
2 ⌉. Since M = V (G), it follows that there are two induced

subgraphs G1 and G2 with V (G) = V (G1) ∪ V (G2), where vi ∈ V (Gi), i = 1, 2. Note that v1v2 is a

cut edge of G.

Claim 2. If x, y ∈ V (Gi), then (x, y) /∈ P (M,e) and (y, x) /∈ P (M,e), where i = 1, 2.

Proof. Assume, to the contrary, that x, y ∈ V (Gi) and (x, y) ∈ P (M,e), where i = 1, 2. Then there

exists a shortest path from x to y such that dG(x, y) 6= dG−v1v2(x, y), where vi ∈ V (Gi), i = 1, 2.

Since v1v2 is a cut edge, it follows that dG(x, y) = dG−v1v2(x, y), and hence (x, y) /∈ P (M,e), a

contradiction.

By Claim 2, we only consider that x ∈ V (Gi) and y ∈ V (G) − V (Gi) (i = 1, 2). Since v1v2

is a cut edge, it follows that dG(x, y) 6= dG−v1v2(x, y), and hence (x, y) ∈ P (M,e). It follows that

|P (M,e)| = 2|V (G1)||V (G2)| = 2|V (G1)|(n − |V (G1)|) ≤ 2⌊n2 ⌋⌈
n
2 ⌉, where the equality holds if and

only |V (G1)| = ⌊
n
2 ⌋ or |V (G1)| = ⌈

n
2 ⌉, and hence ||V (G1)| − |V (G2)|| ≤ 1.

Conversely, we suppose that there are two vertex disjoint subgraphs G1 and G2 with V (G) =

V (G1) ∪ V (G2) and ||V (G1)| − |V (G2)|| ≤ 1, where vi ∈ V (Gi), i = 1, 2. Then G1 and G2 are

connected by a bridge edge, and hence |P (M,e)| = |P (V (G), e)| = 2|V (G1)||V (G2)| = 2⌊n/2⌋⌈n/2⌉,

as desired.

For |P (M,e)|, we give some results for some special graphs.

Lemma 3.1. Let Kn be a complete graph, and let M ⊆ V (Kn). Then

P (M,uv) =































{(u, v), (v, u)} if u, v ∈M,

{(u, v)} if u ∈M and v /∈M,

{(v, u)} if v ∈M and u /∈M,

∅, if u, v /∈M,

where uv ∈ E(Kn).
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Proof. Let V (Kn) = {v1, v2, · · · , vn}. For any edge uv, if u ∈ M and v /∈ M , then P (M,uv) =

{(x, y)|x ∈ M,y ∈ V (G) and dG(x, y) 6= dG−uv(x, y)}. Since dKn
(u, v) = 1 and dKn−uv(u, v) = 2,

we have (u, v) ∈ P (M,xy). The result follows for u ∈ M and v /∈ M . Similarly, if u, v ∈ M , then

P (M,e) = {(u, v), (v, u)}. Suppose that u /∈ M and v /∈ M . Let Px,y be the shortest path from

x ∈ M to y ∈ V (G), and hence there is no the shortest path Px,y such that uv /∈ E(Px,y), and hence

P (M,uv) = ∅.

The following corollary is immediate.

Proposition 3.7. Let Kn be a complete graph, and let M ⊆ V (Kn). Then

0 ≤ |PG(M,uv)| ≤ 2,

where uv ∈ E(Kn). Furthermore, |PG(M,uv)| = 0 if and only if u, v /∈ M ; |PG(M,uv)| = 2 if and

only if u, v ∈M ; |PG(M,uv)| = 1 for otherwise.

Proof. For any uv ∈ E(G) and M ∈ V (G), if u, v /∈ M , then it follows from Lemma 3.1 that

PG(M,uv) = ∅, and hence |PG(M,uv)| = 0. If u, v ∈ M , then it follows from Lemma 3.1 that

PG(M,uv) = {(u, v), (v, u)}, and so |PG(M,uv)| = 2. Similarly, for other case, we have |PG(M,uv)| =

1.

4 Results for EM(x)

For EM(x), we can observe some basic properties of distance-edge-monitoring sets. Obviously, for

any bridge edge e ∈ E(G), the edge e ∈ EM(x), which is given by Foucaud et al. in [8], see Theorem

4.1.

Theorem 4.1. [8] Let G be a connected graph and let e be a bridge edge of G. For any vertex x of

G, we have e ∈ EM(x).

The following corollary is immediate.

Corollary 4.2. For a vertex v of a tree T , we have EM(v) = E(T ).

Proof. For a vertex v of a tree T , we have EM(v) ⊂ E(T ). Since any edge e ∈ E(T ) is a bridge

edge of T , it follows from Theorem 4.1 that e ∈ EM(v) for any vertex v ∈ V (T ), and hence E(T ) ⊂

EM(v).

Theorem 4.3. [8] Let G be a connected graph with a vertex x of G. The following two conditions are

equivalent:

(1) EM(x) is the set of edges incident with x.

(2) For y ∈ V (G)−NG[x], there exist two shortest paths from x to y sharing at most one edge.

Now, let’s investigate the edges of EM(x) in G. Firstly, we introduced the following result, which

is given in Foucaud el al. [8].

Theorem 4.4. [8] Let G be a connected graph with a vertex x of G and for any y ∈ N(x), then, we

have xy ∈ EM(x).
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By Theorem 4.4, we can obtain a lower bound on EM(x) for any graph G with minimum degree

δ, the description is as follows.

Corollary 4.5. Let G be a connected graph. For any x ∈ V (G), we have

|EM(x)| ≥ |NG(x)| ≥ δ(G),

with equality if and only if G is a regular graph such that there exist two shortest paths from u to x

sharing at most one edge, where u ∈ V (G)−NG[x]. For example, a balanced complete bipartite graph

Kn,n.

Theorem 4.6. [8] For a vertex x of a graph G, the set of edges EM(x) induces a forest.

For a graph G and a vertex x ∈ V (G), one can derive the edge set EM(x) from G by Algorithm 1.

This algorithm is based on the breadth-first spanning tree algorithm. In the process of finding breadth-

first spanning trees, we delete some edges that cannot be monitored by vertex x, and obtain the edge

set EM(x) when the algorithm terminates. The time complexity of the breadth-first search tree

algorithm is O(|V (G)|+ |E(G)|). In Algorithm 1, we only add the steps of deleting specific edges and

checking neighbor vertex shown in Lines 17–26.

Algorithm 1 The algorithm of finding an edge set EM(x) in G

Input: a graph G and a vertex x ∈ V (G);

Output: A edge set EM(x) in G;

1: for each vertx u ∈ V (G) − {x} do

2: colour[u] ← White

3: d[u] ←∞

4: EM(x)← E(G)

5: d[x] ← 0

6: Q ← ∅

7: Enqueue[Q, x]

8: while Q 6= ∅ do

9: u← Dequeue[Q]

10: N ′[u]← ∅

11: for each vertx v ∈ Adj[u] do

12: if colour[v] ← White then

13: N ′[u]← N ′[u] ∪ {v}

14: colour[v] ← Gray

15: d[v]← d[u] + 1

16: Enqueue[Q,v]

17: for vi, vj ∈ N ′[u] do

18: if vivj ∈ E(G) then

19: EM(x) = EM(x)− vivj

20: Dv ← ∅

21: for each vertx vo ∈ Adj[v] do

22: if colour[vo] = Gray then

23: Dv ← Dv ∪ {vo}

24: if |Dv| ≥ 1 then

25: for vo ∈ Dv do

26: EM(x) = EM(x)− vvo

27: colour[u] ← DarkGary

28: return EM(x)

We now give upper and lower bounds on EM(x) in terms of the order n.

