
www.elsevier.com/locate/datak

Data & Knowledge Engineering 49 (2004) 1–21
Broadcast program generation for Webcasting

Dimitrios Katsaros, Yannis Manolopoulos *

Department of Informatics, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece

Received 30 October 2002; received in revised form 28 May 2003; accepted 30 July 2003
Abstract

The advances in computer and communication technologies have made possible an ubiquitous com-
puting environment were clients equipped with portable devices can send and receive data anytime and

from anyplace. In such an asymmetric communication environment, data push has emerged as a very effective

and scalable way to deliver information. Recently, the combination of push technology with the Internet

and the Web [IEEE Trans. Comput. 50 (2001) 506, ACM/Kluwer Mobile Networks Appl. 7 (2002) 67]

(referred to as Webcasting) has emerged ‘‘as a way out of the Web maze’’. Any broadcast program em-

ployed for Webcasting must be able to scale to the large number of transmitted pages.

We study the issue of creating hierarchical Webcasting programs. We propose a new algorithm, Cas-

cadedWebcasting, for the generation of Webcasting programs, scalable in terms of the number of items
transmitted and able to produce programs very close to optimal. We give an analytic model of the time

complexity of the proposed method and we present a performance evaluation of CascadedWebcasting and a

detailed comparison with existing algorithms using synthetic as well as real data. The experiments show

that the CascadedWebcasting has negligible execution time and achieves an average access delay very close

to that of the optimal algorithm.

� 2003 Elsevier B.V. All rights reserved.

Keywords: Webcasting; Broadcast disks; Scheduling; Push-based delivery; Wireless data dissemination; Mobile

computing

1. Introduction

The recent advances in computer and wireless communications technology promise to make
possible an ubiquitous computing environment where users equipped with portable computers
* Corresponding author. Tel.: +30-2310-996363; fax: +30-2310-996360.

E-mail addresses: dkatsaro@csd.auth.gr (D. Katsaros), manolopo@skyblue.csd.auth.gr (Y. Manolopoulos).

0169-023X/$ - see front matter � 2003 Elsevier B.V. All rights reserved.

doi:10.1016/j.datak.2003.07.001

mail to: dkatsaro@csd.auth.gr

2 D. Katsaros, Y. Manolopoulos / Data & Knowledge Engineering 49 (2004) 1–21
(PDAs, cellular phones) can receive the data of interest anytime and from anyplace [3]. In this
environment there is one (or more) data providers (servers) supplying data to a number of clients.
Served data include newspapers headlines, stock prices, sports news, etc. One challenge that must
be met in order to fully realize this environment is to address its particularities, which mainly stem
from the communication asymmetry [4]. Asymmetry in communications may arise because the
communication capacity from the server(s) to clients is much larger than that from clients to
servers. In a wireless mobile network, mobile support stations have a transmission channel with
relatively high bandwidth whereas clients have little or no transmission capability.

Data delivery in such asymmetric communication environments can be either pull-based or push-
based [5,6]. In pull-based delivery, there exist two channels, a donwlink channel, which is used by
the server to send out data, and an uplink channel onto which clients send their requests to the
server. In pull-based delivery, data transfers are initiated by the clients, just like in traditional
client-server database systems [7] which manage data for clients that explicitly request them.
Obviously, this request–response method of delivery suffers from scalability problems, since the
server can become the ‘‘hot-spot’’ of the communication.

Push-based delivery (and its variations [8]) relies on a server that continuously and repetitive
sends out information to a (possibly unknown) number of clients usually through a broadcast
channel. Clients tune into this channel waiting for the data of interest to arrive. Due to the one
way broadcast, system state information such as the number of pending requests for a data item is
not available, but one can only rely on information such as how frequently a given item is re-
quested by the users or on the registered user preference (e.g., profiles or subscriptions) on a given
item [9]. Broadcast delivery is attractive, because of the excellent scalability it offers. In broadcast
delivery, the response is not affected by the load, since the single broadcast of a data item satisfies
all pending requests for it. Thus it can support an infinite number of clients. On the other hand,
the response time depends on the number of transmitted items and increases with increasing
number of items.

Early examples of broadcast delivery are the teletext/videotex [10], the Boston Community
Information System [11] and the Datacycle database machine [12].

1.1. Web+Push technology¼Webcasting

Recently, the combination of push technology with the Internet and the Web, referred to as
Webcasting, has emerged ‘‘as a way out of the Web maze’’ [6].

The application of push technology to the Internet and the Web grew significantly after the
PointCast Network was deployed in 1996. Since then, it develops rapidly and several new systems
and architectures have been born, such as the Global Information Broadcast [13] or SkyCache
[14]. These types of systems can be used over satellite links, where the consumers may be human
end-users, file servers or HTTP proxy cache servers [1,2]. The aforementioned systems utilize
scheduled transmission, where the data source transmits information resources on a regular time
schedule.

These schedules are characterized by two properties: (a) the large number of data items
transmitted and (b) the need for frequently updating the schedule. The latter property can be
understood if we consider that the access probabilities of the transmitted items change quite
frequently or because new items must be transmitted. Change in access probabilities can arise as a

D. Katsaros, Y. Manolopoulos / Data & Knowledge Engineering 49 (2004) 1–21 3
result of client mobility, since the clients leaving (or entering) a cell can affect the data item de-
mand probabilities. Change in access probabilities can also arise due to the varying client inter-
ests.

As a concrete example of this kind of applications, consider a broadcast that transmits a large
number of data items referring to stock prices. The ‘‘volatility’’ of the prices of the stocks makes
the frequent schedule update absolutely necessary, since it is known that the interest of the in-
vestors is a function of the current prices. As another example consider the cache-satellite system
described in [2,14]. There, the master server broadcasts to the cooperating proxies all the docu-
ments that resulted as cache misses. In this case, it is obvious that the schedule needs to be fre-
quently updated, because different documents with different popularities must be transmitted.
Needless to say that in both examples the number of transmitted items is by far larger than a few
hundreds of items. Similar are the applications that employ a satellite-terrestrial wireless system in
order to serve Web data via a satellite from a main server to a number of ground stations [1].

It is obvious, that in these applications the derived schedule will not be maintained for days, but
will probably change after a few minutes. Thus, the schedule determination procedure should be
done really fast.

In Webcasting, like in traditional broadcasting systems, the information is organized into units,
called pages, and is broadcast to the clients through one or multiple broadcast channels. Such an
environment is depicted in Fig. 1, where mobile clients tune into the broadcast channel(s) to
receive the information of interest.

The allocation of data items to the channel(s) is critical for efficient data access. Access effi-
ciency is usually measured in terms of the access time, that is, the time elapsed from the moment a
client tunes into the channel(s) to retrieve the data of interest to the moment these data are ac-
quired. Thus, a program, the broadcast program, needs to be constructed that will schedule the
data transmissions, such that the client response time is minimized.

When the access probabilities of the data are equal, then a flat broadcast program can be
constructed which is optimal in that it achieves the minimum average response time. During a
broadcast cycle in a flat program, all items are broadcast once and this cycle is repeated.

