
ar
X

iv
:2

31
1.

01
88

4v
1 

 [
m

at
h.

C
O

] 
 3

 N
ov

 2
02

3

A note on median eigenvalues of subcubic graphs ∗
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Abstract

Let G be an simple graph of order n whose adjacency eigenvalues are λ1 ≥ · · · ≥ λn.
The HL–index of G is defined to be R(G) = max{|λh|, |λl|} with h =

⌊

n+1

2

⌋

and
l =

⌈

n+1

2

⌉

. Mohar conjectured that R(G) ≤ 1 for every planar subcubic graph G. In
this note, we prove that Mohar’s Conjecture holds for every K4-minor-free subcubic
graph. In addition, R(G) ≤ 1 for every subcubic graph G which contains a subgraph
K2,3.
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1 Introduction

Let G = (V (G), E(G)) be a simple graph with vertex set V (G) and edge set E(G). Denote
by |G| the order of graph G and NG(v) the neighborhood of a vertex v of G, and write N(v)
when G is clear. For a subset A ⊆ V (G), denote by G[A] the subgraph of G induced by A,
and write G−A for G[V (G)−A] sometimes.

A graph is called subcubic if its maximum degree is at most 3. In mathematical chemistry,
every subcubic graph is regarded as a chemical graph. It is known that the HOMO–LUMO
separation, which is the gap between the Highest Occupied Molecular Orbital(HOMO) and
Lowest Unoccupied Molecular Orbital (LUMO), is related linearly to median eigenvalues of
a graph [6, 7]. Therefore, it is worthwhile to estimate the median eigenvalues. Fowler and
Pisanski [6,7] introduced the notion of HL–index of a graph (see also Jaklic̆ et al. [8]). For a
simple graph G of order n, let λi(G) be the i-th largest eigenvalue of the adjacency matrix
of G (counting multiplicities).The HL-index of G is defined as

R(G) = max {|λh(G)|, |λl(G)|} ,

where h =
⌊

n+1

2

⌋

and l =
⌈

n+1

2

⌉

.

In 2015, Mohar [11] proved that R(G) ≤
√
2 for every subcubic graph G. Further, he

proposed the following conjecture.
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Conjecture 1.1. [11] For every subcubic planar graph G, R(G) ≤ 1.

Mohar [10] confirmed that Conjecture 1.1 holds for bipartite subcubic planar graphs.
Later, Mohar [12] proved that R(G) ≤ 1 holds for every bipartite subcubic graph G except
the Heawood graph, whose median eigenvalues are ±

√
2. In addition, Benediktovich [2]

confirmed Conjecture 1.1 for subcubic outerplanar graphs. For more results on median
eigenvalues, see [9, 13–15].

A graph H is a minor (or H-minor) of a graph G, if a copy of H can be obtained from
G by deleting and/or contracting edges of G. A graph is H-minor-free if H is not a minor
of it for every H ∈ H. When H = {H}, we simply write H-minor-free. In this note, we
prove the following result.

Theorem 1.2. For every subcubic graph G that contains a subgraph K2,3, we have R(G) ≤
1.

In electronic engineering and computer science, K4-minor-free graphs, which are also
called series–parallel graphs, are of great interest, because these graphs can be applied to
model series and parallel electric circuits. More results on series–parallel graphs may be
referred to [4, 5] and references therein. Another main result of this note is as follows.

Theorem 1.3. For every K4-minor-free subcubic graph G, we have R(G) ≤ 1.

Remark 1. On one hand, Theorem 1.3 extends the result for subcubic outplanar graphs
in [2], since G is outerplanar if and only if neither K4 nor K2,3 is a minor of G. On
the other hand, Theorem 1.3 confirms that Conjecture 1.1 holds for K4-minor-free subcubic
graphs, as every K4-minor-free graph is planar, equivalently, {K5,K3,3}-minor-free.

The rest of this note is organized as follows. In Section 2, some notations and lemmas
are presented. In Section 3, we prove Theorems 1.2 and 1.3.

2 Preliminaries

First, we need the following two well-known theorems in spectral graph theory (for example,
see [3, pp. 17–20]).

Theorem 2.1 (Eigenvalue interlacing theorem). Let G be a simple graph G of order n. Let
A ⊆ V (G) be a vertex set of size k. Then for i ∈ {1, 2, · · · , n− k},

λi(G) ≥ λi(G−A) ≥ λi+k(G).