Proposition 4.1. Let G be a connected graph with |V (G)| ≥ 2. For any v ∈ V (G), we have

1 ≤ |EM(v)| ≤ |V (G)| − 1.

Moreover, the bounds are sharp.
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Proof. For any vertex v ∈ V (G), it follows from Theorem 4.6 that the set of edges EM(x) induces a

forest F in G, and hence |EM(v)| ≤ |E(F )| ≤ |E(T )| = |V (G)| − 1, where T is a spanning tree of

G. Since G is a connected graph, it follows from Corollary 4.5 that |EM(x)| ≥ δ(G) ≥ 1, and hence

|EM(v)| ≥ 1.

Given a vertex x of a graph G and an integer i, let Ni(x) denote the set of vertices at distance i

of x in G. Is there a way to quickly determine whether e ∈ EM(v) or e /∈ EM(v)? Foucaud et al. [8]

gave the following characterization about edge uv in EM(x).

Theorem 4.7. [8] Let x be a vertex of a connected graph G. Then, uv ∈ EM(x) if and only if

u ∈ Ni(x) and v is the only neighbor of u in Ni−1(x), for some integer i.

The following results are immediate from Theorem 4.7. These results show that it is easy to

determine e /∈ EM(v) for v ∈ V (G).

Corollary 4.8. Let G be a connected graph, and x ∈ V (G). Let Px,y denote the set of shortest paths

from x to y. Suppose that uv is an edge of Gb satisfying one of the following conditions.

(1) there exists an odd cycle C2k+1 containing the vertices x
′, u, v such that V (Px,x′)∩V (C2k+1) = x′

and dG(x
′, u) = dG(x

′, v) = k.

(2) there exists an even cycle C2k containing the vertices x′, u, v such that V (Px,x′)∩V (C2k) = x′,

dG(x
′, u) = k − 1 and dG(x

′, v) = k.

Then uv /∈ EM(x).

Proof. Since dG(x
′, u) = dG(x

′, v) = k, it follows that dG(x
′, u) = dG−uv(x

′, u) = k and dG(x
′, v) =

dG−uv(x
′, v) = k. Since V (Px,x′) ∩ V (C2k+1) = x′, it follows that dG(x, u) = dG(x, x

′) + dG(x
′, u) and

dG(x, v) = dG(x, x
′) + dG(x

′, v), and so dG(x, u) = dG−uv(x, u) and dG(x, v) = dG−uv(x, v). Clearly,

uv /∈ EM(x), and so (1) holds. From Theorem 4.7, the results are immediate, and hence (2) holds.

Theorem 4.9. For any k (1 ≤ k ≤ n − 1), there exists a graph of order n and a vertex v ∈ V (G)

such that |EM(v)| = k.

Proof. Let F1 be a graph of order k and F2 be a graph obtained from F1 by adding a new vertex v

and then adding all edges from v to V (F1). Let H be a graph obtained from F2 and a graph F3 of

order n− k − 1 such that there are at least two edges from each vertex in F3 to V (F1).

From Corollary 4.5, we have |EM(v)| ≥ |NG(v)| = k. To show |EM(v)| ≤ k, it suffices to prove

that EM(v) = EH [v, V (F1)]. Clearly, EH [v, V (F1)] ⊆ EM(v). We need to prove that EM(v) ⊆

EH [v, V (F1)], that is, EM(v) ∩ (E(H) \ EH [v, V (F1)]) = ∅. It suffices to show that for any xy ∈

E(H) \ EH [v, V (F1)], we have dG(v, x) = dH−xy(v, x) or dH(v, y) = dH−xy(v, y). Note that E(H) \

EH [v, V (F1)] = E(F1)∪E(F3)∪EH [V (F1), V (F3)]. If xy ∈ E(F1), then dH(v, x) = dH(v, y) = 1, and

it follows from Corollary 4.8 (1) that xy /∈ EM(v). If xy ∈ E(F3), then dH(v, x) = dH(v, y) = 2, and

it follows from Corollary 4.8 (1) that xy /∈ EM(v). Suppose that xy ∈ EH [V (F1), V (F3)]. Without

loss of generality, let x ∈ V (F1) and y ∈ V (F3). Since there are at least two edges from y to V (F1), it

follows that there exists a vertex z ∈ V (F1) such that zy ∈ E(H). Then dH(v, z) = dH(v, x) = 2 and

dH(v, y) = 3. From Corollary 4.8 (2), we have xy /∈ EM(v). From the above argument, |EM(v)| ≤ k,

and hence |EM(v)| = k.
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Graphs with small values of |EM(v)| can be characterized in the following.

Theorem 4.10. For a connected graph G and v ∈ V (G), we have |EM(v)| = 1 if and only if G = K2.

Proof. If |EM(v)| = 1, then it follows from Corollary 4.5 that dG(v) ≤ 1. Since G is connected, it

follows that dG(v) ≥ 1 and hence dG(v) = 1. Let u be the vertex such that vu ∈ E(G).

Claim 3. dG(u) = 1.

Proof. Assume, to the contrary, that dG(u) ≥ 2. For any vertex y ∈ NG(u)−v, we have y ∈ N2(v), and

hence dG(y, v) = 2, and so N1(v) = {u}. From Theorem 4.7, uy ∈ EM(v), and hence |EM(v)| ≥ 2, a

contradiction.

From Claim 3, we have dG(u) = 1. Since G is connected, it follows that G = K2.

Conversely, let G = K2. For any v ∈ V (K2), we have |EM(v)| = {uv}, and hence |EM(v)| = 1.

We now define a new graph Ad (d ≥ 3) such that the eccentricity of v in Ad is d and all of the

following conditions are true.

For each i (2 ≤ i ≤ d), let Bi be a graph such that |Bi| ≥ 2 for 2 ≤ i ≤ d− 1.

V (Ad) = {v, u1, u2} ∪ (
⋃

2≤i≤d V (Bi)), where B1 is a graph with vertex set {u1, u2}.

E(Ad) = {vu1, vu2}∪(
⋃

2≤i≤d EAd
(Bi) )∪(

⋃

2≤i≤d EAd
[vi, V (Bi−1)] with |EAd

[vi, V (Bi−1)]| ≥ 2,

where vi ∈ V (Bi) for 2 ≤ i ≤ d.

Note that for each vertex in Bi, there are at least two edges from this vertex to Bi−1, where

2 ≤ i ≤ d.

For d = 2, let D be a graph of order n−3, D1(n) be a graph with V (D1(n)) = {v, u1, u2}∪V (D) and

E(D1(n)) = {u1w, u2w |w ∈ V (D)} ∪ {u1v, u2v, uv} ∪E(D), and D2(n) be a graph with V (D2(n)) =

{v, u1, u2} ∪ V (D) and E(D2(n)) = {u1w, u2w |w ∈ V (D)} ∪ {u1v, u2v} ∪ E(D).

Theorem 4.11. Let G be connected graph with at least 3 vertices. Then there exists a vertex v ∈ V (G)

such that |EM(v)| = 2 if and only if = D1(n) or G = D2(n) or G = Ad for d ≥ 3.