Several studies though, indicate that Web accesses are skewed, following the Zip�s law [15].
Thus, hierarchical broadcast programs that provide improved performance for non-uniformly
Server

P 1 P 2 P 3
P 4

P 5

P 2 P 1

P 3P 4

P 5

Fig. 1. A server broadcasting data to mobile clients.

4 D. Katsaros, Y. Manolopoulos / Data & Knowledge Engineering 49 (2004) 1–21
accessed data are necessary for Webcasting. Broadcast disks were introduced in [4] (and gener-
alized in [16]) as an alternative to flat programs. Broadcast disks superimpose multiple disks of
different sizes, spinning at different speeds on a single broadcast channel creating thus an arbi-
trarily fine-grained memory hierarchy. The program generated by the broadcast disks emphasizes
the most popular items (the items stored at the smallest, fast spinning disks) and de-emphasizes
the less popular ones (the items stored at the largest, slow spinning disks). The number of disks
and the items assigned to each disk determine the average delay. The broadcast disk program
guarantees a fixed interarrival time between all successive transmissions of an item and also
guarantees fixed broadcast cycle. (More details regarding the program composition for broadcast
disks can be found in [4].)

In parallel, in order to deal with the communication asymmetry, the client can perform caching
[4,17,18] and prefetching [19–21] or the server can broadcast indices [22]. Although the problem of
broadcast disks is twofold, that is, it consists of the determination of the disk frequencies and the
contents of each disk, the latter one is much harder, as the extensive research work on it reveals.
Thus, the fundamental decision in any Webcasting system implementing the broadcast disks
paradigm is the partitioning of items into groups, each one of the groups corresponding to a
broadcast disk [23–27]. The present work deals with the issue of creating hierarchical broadcast
programs for Webcasting and the issues of caching/prefetching and index broadcast are ortho-
gonal to our work.

1.2. Related work and motivation

The characteristics of the schedule, as described in Section 1.1, imply that the speed of the
schedule determination for the Webcasting is equally important to the quality (measured in terms
of the average access time) of the derived schedule. Moreover, if we consider that the exact access
probabilities of the data items in this environment are not precisely known and thus there is little
chance to derive a program that matches exactly the user interests, we can understand that it
would be of little practical importance to devise a new algorithm that improves the delay in
average time by a few percentage points. Under this setting, the time complexity of the algorithm
employed for the schedule determination is of more practical interest.

Five approaches considered so far this partitioning problem [23–27]––we defer the detailed
presentation of these methods until Section 2.2, where we derive some bound for their time
complexity. Nevertheless, none of these approaches can produce programs able to address both
requirements of the Webcasting environment (or any other large scale broadcasting environment
e.g., [12]), namely (a) skewed access pattern and (b) very large number of items transmitted.

The work in [23] assigns items to disks making only one pass over the vector of frequencies of the
data, assigning items to disks by comparing their frequency with the difference in frequency between
the most popular and least popular item. Consequently, it is very fast in creating the respective
program, but it is vulnerable to skewed access probabilities. The works in [24–27] are more so-
phisticated, in that they try to deal with non-uniformity in access probabilities and thus to produce
better programs, but require very large processing time when the number of items to be transmitted
is more than a thousand, thus they do not exhibit good scalability in terms of the data set size.

The algorithm in [24] starts with an initial assignment of the items to the disks (segments) and
then, based on a greedy approach, keeps growing the segment which leads to the lowest average

D. Katsaros, Y. Manolopoulos / Data & Knowledge Engineering 49 (2004) 1–21 5
delay. The work in [25] takes the opposite approach and greedily splits the segment, which incurs
the largest average access delay. The work in [26] remedies a disadvantage of the previous one
which appears when the number of disks is not a power of 2. Finally, the work in [27] is based on
[25], but its nature is closer to a dynamic programming approach rather than to a greedy one.

Similar to the work in [28], which identified the need for scalable algorithms in terms of data set
sizes, client population and broadcast bandwidth for on-demand data broadcast, we address the
same issues in push-based delivery systems. The aim of the present work is to develop a fast al-
gorithm, which will be very efficient in handling skewed access frequencies and will be able to
produce programs very close to the optimal.

1.3. Contributions

This paper focuses on Webcasting and makes the following contributions:

• We identify the two requirements 1 that any Webcasting algorithm should satisfy, namely sen-
sitivity to skewed access probabilities and scalability to the number of data items being broad-
cast.

• We observe that the algorithms used for assigning items to multiple channels can be used in the
determination of the contents of the broadcast disks as well. 2

• We develop cost formulas for the time complexity of the schemes described in [24] and [26],
since they lack one.

• We develop a new algorithm for Webcasting and a cost formula for its time complexity.
• Finally, through an extensive experimental comparison of all algorithms, we deduce that the

proposed algorithm outperforms existing ones when running times are considered, whereas it
is not much worse than the optimal algorithm.

The rest of the paper is organized as follows: Section 2 presents the necessary background
information regarding the broadcast disks. Also it reviews briefly the related work and presents
the cost models for the time complexity of the corresponding algorithms. Section 3 describes the
proposed algorithm whereas Section 4 provides the experimental results. Finally, Section 5 con-
cludes the present work.
2. Preliminaries

2.1. Problem formulation

Due to the nice characteristics of the broadcast disk paradigm as described in [4] (fixed in-
terarrival times and fixed length broadcast cycle) we will adopt that model in the present work.
We consider a database D of equal-sized data items for which the access probabilities are given.
1 The first one was implicitly stated in earlier works as well (see [4]).
2 The authors in [26] made the reverse observation.

6 D. Katsaros, Y. Manolopoulos / Data & Knowledge Engineering 49 (2004) 1–21
(Techniques for estimating the access probabilities can be found in [29,30].) Let our database be
comprised by n items, that is,D ¼ fd1; d2; . . . ; dng. The items are ordered from the most popular to
the least popular and have access probabilities P ¼ fp1; p2; . . . ; png, respectively, wherePn

i¼1 pi ¼ 1. This ordering means that pi P pj, 16 i < j6 n. W.l.o.g. we can assume that
n ¼ 2m � 1. Each item (or data item or page) is assigned a rank according to its position in that
order. The rank of the most popular item is 1.

Suppose that we have a set D of k broadcast disksD1;D2; . . . ;Dk, withD1 being the fastest disk
and Dk being the slowest disk. The frequencies (spin) of these disks are equal to f1; f2; . . . ; fk,
respectively, for which fi > fj, 16 i < j6 k. The number of database items comprising a disk will
be called the size of the disk and will be denoted as jDij, 16 i6 k. The spin of each disk is a
function of its size, with the smallest disk spinning faster (jDij < jDjj, 16 i < j6 k). We assume a
slotted time model in which the server broadcasts one page per time slot.

