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COMMUTING EULERIAN OPERATORS

SHI-MEI MA, HAO QI, JEAN YEH, AND YEONG-NAN YEH

Abstract. Motivated by the work of Visontai and Dey-Sivasubramanian on the gamma-

positivity of some polynomials, we find the commutative property of a pair of Eulerian operators.

As an application, we show the bi-gamma-positivity of the descent polynomials on permutations

of the multiset {1a1 , 2a2 , . . . , nan}, where 0 6 ai 6 2. Therefore, these descent polynomials are

all alternatingly increasing, and so they are unimodal with modes in the middle.
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1. Introduction

Let f(x) =
∑n

i=0 fix
i be a polynomial with nonnegative coefficients. We say that f(x) is

unimodal if f0 6 f1 6 · · · 6 fk > fk+1 > · · · > fn for some k, where the index k is called

the mode of f(x). It is well known that if f(x) with only nonpositive real zeros, then f(x) is

unimodal (see [6, p. 419] for instance). If f(x) is symmetric with the center of symmetry ⌊n/2⌋,

i.e., fi = fn−i for all indices 0 6 i 6 n, then it can be expanded as

f(x) =

⌊n/2⌋∑

k=0

γkx
k(1 + x)n−2k.

The polynomial f(x) is γ-positive if γk > 0 for all 0 6 k 6 ⌊n/2⌋. Clearly, γ-positivity implies

symmetry and unimodality. Let f(x, y) =
∑n

i=0 fix
iyn−i be a homogeneous bivariate polyno-

mial. We say that f(x, y) is bivariate γ-positive with the center of symmetry n
2 if f(x, y) can be

written as follows:

f(x, y) =

⌊n/2⌋∑

k=0

γk(xy)
k(x+ y)n−2k.

There has been considerable recent interest in the study of the γ-positivity of polynomials,

see [1, 4] for details. In particular, Brändén [4, Remark 7.3.1] noted that if f(x) is symmetric

and has only real zeros, then it is γ-positive.

Let f(x) =
∑n

i=0 fix
i, where fn 6= 0. Following [2, 5], there is a unique symmetric decompo-

sition f(x) = a(x) + xb(x), where

a(x) =
f(x)− xn+1f(1/x)

1− x
, b(x) =

xnf(1/x)− f(x)

1− x
.

According to [15, Definition 8], the polynomial f(x) is said to be bi-γ-positive if both a(x) and

b(x) are γ-positive. Thus γ-positivity is a special case of bi-γ-positivity. Following [17, Definition

2.9], the polynomial f(x) is alternatingly increasing if

f0 6 fn 6 f1 6 fn−1 6 · · · 6 f⌊(n+1)/2⌋.
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Brändén and Solus [5] pointed out that f(x) is alternatingly increasing if and only if the pair

of polynomials in its symmetric decomposition are both unimodal and have only nonnegative

coefficients. Therefore, bi-γ-positivity is stronger than alternatingly increasing property. The

alternatingly increasing property first appeared in the work of Beck and Stapledon [2]. Recently,

Beck-Jochemko-McCullough [3], Brändén-Solus [5] and Solus [19] studied the alternatingly in-

creasing property of several h∗-polynomials as well as some refined Eulerian polynomials.

A multipermutation of a multiset is a sequence of its elements. Throughout this paper,

we always let m = (m1,m2, . . . ,mn) ∈ P
n. Denote by Sm the set of all multipermuta-

tions of the multiset {1m1 , 2m2 , . . . , nmn}, where i appears mi times. Set m =
∑n

i=1 mi.

For π = π1π2 . . . πm ∈ Sm, we always assume that π0 = πm+1 = 0 (except where explicitly

stated). If i ∈ {0, 1, 2, . . . ,m}, then πi is called an ascent (resp. descent, plateau) if πi < πi+1

(resp. πi > πi+1, πi = πi+1). Let asc (π) (resp. des (π), plat (π)) be the number of ascents

(resp. descents, plateaux) of π. The multiset Eulerian polynomials Am(x) are defined by

Am(x) =
∑

π∈Sm

xasc (π) =
∑

π∈Sm

xdes (π).

A classical result of MacMahon [16, Vol 2, Chapter IV, p. 211] says that

Am(x)

(1− x)1+m
=

∑

k>0

(
k +m1

m1

)(
k +m2

m2

)
· · ·

(
k +mn

mn

)
xk+1. (1)

Let Sn be the set of all permutations of {1, 2, . . . , n}. As usual, we write π = π1π2 · · · πn ∈ Sn.