Proof. Suppose that G = D1(n) or G = D2(n). Then there is a vertex v ∈ V (G). Let d be the

eccentricity of v in G. For w ∈ V (D), the subgraph induced by the vertices in {w, u1, u2, v} is an even

cycle C4, and hence dG(v, u1) = 1 and dG(v,w) = 2. It follows from Corollary 4.8 that wu1 /∈ EM(v).

Similarly, we have wu2 /∈ EM(v). If u1u2 ∈ E(G), then the subgraph induced by the vertices in

{u1, u2, v} is a 3-cycle, and hence dG(v, u1) = 1 and dG(v, u2) = 1. From Corollary 4.8, we have

u1u2 /∈ EM(v). Similarly, we have dG(v,wi) = 2 and dG(v,wj) = 2 for wiwj ∈ E(D). From Corollary

4.8, we have wiwj /∈ EM(v), and hence |EM(v)| = {u1v, u1v}, and so |EM(v)| = 2.

Suppose that G = Ad, where d ≥ 3. Note that d is the eccentricity of v in G. Then

E(Ad) = {vu1, vu2} ∪





⋃

2≤i≤d

EAd
(Bi)



 ∪





⋃

2≤i≤d

EAd
[vi, V (Bi−1)]





with |EAd
[vi, V (Bi−1)]| ≥ 2, where vi ∈ V (Bi) for 2 ≤ i ≤ d. Since dG(v, uis) = i and dG(v, uit) = i

for any uisuit ∈ E(Bi), it follows from Corollary 4.8 that uisuit /∈ EM(v). Similarly, let Ci =
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EAd
[vi, V (Bi−1)] with |EAd

[vi, V (Bi−1)]| ≥ 2, where vi ∈ V (Bi) for 2 ≤ i ≤ d. If yx ∈ Ci, then

x ∈ Ni−1(v), y ∈ Ni(i) and there exists a vertex x1 ∈ Ni−1(v) such that yx1 ∈ E(G). From Corollary

4.8, we have yx /∈ EM(v), and so |EM(v)| = {u1v, u1v}, and hence |EM(v)| = 2.

Conversely, if |EM(v)| = 2, then it follows from Corollary 4.5 that dG(v) ≤ 2. If dG(v) = 1, without

loss of generality, let uv ∈ E(G) and y ∈ NG(u), then uy ∈ EM(v), and hence |NG(u) − v| = 1,

and so G ∼= P3, and hence G ∼= B2(3). Suppose that dG(v) = 2. Without loss of generality, let

NG(v) = {u1, u2}. Suppose that n = 3. If u1u2 /∈ E(G), then G = D2(3). If u1u2 ∈ E(G), then the

subgraph induced by the vertices in {v, u1, u2} is a 3-cycle, and hence dG(v, u1) = dG(v, u2). From

Corollary 4.8, we have u1u2 /∈ EM(v), and hence G = D1(3).

Suppose that n ≥ 4. Since |EM(v)| = 2, it follows that {vu1, vu2} ⊆ EM(v), and hence e /∈ EM(v)

for any e ∈ E(G)− {vu1, vu2}.

Claim 4. For any i ≥ 2, y ∈ Ni(v) and x ∈ Ni−1(v), if yx ∈ E(G), then there exists a vertex

x1 ∈ Ni−1(v) with yx1 ∈ E(G).

Proof. Assume, to the contrary, that there exists no x1 ∈ Ni−1 such that yx1 /∈ E(G). Then dG(v, y) =

i but dG−yx(v, y) ≥ i+ 1, and so yx ∈ EM(v), and hence |EM(v)| ≥ 3, a contradiction.

If d = 2, then for any w ∈ V (G) − {v, u1, u2}, it follows from Claim 4 that if w ∈ N2(v) and

wu1 ∈ E(G), then wu2 ∈ E(G). For any ws, wt ∈ N2(v), we assume that wswt ∈ E(G). Since

dG(v,ws) = 2 and dG(v,wt) = 2, it follows from Corollary 4.8 that wswt /∈ EM(v), and hence

G = B1(n) or G = B2(n).

If d ≥ 3, then

V (Gd∗) = {v, u1, u2}∪{uij | 2 ≤ i ≤ d, 1 ≤ j ≤ td} = {v, u1, u2}∪{u21, . . . , u2t2}∪· · ·∪{ud1, . . . , udtd},

where v ∈ N0(v), u1, u2 ∈ N1(v), u21, . . . u2t2 ∈ N2(v), . . . ud1, . . . udtd ∈ Nd(v) and
∑i=d

i=2 ts = n− 3.

By Claim 4, if y ∈ Ni(v) and yx ∈ E(G), then there exists a vertex x1 ∈ Ni−1(v) and x1 6= x such

that yx1 ∈ E(G), and hence yx ∈ EAd
[vi, V (Bi−1)] with |EAd

[vi, V (Bi−1)]| ≥ 2, where vi ∈ V (Bi) for

2 ≤ i ≤ d.

For any uis, uit ∈ Bi(v) and uisuit ∈ E(Bi), since dG(v, uis) = i and dG(v, uit) = i, it follows from

Corollary 4.8 that uisuit /∈ EM(v), and hence Bi is a graph with order at least 2, and so

E(Ad) = {vu1, vu2} ∪





⋃

2≤i≤d

EAd
(Bi)



 ∪





⋃

2≤i≤d

EAd
[vi, V (Bi−1)]





with |EAd
[vi, V (Bi−1)]| ≥ 2, where vi ∈ V (Bi) for 2 ≤ i ≤ d. Therefore, G = Ad.

Theorem 4.12. Let G be a connected graph of order n. Then there exists a vertex v ∈ V (G) such

that |EM(v)| = n − 1 if and only if for any w ∈ V (G), there are no w1, w2 ∈ NG(w) such that

dG(w1, v) = dG(w2, v) = dG(w, v) − 1.

Proof. Suppose that |EM(v)| = n − 1. Since G is a connected graph of order n, it follows from

Theorem 4.6 that EM(v) forms a spanning tree of G.

Claim 5. For any vertex w ∈ V (G), there exists a vertex wi ∈ NdG(v,w)−1(v) with wiw ∈ EM(v).
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Proof. Assume, to the contrary, that there is no wi ∈ NdG(v,w)−1(v) with wiw ∈ EM(v). it follows

that EM(v) is disconnected, which contradicts to the fact that the subgraph induced by the edges in

EM(v) is connected.

By Claim 5, for any vertex w ∈ V (G), there exists a vertex wi ∈ NdG(v,w)−1(v) with wiw ∈ EM(v).

From Theorem 4.7, wi is the unique neighbor of w in NdG(v,w)−1(v), and hence for any w ∈ V (G),

there are no two vertices w1, w2 ∈ NG(w) such that dG(w1, v) = dG(w2, v) = dG(w, v) − 1.

Conversely, we suppose that for any w ∈ V (G), there are no w1, w2 ∈ NG(w) such that dG(w1, v) =

dG(w2, v) = dG(w, v) − 1. Since G is connected, it follows that there is only one vertex wi ∈

NdG(v,w)−1(v). From Theorem 4.7, we have wiw ∈ EM(v), and hence |EM(v)| = n− 1.

