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Abstract 

 

Hidden Web databases maintain a collection of specialised documents, which are dynamically 

generated using page templates. This paper presents the Two-Phase Sampling (2PS) technique 

that detects and extracts query-related information from documents contained in databases. 2PS 

is based on a two-phase framework for the sampling, information extraction and summarisation 

of Hidden Web documents. In the first phase, 2PS samples and stores documents for further 

analysis. In the second phase, it detects Web page templates from sampled documents and 

extracts relevant information from which a content summary is then generated. Experimental 

results demonstrate that 2PS effectively eliminates irrelevant information from sampled 

documents and generates terms and frequencies with improved accuracy. 

 

Keywords: Hidden Web Databases; Information Extraction; Document Sampling. 

  

1. Introduction 

 

Conventional and general-purpose search engines (e.g., Yahoo and Google) continuously 

expand their indexing capacity in order to accommodate the growth of Web pages. Search 

engines employ Web crawlers (a.k.a. spiders, robots) to index static Web pages through 



hyperlinks. However, these crawlers are unable to index a large amount of publicly accessible 

information, which includes dynamically generated Web pages through scripts or queries, 

multimedia objects and non-HTML files. Collectively, such information has become the largest 

growing category of information on the Internet and is referred to as ‘Hidden Web’ [8], 

‘Invisible Web’ [23] or ‘Deep Web’ [3]. 

 

In this paper, we focus on databases that dynamically generate documents through queries.  

Examples of such documents are archives, user manuals and news articles, which contain the 

following distinguishing characteristics. 

• Hidden Web documents are only accessible through the search interfaces of underlying 

databases. 

• Knowledge about the contents of documents maintained in databases is often unavailable.  

• Hidden Web documents are dynamically generated through one or more Web page 

templates.  

 

The above characteristics of Hidden Web document databases raise a number of issues. For 

instance, with the proliferation of databases, it has become prohibitive for specialised search 

services (e.g., search.com) and subject directories (e.g., Open Directory Project)  [16] to 

manually evaluate databases in order to assist users in their searches.   

 

Current approaches [5, 8, 14, 15, 25] employ the techniques of database selection or 

categorisation to facilitate information search of databases. The former selects databases that 

contain information relevant to a user’s query. Database categorisation automatically assigns 

databases into subject categories in order to assist users in browsing or searching for 

information. These techniques typically require knowledge about the contents of databases. In 

the domain of the Hidden Web, knowledge about database contents is unavailable. Thus, a 



common approach to acquiring such knowledge is through the generation of statistics (i.e., 

terms and frequencies) from documents stored in databases. As it is not practical to retrieve all 

documents of a database to generate such statistical information, research studies [5, 14, 15, 25] 

obtain a number of documents from the underlying database through sampling. A major issue 

associated with these techniques is that they extract irrelevant information. Such information is 

often found in Web page templates, which contain navigation panels, search interfaces and 

advertisements. Consequently, the accuracy of terms and frequencies generated is reduced.  

 

Given that current sampling processes generate statistics that include irrelevant information, a 

mechanism to extract relevant information from sampled documents is necessary. We review 

several techniques [1, 6, 12, 13, 17, 18] that access or extract information from dynamic Web 

pages. In particular, the techniques in [1, 6, 17] perform well in the extraction of data from 

dynamic pages when a search interface contains a set of clearly labelled fields. For instance, a 

bookstore Web site enables users to query its database about authors and titles of publications.  

Information related to a given author and publication title can be identified from the 

dynamically generated Web pages.  However, it is more difficult to identify relevant 

information from result pages, when little or no information is available from keyword-only 

search interfaces. The research in [19, 20] analyses dynamically generated Web pages, but it 

does not further determine whether information contained in the pages is relevant to queries.  

 

The review of sampling and information extraction techniques identifies their limitations and 

associated problems. This provides the motivation for our research in addressing these issues. 

The focus of this research is placed on the generation of statistics (i.e., terms and frequencies) 

about a database with improved accuracy, in particular, the problem associated with the 

extraction of relevant information from documents through random sampling. For instance, 

when a document database is queried using a randomly selected term, dynamically generated 

documents often contain irrelevant information. This information is typically used to assist users 



in navigation or to describe the document contents, yet the extraction of such information results 

in the generation of terms and frequencies with reduced accuracy.    

 

Therefore, this paper proposes a system, Two-Phase Sampling (2PS), which aims to extract 

relevant information from dynamic documents through which statistics with improved accuracy 

can be generated.  2PS is based on a two-phase framework for the sampling, extraction and 

summarisation of Hidden Web databases and is validated through the implementation of a 

prototype system. The evaluation is performed through experiments, which are conducted on a 

number of real-world Hidden Web databases. These databases contain computer manuals, 

healthcare archives and news articles. Our technique is assessed in terms of: (i) effectiveness in 

detecting Web page templates from sampled documents (ii) relevancy of information (extracted 

from the documents) to respective queries and (iii) the accuracy of terms and frequencies that 

are generated from sampled documents.  