Denote by Aπ(m)(x) the descent polynomial on multipermutations of {πm1

1 , πm2

2 , . . . , πmn

n }. It

follows from (1) that

Am(x) = Aπ(m)(x). (2)

When m = (1, 1, . . . , 1), the polynomial Am(x) is reduced to the classical Eulerian polynomial

An(x). In other words,

An(x) =
∑

π∈Sn

xasc (π) =
∑

π∈Sn

xdes (π).

Simion [18, Section 2] found that Am(x) is real-rootedness for any m. When m = (p, p, . . . , p),

Carlitz-Hoggatt [7] showed that Am(x) is symmetric, where p is a given positive integer. By [4,

Remark 7.3.1], an immediate consequence is the following well known result.

Proposition 1. For any m, the multiset Eulerian polynomials Am(x) are all unimodal. When

m = (p, p, . . . , p), the polynomial Am(x) is γ-positive, and so its mode is in the middle.

Recently, there has been much work on the descent polynomials of permutations over multi-

sets, see [11, 12, 13, 14, 21] for instance. In particular, Lin-Xu-Zhao [13] found a combinatorial

interpretation for the γ-coefficients of Am(x) via the model of weakly increasing trees, where

m = (p, p, . . . , p). Motivated by Proposition 1, it is natural to consider the following problem.

Problem 2. For any m, could we characterize the location of the mode of Am(x)?

A bivariate version of the Eulerian polynomial over the symmetric group is given as follows:

An(x, y) =
∑

π∈Sn

xasc (π)ydes (π).
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In particular, An(x, 1) = An(1, x) = An(x). Carlitz and Scoville [8] found that

An+1(x, y) = xy

(
∂

∂x
+

∂

∂y

)
An(x, y), A1(x, y) = xy.

Using the following Eulerian operator

T = xy

(
∂

∂x
+

∂

∂y

)
, (3)

Foata and Schützenberger [10] discovered that

An(x, y) =

⌊(n+1)/2⌋∑

k=1

γ(n, k)(xy)k(x+ y)n+1−2k,

where γ(n, k) are all nonnegative integers. Applying the same idea, Visontai [20] investigated the

joint generating polynomial of descents and inverse descents, Dey-Sivasubramanian [9] studied

the descent polynomials on permutations in the alternating group. As an illustration, we now

recall a result on the Eulerian operator T , which is a slightly variant of [9, Lemma 5].

Lemma 3. Let f(x, y) be a bivariate γ-positive polynomial with the center of symmetry n
2 . Then

T (f(x, y)) is a bivariate γ-positive polynomial with the center of symmetry n+1
2 .

Motivated by the work of Visontai [20] and Dey-Sivasubramanian [9], in this paper we intro-

duce the following Eulerian operator

G = xy2
(

∂

∂x
+

∂

∂y

)
+

x2y2

2

(
∂2

∂x2
+

∂2

∂y2

)
+ x2y2

∂2

∂x∂y
. (4)

In the next section, we prove the commutative property of the Eulerian operators T and G. In

Section 3, we prove following result, which gives a partial answer to Problem 2.

Theorem 4. Let m = {m1,m2, . . . ,mn}, where 0 6 mi 6 2. The Eulerian polynomials Am(x)

are all bi-γ-positive, and so Am(x) are all alternating increasing. More precisely, when m =

{1, 1, . . . , 1} or m = {2, 2, . . . , 2}, the polynomial Am(x) is γ-positive; for the other cases, the

polynomial Am(x) can be written as a sum of two γ-positive polynomials.

In the following discussion, we always set m = {m1,m2, . . . ,mn}, where 0 6 mi 6 2. Let

Am(x, y) =
∑

π∈Sm

xdes (π)ym+1−des (π).

where m =
∑n

i=1mi. Clearly, Am(x, 1) = Am(x). For convenience, set A∅(x, y) = x.