The existence of dem(G) is obvious, because V (G) is always a distance-edge-monitoring set. Thus,

the definition of dem(G) is meaningful. The arboricity arb(G) of a graph G is the smallest number of

sets into which E(G) can be partitioned and such that each set induces a forest. The clique number

ω(G) of G is the order of a largest clique in G.

Theorem 4.13. [8] For any graph G of order n and size m, we have dem(G) ≥ arb(G), and thus

dem(G) ≥ m
n−1 and dem(G) ≥ ω(G)

2 .

We next see that distance-edge-monitoring sets are relaxations of vertex covers. A vertex set M is

called a vertex cover of G if every edge of G has one of its endpoints in M . The minimum cardinality

of a vertex cover M in G is the vertex covering number of G, denoted by β(G).

Theorem 4.14. [8] In any graph G of order n, any vertex cover of G is a distance-edge-monitoring

set, and thus dem(G) ≤ β(G).

An independent set is a set of vertices of G such that no two vertices are adjacent. The largest

cardinality of an independent set is the independence number of G, denoted by α(G).

The following well-known theorem was introduced by Galláı in 1959.

Theorem 4.15 (Galláı Theorem). [6] In any graph G of order n, we have

β(G) + α(G) = n.

Corollary 4.16. For a graph G with order n, we have

dem(G) ≤ n− α(G).

Moreover, the bound is sharp.

Proof. From Theorem 4.15, we have β(G) = n−α(G). From Theorem 4.14, we have dem(G) ≤ β(G),

and hence dem(G) ≤ n−α(G), as desired. For a complete graph G = Kn or complete bipartite graph

G = Km,n, we have dem(G) = n− α(G).

Theorem 4.17. [8] For any graph G, we have β(G) ≤ dem(G ∨K1) ≤ β(G) + 1. Moreover, if G has

radius at least 4, then β(G) = dem(G ∨K1).

Similarly to the proof of Theorem 4.17, we can obtain the following result.
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Corollary 4.18. For any graph G and integer m, we have

β(G) ≤ dem(G ∨mK1) ≤ β(G) +m.

Moreover, the bounds are sharp.

Proof. For any graph G and integer m, we have dem(G ∨ mK1) ≤ β(G ∨ mK1) by Theorem 4.14.

Clearly, β(G∨mK1) ≤ β(G) +m, and hence dem(G∨mK1) ≤ β(G) +m. It suffices to show that an

edge monitoring set M of G ∨mK1 also is cover set of G. Without loss of generality, suppose that

V (mK1) = {w1, · · · , wm}. If there exists an edge uv ∈ E(G) with u, v /∈ M , then uv is monitored

by M ∩ V (G) in G ∨mK1. For any x ∈ M , we have dG(x, u) ∈ {1, 2}. Similarly, dG(x, v) ∈ {1, 2}.

By Corollary 4.8, we have dG(x, v) 6= dG(x, u). Without loss of generality, let dG(x, v) = 1 and

dG(x, u) = 2, and hence xwiv is a shortest path from x to v. From Corollary 4.8, uv is not monitored

by M , a contraction. Then x ∈ M or y ∈ M , and hence β(G) ≤ dem(G ∨mK1). By Theorem 4.17,

if G has radius at least 4 and m = 1, then β(G) = dem(G ∨ K1). If m = 1 and G = Kn, then

dem(Kn ∨K1) = β(Kn) + 1 = n, and hence the bound is sharp.

Proposition 4.2. For any r-regular graph G of order n ≥ 5, we have

rn

2n − 2
≤ dem(G) ≤ n− 1.

Moreover, the bounds are sharp.

Proof. For any r-regular graph graph G of order n, since e(G) = rn
2 , it follows from Theorem 4.13

that dem(G) ≥ m
n−1 , and hence dem(G) ≥ rn

2n−2 . From Theorem 4.14, we have dem(G) ≤ n− 1. From

Theorem 2.3, if r = 1 and n = 2, then dem(K2) = 1, and hence the lower bound is tight.

5 Graphs with distance-edge-monitoring number three

For three vertices u, v, w of a graph G and non-negative integers i, j, k, let Bi,j,k be the set of vertices

at distance i from u and distance j from v and distance k from w in G, respectively.

Lemma 5.1. Let G be a graph with u, v, w ∈ V (G), and i, j, k be three non-negative integers such that

Bi,j,k 6= ∅. If x ∈ Bi,j,k, xy ∈ E(G), and

T =
{

(i′, j′, k′) | i′ ∈ {i− 1, i, i + 1}, j′ ∈ {j − 1, j, j + 1}, k′ ∈ {k − 1, k, k + 1}
}

,

then y ∈ Bi′,j′,k′, where (i′, j′, k′) ∈ T .

Proof. Since x ∈ Bi,j,k and xy ∈ E(G), it follows that dG(x, u) = i, dG(x, v) = j and dG(x,w) = k.

We have the following claim.

Claim 6. dG(y, u) ∈ {i− 1, i, i + 1}.

Proof. Assume, to the contrary, that dG(y, u) ≤ i − 2 or dG(y, u) ≥ i + 2. If dG(y, u) ≤ i − 2, then

dG(x, u) ≤ dG(u, y) + dG(y, x) = dG(u, y) + 1 ≤ i− 1, which contradicts to the fact that dG(x, u) = i.

If dG(y, u) ≥ i+ 2, then i+ 2 ≤ dG(y, u) ≤ dG(u, x) + dG(x, y) = i+ 1, a contradiction.
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From Claim 6, we have dG(y, u) ∈ {i − 1, i, i + 1}. Similarly, dG(y, v) ∈ {j − 1, j, j + 1} and

dG(y,w) ∈ {k − 1, k, k + 1}.

Theorem 5.1. For a graph G, dem(G) = 3 if and only if there exists three vertices u, v, w in Gb such

that all of the following conditions (1)-(8) hold in Gb:

(1) For any i, j, k ∈ {0, 1, 2, . . . , diam(G)}, Bi,j,k is an independent set.

(2) For any i, j, k ∈ {0, 1, 2, . . . , diam(G)} and any xy, xy′ ∈ E(Gb), if y ∈ V (Bi′,j′,k′), then y′ 6∈

V (Bi′,j′,k′), where i′ ∈ {i− 1, i}, j′ ∈ {j − 1, j}, and k′ ∈ {k − 1, k}.

(3) For any i, j, k ∈ {0, 1, 2, . . . , diam(G)} and any xy, xy′ ∈ E(Bi,j,k), if y ∈ Bi1,j1,k1, then y′ /∈

Bi2,j2,k2, where (i1, j1, k1) and (i2, j2, k2) satisfy all the following conditions:

(3.1) if (i1, j1, k1) = (i, j − 1, k), then (i2, j2, k2) /∈ {(i2, j − 1, k2) | i2 ∈ {i− 1, i, i+1}, k2 ∈

{k − 1, k, k + 1}}.

(3.2) if (i1, j1, k1) = (i− 1, j − 1, k − 1), then (i2, j2, k2) /∈ {(i2, j2, k2) | i2 ∈ {i − 1, i}, j2 ∈

{j − 1, j}, k2 ∈ {k − 1, k}}.

(3.3) if (i1, j1, k1) = (i− 1, j + 1, k − 1), then (i2, j2, k2) /∈ {(i− 1, j, k − 1), (i− 1, j, k), (i −

1, j, k − 1), (i − 1, j, k − 1), (i, j, k − 1)}.