A broadcast program can be characterized by an assignment G : ½1; . . . ; n� ! ½1; . . . ; k� of pages
to the disks. Since more popular pages should be transmitted more frequently and thus to be
accommodated in faster disks, it is obvious that there can exist no pair di; dj with i < j in the above
ordering such that GðdiÞ > GðdjÞ. This means that either the two items will be accommodated into
the same disk or the more popular of the two items will be accommodated into a faster disk. Thus,
creating a broadcast program for k disks is equivalent to determining a partition of the interval
½1; . . . ; n�.

It is obvious that a page dj assigned to a particular disk Di will have the same broadcast fre-
quency with that of the disk, that is, freqðdjÞ ¼ fi.

For our convenience we recall some definitions from [4,24]:

Definition 1 (Major Cycle). The Major Cycle C of the broadcast is defined as
C ¼
X
d2D

freqðdÞ: ð1Þ
Lemma 2.1. The Major Cycle C satisfies the property:
C ¼
Xk
i¼1

ni � fi; ð2Þ
where ni denotes the number of items of disk Di.

Definition 2. The expected delay for a page di, denoted as xðdiÞ is
xðdiÞ ¼
pi � C

2 � freqðdiÞ
ð3Þ
or, equivalently
xðdiÞ ¼
pi � wi

2
; ð4Þ
where wi is the (fixed) interarrival time of item i.

D. Katsaros, Y. Manolopoulos / Data & Knowledge Engineering 49 (2004) 1–21 7
Lemma 2.2. Let Bi be the sum of the access probabilities of the pages in disk Di, that is, Bi ¼P
dj2Di

pðdjÞ. The total expected delay x can be expressed as
x ¼ k
2
�
Xk
i¼1

ni � Bi: ð5Þ
Now we can define the Webcasting problem as follows:

Definition 3 (Webcasting problem). Suppose that we have a database D of n ¼ 2m � 1 data items,
for which the access probabilities are given, and a set D of k broadcast disks (D1 being the fastest
disk). The Webcasting problem is the task of partitioning these items into the given disks, so that
the average delay is minimized (Eq. (5)).

Obviously, in the above definition we assume that it is possible to achieve the equal-spacing
criterion [5,23] in the transmission of the data items.

In what follows in this section, we will briefly present how five approaches deal with the
Webcasting problem.
2.2. Time complexities of the current approaches for program generation

The procedure of determining a partition can be ‘‘top–down’’, ‘‘bottom–up’’ or ‘‘one-scan’’. In
the top–down [25–27] we start from a large partition, possibly including all the items, and
gradually split it into smaller pieces. In the bottom–up [24] we start with many small partitions
which gradually grow, whereas the one-scan approach makes a single scan over P assigning items
to disks based on some criterion. The top–down and bottom–up schemes make multiple passes
over P (or parts of it) and make splitting or concatenating decisions based on the computation of
Eq. (5) over P (or portions of it).

The cost of an algorithm is entirely determined by the number of passes it will make over the
vector P. The total cost incurred is the number of passes times the cost to compute the value of
Eq. (5). Of course, when we compute the value of Eq. (5) for two candidate partitions that differ
only in the allocation of one item in two consecutive disks, this computation can be done in-
crementally and thus avoid the recomputation of Eq. (5) for all the disks of the partitions.
Nevertheless, the exploitation of such an incremental computation is not expected to reduce
significantly the actual running time. This observation is confirmed by the experimental results in
Section 4, where all the algorithms have been implemented using the incremental computation.

The Bucketing scheme [23] is the simplest approach for the assignment of items to disks. It
makes a single scan over the vector of access probabilities of the data and assigns them to disks
based on the following criterion. Let Amin ðAmaxÞ denote the minimum (maximum) value of

ffiffiffiffi
pi

p
,

16 i6 n. Let d ¼ Amax � Amin. If, for the ith item,
ffiffiffiffi
pi

p ¼ Amin, then i is assigned at disk Dk. Any
other item i is assigned to disk Dk�j ð16 j6 kÞ if ðj� 1Þd=k < ð ffiffiffiffi

pi
p � AminÞ6 ðjd=kÞ. This parti-

tioning criterion is suitable for the case when the access probabilities are uniformly distributed
over the ‘‘probability interval’’ and performs poorly for skewed access patterns. On the other
hand, this approach has the lowest complexity. It executes in OðnÞ time and never tries any
‘‘candidate’’ partitions in order to select the most appropriate.

8 D. Katsaros, Y. Manolopoulos / Data & Knowledge Engineering 49 (2004) 1–21
Proposition 2.3 [23]. The complexity of the Bucketing scheme is OðnÞ.

The Growing Segments scheme [24] starts with an initial ‘‘minimal’’ allocation assigning one
item to each disk, which acts as the initial ‘‘seed’’ partition. Then, enlarges each segment by in-
cluding a number of items equal to the user-defined parameter increment and computes which of
these enlargements gives the greatest reduction in average delay. Then, selects the corresponding
partition as the new ‘‘seed’’ partition and continues until the partition covers the whole P.
The parameter increment is very important and has the following trade-off associated with it: the
greater is the value of increment, the lower complexity the algorithm has and the lower quality the
produced broadcast program has. Since the computation of Eq. (5) takes OðnÞ time, the algorithm
makes O n�k

increment

� �
steps and at each step computes OðkÞ candidate partitions, it follows that:

Proposition 2.4. The complexity of the Growing Segments method is O n2 � k
increment

� �
.

The Variant-Fanout Tree scheme with the constraint K ðVF KÞ [25] adopts a top–down approach.
It starts with an initial allocation, where all the items have been assigned to the first disk. Then
repetitively, determines which disk incurs the largest cost so far and partitions its contents into
two groups. The partitioning is done by the routine Partition, which tries all possible partitions
that respect the property that no disk can have more items than its next disk. The first group
remains in the current disk and the newly created group is allocated to the next disk, shifting all
the other disks downwards. This procedure repeats until all available disks are allocated. The cost
of this algorithm is OðkÞ times the cost of the Partition procedure. The cost of this procedure
depends on the number of items of the disk that is to be partitioned, which in turn depends on the
distribution of the access probabilities. It can be shown that:

Proposition 2.5 [25]. The complexity of the VF K method is Oðk � nÞ.

The Greedy scheme [27] adopts the top–down approach and it is very similar to the VF K scheme.
It performs several iterations. At each iteration, it chooses to partition the contents of the disk,
whose split will bring the largest reduction in access time. The partitioning point is determined by
calling the routine Partition (see above). Thus, at each iteration the Greedy computes (if not al-
ready computed) and stores the optimal split points for all disks that have not been split so far.
Hence, it differs from VF K in two aspects. Firstly, in the partitioning criterion (recall that VF K

splits the disk which incurs the largest access time). Secondly because after each split, it will
compute and store the optimal split points of every disk. Based on these observations it easy to
deduce that the cost of the Greedy algorithm is:

Proposition 2.6 [27]. The complexity of the Greedy method is Oððnþ kÞ � logðkÞÞ.