 

Experimental results demonstrate that 2PS effectively detects a large number of Web page 

templates from the sampled documents. We also found that our technique provides an effective 

mechanism to detect dynamically generated Web pages that do not contain query results, such 

as error and exception pages. Moreover, 2PS effectively identifies and eliminates information 

contained in Web page templates from sampled documents. Therefore, terms that are relevant to 

queries have attained high frequencies when top 20 terms are examined. When compared with 

query-based sampling, the results also show that 2PS generates statistics with improved 

accuracy, particularly in terms of precision. 

 

The contributions of the proposed approach are summarised as follows.  

• 2PS effectively detects information contained in Web page templates from sampled 

documents. The detection of such information enhances the effectiveness of extracting 



relevant information, as templates contain irrelevant terms for navigation or descriptive 

purposes. Our approach differs from sampling techniques currently employed, which do 

not further analyse the contents of sampled documents to extract relevant information 

only. 

• 2PS extracts terms that are relevant to queries from documents and generates statistics 

(i.e., terms and frequencies) with improved accuracy. This is opposed to the techniques 

employed in [5, 14, 25], which extract all terms from sampled documents, including those 

contained in Web page templates.  Consequently, information that is irrelevant to queries 

is also extracted. 

 

The remainder of the paper is organised as follows. Section 2 introduces current approaches to 

the discovery of information contents in Hidden Web databases. Related work on information 

extraction from dynamically generated Web pages is also discussed. Section 3 describes the 

proposed 2PS technique. Section 4 presents the evaluation of the proposed approach and reports 

on the experimental results. Section 5 concludes the paper. 

 

2. Related Work 

 

This section reviews current research and addresses a number of associated issues. A major area 

of current research into Hidden Web databases focuses on the automatic discovery of their 

information contents, in order to facilitate the process of database selection or categorisation. 

For instance, the technique proposed in [9] analyses the hyperlink structures of databases to 

determine their similarity in content.  That is, databases with similar contents are discovered 

through Web pages that are linked to databases. This approach is based on the premise that all 

information contained in Web pages that are linked to a database is relevant to its content, but in 

practice Web pages may contain information irrelevant to database content.  



An alternative is to examine the actual content of an underlying database by retrieving its 

documents. A problem associated with this approach is that it is difficult to obtain all documents 

from a database, particularly in the domain of Hidden Web. Thus, a number of techniques [5, 

14, 25] retrieve the required number of documents through sampling. For instance, query-based 

sampling [5] generates terms and frequencies from sampled documents. This technique is 

applied in database selection where databases relevant to a user’s query can be selected based 

on their terms and frequencies. The research conducted in [14, 25] sample databases with terms 

extracted from Web logs to obtain additional topic terms and frequencies. These terms and 

frequencies are also referred to as Language Models [5], Textual Models [14, 25] or Centroids 

[15].  

 

A major issue regarding the aforementioned sampling techniques is that they extract 

information that is not relevant to queries. Irrelevant information (e.g., navigation or descriptive 

contents) is often found in Web page templates. For example, a language model generated from 

the sampled documents of the Combined Health Information Database (CHID) contains terms 

such as ‘author’ and ‘format’ with high frequencies. These terms are not relevant to queries but 

are used for descriptive purposes. Consequently, the accuracy of terms and frequencies 

generated from the documents has been reduced. The use of additional stop-word lists has been 

considered in [5] to eliminate irrelevant terms - but the study maintains that such a technique 

can be difficult to apply in practice.   

 

Existing techniques in information extraction from Web pages are of varying degrees of 

complexity. A simple text-based analysis of Web pages is performed in [18], which applies 

approximate string matching techniques to extract texts that are different. This approach is, 

however, limited to finding textual similarities and differences.  

 



Several techniques have also been developed to address issues associated with the access or 

extraction of information contained in Hidden Web databases. For instance, the research in [12, 

13] focuses on the submission of query forms in preparation for data extraction from dynamic 

Web pages. Moreover, the techniques applied in [1, 6, 17] work well in the extraction of 

information from Web pages dynamically generated in response to the query entered in the 

fields of a search form. For example, a library database typically requires users to enter the 

name of an author and title of a publication. Information associated with these fields can then be 

identified from dynamic Web pages. However, in instances of keyword-only search interfaces 

where little or no additional information is given, it may be difficult to determine which 

information from dynamic Web pages is related to respective queries.  

 

The approach proposed in [19, 20] analyses textual contents and tag structures in order to 

extract data from Web pages. However, it requires Web pages with well-conformed HTML tag-

trees. Computation is also required to convert and analyse Web pages in a tree-like structure. 

Moreover, this approach identifies Web page templates based on a number of pre-defined 

templates, such as exception page templates and result page templates.   

 

A number of studies [4, 7, 24] divide the contents of Web pages into blocks from which 

informative contents are identified. The approach in [24] assigns importance values to blocks in 

a Web page. However, when applying such an approach in the generation of statistics from the 

relevant contents of pages, the degree of importance in which blocks contain informative 

contents has yet to be determined. Similarly, [4] adopts a block-based approach to the analysis 

of Web page contents, which determines the rankings of Web pages to facilitate information 

search.  A mechanism is also required to apply this technique in the extraction of relevant 

contents from pages. Moreover, blocks that are considered to be informative by [7] may also 

contain irrelevant contents.  For instance, a block of text found in a CHID sampled document 



contains information relevant to healthcare. However, irrelevant terms such as ‘author’ and 

‘abstract’ are also found in the text. 