(3.4) if (i1, j1, k1) = (i, j − 1, k − 1), then (i2, j2, k2) /∈ {(i − 1, j − 1, k − 1), (i, j − 1, k −

1), (i, j, k − 1), (i, j − 1, k), (i + 1, j − 1, k − 1)}.

(3.5) if (i1, j1, k1) = (i, j − 1, k + 1), then (i2, j2, k2) /∈ {(i, j − 1, k), (i, j − 1, k)}.

(4) For any i, j, k ∈ {0, 1, 2, . . . , diam(G)}, there is no 4-path satisfying the following conditions.

(4.1) z1xyz2 is the 4-path with x ∈ Bi,j,k, and y ∈ Bi−1,j+1,k+1, z1 ∈ Bi−1,a,b, and z2 ∈

Bc,j,k, where a ∈ {j − 1, j + 1}, b ∈ {k − 1, k + 1}, c ∈ {i− 2, i}.

(4.2) 4-vertex path z1xyz2 with z1 ∈ Bi−1,a,k−1, z2 ∈ Bc,j,b, x ∈ Bi,j,k, and y ∈ Bi−1,j+1,k+1,

where a ∈ {j − 1, j + 1}, b ∈ {k − 2, k}, c ∈ {i− 2, i}.

(4.3) 4-vertex path z2xyz3 with x = Bi,j,k, y = Bi,j−1,k+1 and

z2 ∈Bi−1,j−1,k−1 ∪Bi−1,j−1,k ∪Bi−1,j−1,k+1 ∪Bi,j−1,k−1 ∪Bi,j−1,k+1 ∪Bi+1,j−1,k−1 ∪Bi+1,j−1,k

∪Bi+1,j−1,k+1,

z3 ∈Bi−1,j−2,k ∪Bi−1,j−1,k ∪Bi−1,j,k ∪Bi,j−2,k ∪Bi,j,k ∪Bi+1,j−2,k

∪Bi+1,j−1,k ∪Bi+1,j,k.

(5) For any i, j, k ∈ {0, 1, 2, . . . , diam(G)} and any x ∈ Bi,j,k, x has at most two neighbors in two of

Bi−1,j−1,k−1, Bi+1,j−1,k−1(u, v, w), Bi−1,j+1,k′ , where k′ ∈ {k − 1, k, k + 1}.

(6) For any i, j, k ∈ {0, 1, 2, . . . , diam(G)} and any x ∈ Bi,j,k, there is no 4-star K1,4 with edge set

E(K1,4) = {yx, z1x, z2x, z3x} such that y ∈ Bi−1,j−1,k−1,

z1 ∈Bi−1,j−1,k+1 ∪Bi−1,j,k+1 ∪Bi−1,j+1,k−1 ∪Bi−1,j+1,k ∪Bi−1,j+1,k+1,

z2 ∈Bi−1,j−1,k+1 ∪Bi,j−1,k+1 ∪Bi+1,j−1,k−1 ∪Bi+1,j−1,k ∪Bi+1,j−1,k+1,

z3 ∈Bi−1,j+1,k−1 ∪Bi,j+1,k−1 ∪Bi+1,j−1,k−1 ∪Bi+1,j,k−1 ∪Bi+1,j+1,k−1,
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(7) There is a no P+
4 satisfying the following conditions:

(7.1) V (P+
4 ) = {z1, z2, x, y, z3} and E(P+

4 ) = {z1x, z3x, xy, yz2} such that x = Bi,j,k, y =

Bi−1,j+1,k−1, and

z1 ∈Bi−1,j−1,k−1 ∪Bi−1,j−1,k ∪Bi−1,j−1,k+1 ∪Bi−1,j,k+1 ∪Bi−1,j+1,k−1 ∪Bi−1,j+1,k ∪Bi−1,j+1,k+1,

z2 ∈Bi−2,j,k−2 ∪Bi−2,j,k−1 ∪Bi−2,j,k ∪Bi−1,j,k−2 ∪Bi−1,j,k ∪Bi,j,k−2 ∪Bi,j,k−1 ∪Bi,j,k,

z3 ∈Bi−1,j−1,k−1 ∪Bi−1,j+1,k−1 ∪Bi,j−1,k−1 ∪Bi,j+1,k−1 ∪Bi+1,j−1,k−1 ∪Bi+1,j,k−1 ∪Bi+1,j+1,k−1.

(7.2) V (P+
4 ) = {z2, z3, x, y, z1} and E(P+

4 ) = {z2x, z3x, xy, yz1} such that x = Bi,j,k, y =

Bi+1,j−1,k−1, and

z1 ∈Bi,j−2,k−2 ∪Bi,j−2,k−1 ∪Bi,j−2,k ∪Bi,j−1,k−2 ∪Bi,j−1,k ∪Bi,j,k−2 ∪Bi,j,k−1,

z2 ∈Bi−1,j−1,k−1 ∪Bi−1,j−1,k ∪Bi−1,j−1,k+1 ∪Bi,j−1,k−1 ∪Bi,j−1,k ∪Bi+1,j−1,k+1 ∪Bi+1,j−1,k−1

∪Bi+1,j−1,k ∪Bi+1,j−1,k+1,

z3 ∈Bi−1,j−1,k−1 ∪Bi−1,j,k−1 ∪Bi−2,j+1,k−1 ∪Bi,j−1,k−1 ∪Bi,j,k−1 ∪Bi,j+1,k−1 ∪Bi+1,j−1,k−1

∪Bi+1,j,k−1 ∪Bi+1,j+1,k−1.

(8) There is no 3-star K1,3 with edge set E(K1,3) = {xy, xz1, xz2} such that x = Bi,j,k, y = Bi,j−1,k−1,

and

z2 ∈Bi−1,j−1,k ∪Bi−1,j−1,k+1 ∪Bi,j−1,k+1 ∪Bi+1,j−1,k ∪Bi+1,j−1,k+1,

z3 ∈Bi−1,j,k−1 ∪Bi−1,j+1,k−1 ∪Bi,j+1,k−1 ∪Bi+1,j,k−1 ∪Bi+1,j+1,k−1,

Proof. Assume that dem(G) = 3. Then dem(Gb) = 3. Let {u, v, w} be a distance-edgemonitoring set

of Gb.

Claim 1. Bi,j,k is an independent set.

Proof. Assume, to the contrary, that Bi,j,k is not an independent set. Let x, y ∈ Bi,j,k(u, v, w). Then

dG(x, u) = dG(y, u) = i, dG(x, v) = dG(y, v) = j, and dG(x,w) = dG(y,w) = k, and hence xy can not

be monitored by u, v, w by Theorem 4.7, a contradiction.

From Claim 1, (1) holds.

For any i, j, k ∈ {0, 1, 2, . . . , diam(G)} and any x ∈ Bi,j,k with xy, xy′ ∈ E(Gb), we assume that

y ∈ Bi′,j′,k′ and (i′, j′, k′) 6= (i, j, k). Then we have the following claim.

Claim 2. y′ 6∈ Bi′,j′,k′ for i′ ∈ {i− 1, i}, j′ ∈ {j − 1, j}, and k′ ∈ {k − 1, k}.