Example 5. We have

A{1}(x, y) = xy, A{2}(x, y) = xy2, A{1,1}(x, y) = xy(x+ y),

A{1,1,1}(x, y) = xy(x2 + 4xy + y2), A{1,2}(x, y) = A{2,1}(x, y) = xy2(y + 2x),

A{2,2}(x, y) = xy2(y2 + 4xy + x2), A{2,1,2}(x, y) = xy2(y3 + 12xy2 + 15x2y + 2x3).
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2. The commutative property of Eulerian operators

Lemma 6. Let m = {m1,m2, . . . ,mn}, where 0 6 mi 6 2. Set m = m ∪ {n + 1} and

m = m ∪ {n + 1, n + 1}. Let T and G be the Eulerian operators defined by (3) and (4),

respectively. Then we have Am(x, y) = T (Am(x, y)) and Am(x, y) = G (Am(x, y)).

Proof. Let π ∈ Sm. We introduce a labeling of π as follows:

(L1) if πi is a descent, then put a superscript label x right after it;

(L2) if πi is an ascent or a plateau, then put a superscript label y right after it.

For example, for π = 12125433, the labeling of π is given by y1y2x1y2y5x4x3y3y.

When we insert the letter n+ 1 into π, we always get a label x just before n+ 1 as well as a

label y right after n+1. This corresponds to the substitution rule of labels: x → xy or y → xy.

Thus the term T (Am(x, y)) gives the contribution of all π′ ∈ Sm in which the element n + 1

appears in positions j, where 0 6 j 6 m. Therefore, one has Am(x, y) = T (Am(x, y)).

When we insert two elements n+ 1 into π, we distinguish among three distinct cases:

(c1) If the pair (n+ 1)(n + 1) is inserted in a position of π, then the changes of labeling are

illustrated as follows:

· · · πx
i πi+1 · · · → · · · πy

i (n + 1)y(n+ 1)xπi+1 · · · ,

· · · πy
i πi+1 · · · → · · · πy

i (n+ 1)y(n + 1)xπi+1 · · · .

This explains the term xy2
(

∂
∂x + ∂

∂y

)
;

(c2) If the two n + 1 are inserted into two different positions with the same label, then the

changes of labeling are illustrated as follows:

· · · πx
i πi+1 · · · π

x
j πj+1 · · · → · · · πy

i (n + 1)xπi+1 · · · π
y
j (n+ 1)xπj+1 · · · ,

· · · πy
i πi+1 · · · π

y
jπj+1 · · · → · · · πy

i (n+ 1)xπi+1 · · · π
y
j (n+ 1)xπj+1 · · · .

This explains the term x2y2

2

(
∂2

∂x2 + ∂2

∂y2

)
;

(c3) If the two n + 1 are inserted into two different positions with different labels, then the

changes of labeling are illustrated as follows:

· · · πx
i πi+1 · · · π

y
jπj+1 · · · → · · · πy

i (n+ 1)xπi+1 · · · π
y
j (n+ 1)xπj+1 · · · ,

· · · πy
i πi+1 · · · π

x
j πj+1 · · · → · · · πy

i (n+ 1)xπi+1 · · · π
y
j (n+ 1)xπj+1 · · · .

This explains the term x2y2 ∂2

∂x∂y .

Therefore, the action of G on the set of labeled multipermutations in Sm gives the set of labeled

multipermutations in Sm. This yields Am(x, y) = G (Am(x, y)). �

We can now present the following result.

Theorem 7. The Eulerian operators T and G are commutative, i.e., TG = GT .
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Proof. Let G = G1 +G2 +G3, where

G1 = xy2
(

∂

∂x
+

∂

∂y

)
, G2 =

x2y2

2

(
∂2

∂x2
+

∂2

∂y2

)
, G3 = x2y2

∂2

∂x∂y
. (5)

It is easily checked that

G1T = xy2
[
(x+ y)

(
∂

∂x
+

∂

∂y

)
+ xy

(
∂2

∂x2
+

∂2

∂y2
+ 2

∂2

∂x∂y

)]
,

G2T =
x2y2

2

[
2y

∂2

∂x2
+ 2x

∂2

∂y2
+ 2(x+ y)

∂2

∂x∂y
+ xy

(
∂3

∂x3
+

∂3

∂y3
+

∂3

∂x2∂y
+

∂3

∂y2∂x

)]
,

G3T = x2y2
[(

∂

∂x
+

∂

∂y

)
+ (x+ y)

∂2

∂x∂y
+ x

∂2

∂x2
+ y

∂2

∂y2
+ xy

(
∂3

∂x2∂y
+

∂3

∂y2∂x

)]
,

TG1 = xy

[
(2xy + y2)

(
∂

∂x
+

∂

∂y

)
+ xy2

(
∂2

∂x2
+

∂2

∂y2
+ 2

∂2

∂x∂y

)]
,

TG2 = xy

[
(xy2 + x2y)

(
∂2

∂x2
+

∂2

∂y2

)
+

x2y2

2

(
∂3

∂x3
+

∂3

∂y3
+

∂3

∂x2∂y
+

∂3

∂y2∂x

)]
,

TG3 = xy

[
2(x2y + xy2)

∂2

∂x∂y
+ x2y2

(
∂3

∂x2∂y
+

∂3

∂y2∂x

)]
.