Theorem 2.2. Let G be a simple graph of order n. Suppose {E1, E2} is a partition of
E(G). For i ∈ {1, 2}, let Gi = (V (G), Ei) be the spanning graph of G. Then

λi(G) ≤ λj(G1) + λi−j+1(G2) (n ≥ i ≥ j ≥ 1),

λi(G) ≥ λj(G1) + λi−j+n(G2) (1 ≤ i ≤ j ≤ n).

We also need a simple fact.

Lemma 2.3. Let G be a simple graph with two distinct vertices u and v such that N(u) =
N(v). Then zero is an adjacency eigenvalue of G. Furthermore, if G is bipartite, then
R(G) = 0.
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Proof. The determinant of the adjacency matrix A of G is equal to 0, so zero is an eigenvalue
of A. Furthermore, if G is bipartite, then the adjacency eigenvalues of A is symmetric with
respect to origin 0; so R(G) = 0.

Let G be a simple graph of order n. A partition {A,B} of vertex set of G is called
unfriendly if every vertex in A has at least as many neighbors in B as in A, and every vertex
in B has at least as many neighbors in A as in B. A partition {A,B} of vertex set of G
is called unbalanced if |A| 6= |B|; balanced, otherwise. We include Lemma 2.4 which was
initially presented in [1], and later applied to median eigenvalues by Mohar in [10, 11].

Lemma 2.4. [1] Every graph has an unfriendly partition.

By applying Theorem 2.1, Mohar [10, Lemma 2.4] proved the following lemma.

Lemma 2.5. [10] If G is a subcubic graph with an unbalanced unfriendly partition, then
R(G) ≤ 1.

Finally, we need the following lemma, which was verified by Mohar in the proof of [10,
Lemma 2.1].

Lemma 2.6. [10] For every subcubic graph G of odd order, R(G) ≤ 1.

3 Proof of Theorems 1.2 and 1.3.

In this section, we give the proof of Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Let G be a subcubic graph such that K2,3 is a subgraph of G,
where V (K2,3) = {x1, x2, y1, y2, y3} ⊆ V (G) with bipartite partition {x1, x2} ∪ {y1, y2, y3}.
Take an unfriendly partition {A,B} of V (G), as there exists one by Lemma 2.4. If x1 ∈ A

and x2 ∈ B, then any way of putting y1, y2 and y3 into either A or B can not build the
unfriendly partition {A,B}. Thus we may assume that x1 and x2 belong to the same part,
say A. Then {y1, y2, y3} ⊆ B.

Let G1 = (V (G), E1) and G2 = (V (G), E(G) \ E1) be two spanning subgraphs of G,
where E1 = E(A,B) consists of all edges with one end in A and the other in B. Then G1

is a bipartite graph with NG1
(x1) = NG1

(x2) = {y1, y2, y3}. Hence, λh(G1) = 0 with where
h =

⌊

n+1

2

⌋

by Lemma 2.3. In addition, since {A,B} is an unfriendly partition of G, the
graph G2 consists of independent edges and isolated vertices, which implies that λ1(G2) ≤ 1.
Therefore, by Theorem 2.2,

λh(G) ≤ λh(G1) + λ1(G2) ≤ 1,

where h =
⌊

n+1

2

⌋

. By a similar argument, we can also prove that λl(G) ≥ −1 with l =
⌈

n+1

2

⌉

. Hence R(G) ≤ 1. �

Proof of Theorem 1.3. If the assertion of Theorem 1.3 holds for connected graphs, then it
also holds for disconnected graphs by considering all the components. Thus we may assume
that G is a K4-minor-free subcubic connected graph . And by Lemma 2.6, we may assume
that |G| = n with even n. We use the induction method on even n.

If n = 2, then G = K2 and the assertion holds. In addition, if n = 4, then G must be
one of the five graphs: star K1,3, 4-cycle C4, kite K4− e and paw which is a graph obtained
by connecting a vertex v to one vertex of K3. It is easy to see the second largest eigenvalue
of the five graphs at least 1, i.e., R(G) ≤ 1. So the assertion holds.
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Suppose the assertion holds for all the graphs of order less than n, where n ≥ 6. Now
we consider the following two cases.