The Data-Based (DB) scheme [26] is similar to VF K , but avoids taking the local optimal decision
of the Partition routine of VF K , which splits a disk into two. DB has several phases. At each phase
decides about the contents of a particular disk, starting from the fastest disk which will accom-
modate the more frequently accessed data. First, it determines which is the maximum allowable
number of items that can be accommodated into the considered disk. This number can be

D. Katsaros, Y. Manolopoulos / Data & Knowledge Engineering 49 (2004) 1–21 9
computed with the help of Lemmas 3 and 4 in [26]. Then, it computes the average access delay for
all the allowable allocations of items into the considered disk and selects the allocation with
the minimum cost. The computation of the average access delay takes also into account the delay
that will be incurred due to the items that will be allocated to the rest of the disks. This is the
difference from VF K . This above procedure continues until the allocation of all the items into the
disks.

Let us investigate the time complexity of the DB method. Let ai denotes the number of items
that have been allocated to disk i after the execution of the algorithm, where a0 ¼ 0. Also, let
li ¼

Pi�1
j¼1 aj be the total number of items allocated to disks Dj, 16 j6 i� 1. During the ith phase

(the determination of the contents of the ith disk, 16 i6 k) the DB needs to examine qi possible
allocations, where qi is the range of the number of items in Di as determined by Lemma 4 of [26].
Obviously, qi P ðai � ai�1Þ. It is also clear that qi increases with decreasing li. Thus DB will incur
a cost of:
ci ¼ qi � n

�
Xi�1

j¼1

ai

!
:

Summing over all phases, we have the total cost:
Cdb
tot ¼

Xk
i¼1

qi � ðnð � liÞÞ: ð6Þ
Proposition 2.7. The complexity of the DB method is
Cdb
tot ¼

Xk
i¼1

qi � ðnð � liÞÞ:
Concluding this section, we observe that all the algorithms incur significant time complexity for
the generation of the broadcast program trying to differentiate between frequencies which are
almost identical or contribute only a little in the total delay. This comprises our motivation in
pursuing a scheme that will have low time complexity and at the same time will produce broadcast
programs close to optimal.
3. The Cascaded scheme for Webcasting

3.1. The basic intuition

Every approach for program generation is pursuing a partition of the vector P into groups of
items with approximately the same probability. In order to discover these groups, the approaches
described in [24–27] make several passes over P, thus resulting into significant computation
complexity. On the other hand, the advantage of making several passes over P or portions of it, is
that they are able to produce better programs.

Alternatively to these approaches, we can use our intuition about the number and the size of the
partitions of P. The intuition for such a partitioning is that there exist three classes of items (see
[31]):

10 D. Katsaros, Y. Manolopoulos / Data & Knowledge Engineering 49 (2004) 1–21
• A practically constant number of items with high probability.
• Items belonging to a few large groups.
• Leftover items, which contribute negligibly to the total delay.

The items belonging to the first category are those that very ‘‘hot’’ and constitute the great
majority of requests from all users. They represent the high overlap between the clients� interests.
The items of the second group are definitely less popular than the respective of the first category and
they represent the common interests of large groups (‘‘communities’’) of users. Finally, the items
belonging to the last category represent the individual client (or small group of clients) interests.

The intuition for the existence of this partitioning is that, due to the rounding, the probabilities
of the successive groups decrease exponentially fast [31] and thus we need a relatively large
number of items of the second category to ‘‘compensate’’ for the popularity of a first category
item and a fairly large number of third category items to ‘‘compensate’’ for the popularity of a
first category item.

The question that arises is how to design a low time complexity scheme that uses the above
intuition in order to derive a partition of P.
3.2. The CascadedWebcasting scheme

The above intuition suggests that, regardless of the number of disks that must be used, initially
the items can be clustered into groups using as clustering criterion their popularity. Such a
clustering criterion is present in all the bottom–up and one-scan schemes used for program
generation, but the generated clusters reflect also the different philosophies adopted by each
scheme. For instance, the Bucketing scheme implements this clustering, although it is done in a
very crude way (cluster the items using the value of

ffiffiffiffi
pi

p �mindi2Df
ffiffiffiffi
pi

p g). The Growing Segments
scheme has a similar clustering criterion, but it is very primitive since it assigns one item to each
partition. Of course, this is not a problem for this algorithm because it will subsequently try
successively larger partitions.

Using this intuition about the clustering, we propose a bottom–up scheme that uses ‘‘prede-
termined’’ initial ‘‘seed’’ partitions, which subsequently are greedily concatenated, until the
number of partitions becomes equal to the number of available broadcast disks. Our scheme
requires us to make two decisions. The first concerns the sizes of the ‘‘seed’’ partitions and the
second one concerns the criterion for performing partition merging.

The decision of the sizes of these ‘‘seed’’ partitions is crucial because it affects both the speed of
the partitioning and the quality (in terms of average delay) of the generated program. To achieve a
balance between these two factors, the sizes of these ‘‘seed’’ partitions are selected to be powers of
2, that is, 20; 21; 22;

The second decision regards the criterion for concatenating two successive partitions. Adopting
a greedy approach we choose to merge the two successive partitions that result in the greatest
reduction in the total average access delay.

Putting them together, we have the following algorithm for the CascadedWebcasting: initially,
we generate the ‘‘seed’’ partitions P 0

1 ; P
0
2 ; . . . ; P

0
m . Then we perform m� k merging steps ðm ¼

blog2ðnþ 1ÞcÞ. At the ith merging step ð16 i6 m� kÞ the algorithm tries m� i� 1 concatenations

D. Katsaros, Y. Manolopoulos / Data & Knowledge Engineering 49 (2004) 1–21 11
and selects the one, which incurs the least expected cost. Due to the way the partitions are
concatenated and due to the size of the initial ‘‘seed’’ partitions, it is obvious that at each step of
the algorithm the size of a partition is always smaller than the size of its successive partition, (thus
respecting Lemma 3 of [26]).

If the number n of items is not equal to 2m � 1, but it is 2m � 1 < nð¼ 2m � 1þ bÞ < 2mþ1 � 1 for
some b > 0, then we treat the first 2m � 1 items with the procedure mentioned above and simply
append the last b items to the last disk. Fig. 2 presents the pseudocode for the CascadedWeb-

casting scheme for broadcast program generation.
The above procedure requires that mð¼ blog2ðnþ 1ÞcÞP k, otherwise it will not be able to ex-

ploit all the k broadcast disks. Of course, there are some application environments where the
above inequality does not hold, for instance when we have to broadcast, say, a hundred items over
7 six disks or in an even more extreme example when we have to broadcast 16 items over 10
channels. Although we can always find such an application environment, in the Webcasting ap-
plication we expect that the number of items to be broadcasted will be very large and the number
of disks fairly small. We have already presented in Section 1.1 that the number of items can grow
to a few thousands. Moreover, due to the fact that a very large number of disks causes significant
increase in the total expected delay, we expect that the number of disks (as suggested in [32], pp.
32) will vary between 2 and 5.
3.3. Time complexity of CascadedWebcasting

We will give the time complexity of the algorithm for two cases: (a) assuming minimal available
storage space for intermediate results, and (b) assuming enough storage space to hold interme-
diate results.
Fig. 2. The Cascaded scheme for Webcasting.