 

In terms of template detection, the algorithms proposed by [2] require that pages, links, and 

pagelets from a given collection of documents are stored as local database tables. This incurs 

extra processing time and storage.  

 

In this paper, we focus on databases with a keyword-only search interface, which dynamically 

generate documents (e.g., archives and news articles). A distinct characteristic of documents 

found in such a domain is that the content of a document is often accompanied by other 

information for descriptive or navigation purposes. The proposed 2PS technique detects and 

eliminates template related information from sampled documents in order to identify query-

related information. This differs from the approach in [6, 17], which extracts a set of data from 

dynamic Web pages in relation to query fields given in the search interface. Our technique also 

differs from [1] since we further determine the relevancy of information from sampled 

documents and eliminate information that is dynamically generated but irrelevant to queries. 

 

In addition, we analyse Web documents based on textual contents and associated neighbouring 

tag structures rather than analysing their contents in a tree-like structure (e.g., Document Object 

Model (DOM)). A previous experiment conducted in [10] found that the proposed TNATS 

technique is faster, when compared with the approach based on tree-like structures. Our 

approach requires less computation to analyse dynamic Web page contents whilst the accuracy 

in extracting relevant information (in terms of recall and precision) has been maintained or 

improved. We also detect information contained in different templates through which 

documents are generated. Therefore, it is not restricted to a pre-defined set of page templates.  

 



3. The Two-Phase Sampling (2PS) Approach 

 

This section presents the proposed technique for extracting information from Hidden Web 

document databases in two phases, which we refer to as Two-Phase Sampling (2PS). Figure 1 

depicts the process of sampling a database and extracting query-related information from the 

sampled documents. In phase one, 2PS obtains randomly sampled documents. In phase two, it 

detects Web page templates, extracts information relevant to the queries and then generates 

terms and frequencies to summarise the database content. The two phases are detailed in section 

3.1 and 3.2. 

 

 
Figure 1. Overview of Two-Phase Sampling (2PS). In phase one, documents are sampled by 
submitting queries with terms randomly selected from those contained in search interface pages 
and documents that have been sampled. Phase two detects Web page templates from sampled 
documents and extracts relevant information, from which terms and frequencies are generated. 
 
 
3.1. Phase One: Document Sampling 

 

In the first phase, two sources of information are utilised to provide terms for sampling a 

database. These include terms extracted from the search interface pages of the database and 

subsequently sampled documents.  That is, we initiate the process of sampling documents from 

a database with a randomly selected term from those contained in the search interface pages of 

the database. As search interface pages often contain information related to the underlying 



database, this provides a good collection of terms for initiating the sampling process. 

Alternatively, initial terms can also be selected from frequently used terms to query the 

database, which is employed in [5]. This retrieves top N documents where N represents the 

number of documents that are the most relevant to the query.  

 

A subsequent query term is then randomly selected from terms extracted from the sampled 

documents. This process is repeated until a pre-determined number of documents are sampled. 

The number of documents to be sampled from a database is determined by the requirement of 

the system. For instance, research work [5] shows that 300 sampled documents provide a 

sufficient representation for the content of a database. The sampled documents are stored locally 

for further analysis in the second phase.  

 

Algorithm 1 The SampleDocument Algorithm 
 
//Input: the URL address of the search interface page of a database 
//Output: a given number of sampled documents 
Extract tq from terms contained in the search interface pages of D, Q = tq 
i = 0 // i as the number of documents that have been sampled 
While  (i < n) // n as the number of documents to sample 

Randomly select a query term, qtp, from Q  
If (qtp has not been selected previously) 

Submit the query, qtp, to D 
j = 0 // j as the number of documents that have been retrieved for the query 
While j <= N  //Retrieve N documents  

If (di ∉ R)  //R as the group of documents that have been previously retrieved 
Retrieve di from D 
Extract tr from di,  
R = di, Q = tr  //Update the group of previously retrieved documents, R, with 

//di and update the term collection, Q, with tr 
j = j + 1 

End if 
End while 

End if  
i = i + 1 

End while 

 

Algorithm 1 illustrates the process that obtains a number of randomly sampled documents. tq 

denotes a term extracted from the search interface pages of a database, D. qtp represents a query 



term selected from a collection of terms, Q, qtp ∈ Q, 1 ≤ p ≤ m; where m is the distinct number 

of terms extracted from the search interface pages and the documents that have been sampled. R 

represents the set of documents randomly sampled from D. tr is a term extracted from di. di 

represents a sampled document from D, di ∈ D, 1 ≤ i ≤ n, where n is the number of documents 

to sample.  

 

2PS differs from query-based sampling in terms of selecting an initial query. The query-based 

sampling technique selects an initial term from a list of frequently used terms. 2PS initiates the 

sampling process with a term randomly selected from those contained in the search interface 

pages of the database. This utilises a source that may contain information related to its content. 

Moreover, 2PS analyses the sampled documents in the second phase in order to extract query-

related information. By contrast, query-based sampling does not analyse their contents to 

determine whether terms are relevant to queries. 