Case 1: There is a cut vertex v in G. Then G − v has a component G1 of odd order.
And G2 := G − v − V (G1) has even number of vertices. Denote by n1(H) the number of
eigenvalues of a graph H that are larger than 1. Since |G1| is odd, R(G1) ≤ 1 by Lemma

2.6, and n1(G1) ≤ |G1|−1

2
. Since G is subcubic, G2 has at most two component. If G2

is connected or has two components of even order, then apply the inductive hypothesis to
components of G2; otherwise, apply Lemma 2.6 to two components of odd order of G2. In

all the cases above for G2, we can obtain n1(G2) ≤ |G2|−2

2
. Thus,

n1(G− v) = n1(G1) + n1(G2) ≤
|G1|+ |G2| − 3

2
=

n− 4

2
,

which implies that λn

2
−1(G − v) ≤ 1. Hence, by Theorem 2.1, λn

2
(G) ≤ λn

2
−1(G − v) ≤ 1.

By a similar argument, we can also prove that λn

2
+1(G) ≥ −1. Therefore, R(G) ≤ 1.

Case 2: G is a 2-connected graph. If G is a cycle, then the assertion holds. Thus we
may assume that G is not a cycle. Let C be a longest cycle in G. Throughout this proof, we
say a path lies in C (outside of C, resp.) if all the edges of the path are in C (are not in C,
resp.). Then there is a path P with two end vertices u, v ∈ V (C) such that P contains no
edges in E(C). Let N(u) ∩ V (C) = {u1, u2}, and N(v) ∩ V (C) = {v1, v2}. Moreover, there
is a u1, v1–path in C that contains neither u nor v. If u1 = v1 and u2 = v2, then G = K2,3,
since G is K4-minor-free and C is a longest cycle of G. It is a contradiction. Hence we may
assume that u2 6= v2 and have the following Claim 1.

Claim 1. G− {u2, v} is not connected.

Proof. We use the method of contradiction. Suppose that G − {u2, v} is connected. Then
there exists a path Q from u to v2 in G − {u2, v}. Let y denote the vertex of Q that is
adjacent to u, which is either the vertex of P (only happens when |V (P )| > 2) or u1. Thus
there is a K4-minor of G on {u, v, v2, y}, a contradiction that G is K4-minor-free.

Let W be the set of vertices of the component of G−{u2, v} that contains u (for example,
the black vertices in Figure 1 represent all the vertices in W .).

u2

v2

u1

u

v1

v

Figure 1: An example for G

Claim 2. If u is adjacent to v, then G[W−u] is connected and a component of G−{u, v};
if u is not adjacent to v, then there are two connected components in G[W − u] which are
also two components of G− {u, v}.
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Proof. If u is adjacent to v, then u has degree 1 in G[W ]. Thus G[W − u] is still connected
and a component of G− {u, u2, v}.

If u is not adjacent to v, then |V (P )| > 2. Then G[W−u] has two components. In fact, if
G[W −u] is connected, then there is a path from u1 to y in G[W −u] with y ∈ N(u)∩V (P ).
Hence there is a K4-minor in G on {u, v, u1, y}, which contradicts to that G is K4-minor-
free. Therefore G[W − u] is disconnected. Moreover, since the degree of u in G[W ] is 2,
there are exactly two components in G[W − u].

Let H1 be the component of G[W − u] containing u1 and H2 be the rest component of
G[W−u]. Then by the definition ofW , H1 and H2 are also two components of G−{u, u2, v}.
Since G is K4-minor-free, there is no paths in G − {u, v} from u2 to vertices of H1 or H2.
Hence H1 and H2 are two components of G− {u, v}.

If |W | is even, let G1 := G[W ] and x := u2; if |W | is odd, let G1 := G[W −u] and x := u.
Then |G1| is even. Furthermore, by the definition of W and Claim 2, the components of G1

are always the components of G−{x, v}. Hence by the inductive hypothesis on G1, we have

n1(G1) ≤ |G1|−2

2
. In addition, let G2 := G−{x, v}−V (G1). Then G2 also has even number

of vertices. Since u2 6= v2, we have v2 ∈ V (G2); so |G2| ≥ 2. Since G is 2-connected, there
are at most two components in G2. By Lemma 2.6 and the inductive hypothesis, we can

obtain n1(G2) ≤ |G2|−2

2
. Therefore, we have

n1(G− {u2, x}) ≤ n1(G1) + n1(G2) ≤
|G1|+ |G2| − 4

2
=

n− 6

2
,

which implies that λn

2
−2(G−{u2, x}) ≤ 1. By Theorem 2.1, λn

2
(G) ≤ λn

2
−2(G−{u2, x}) ≤ 1.

By a similar argument, we can also prove that λn

2
+1(G) ≥ −1. Therefore, R(G) ≤ 1,

and we complete the proof. �
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