Proof. Assume, to the contrary, that y′ ∈ Bi′,j′,k′. We first suppose that y′ ∈ Bi−1,j,k (The case that

y, y′ ∈ Bi,j−1,k or Bi,j,k−1 is symmetric). Then dG(y, u) = dG(y
′, u) = i−1. From Theorem 4.7, xy can

not be monitored by u. Since x ∈ Bi,j,k(u, v, w) and y ∈ Bi−1,j,k, it follows that dG(y, v) = dG(x, v) =

j. From Theorem 4.7, xy can not be monitored by v. Similarly, since dG(y,w) = dG(x,w) = k, it

follows that xy can not be monitored by w by Theorem 4.7, a contradiction.
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Next, we suppose that y, y′ ∈ Bi−1,j−1,k (The case that y, y′ ∈ Bi,j−1,k−1 or Bi−1,j,k−1 is sym-

metric). Since dG(y, u) = dG(y
′, u) = i − 1, it follows from Theorem 4.7 that xy can not be mon-

itored by u. Similarly, dG(y, v) = dG(y
′, v) = j − 1, xy can not be monitored by v. in addition,

dG(y,w) = dG(x,w) = k, and hence xy is not monitored by w, according to Theorem 4.7. So, xy is

not monitored by u, v, w, a contradiction.

Finally, if y, y′ ∈ Bi−1,j−1,k−1, it follows that dG(y, u) = dG(y
′, u) = i − 1, dG(y, v) = dG(y

′, v) =

j − 1, similarly, dG(y,w) = dG(y
′, w) = k − 1, by Theorem 4.7, xy is not monitored by u, v, w, a

contradiction.

From Claim 2, (2) holds.

For any i, j, k ∈ {0, 1, 2, . . . , diam(G)} and any xy, xy′ ∈ E(Gb), we suppose that y ∈ Bi,j−1,k.

Then we have the following claim.

Claim 3. y′ /∈ Bi2,j2,k2 for (i2, j2, k2) ∈ {(i2, j − 1, k2) | i2 ∈ {i− 1, i, i + 1}, k2 ∈ {k − 1, k, k + 1}}.

Proof. Assume, to the contrary, that y′ ∈ Bi2,j2,k2 . Since x ∈ Bi,j,k and y, y′ are both neighbors

of x and y ∈ Bi,j−1,k, it follows that dG(y, u) = dG(x, u) = i and dG(y,w) = dG(x,w) = k. From

Theorem 4.7, xy is not monitored by u and w. Since y′ ∈ Bi2,j−1,k2 and y ∈ Bi,j−1,k, it follows that

dG(y
′, v) = dG(y, v) = j − 1, and hence xy is not monitored by v, a contradiction.

By Claim 3, (3.1) holds. By the same method, we can prove that (3.2)-(3.6) all hold.

Claim 4. For any i, j, k ∈ {0, 1, 2, . . . , diam(G)}, there is no 4-vertex path z1xyz2 such that x ∈ Bi,j,k,

y ∈ Bi−1,j+1,k+1, z1 ∈ Bi−1,a,b, and z2 ∈ Bc,j,k, where a ∈ {j−1, j+1}, b ∈ {k−1, k+1}, c ∈ {i−2, i}.

Proof. Assume, to the contrary, that there is a 4-path satisfying the conditions of this claim. Then

dG(y, u) = dG(z1, u) = i − 1, dG(x, v) = dG(z2, v) = j and dG(x,w) = dG(z2, w) = k, and from

Theorem 4.7, xy can not be monitored by u, v, w, respectively, a contradiction.

By Claim 4, (4.1) holds. Similarly, the conditions (4.2) and (4.3) can be easily proved.

Claim 5. For any i, j, k ∈ {0, 1, 2, . . . , diam(G)} and any x ∈ Bi,j,k, x has at most two neighbors in

two of Bi−1,j−1,k−1, Bi+1,j−1,k−1(u, v, w), Bi−1,j+1,k′ , where k′ ∈ {k − 1, k, k + 1}.

Proof. Assume, to the contrary, that x ∈ Bi,j,k has three neighbors y, y′, y′′ such that y ∈ Bi−1,j−1,k−1,

y′ ∈ Bi+1,j−1,k−1(u, v, w), y
′′ ∈ Bi−1,j′,k′ where k′ ∈ {k − 1, k, k + 1} and j′ ∈ {j − 1, j, j + 1}. Since

y ∈ Bi−1,j−1,k−1 and y′ ∈ Bi+1,j−1,k−1, it follows that dG(y, v) = dG(y
′, v) = j − 1 and dG(y,w) =

dG(y
′, w) = k − 1. From Theorem 4.7, xy is not monitored by v,w. Since y ∈ Bi−1,j−1,k−1 and

y′′ ∈ Bi−1,j′,k′ , it follows that dG(y, u) = dG(y
′′, u) = i− 1, and hence xy is not monitored by u, and

so xy is not monitored by u, v, w, a contradiction.

From Claim 5, (5) holds.
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Claim 6. For any i, j, k ∈ {0, 1, 2, . . . , diam(G)} and any x ∈ Bi,j,k, there is no 4-star K1,4 with edge

set E(K1,4) = {yx, z1x, z2x, z3x} such that y ∈ Bi−1,j−1,k−1,

z1 ∈Bi−1,j−1,k+1 ∪Bi−1,j,k+1 ∪Bi−1,j+1,k−1 ∪Bi−1,j+1,k ∪Bi−1,j+1,k+1,

z2 ∈Bi−1,j−1,k+1 ∪Bi,j−1,k+1 ∪Bi+1,j−1,k−1 ∪Bi+1,j−1,k ∪Bi+1,j−1,k+1,

z3 ∈Bi−1,j+1,k−1 ∪Bi,j+1,k−1 ∪Bi+1,j−1,k−1 ∪Bi+1,j,k−1 ∪Bi+1,j+1,k−1,

Proof. Assume, to the contrary, that x ∈ Bi,j,k has four neighbors y, z1, z2, z3 satisfying the conditions

of this claim. Then dG(y, u) = dG(z1, u) = i− 1. From Theorem 4.7, xy can not be monitored by u.

Similarly, since dG(y, v) = dG(z2, v) = j−1, it follows from Theorem 4.7 that xy can not be monitored

by v. Similarly, since dG(y,w) = dG(z3, w) = k − 1, it follows that xy can not be monitored by w, a

contradiction.

From Claim 6, (6) holds.

Claim 7. There is no P+
4 with vertex set {z1, z2, x, y, z3} and edge set {z1x, z2x, xy, yz3} such that

x ∈ Bi,j,k, y ∈ Bi−1,j+1,k−1, and

z1 ∈Bi−1,j−1,k−1 ∪Bi−1,j−1,k ∪Bi−1,j−1,k+1 ∪Bi−1,j,k+1 ∪Bi−1,j+1,k−1 ∪Bi−1,j+1,k ∪Bi−1,j+1,k+1,

z2 ∈Bi−2,j,k−2 ∪Bi−2,j,k−1 ∪Bi−2,j,k ∪Bi−1,j,k−2 ∪Bi−1,j,k ∪Bi−1,j,k−1 ∪Bi,j,k−2 ∪Bi,j,k ∪Bi,j,k−1

z3 ∈Bi−1,j−1,k−1 ∪Bi−1,j+1,k−1 ∪Bi,j−1,k−1 ∪Bi,j,k−1 ∪Bi,j+1,k−1 ∪Bi+1,j−1,k−1 ∪Bi+1,j,k−1

∪Bi+1,j+1,k−1.