12 D. Katsaros, Y. Manolopoulos / Data & Knowledge Engineering 49 (2004) 1–21
Minimal storage space. Under this setting the available space is large enough to hold only the
vector P of access probabilities and a few numbers that indicate the partition borders. The space
required for holding P is n. The maximum of space required to hold the partition borders during
the execution of the Webcasting is m and the minimum is k. Under this model, at each merging step
the algorithm needs to compute the probability sums of the items of every candidate partition (see
Eq. (5)) in order to select the partition that gives the smallest access delay. This implies repeated
access to the vector P.

Since the number of passes over P, is
Pm�k

i¼1 ðm� iÞ, we deduce that, with storage overhead equal
to nþ m:

Proposition 3.1. The time complexity of the CascadedWebcasting scheme isO n � ðlogðnÞ�kÞðlogðnÞþk�1Þ
2

� �
.

or

Proposition 3.2. The time complexity of the CascadedWebcasting scheme is Oðn � ðlog2ðnÞ � k2ÞÞ.

Adequate storage space. Under this setting, apart from the space to store the vector P and the
partition borders, we are allowed to store the sum of access probabilities of the individual par-
titions after each merging step and the number of items they contain. Thus, we need another 2 � m
space (at most). Therefore, we need at most nþ 3 � m storage space. We realize that this setting is
the realistic one, since it represents the typical way that the Webcasting algorithm would be im-
plemented.

Initially, at a cost of XðnÞ we make one pass over P to compute the sums ðS0
1 ; S

0
2 ; . . . ; S

0
m Þ of the

access probabilities of the items belonging to each ‘‘seed’’ partitions P 0
1 ; P

0
2 ; . . . ; P

0
m . Thus, we re-

duce the vector P to another vector S of length m, where the sums S0
i , ð16 i6 mÞ are stored. The

merging steps of the CascadedWebcasting will run over this vector. Next, we try all candidate
mergings. This costs ðm� 1Þ2, since the size of the vector S at this point is m� 1 (we have per-
formed a partition merge) and there are m� 1 candidates. We assume a Oð1Þ to select the mini-
mum cost candidate partition and a Oð1Þ cost to compute the sum between two successive
partitions S0

i ; S
0
j , ði < jÞ. This procedure (testing of candidate merges) will repeat for all the re-

maining steps of the algorithm until we have k partitions. In each successive step the size of the
vector S shrinks at one position and so does the number of candidates. Thus:
Proposition 3.3. The cost Ccasc
merge of partition merging is Ccasc

merge ¼
Pkþ1

i¼1 ðm� iÞ2.

It is obvious that
Proposition 3.4. The complexity of the merging procedure is Oðk � m2Þ or Oðk � log2ðnÞÞ.

and thus:
Proposition 3.5. The complexity of the CascadedWebcasting is Oðnþ k � log2ðnÞÞ. For most
practical cases this cost will be dominated by the OðnÞ factor.

D. Katsaros, Y. Manolopoulos / Data & Knowledge Engineering 49 (2004) 1–21 13
4. Performance evaluation

In order to evaluate the performance of the algorithms, we used synthetic as well as real data.
We used as performance measures the running times 3 of the algorithms and the average access
delay, as determined by Eq. (5). We evaluated the following algorithms: Bucketing (bucket),
CascadedWebcasting (casc), Growing Segments (gs), Data Based (db), Greedy (Safok) and
Variant Fanout with the constraint K (VF K). We present also the performance of the Flat (flat)
broadcast scheme and of an Optimal (opt) Webcasting scheme. The Flat algorithm is the one that
uses only one broadcast disk. The Optimal algorithm can be implemented either as a variation of
the A� search algorithm (described in [25]) or with the use of dynamic programming (described in
[27]). Both versions of the Optimal scheme avoid the exhaustive enumeration of all possible
partitionings. In this work we implemented the latter scheme because it is much faster. The
performance of the flat (opt) acts as the upper (lower) bound on the average access delay of the
algorithms. We do not report the running times of the Optimal, since they are more than one
order of magnitude larger than the respective times of the slowest algorithm.

4.1. Experiments with synthetic data

In order to evaluate the performance of the algorithms over a wide range of data characteristics
we generated synthetic data. We assume that the demand probabilities follow the Zipfian dis-
tribution. A similar setting was followed by other works as well (see [23,24,27,33]). The Zipfian
distribution can be expressed as
3 A
pi ¼
ð1=iÞhPn
i¼1ð1=iÞ

h 16 i6 n; ð7Þ
where the parameter h controls the skewness of the distribution. For h ¼ 0 the Zipfian reduces to
the uniform distribution, whereas larger values of h derive increasingly skewer distributions. A
plot of this function can be seen at Fig. 3. The generated access probabilities of the vector P were
not ordered, so the reported execution time of the algorithms includes the time required to sort the
vector P. For all data sets that were tested, the cost of sorting the vector P did not exceed 0.01 s,
which is an order of magnitude smaller than the execution time of Growing Segments, Safok, VF K

and of the Data Based method. Thus, the sorting time is not the bottleneck on the performance of
the algorithms.

The parameters of our model that will be studied are the number k of broadcast disks, the
skewness of the access probability and the size n of the database D. A data set will be denoted as
DvDTvTNvN , where vD reveals the number of disks, vT is the value of parameter h and vN is the
number of data items. An underscore (_) instead of vD, vT , vN will imply that we vary this pa-
rameter across a range of values. Our default setting will be D4T0:91N4K denoting a database of
4096 items to be partitioned in four disks, where the value of h is 0.91. For the Growing Segments

we had to select a value for the increment. Since, [24] provides no method for setting the value of
ll experiments were carried out in a Pentium III 933 MHz with 512 MB RAM running under Windows 2000.

Fig. 3. Plot of the function used to generate synthetic data.

14 D. Katsaros, Y. Manolopoulos / Data & Knowledge Engineering 49 (2004) 1–21
increment, we selected a value of 32, which is a moderate choice, and used it for all the experiments
we conducted.

In the first set of experiments, we evaluated the performance of the algorithms with respect to
the number of broadcast disks. The results can be seen at the top part of Fig. 4. The general
observation is that in terms of average delay the CascadedWebcasting scheme performs very close
(around 10%) to the Optimal. In particular, its performance deviates from the optimal (around
20%) only for the cases when either the number of disks is very small (2 or 3) or when it is very
large (e.g., 9) compared the number of the initial ‘‘seed’’ partitions. This is expected because in the
former case the partition points required are very few whereas in the latter case the algorithm does
not have many opportunities to perform partition merges. Regarding the performance of the rest
of the algorithms, we can see that they all perform equally well and their differences are not easily
noticeable. This fact strengthens the main motive of our work, which states that slight im-
provements in the total expected delay do not favor one algorithm over the other, especially in the
case of Webcasting where we deal with the ‘‘average’’ client and approximate knowledge of the
item probabilities.