 

3.2 Phase Two: Document Content Extraction and Summarisation 

 

The documents sampled from the first phase are further analysed in order to extract information 

relevant to the queries. This is followed by the generation of terms and frequencies to represent 

the content of the underlying database. This phase contains the following processes. 

 

3.2.1 Generate Document Content Representations 

 

The content of each sampled document is converted into a list of text and tag segments. Tag 

segments include start tags, end tags and single tags specified in HyperText Markup Language 

(HTML). Text segments are text that resides between two tag segments. The document content 

is then represented by text segments and their neighbouring tag segments, which we refer to as 



Text with Neighbouring Adjacent Tag Segments (TNATS). The neighbouring adjacent tag 

segments of a text segment are defined as the list of tag segments that are located immediately 

before and after the text segment until another text segment is reached. The neighbouring tag 

segments of a text segment describe how the text segment is structured and its relation to the 

nearest text segments. Assume that a document contains n segments, a text segment, txs, is 

defined as:  

txs = (txi, tg-lstj, tg-lstk) 

where txi is the textual content of the ith text segment, 1 ≤ i ≤ n; tg-lstj represents p tag segments 

located before txi and tg-lstk represents q tag segments located after txi until another text segment 

is reached. tg-lstj = (tg1, …, tgp), 1 ≤ j ≤ p and tg-lstk = (tg1, …, tgq), 1 ≤ k ≤ q.  

 

Figure 2 shows a template-generated document retrieved from the CHID database. The source 

code for this document is given in Figure 3.  

 

  
Figure 2. A document dynamically generated from CHID contains navigational and descriptive 
contents. 
 
 
 



 
… 
<HTML><HEAD><TITLE>CHID Document 
</TITLE></HEAD> 
<BODY> 
<HR><H3><B><I> 1.  Equipos Mas Seguros: Si 
Te Inyectas Drogas. 
</I></B></H3> 
<I><B>Subfile: </B></I> 
AIDS Education<BR> 
<I><B>Format (FM): </B></I> 
08 - Brochure.  
<BR> 
… 

 

 

 

 

 

 

 

Figure 3. Source code for the CHID document. 
 
 
 

In this example, text segment, ‘1.  Equipos Mas Seguros: Si Te Inyectas Drogas.’, can be 

identified by the text (i.e., ‘1.  Equipos Mas Seguros: Si Te Inyectas Drogas.’) and its 

neighbouring tag segments. These include the list of tags located before the text (i.e., </TITLE>, 

</HEAD>, <BODY>, <HR>, <H3>, <B> and <I>) and the neighbouring tags located after the 

text (i.e., </I>, </B>, </H3>, <I> and <B>). Therefore, this segment is represented as (‘1.  

Equipos Mas Seguros: Si Te Inyectas Drogas.’, (</TITLE>, </HEAD>, <BODY>, <HR>, 

<H3>, <B> ,<I>), (</I>, </B>, </H3>, <I>, <B>)). Figure 4 shows the generated TNATS 

content representation of the CHID document (given in Figure 3).  

 

Assume that a sampled document, d, contains n text segments, the content of d is then 

represented as:  

Content(d) =  {txs1, …, txsn} 

where txsi  represents a text segment, 1 ≤ i ≤ n. 

 

 

 



 

 

 

 

 
 
 
 
 
 

… 
‘CHID Document’, (<HTML>, <HEAD>, 
<TITLE>), (</TITLE>, </HEAD>,  <BODY>, 
<HR>, <H3>, <B>, <I>); 
‘1.  Equipos Mas Seguros: Si Te Inyectas 
Drogas.’, (</TITLE>, </HEAD>, <BODY>, 
<HR>, <H3>, <B>, <I>), (</I>, </B>, </H3>, 
<I>, <B>); 
‘Subfile:’, (</I>, </B>, </H3>, <I>, <B>), (</B>, 
</I>); 
‘AIDS Education’, (</B>, </I>), (<BR>, <I>, 
<B>); 
‘Format (FM):’, (<BR>, <I>, <B>), (</B>, </I>); 
… 

Figure 4. TNATS content representation of a CHID document. 

  

3.2.2Detect Templates  

 

In the domain of Hidden Web databases, documents are often presented to users through one or 

more templates. Templates are typically employed in order to describe document contents or to 

assist users in navigation. For example, information contained in the document (as shown 

previously in Figure 2) can be classified into two categories as follows.  

(i) Template-Generated Information. This includes information such as navigation panels, 

search interfaces and advertisements.  In addition, information may be given to describe 

the content of a document. Such information is irrelevant to a user’s query. For 

example, navigation links (such as ‘Next Doc’ and ‘Last Doc’) and headings (such  as 

‘Subfile’ and ‘Format’) are found in the document.  

(ii) Query-Related Information. This information is retrieved in response to a user’s query, 

i.e., ‘1.  Equipos Mas Seguros: Si Te Inyectas Drogas. …’.  

 

The 2PS technique detects Web page templates employed by databases to generate documents 

in order to extract information that is relevant to queries. Algorithm 2 describes the process that 

detects information contained in Web page templates from n sampled documents. di, dj represent 



a sampled document from the database D, di, dj ∈ D, 1 ≤ i, j ≤ n. Content(di) denotes the content 

representation of di where Content(dj) denotes the content representation of dj. 