Thus we obtain

GT = TG = (xy3 + 2x2y2)

(
∂

∂x
+

∂

∂y

)
+ (2x2y3 + x3y2)

(
∂2

∂x2
+

∂2

∂y2

)
+

(4x2y3 + 2x3y2)
∂2

∂x∂y
+

x3y3

2

(
∂3

∂x3
+

∂3

∂y3

)
+

3x3y3

2

(
∂3

∂x2∂y
+

∂3

∂y2∂x

)
.

(6)

This completes the proof. �

Example 8. Note that A{2}(x, y) = xy2. Using (6), one has

GT (xy2) = TG(xy2) = xy2(y3 + 12xy2 + 15x2y + 2x3) = A{2,1,2}(x, y) = A{2,2,1}(x, y).

3. The proof of Theorem 4

We claim that the bivariate γ-expansions of Am(x, y) has three types:

Am(x, y) =

⌊(m+1)/2⌋∑

k=1

a(m,k)(xy)k(x+ y)m+1−2k, (7)

Am(x, y) = y

⌊m/2⌋∑

k=1

b(m,k)(xy)k(x+ y)m−2k, (8)

Am(x, y) =

⌊(m+1)/2⌋∑

k=1

c(m,k)(xy)k(x+ y)m+1−2k + y

⌊m/2⌋∑

k=1

d(m,k)(xy)k(x+ y)m−2k, (9)

where the first expansion corresponds to m = {1, 1, . . . , 1}, the second expansion corresponds

to m = {2, 2, . . . , 2}, and the last expansion corresponds to the other cases.

As illustrated by Example 5, the claim holds for any m 6 4. We proceed by induction. It

suffices to distinguish among three distinct cases:
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(a1) Consider the case m = {1, 1, . . . , 1}. Note that Am(x, y) is bivariate γ-positive with the

center of symmetry m+1
2 . By (7) and Lemma 6, we have

Am(x, y) = T (Am(x, y))

= T




⌊(m+1)/2⌋∑

k=1

a(m,k)(xy)k(x+ y)m+1−2k




=
∑

k

a(m,k)[k(xy)k(x+ y)m+2−2k + 2(m+ 1− 2k)(xy)k+1(x+ y)m−2k],

Setting ã(m,k) = ka(m,k) + 2(m+ 3− 2k)a(m,k − 1), we get

Am(x, y) =

⌊(m+2)/2⌋∑

k=1

ã(m,k)(xy)k(x+ y)m+2−2k. (10)

Thus the γ-expansion of Am(x, y) belongs to the type (7).

Consider the action of G on the basis element (xy)k(x+ y)m+1−2k. We get

G
(
(xy)k(x+ y)m+1−2k

)
= G1

(
(xy)k(x+ y)m+1−2k

)
+ (G2 +G3)

(
(xy)k(x+ y)m+1−2k

)
,

where G1, G2 and G3 are defined by (5). After some calculations, this gives the following:

G1

(
(xy)k(x+ y)m+1−2k

)
= y

[
k(xy)k(x+ y)m+2−2k + 2(m+ 1− 2k)(xy)k+1(x+ y)m−2k

]
,

(G2 +G3)
(
(xy)k(x+ y)m+1−2k

)
=

(
k

2

)
(xy)k(x+ y)m+3−2k + k(xy)k+1(x+ y)m+3−2(k+1)+

2k(m+ 1− 2k)(xy)k+1(x+ y)m+3−2(k+1) + 2(m+ 1− 2k)(m− 2k)(xy)k+2(x+ y)m+3−2(k+2).