As long as the execution time of the algorithms is concerned, the CascadedWebcasting and the
Bucketing scheme are the best and incur a constant cost of only a few milliseconds, practically
independent on the number of disks. The performance of the Growing Segments methods grows
linearly with the number of disks. Similarly, linear is the performance of VF K and of the Safok, but
with much smaller rate of increase. The time performance of the Data Based method presents a
particularity: it reduces with increasing number of disks. Intuitively, this result can be explained
by the fact that an increasing number of disks results in smaller qi. This can also be seen by
Proposition 2.7, where a decrease in qi (implying also an increase in li) results in smaller execution
time.

The second set of experiments measures the scalability of the algorithms in terms of the size of
the database D. The results can be seen at the middle part of Fig. 4. As long as the average access
delay is concerned, we observe that all algorithms incur an increase, which is linear in the database

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

2 3 4 5 6 7 8 9

av
er

ag
e

ac
ce

ss
 d

el
ay

number of disks

D_T0.91N4K

bucket
casc

gs
db

safok
vfk
opt
flat

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

2 3 4 5 6 7 8 9

ex
ec

ut
io

n
tim

e
(s

ec
)

number of disks

D_T0.91N4K

bucket
casc

gs
db

safok
vfk

0

5000

10000

15000

20000

25000

30000

35000

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

av
er

ag
e

ac
ce

ss
 d

el
ay

number of items

D4T0.91N_

bucket
casc

gs
db

safok
vfk
opt
flat

0

2

4

6

8

10

12

14

0 2000 4000 6000 8000 10000 12000 14000 16000 18000

ex
ec

ut
io

n
tim

e
(s

ec
)

number of items

D4T0.91N_

bucket
casc

gs
db

safok
vfk

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0.2 0.4 0.6 0.8 1 1.2

av
er

ag
e

ac
ce

ss
 d

el
ay

skew

D4T_N4K

bucket
casc

gs
db

safok
vfk
opt
flat

0

0.2

0.4

0.6

0.8

1

1.2

0.2 0.4 0.6 0.8 1 1.2

ex
ec

ut
io

n
tim

e
(s

ec
)

skew

D4T_N4K

bucket
casc

gs
db

safok
vfk

Fig. 4. Left average access delay, Right execution time.

D. Katsaros, Y. Manolopoulos / Data & Knowledge Engineering 49 (2004) 1–21 15

16 D. Katsaros, Y. Manolopoulos / Data & Knowledge Engineering 49 (2004) 1–21
size. This is expected since larger D implies a larger broadcast cycle. Apart from the Bucketing

scheme, all the other algorithms incur alike average access delay. The deviation of the Cascaded-
Webcasting from the optimal is approximately 15%.

As long as the time complexity is concerned, we can see that the CascadedWebcasting and the
Bucketing scheme incur practically zero time cost. The cost of all the other methods increases
parabolically with the database size, implying a dependence on the square of the number of items.
It is interesting to note here that although Proposition 2.7 does not involve the square of the
database size into the cost of Data Based, this is implicitly involved. For skewed access prob-
abilities the value of qi remains very high for all the phases of the algorithm, because few items are
allocated to the first fast disks.

In the third set of experiments, we evaluated the sensitivity of the algorithms to the skewness of
the access probabilities. The results can be seen at the bottom part of Fig. 4. In general, the access
delay of all the schemes decreases with increasing value of h. As expected, the performance of the
CascadedWebcasting in not very good in the absence of skewness on the access pattern. But, when
the skewness becomes apparent its performance improves considerably and approaches that of the
other algorithms. We can see that there is ‘‘characteristic’’ value for h (here is equal to 0.6), be-
yond which the performance of the CascadedWebcasting converges to the optimal one. For low
values of skewness the performance of the CascadedWebcasting is around 50% from the optimal,
but when the skewness becomes apparent this percentage drops to less than 10%. Again, the
performance of the Bucketing scheme is the worst of all schemes.

In terms of execution time, the performance of the Bucketing and the CascadedWebcasting

scheme is independent on the skewness. This is due to the fact that both algorithms make ‘‘pre-
specified’’ decisions. For the Bucketing scheme, this decision is embedded into the computation of
d, whereas for the CascadedWebcasting scheme this decision is embedded into the definition of the
initial ‘‘seed’’ partitions P 0

1 ; P
0
2 ; . . . ; P

0
m . The performance of the Growing Segments is constant (ig-

noring some insignificant variance). This observation is consistent with Proposition 2.4. The ex-
ecution time of Data Based grows linearly with increasing skewness. This can be explained by
Proposition 2.7. The term qi increases with increasing skewness, whereas the term li decreases with
increasing skewness. Finally, the execution time of VF K grows quadratically with a very small
multiplicative constant. We performed an experiment with the dataset D4T0.91N4K andmeasured
the average size of the disk that is split at each phase of VF K as a function of skewness. The results
are depicted in Table 1. Similar to the VF K , are the observations for the Safok, although this al-
gorithm incurs a larger cost, since at each split decision it makes some more ‘‘bookkeeping’’.
Table 1

The average size of the disk that is split by VF K at each phase

h Average examined disk size

0.2 2024.8

0.4 2026.8

0.6 2036.4

0.8 2139.2

1.0 2339.8

1.2 2392.4

1.4 2420.4

D. Katsaros, Y. Manolopoulos / Data & Knowledge Engineering 49 (2004) 1–21 17
In light of the above results, we conclude that the CascadedWebcasting and the VF K method are
the most robust, managing to achieve average access delay very close to the optimal one and small
execution time.

4.2. What if n 6¼ 2blogðnþ1Þc?

In this subsection, we investigate the impact of our decision to treat in the partitioning phase of
the CascadedWebcasting only a part of the data, when the number of database items is not equal
to 2m � 1, and append the rest to the last (slowest) disk. We examined the interaction of this
decision with both the number of items that do not participate in the partitioning phase and with
the varying skewness. We also give the performance of the Optimal and of the VF K scheme.

Fig. 5 demonstrates two representative cases of the impact of this decision. The left part of the
figure shows the results for a database of 3000 items with varying skewness in access probability
(dataset D4T_N3000) and the right part of the figure shows the results for fixed skewness
ðh ¼ 0; 91Þ for a database of varying size (dataset D4T0.91N_). The CascadedWebcasting scheme
in these cases will seek for a partitioning of the first 2047 items and will append the rest of the
items to the last disk.

The left part of the figure is similar to the respective part of Fig. 4. The only difference is be-
tween the ‘‘characteristic’’ value for h, which is now larger (0.8 vs. 0.6). Thus, we can understand
that even though we ignore some database items during the partitioning phase and append them
lastly, the existence of skewness in the access pattern prevents serious deteriorations to the per-
formance of the CascadedWebcasting.