 

Similar to the representation for the contents of sampled documents, the content of a Web page 

template, wpt, is represented as Content(wpt) = {txs1, …, txsq}, where q is the number of text 

segments, txsj, 1 ≤ j ≤ q. T represents a set of templates detected.  T = {wpt1, …, wptr}, where r 

is the distinct number of templates, wptk, 1 ≤ k ≤ r. Gk represents a group of documents 

generated from wptk. Furthermore, S represents the sampled documents from which no 

templates have yet been detected. Thus, S = {d1, …, ds}, where s is the number of temporarily 

stored documents. 

 

Algorithm 2 The DetectTemplate Algorithm 
 
//Input: the sampled documents 
//Output: the sampled documents in which information contained in templates is eliminated 
 
s = 0 
For i = 1 to n 
 If T = ∅   

If S = ∅   
S = di, s = s +1  //Update S (with di,) in which no templates have yet been detected 

Else if S ≠ ∅ 
        j = 0       

  k = 0 
  //Check di with S in which no templates have been detected  

While j <= s AND T = ∅ 
Compare (Content(di),Content(dj))   //Identify any repeated patterns from di, dj 
If Content(di) ≈ Content(dj)   

wptk = Content(di) ∩ Content(dj)  
Store wptk, T = wptk  //Store repeated patterns as a template 
Delete (Content(di) ∩ Content(dj)) from Content(di), Content(dj) 
Gk = di, Gk = dj  //Update Gk with di, dj 
Delete dj from S  //Remove dj from S 

End if 
j = j +1 
k = k +1 

End while 
If T = ∅ //If no template found from di, dj 
S = di //Update S with di 
End if 

End if          



 
(Contd.) 

Else if T ≠ ∅ 
      k = 0 

While di ∉ G   
Compare (Content(wptk), Content(di)) 

    If Content(wptk) ≈ Content(di)   //If repeated patterns are found  
Delete (Content(wptk) ∩ Content(di)) from Content(di) //Eliminate template from di 
Gk = di  //Update Gk with di 

End if 
k = k +1 

End while  
 
//Check di with temporarily stored documents, S, for templates 
If S ≠ ∅ AND di ∉ G 
      j = 0  

While j <= s AND di ∉ G 
Compare (Content(di),Content(dj))  
If Content(di) ≈ Content(dj)  //If repeated patterns are found 

wpt = Content(di) ∩ Content(dj)   
Store wpt, T = wpt  //Store repeated patterns as a template 

Delete (Content(di) ∩ Content(dj)) from Content(di), Content(dj) 
// Create Gk+1 to store di, dj, in which a template is found 
Gk+1 = di, Gk+1 = dj   
Delete dj from S  //Remove dj  from S 

End if 
j = j +1 

End while 
End if 
 
If di ∉ G  //If no template found 

S = di  //Update S with di 
End if  

End if 
End for 

 
 
 

The process of detecting templates is executed until all sampled documents are analysed. This 

results in the identification of one or more templates. For each template, two or more documents 

are assigned to a group associated with the template from which the documents are generated. 

Each document contains text segments that are not found in their respective template. These text 

segments are partially related to their queries. In addition to a set of templates, the content 

representations of zero or more documents in which no matched patterns are found are stored 

for further analysis. 



3.2.3 Extract Query-Related Information  

 

This section illustrates the process of analysing sampled documents, which are associated with 

the templates detected previously (as described in section 3.2.2). The group of documents 

associated with each template are analysed. It further identifies any repeated patterns from the 

remaining text segments of the documents in order to extract query-related information. The 

process of extracting query-related information is detailed as follows. 

(i) Identify text segments that are highly similar in content. For each template detected, the 

TNATS representations of the documents are analysed if a group of documents are 

generated from the template.  Text similarity is computed on text segments (with identical 

tag structures) from different documents. Two segments are considered to be similar if 

their similarity exceeds a threshold value.  

(ii)  Extract the textual contents of text segments that are relevant to queries. This extracts the 

textual contents of the text segments with different tag structures, in addition to those of 

the text segments that have identical adjacent tag structures - but which are significantly 

different in contents.  

 

Cosine similarity [22] is applied to determine the similarities between the text segments of 

different documents that are associated with the template from which the documents are 

generated. The textual content of each text segment is represented as a vector of terms with 

weights. The weight of a term is obtained by the number of its occurrences in the segment.  

The computation of cosine similarity is given as follows. 
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txsi and txsj  represent two text segments in a document; twik is the weight of term k in txsi, and 

twjk is the weight of term k in txsj .  



The computation of text similarities is performed on the text segments with identical adjacent 

tag segments only. Two segments are considered to be similar if their similarity exceeds a 

threshold value. The threshold value is used in order to determine the relevancy of text 

segments in the documents. Such a value is determined experimentally from the given 

databases. Algorithm 3 gives the process of extracting information relevant to respective queries 

from the documents. da and db represent the sampled documents from the database, D,  da, db ∈ 

Gk, where Gk denotes a group of documents associated with the template, wptk, from which the 

documents are generated. txm represents the textual content of a text segment, txsm, contained in 

di, di ∈ Gk. txn represents the textual content of a text segment, txsn, contained in dl, dl ∈ S. S 

represents the sampled documents from which no templates are detected. 