Thus G1

(
(xy)k(x+ y)m+1−2k

)
and (G2 +G3)

(
(xy)k(x+ y)m+1−2k

)
are both bivariate

γ-positive polynomials with the center of symmetry m+2
2 and m+3

2 , respectively. There-

fore, the γ-expansion of G (Am(x, y)) belongs to the type (9). More precisely, there exist

nonnegative real numbers c̃(m,k) and d̃(m,k) such that

G (Am(x, y)) =

⌊(m+1)/2⌋∑

k=1

c̃(m,k)(xy)k(x+ y)m+3−2k+

y

⌊m/2⌋∑

k=1

d̃(m,k)(xy)k(x+ y)m+2−2k.

(11)
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(a2) Consider the case m = {2, 2, . . . , 2}. By (8) and Lemma 6, we have

T (Am(x, y))

= T


y

⌊m/2⌋∑

k=1

b(m,k)(xy)k(x+ y)m−2k




=

⌊m/2⌋∑

k=1

b(m,k)(xy)k+1(x+ y)m−2k + yT




⌊m/2⌋∑

k=1

b(m,k)(xy)k(x+ y)m−2k




=

⌊(m+2)/2⌋∑

i=2

b(m, i− 1)(xy)i(x+ y)m+2−2k+

y
∑

k

b(m,k)
[
k(xy)k(x+ y)m+1−2k + 2(m− 2k)(xy)k+1(x+ y)m−2k−1

]
,

=

⌊(m+2)/2⌋∑

i=2

b(m, i− 1)(xy)i(x+ y)m+2−2k + y

⌊(m+1)/2⌋∑

k=1

b̃(m,k)(xy)k(x+ y)m+1−2k,

where b̃(m,k) = kb(m,k)+2(m−2k+2)b(m,k−1). Thus the γ-expansion of T (Am(x, y))

belongs to the type (9).

Consider the action of the operator G on the basis element y(xy)p(x+y)q. After some

simplifications, we obtain that G
(
xpyp+1(x+ y)q

)
has the following expansion:

y(xy)p(x+ y)q−2

[(
p

2

)
(x+ y)4 + (1 + p)(1 + 2q)(xy)(x+ y)2 + 4

(
q

2

)
(xy)2

]
,

which yields that the γ-expansion ofG (Am(x, y)) belongs to the type (8). More precisely,

there exist nonnegative real numbers b̃(m,k) such that

G


y

⌊m/2⌋∑

k=1

b(m,k)(xy)k(x+ y)m−2k


 = y

⌊(m+2)/2⌋∑

k=1

b̃(m,k)(xy)k(x+ y)m+2−2k. (12)

(a3) Consider m = {m1,m2, . . . ,mn}, where #{mi ∈ m : mi = 1} = r and #{mi ∈ m : mi =

2} = s. Without loss of generality, assume that 1 6 r, s < n and r + s = n. Combining

Lemma 6 and Theorem 7, we have Am(x, y) = Gs(T r (x)). Using (10), we see that there

exist nonnegative real numbers a(r, k) such that

Gs(T r (x)) = Gs




⌊(r+1)/2⌋∑

k=1

a(r, k)(xy)k(x+ y)r+1−2k


 .

Repeatedly using (11) and (12), we deduce that

Am(x, y) =
∑

k>1

c(r + 2s, k)(xy)k(x+ y)r+2s+1−2k + y
∑

k>1

d(r + 2s, k)(xy)k(x+ y)r+2s−2k.

When y = 1, we arrive at

Am(x) =
∑

k>1

c(r + 2s, k)xk(1 + x)r+2s+1−2k +
∑

k>1

d(r + 2s, k)xk(1 + x)r+2s−2k,

as desired. This completes the proof.



8 S.-M. MA, H. QI, JEAN YEH, AND Y.-N. YEH

Acknowledgements.

The first author was supported by the National Natural Science Foundation of China (Grant

number 12071063). The third author was supported by the National Science Council of Taiwan

(Grant number: MOST 110-2115-M-017-002-MY2).

References

1. C.A. Athanasiadis, Gamma-positivity in combinatorics and geometry, Sém. Lothar. Combin., 77 (2018),

Article B77i.

2. M. Beck, A. Stapledon, On the log-concavity of Hilbert series of Veronese subrings and Ehrhart series, Math.

Z., 264 (2010), 195–207.

3. M. Beck, K. Jochemko, E. McCullough, h∗-polynomials of zonotopes, Trans. Amer. Math. Soc., 371 (2019),

2021–2042.
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