From the right part of the figure we observe that although the performance of the Cascaded-

Webcasting diverges from the optimal with increasing number of ignored items, it manages to
maintain very good average access time even in the case that ignores almost half of the database
items (process 2047 items and appends the rest 1953(¼ 4000) 2074)). This can be explained from
the fact that the contribution of the last items to the total access delay is negligible (see Section 3).
0

1000

2000

3000

4000

5000

6000

7000

0.2 0.4 0.6 0.8 1 1.2 1.4

av
er

ag
e

ac
ce

ss
 d

el
ay

skew

D4T_N3K

bucket
casc

gs
db

safok
vfk
opt
flat

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

2200 2400 2600 2800 3000 3200 3400 3600 3800 4000

av
er

ag
e

ac
ce

ss
 d

el
ay

number of items

D4T0.91N_

casc
db
vfk
flat
opt

Fig. 5. Average access delay as: (Left) a function of the skew when large number of items is ignored and (Right) a

function of the number of items ignored.

18 D. Katsaros, Y. Manolopoulos / Data & Knowledge Engineering 49 (2004) 1–21
It is easily understood that the divergence from the optimal will be smaller in larger databases
(e.g., jDj ¼ 8500) because in these cases the contribution of the last items is even smaller.

4.3. Experiments with real Web data

In order to confirm the performance of the algorithms with real data, we conducted an ex-
periment with a Web server trace. Moreover, the interest in validating our results with real data
lies in the fact that the access probabilities in real traces sometimes are not modelled very good
with the Eq. (7). We experimented with data available at http://ita.ee.lbl.gov/html/traces.html.
Specifically, we used the ClarkNet trace. We used the first week of requests and we cleansed the
log file (e.g., by removing CGI scripts, staled requests, etc.). Then, we removed all the items whose
support (normalized number of appearances in the trace) was less than 0.00001. After this pre-
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

ac
ce

ss
 p

ro
ba

bi
lit

y

Skewness in real data

population

Fig. 6. Access probabilities for the items of the Web server trace.

0

5000

10000

15000

20000

25000

30000

35000

40000

2 3 4 5 6 7 8 9

av
er

ag
e

ac
ce

ss
 d

el
ay

number of disks

Web server data

Bucket
casc

gs
db

safok
vfk
opt
flat

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

2 3 4 5 6 7 8 9

ex
ec

ut
io

n
tim

e
(s

ec
)

number of disks

Web server data

Bucket
casc

gs
db

safok
vfk

Fig. 7. Left access delay, Right execution time for real data.

http://ita.ee.lbl.gov/html/traces.html

D. Katsaros, Y. Manolopoulos / Data & Knowledge Engineering 49 (2004) 1–21 19
processing, remained around 8300 items. We discarded some of them so as to keep only the first
8192(¼ 214) items. The plot of the probability distribution of the items is shown in Fig. 6. Observe
the striking similarity of this plot with that shown in Fig. 3.

The results of this experiment are depicted in Fig. 7. In general, the results are very similar with
that illustrated at the top part of Fig. 4. We can see that the performance of the CascadedWeb-

casting scheme with respect to average access time is not very good only for the case of a large
number of disks (9), but becomes almost identical to the best performing schemes for all other
number of disks. A large number of disks does not give many alternatives for performing disk
merges to the CascadedWebcasting scheme. The observations for the time performance of the
scheme is similar with those reported in Section 4.1.
5. Conclusions

We considered the problem of creating Webcasting programs for push-based environments
when the items are equi-sized and their access probabilities are known. When the size of the
items are not equal, techniques such as those presented in [27] can be adopted. Based on the
broadcast-disks paradigm, we identified the need for scalable in terms of database size algo-
rithms. No prior work exists that addressed the issue of scalable algorithms for push-based
environments.

We analyzed the time complexity of the existing algorithms and showed their dependency on
the database size and/or the skewness of the access probabilities.

We proposed a new algorithm, CascadedWebcasting, which is designed to be fast in execution
and to take advantage of the skewness in access probabilities. Its execution time is almost linear in
the number of transmitted items and the average access delay it incurs, is very close to that of the
optimal algorithm.

Using a synthetic data generator, the performance of CascadedWebcasting was compared
against that of Bucketing, Growing Segments, Data-Based, Greedy and Variant fanout with the
constraint K and also that of the two baseline algorithms, Flat and Optimal. Our experiments
showed that CascadedWebcasting incurs the smallest execution time, never more than 0.02 seconds.
Its performance (in execution time) is not affected by the number of broadcast disks or the
skewness of the access pattern. The execution time of Greedy, Variant fanout with the constraint K,
and Growing Segments grows linearly with the number of disks, whereas the running time of
Greedy, Variant fanout with the constraint K, and Data Based grows linearly with the skewness.
Moreover, CascadedWebcasting achieves constant execution time (<0.02 seconds) for large data-
bases comprised by a few thousands items, whereas the execution time of all the other algorithms
(except from Bucketing) grows quadratically with the database size.

In addition, CascadedWebcasting is very robust and capable of producing hierarchical
broadcast programs with average access time, which is very close to the optimal one. The average
access delay it incurs is never more than 15% (on the average) from that of the optimal algorithm.

Finally, we confirmed all the above results using real data, taken from the trace file of a Web
server.

In summary, CascadedWebcasting is a very fast, robust and efficient algorithm for creating
hierarchical Webcasting programs for large-scale push-based delivery.

20 D. Katsaros, Y. Manolopoulos / Data & Knowledge Engineering 49 (2004) 1–21
References

[1] O. Ercetin, L. Tassiulas, Push-based information delivery in two stage satellite-terrestrial wireless systems, IEEE

Transactions on Computers 50 (5) (2001) 506–518.

[2] P. Rodriguez, E. Biersack, Bringing the Web to the network edge: large caches and satellite distribution, ACM/

Kluwer Mobile Networks and Applications 7 (2002) 67–78.

[3] E. Pitoura, G. Samaras, Data Management for Mobile Computing, Kluwer Academic Publishers, 1998.

[4] S. Acharya, R. Alonso, M. Franklin, S.B. Zdonik, Broadcast disks: data management for asymmetric

communications environments, in: Proceedings of the ACM International Conference on Management of Data

(SIGMOD), 1995, pp. 199–210.

[5] J.W. Wong, Broadcast delivery, Proceedings of the IEEE 76 (12) (1988) 1566–1577.

[6] M. Franklin, S. Zdonik, Data in your face: Push technology in perspective, in: Proceedings of the ACM

International Conference on Management of Data (SIGMOD), 1998, pp. 516–519.

[7] M. Franklin, Client Data Caching: A Foundation for High Performance Object Database Systems, Kluwer

Academic Publishers, 1996.

[8] M. Franklin, S. Zdonik, A framework for scalable dissemination-based systems, in: Proceedings of the ACM

International Conference on Object-Oriented Programming Systems, Languages and Applications (OOPSLA),

1997, pp. 94–105.

[9] M. Cherniack, M. Franklin, S. Zdonik, Expressing user profiles for data recharging, IEEE Personal

Communications 8 (4) (2001) 32–38.

[10] A. Alber, Videotex/Teletext: Principles and Practices, McGraw-Hill, 1985.

[11] D. Gifford, Polychannel systems for mass digital communications, Communications of the ACM 33 (2) (1990) 141–

151.