 

Algorithm 3 The ExtractQueryInfo Algorithm 
 
//Input: a number of templates identified, each with a group of associated sampled documents 
//Output: the textual contents of remaining text segments from each of the documents 
 
//For each template detected, check the associated group of documents, Gk, for more template 
related information  
For each (da ∈ Gk) 

For each (db ∈ Gk), da ≠ db 
Compare (Content(da),Content(db)) 
If Content(da) ≈ Content(db) //if repeated patterns are found 
   //eliminate template from da, db 

Delete (Content(da) ∩ Content(db)) from Content(da), Content(db) 
End if 

End for 
End for 
 
//Extract the textual contents of remaining text segments from the documents in which templates 
are found 
For each (di ∈ G) 

Extract txm of txsm from Content(di)  
End for  
 
//Extract the textual contents of remaining text segments from the documents from which no 
templates are found 
For each (dj ∈ S) 

Extract txn of txsn from Content(dj) 
End for 
 
   



The above process identifies the text segments that have identical adjacent tag structures and are 

highly similar in their textual contents. Such segments are often used as page templates. For 

instance, text segments (including “…this library is free software; you can redistribute it and/or 

modify …” and “…this module is free software. It may be used, redistributed and/or 

modified… ”) are found in the Help Site sampled documents. These segments provide auxiliary 

information and are highly similar in content. We eliminate these segments from the documents.  

 

Remaining text segments in each document thus include the segments that have different 

neighbouring tag structures, and those segments that have identical adjacent tag structures but 

are significantly different in their textual contents. We consider remaining text segments to be 

relevant to queries since segments contained in templates are eliminated.  The process results in 

the extraction of the textual contents from remaining text segments. Figure 5 shows a fraction of 

information extracted from the document content representation (as previously shown in Figure 

4) as a result of eliminating information that is found in the Web page template.  

 

 

 

 

1.  Equipos Mas Seguros: Si Te Inyectas Drogas. 
AIDS Education 
… 

Figure 5. Query-related information extracted from the CHID document. 
 

 

3.2.4 Generate Content Summary  

 

We compute frequencies for the terms extracted from the previous process described in Section 

3.2.3. These summarise the information content of a database, which we refer to as Content 

Summary.  

 



Previous experiments in research study [5] demonstrate that randomly sampled documents (i.e., 

300 documents, 4 documents per query) sufficiently represent the content of a database, which 

is referred to as ‘language models’. Such a representation contains a number of term frequencies 

(i.e., the document frequency, collection term frequency and average term frequency). The 

study considers that these frequencies are more appropriate than inverse document frequency 

(idf) applied in traditional information retrieval - since the total number of documents in a 

database is typically unknown. In this paper, we also apply these frequencies in order to 

compare experimental results with those generated in [5]. The computation of the 

aforementioned frequencies is described as follows. 

• Document frequency (df): the number of documents in the collection of documents 

sampled that contain term t, where d is the document and f is the frequency  

• Collection term frequency (ctf): the occurrence of a term in the collection of documents 

sampled, where c is the collection, t is the term and f is the frequency 

• Average term frequency (avg_tf): the average frequency of a term obtained from dividing 

collection term frequency by document frequency (i.e., avg_tf  = ctf / df) 

 

The content summary of a document database is defined as follows. Assume that a Hidden Web 

database, D, is sampled with N documents. Each sampled document, d, is represented as a 

vector of terms and their associated weights [22]. Thus d = (w1, …, wm), where wi is the weight 

of term ti, and m is the number of distinct terms in d ∈ D, 1 ≤ i ≤ m. Each wi is computed using 

term frequency metrics, i.e., ctf, df and avg_tf. The content summary is then denoted as CS(D), 

which is generated from the vectors of sampled documents. Assume that n is the number of 

distinct terms in all sampled documents. CS(D) is then expressed as a vector of terms:  

CS(D)= {w1, …, wn} 

where wi is computed by adding the weights of ti in the documents sampled from D and dividing 

the sum by the number of sampled documents that contain ti, 1 ≤ i ≤ n. 



4. Evaluation of the 2PS Approach  

 

This section presents the evaluation of 2PS. We report on the experiments conducted to assess 

its effectiveness in terms of: (i) detecting Web page templates contained in dynamically 

generated documents from Hidden Web databases through sampling and (ii) extracting 

information that is relevant to queries from sampled documents.  

 

First, it describes the set up of our experiments. This is followed by the experimental results, 

which are compared with those from query-based sampling (QS). QS has been applied by other 

relevant studies for database selection or categorisation purposes [14, 15, 25]. Moreover, we 

compare 2PS with QS since the focus of this paper is to compare the proposed mechanism with 

a widely adopted sampling technique, which does not eliminate irrelevant information during 

the process of generating terms and frequencies from sampled documents. 

 

4.1 Experimental Setup 

 

Experiments are carried out on three real-world Hidden Web document databases, including 

Help Site, CHID and Wired News, which provide information about user manuals, healthcare 

archives and news articles, respectively. Table 1 summarises these databases in terms of their 

subjects, contents and the templates employed. 