Proof. Assume, to the contrary, that there is P+
4 satisfying the conditions of this claim. Since

dG(y, u) = dG(z1, u) = i − 1, dG(x, v) = dG(z2, v) = j and dG(y,w) = dG(z3, w) = k − 1, it fol-

lows from Theorem 4.7 that xy can not be monitored by u, v, w, respectively, a contradiction.

From Claim 7, (7.1) holds. Similarly, we can prove that (7.2) holds.

Claim 8. There is no 3-star K1,3 with vertex set {z1, z2, x, y} and edge set {xy, xz1, xz2} such that

x = Bi,j,k, y = Bi,j−1,k−1, and

z1 ∈Bi−1,j−1,k ∪Bi−1,j−1,k+1 ∪Bi,j−1,k ∪Bi,j−1,k+1 ∪Bi+1,j−1,k ∪Bi+1,j−1,k ∪Bi+1,j−1,k+1,

z2 ∈Bi−1,j−1,k−1 ∪Bi−1,j,k−1 ∪Bi−1,j+1,k−1 ∪Bi,j,k−1 ∪Bi,j+1,k−1 ∪Bi+1,j,k−1 ∪Bi+1,j+1,k−1.

Proof. Assume, to the contrary, that there is a K1,3 such that V (K1,3) = {z1, z2, x, y} and E(K1,3) =

{xy, xz1, xz2}. Since dG(x, u) = dG(y, u) = i, dG(y, v) = dG(z1, v) = j− 1 and dG(y,w) = dG(z2, w) =

k − 1, it follows from Theorem 4.7 that xy is not monitored by u, v, w, a contradiction.

From Claim 8, (8) holds.

Conversely, we assume that there exists three vertices u, v, w in Gb such that all of the conditions

(1)-(8) holds in Gb. It suffices to prove that {u, v, w} is a distance-edge-monitoring set in Gb, and

hence dem(G) = 3. Let xy be any edge of G with x ∈ Bi,j,k. Since (1) holds, it follows that y /∈ Bi,j,k.

Then we have the following cases:

Case 1. y ∈ Bi,j−1,k or y ∈ Bi−1,j,k or y ∈ Bi,j,k−1 or y ∈ Bi,j+1,k or y ∈ Bi,j,k+1 or y ∈ Bi+1,j,k.
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For x ∈ Bi,j,k and y ∈ Bi,j−1,k, we assume that xy can not be monitored by {u, v, w}. Then

there is a path Pj of length j from x to v such that xy /∈ E(Pj). Let z2 be the neighbor of x in

Pj . From Lemma 5.1, we have z2 ∈ Bi′,j−1,k′, where i′ ∈ {i − 1, i, i + 1} and k′ ∈ {k − 1, k, k + 1},

which contradicts to the condition (3.1). Suppose that x ∈ Bi,j,k and y ∈ Bi,j−1,k. Then xy can be

monitored by {u, v, w}. Similarly, the edges xy can be also monitored by {u, v, w}, where y ∈ Bi−1,j,k

or y ∈ Bi,j−1,k or y ∈ Bi,j,k−1 or y ∈ Bi,j+1,k+1 or y ∈ Bi+1,j,k+1 or y ∈ Bi+1,j+1,k.

Case 2. y ∈ Bi−1,j−1,k−1 or y ∈ Bi+1,j+1,k+1.

For x ∈ Bi,j,k and y ∈ Bi−1,j−1,k−1, we assume that xy is not monitored by {u, v, w}. Then

there exists a path Pi, Pj , Pk of length i, j, k from x to u, v, w such that xy /∈ E(Pi) and xy /∈

E(Pj) and xy /∈ E(Pk), respectively. Let z1, z2, z3 be the neighbors of x in Pi, Pj , Pk, respectively.

Then z1 ∈ Bi−1,j′,k′ and z2 ∈ Bi′′,j−1,k′′ and z3 ∈ Bi′′′,j′′′,k−1. where i′′, i′′′ ∈ {i − 1, i, i + 1},

j′, j′′′ ∈ {j − 1, j, j + 1} and k′, k′′ ∈ {k − 1, k, k + 1}. Since x ∈ Bi,j,k and y ∈ Bi−1,j−1,k−1,

it follows from the conditions (2) and (3.2) that for any zi ∈ N(x) (1 ≤ i ≤ 3), it follows that

z1 /∈ {Bi−1,j−1,k−1, Bi−1,j−1,k, Bi−1,j,k−1, Bi−1,j,k}, z2 /∈ { Bi−1,j−1,k−1, Bi−1,j−1,k, Bi,j−1,k−1, Bi,j−1,k

}, z3 /∈ { Bi−1,j−1,k−1, Bi−1,j,k−1, Bi,j−1,k−1, Bi,j,k−1 }, and hence there is a 4-star with edge set

{yx, z1x, z2x, z3x} such that y ∈ Bi−1,j−1,k−1,

z1 ∈Bi−1,j−1,k+1 ∪Bi−1,j,k+1 ∪Bi−1,j+1,k−1 ∪Bi−1,j+1,k ∪Bi−1,j+1,k+1,

z2 ∈Bi−1,j−1,k+1 ∪Bi,j−1,k+1 ∪Bi+1,j−1,k−1 ∪Bi+1,j−1,k ∪Bi+1,j−1,k+1,

z3 ∈Bi−1,j+1,k−1 ∪Bi,j+1,k−1 ∪Bi+1,j−1,k−1 ∪Bi+1,j,k−1 ∪Bi+1,j+1,k−1,

which contradicting to the condition (6).

So, xy can be monitored by {u, v, w}. Similarly, the edges xy can be also monitored by {u, v, w},

where y ∈ Bi+1,j+1,k+1.

Case 3. y ∈ Bi−1,j+1,k−1 or y ∈ Bi+1,j−1,k−1 or y ∈ Bi−1,j−1,k+1 or y ∈ Bi+1,j−1,k+1 or y ∈

Bi−1,j+1,k+1 or y ∈ Bi+1,j+1,k−1.

For x ∈ Bi,j,k and y ∈ Bi−1,j+1,k−1, we assume that xy is not monitored by {u, v, w}. Then there

exists a path Pi of length i from x to u such that xy /∈ E(Pi), and there exist two paths Pj+1, Pk of

length j+1, k from y to v,w such that xy /∈ E(Pj+1)∪E(Pk), respectively. Let z1, z3 be the neighbors

of x on the Pi, Pk, respectively. In addition, let z2 be the neighbors of y on the Pj+1.

Thus, there is a 5-vertex graph P+
4 with z1 ∈ Bi−1,a,b, z2 ∈ Ba′,j,b′ , x ∈ Bi,j,k, y ∈ Bi−1,j+1,k+1,

z3 ∈ Ba′′,b′′,k−1, a, b
′′ ∈ {j − 1, j, j +1}, b ∈ {k− 1, k, k+1}, a′ ∈ {i− 2, i− 1, i}, b′ ∈ {k− 2, k− 1, k},

a′′ ∈ {i− 1, i, i + 1}.