[12] T. Bowen, G. Gopal, G. Herman, T. Hickey, K. Lee, W. Mansfield, J. Raitz, A. Weinrib, The Datacycle

architecture, Communications of the ACM 35 (12) (1992) 71–81.

[13] T. Liao, Global information broadcast: an architecture for internet push channels, IEEE Internet Computing 4 (4)

(2000) 16–25.

[14] SkyCache, http://www.skycache.com.

[15] L. Breslau, P. Cao, L. Fan, G. Phillips, S. Shenker, Web caching and Zipf-like distributions: evidence and

implications, in: Proceedings of the IEEE Conference on Computer Communications (INFOCOMM), 1999, pp.

126–134.

[16] S. Anily, C. Glass, R. Hassin, The scheduling of maintenance service, Discrete Applied Mathematics 82 (1998) 27–

42.

[17] C.-J. Su, Tassiulas, Joint broadcast scheduling and user�s cache management for efficient information delivery,

ACM/Baltzer Wireless Networks 6 (2000) 137–147.

[18] E. Pitoura, P. Chrysanthis, Exploiting versions for handling updates in broadcast disks, in: Proceedings of 25th

International Conference on Very Large Data Bases (VLDB), 1999, pp. 114–125.

[19] S. Acharya, M. Franklin, S.B. Zdonik, Prefetching from a broadcast disk, in: Proceedings of the IEEE Conference

on Data Engineering (ICDE), 1996, pp. 276–285.

[20] L. Tassiulas, C. Su, Optimal memory management strategies for a mobile user in a broadcast data delivery system,

IEEE Journal on Selected Areas in Communications 15 (7) (1997) 1226–1238.

[21] S. Khanna, V. Liberatore, On broadcast disk paging, SIAM Journal on Computing 29 (5) (2000) 1683–1702.

[22] T. Imielinski, S. Viswanathan, B. Badrinath, Data on air: organization and access, IEEE Transactions of

Knowledge and Data Engineering 9 (3) (1997) 353–372.

[23] N. Vaidya, H. Sohail, Scheduling data broadcast in asymmetric communication environments, ACM/Baltzer

Wireless Networks 5 (3) (1999) 171–182.

[24] J.-H. Hwang, S. Cho, C.-S. Hwang, Optimized scheduling on broadcast disks, in: K.-L. Tan, et al. (Eds.),

Proceedings of the International Conference on Mobile Data Management (MDM), Vol. 1987 of Lecture Notes in

Computer Science, Springer-Verlag, 2001, pp. 91–104.

[25] W.-C. Peng, M.-S. Chen, Efficient channel allocation tree generation for data broadcasting in a mobile computing

environment, ACM/Kluwer Wireless Networks 9 (2) (2003) 117–129.

http://www.skycache.com

D. Katsaros, Y. Manolopoulos / Data & Knowledge Engineering 49 (2004) 1–21 21
[26] C.-H. Hsu, G. Lee, A. Chen, A near optimal algorithm for generating broadcast programs on multiple channels, in:

Proceedings of the ACM International Conference on Information and Knowledge Management (CIKM), 2001,

pp. 303–309.

[27] W. Yee, S. Navathe, E. Omiecinski, C. Jermaine, Bridging the gap between response time and energy-efficiency in

broadcast schedule design, in: Proceedings of the International Conference on Extending Data Base Technology

(EDBT), Vol. 2287 of Lecture Notes in Computer Science, Springer-Verlag, 2002, pp. 572–589.

[28] D. Aksoy, M. Franklin, R ·W: a scheduling approach for large-scale on-demand data broadcast, IEEE/ACM

Transactions on Networking 7 (6) (1999) 846–860.

[29] K. Stathatos, N. Roussopoulos, J.S. Baras, Adaptive data broadcast in hybrid networks, in: Proceedings of 23rd

International Conference on Very Large Data Bases (VLDB), 1997, pp. 326–335.

[30] J. Yu, T. Sakata, K.-L. Tan, Statistical estimation of access frequencies in data broadcasting environments, ACM/

Baltzer Wireless Networks 6 (2) (2000) 89–98.

[31] C. Kenyon, N. Schabanel, N. Young, Polynomial-time approximation scheme for data broadcast, in: Proceedings

of the 32nd ACM Symposium on the Theory of Computing (STOC), 2000, pp. 659–666.

[32] S. Acharya, Broadcast Disks: Dissemination-based Data Management for Asymmetric Communication Environ-

ments, Ph.D. Thesis, Department of Computer Science, Brown University, May 1998.

[33] C.-J. Su, L. Tassiulas, V. Tsotras, Broadcast scheduling for information distribution, ACM/Baltzer Wireless

Networks 5 (2) (1999) 137–147.

Dimitrios Katsaros was born in Thetidio-Farsala, Greece in 1974. He received a B.Sc. in Computer Science
from the Aristotle University of Thessaloniki, Greece (1997). He spent a year (July 1997–June 1998) as a
visiting researcher at the Department of Pure and Applied Mathematics at the University of L�Aquila, Italy.
Currently, he is a Ph.D. candidate at the Computer Science Department of Aristotle University. His research
interests include Web databases, semistructured data and mobile data management. He is an editor of the
book Wireless Information Highways, which will be published by IDEA Inc. in 2004.
Yannis Manolopoulos was born in Thessaloniki, Greece in 1957. He received a B.E. (1981) in Electrical
Engineering and a Ph.D. (1986) in Computer Engineering, both from the Aristotle University of Thessaloniki.
Currently, he is Professor at the Department of Informatics of the latter university. He has been with the
Department of Computer Science of the University of Toronto, the Department of Computer Science of the
University of Maryland at College Park and the University of Cyprus. He has published over 130 papers in
refereed scientific journals and conference proceedings. He is co-author of a book on ‘‘Advanced Database
Indexing’’ and ‘‘Advanced Signature Indexing for Multimedia and Web Applications’’ by Kluwer. He is also
author of two textbooks on Data Structures and File Structures, which are recommended in the vast majority
of the computer science/engineering departments in Greece. He served/serves as PC Co-chair of the 8th
Panhellenic Conference in Informatics (2001), the 6th ADBIS Conference (2002) the 5th WDAS Workshop
(2003), the 8th SSTD Symposium (2003) and the 1st Balkan Conference in Informatics (2003). Also, currently
he is Vice-chairman of the Greek Computer Society. His research interests include access methods and query
processing for databases, data mining, and performance evaluation of storage subsystems. For more infor-

mation, please visit http://delab.csd.auth.gr/~manolopo/yannis.html.

http://delab.csd.auth.gr/~manolopo/yannis.html

	Broadcast program generation for Webcasting
	Introduction
	Web+Push technology=Webcasting
	Related work and motivation
	Contributions

	Preliminaries
	Problem formulation
	Time complexities of the current approaches for program generation

	The Cascaded scheme for Webcasting
	The basic intuition
	The CascadedWebcasting scheme
	Time complexity of CascadedWebcasting

	Performance evaluation
	Experiments with synthetic data
	What if n≠2⌊log(n+1)⌋ ?
	Experiments with real Web data

	Conclusions
	References