 

Table 1. Three Hidden Web databases used in the experiments 

Database URL Subject Content Template 

Help Site www.help-site.com Computer 
manuals Homogeneous Multiple templates 

CHID www.chid.nih.gov Healthcare 
articles Homogeneous Single template 

Wired 
News www.wired.com General news 

articles Heterogeneous Single template 

 

http://www.help-site.com/
http://www.chid.nih.gov/
http://www.wired.com/


For instance, Help Site and CHID contain documents relating to subjects on computing and 

healthcare, respectively. These documents contain information that is homogeneous in content. 

By contrast, Wired News contains articles that relate to different subjects of interest. Where the 

number of templates used to generate documents is concerned, CHID and Wired News generate 

documents using a Web page template.  Help Site maintains a collection of documents produced 

by other information sources. Subsequently, different Web page templates are found in Help 

Site sampled documents.    

 

Experiments are conducted on the set of Hidden Web document databases from which results 

are generated and compared for both 2PS and QS. We obtain the sampled documents for QS by 

submitting the first query to a database with a frequently used term. Subsequent query terms are 

randomly selected from those contained in the sampled documents. QS extracts terms (including 

terms contained in Web page templates) and updates the frequencies after each document is 

sampled. By contrast, 2PS initiates the sampling process with a term contained in the search 

interface pages of a database. 2PS also analyses sampled documents in the second phase in 

order to extract query-related information, from which terms and frequencies are then generated. 

 

The experimental results in [5] conclude that QS obtains approximately 80% of terms from a 

database, when top 4 documents are retrieved for each query and 300 documents are sampled. 

These two parameters are therefore used in our experiments for QS and 2PS.  We obtain five 

sets of samples for each database, from which four documents are sampled for each query and a 

total of 300 documents are retrieved. Terms and frequencies are generated from the documents 

sampled.  

 

We manually process documents sampled from each database in order to observe the number of 

Web page templates employed by the databases and to identify information relevant to 

respective queries. The results provide the baseline for the experiments. Sampled documents are 



manually analysed as follows. First, each set of sampled documents is manually examined to 

obtain the number of Web page templates used to generate the documents. This is then 

compared with the number of templates detected by 2PS. The detection of Web page templates 

from the sampled documents is important as this determines whether irrelevant information is 

effectively eliminated.  

 

Next, given the Web page templates that have been identified previously through manual 

observation, we eliminate any information found in page templates from each sampled 

document.  Such information is included for navigation or descriptive purposes. For instance, a 

number of terms (including ‘author’ and ‘abstract’) are manually eliminated from the CHID 

documents, since these terms are used as auxiliary information only. We then generate terms 

and frequencies from those that remain in the document.   

 

The result of the above process provides the baseline in order to compare statistics generated 

using 2PS and QS. The number of relevant terms (from top 50 terms) retrieved using 2PS is 

compared with the number obtained by QS. Terms are ranked according to ctf and df 

frequencies to determine their relevancy to the queries. The ctf frequency represents the 

occurrences of a term contained in the sampled documents. Similarly, the df frequency of a term 

represents the number of documents in which the term appears. These frequencies are used to 

demonstrate the effectiveness of extracting query-related information from sampled documents 

since the terms extracted from Web page templates are often ranked with high ctf or df 

frequencies.  

 

Finally, we compare the performance of QS and 2PS in terms of recall and precision. Recall and 

precision techniques [22] (of information retrieval systems) are modified (shown below) in 

order to measure their performance.  

 



 

 

Number of relevant terms retrieved  
Recall  =  
 

Number of relevant terms in sampled documents 
 
 

Number of relevant terms retrieved  
Precision  =  
 

Number of terms retrieved from sampled documents 
 

 

A single measure, the F1 measure [21], is also computed in order to compare the overall results 

of the algorithms. This measures a combination of precision and recall and is defined as follows.  

 
F1 =  (2 * recall * precision) / (recall + precision) 

 
 

4.2 Results and Discussion 

 

This section reports on the experimental results, which are presented in the following categories. 

These categories include the detection of Web page templates from sampled documents, 

relevancy of terms retrieved and performance in terms of recall and precision.  

 

4.2.1 Detection of Web page Templates 

 

We compare the number of Web page templates employed by each of the databases and the 

number detected by 2PS in order to assess the effectiveness of template detection. Table 2 

shows that 2PS effectively identifies a larger number of templates from the Help Site sampled 

documents. However, a small number of templates are not detected from Help Site. For 

instance, 2PS detects 15 templates from the first set of sampled documents. Two of the 



templates employed are not detected, since these templates are very similar in terms of content 

and structure.  

 

Table 2. The number of templates employed by databases and the number detected by 2PS 

Number of templates Databases/ 
Sample set Employed Detected 

1 17 15 
2 17 16 
3 19 17 
4 16 14 

Help Site 

5 18 14 
CHID 1-5 1 1 

Wired News 1-5 1 1 
 
 
4.2.2 Retrieval of Relevant Terms 

 

We assess the effectiveness of 2PS by examining the number of relevant terms from top 50 

terms retrieved from the sampled documents of Help Site, CHID and Wired News. This is 

compared to the number of relevant terms retrieved using QS. In our experiments, the relevancy 

of terms to queries is determined based on whether the terms are found in Web page templates. 