Since y ∈ Bi−1,j+1,k−1, it follows from the condition (2) and (3.3) that for any zi ∈ N(x) (1 ≤ i ≤

3), we have z1 /∈ {Bi−1,j,k−1, Bi−1,j,k}, z2 /∈ {Bi−1,j,k−1}, z3 /∈ {Bi−1,j,k−1, Bi,j,k−1}. Furthermore, we

have

z1 ∈Bi−1,j−1,k−1 ∪Bi−1,j−1,k ∪Bi−1,j−1,k+1 ∪Bi−1,j,k+1 ∪Bi−1,j+1,k−1 ∪Bi−1,j+1,k ∪Bi−1,j+1,k+1,

z2 ∈Bi−2,j,k−2 ∪Bi−2,j,k−1 ∪Bi−2,j,k ∪Bi−1,j,k−2 ∪Bi−1,j,k ∪Bi,j,k−2 ∪Bi,j,k−1 ∪Bi,j,k.

z3 ∈Bi−1,j−1,k−1 ∪Bi−1,j+1,k−1 ∪Bi,j−1,k−1 ∪Bi,j+1,k−1 ∪Bi+1,j−1,k−1 ∪Bi+1,j,k−1

∪Bi+1,j+1,k−1.

18



which contradicts to the condition (7.1).

Case 4. y ∈ Bi,j−1,k−1 or y ∈ Bi−1,j−1,k or y ∈ Bi−1,j,k−1 or y ∈ Bi,j+1,k+1 or y ∈ Bi+1,j+1,k or

y ∈ Bi+1,j,k+1.

For x ∈ Bi,j,k and y ∈ Bi−1,j+1,k−1, we assume that xy is not monitored by {u, v, w}. Then there is

a path of length j from x to v, say Pj , such that xy /∈ E(Pj). Similarly, there is a path of length k, say

Pk, from y to w such that xy /∈ E(Pk). Let z2, z3 be the neighbors of x on the Pj , Pk, respectively. Then

there is a 3-star K1,3 with edge set {xy, xz2, xz3} such that x ∈ Bi,j,k, y ∈ Bi,j−1,k−1, z2 ∈ Ba,j−1,c,

z3 ∈ Ba′,b′,k−1, where a, a
′ ∈ {i−1, i, i+1}, c ∈ {k−1, k, k+1}, b′ ∈ {j−1, j, j+1}. If y ∈ Bi,j−1,k−1,

then for any zi ∈ N(x) (2 ≤ i ≤ 3), it follows from the conditions (2) and (3.4), that

z2 /∈Bi−1,j−1,k−1 ∪Bi,j−1,k−1 ∪Bi,j−1,k ∪Bi+1,j−1,k−1,

z3 /∈Bi−1,j−1,k−1 ∪Bi,j−1,k−1 ∪Bi,j,k−1 ∪Bi+1,j−1,k−1,

and hence

x ∈Bi,j,k, y ∈ Bi,j−1,k−1,

z2 ∈Bi−1,j−1,k ∪Bi−1,j−1,k+1 ∪Bi,j−1,k+1 ∪Bi+1,j−1,k ∪Bi+1,j−1,k+1,

z3 ∈Bi−1,j,k−1 ∪Bi−1,j+1,k−1 ∪Bi,j+1,k−1 ∪Bi+1,j,k−1 ∪Bi+1,j+1,k−1,

which contradicts to the condition (8).

Similarly, if x ∈ Bi,j,k and y ∈ Bi,j−1,k−1, then xy can be monitored by {u, v, w}. By the same

method, we can prove that the edges xy can be also monitored by {u, v, w}, where y ∈ Bi−1,j−1,k or

y ∈ Bi−1,j,k−1 or y ∈ Bi,j+1,k+1 or y ∈ Bi+1,j+1,k or y ∈ Bi+1,j,k+1.

Case 5. y ∈ Bi,j−1,k+1 or y ∈ Bi−1,j,k+1 or y ∈ Bi,j+1,k−1 or y ∈ Bi+1,j−1,k or y ∈ Bi+1,j,k−1 or

y ∈ Bi−1,j+1,k.

For x ∈ Bi,j,k and y ∈ Bi,j−1,k+1, we assume that xy is not monitored by {u, v, w}. Then there is a

path of length k+1 from y to w, say Pk+1, such that xy /∈ E(Pk+1), and there is a path of length j from

x to v, say Pj , such that xy /∈ E(Pj). Let z3, z2 be the neighbors of y, x on the Pk+1, Pj , respectively.

Thus, there is a 4-path P4 with V (P4) = {z2, x, y, z3} and E(P4) = {z2x, xy, yz3} such that x ∈ Bi,j,k,

y ∈ Bi,j−1,k+1, z2 ∈ Ba,j−1,b, and z3 ∈ Ba′,b′,k, where a, a′ ∈ {i − 1, i, i + 1}, b ∈ {k − 1, k, k + 1},

b′ ∈ {j − 2, j − 1, j}.

From the conditions (2) and (3.5), we have y ∈ Bi,j−1,k+1, and for any zi ∈ N(x) (2 ≤ i ≤ 3), we

have z3 /∈ {Bi,j−1,k, }, z2 /∈ {Bi,j−1,k}, and hence x = Bi,j,k, y = Bi,j−1,k+1,

z2 ∈Bi−1,j−1,k−1 ∪Bi−1,j−1,k ∪Bi−1,j−1,k+1 ∪Bi,j−1,k−1 ∪Bi,j−1,k+1 ∪Bi+1,j−1,k−1 ∪Bi+1,j−1,k

∪Bi+1,j−1,k+1,

z3 ∈Bi−1,j−2,k ∪Bi−1,j−1,k ∪Bi−1,j,k ∪Bi,j−2,k ∪Bi,j,k ∪Bi+1,j−2,k

∪Bi+1,j−1,k ∪Bi+1,j,k.

which contradicts the condition (4.3). If x ∈ Bi,j,k and y ∈ Bi,j−1,k+1, then xy can be monitored

by {u, v, w}. Similarly, the edges xy can be also monitored by {u, v, w}, where y ∈ Bi−1,j,k+1 or

y ∈ Bi,j+1,k−1 or y ∈ Bi+1,j−1,k or y ∈ Bi+1,j,k−1 or y ∈ Bi−1,j+1,k.

19



If x ∈ Bi,j,k, from it follows Lemma 5.1, that y ∈ T , where

T =
{

Bi′,j′,k′ | i
′ ∈ {i− 1, i, i + 1}, j′ ∈ {j − 1, j, j + 1}, k′ ∈ {k − 1, k, k + 1}

}

.

From the above cases, the vertex set Bi,j,k(u, v, w) has the arbitrariness. Then the xy in E(Gb)

can be monitored by {u, v, w}, and hence {u, v, w} is a distance-edge-monitoring set in Gb, and so

dem(G) = 3.

6 Conclusion

In this paper, we have continued the study of distance-edge-monitoring sets, a new graph parameter

recently introduced by Foucaud et al. [8], which is useful in the area of network monitoring. In

particular, we have given upper and lower bounds on the parameters P (M,e), EM(x), dem(G),

respectively, and extremal graphs attaining the bounds were characterized. We also characterized the

graphs with dem(G) = 3.

For future work, it would be interesting to study distance-edge monitoring sets in further standard

graph classes, including pyramids, Sierpińki-type graphs, circulant graphs, graph products, or line

graphs. In addition, characterizing the graphs with dem(G) = n − 2 would be of interest, as well as

clarifying further the relation of the parameter dem(G) to other standard graph parameters, such as

arboricity, vertex cover number and feedback edge set number.
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