 

Table 3, 4 and 5 summarise the number of relevant terms from top 50 terms ranked by ctf, df 

frequencies. The results generated from CHID and Wired News demonstrate that 2PS retrieves 

more relevant terms, as a large number of terms contained in the templates have been 

successfully eliminated from the top 50 terms. For instance, in the first set of documents 

sampled from CHID using 2PS, the number of relevant terms retrieved (ranked by ctf and df 

frequencies) is 47 and 44 respectively (as shown in Table 4). By comparison, the number of 

relevant terms obtained for QS is 20 and 12 respectively. In the case of the Help Site database, 

for the first set of documents sampled using 2PS, the number of relevant terms retrieved (ranked 

by ctf and df frequencies) is 48 and 42, respectively (as shown in Table 3). The number of 



relevant terms obtained for QS is 46 and 35, according to their ctf and df frequencies, 

respectively.  

 

The difference in the number of relevant terms (which appear in top 50 terms) retrieved by 2PS 

is less noticeable than the number by QS. Our observation is that the CHID database generates 

documents using one Web template, thus a number of terms used in the template appear in most 

of the sampled CHID documents. By comparison, a larger number of different Web page 

templates are found in the documents sampled from Help Site. As a result, only a small number 

of terms contained in the templates appear in top 50 terms. 

 

Table 3. The number of relevant terms retrieved from Help Site sampled documents  
(from top 50 terms ranked by ctf, df frequencies)  

Number of relevant terms 
ctf df Sample 

set QS 2PS QS 2PS 
1 46 48 35 42 
2 47 48 36 42 
3 46 48 35 41 
4 45 47 34 42 
5 46 48 34 41 

 
 
 

Table 4. The number of relevant terms retrieved from CHID sampled documents  
(from top 50 terms ranked by ctf, df frequencies)  

Number of relevant terms 
ctf df Sample 

set QS 2PS QS 2PS 
1 20 47 12 44 
2 19 47 12 45 
3 20 47 11 44 
4 18 46 11 44 
5 17 46 12 44 

 
 

 
 
 



Table 5. The number of relevant terms retrieved from Wired News sampled documents  
(from top 50 terms ranked by ctf, df frequencies)  

Number of relevant terms 
ctf df Sample 

set QS 2PS QS 2PS 
1 14 42 15 40 
2 10 43 14 38 
3 11 39 14 39 
4 14 43 14 40 
5 15 45 15 39 

 

 

Table 6 and 7 show the top 50 terms that are ranked according to their ctf frequencies retrieved 

from the first set of sampled documents of the CHID database. Table 6 shows the top 50 terms 

retrieved for QS whereby terms contained in Web page templates are not excluded. As a result, 

a number of terms (such as ‘author’, ‘language’ and ‘format’) have attained much higher 

frequencies. By contrast, Table 7 lists the top 50 terms retrieved using 2PS. Our technique 

eliminates terms (such as ‘author’ and ‘format’) and obtains terms (such as ‘treatment’, 

‘disease’ and ‘immunodeficiency’) in the higher rank. 

 

Table 6. Top 50 terms ranked by ctf generated from CHID when QS is applied 

Rank Term Rank Term Rank Term 
1 hiv 18 document 35 lg 
2 aids 19 disease 36 ve 
3 information 20 published 37 yr 
4 health 21 physical 38 ac 
5 prevention 22 subfile 39 corporate 
6 education 23 audience 40 mj 
7 tb 24 update 41 description 
8 accession 25 verification 42 www 
9 number 26 major 43 cn 

10 author 27 pamphlet 44 pd 
11 persons 28 chid 45 english 
12 language 29 human 46 national 
13 sheet 30 date 47 public 
14 format 31 abstract 48 immunodeficiency 
15 treatment 32 code 49 virus 
16 descriptors 33 ab 50 org 
17 availability 34 fm   

 



Table 7. Top 50 terms ranked by ctf generated from CHID when 2PS is applied 

Rank Term Rank Term Rank Term 
1 hiv 18 education 35 testing 
2 aids 19 virus 36 programs 
3 information 20 org 37 services 
4 health 21 notes 38 clinical 
5 prevention 22 nt 39 people 
6 tb 23 cdc 40 hepatitis 
7 persons 24 service 41 community 
8 sheet 25 box 42 world 
9 treatment 26 research 43 listed 

10 disease 27 department 44 professionals 
11 human 28 positive 45 training 
12 pamphlet 29 tuberculosis 46 diseases 
13 www 30 control 47 accession 
14 http 31 drug 48 network 
15 national 32 discusses 49 general 
16 public 33 ill 50 std 
17 immunodeficiency 34 organizations   

 

 

4.2.3 Extracting Query-Related Information 

 

The section presents the results of experiments with regard to the performance of 2PS and QS in 

the extraction of information from sampled documents. For each database, we examine whether 

information extracted from its documents is relevant to the query submitted to the database. The 

performance of these two techniques is measured in terms of recall and precision.  

 

Table 8, 9 and 10 summarise the performance of QS and 2PS in extracting query-related 

information from the sampled documents of Help Site, CHID and Wired News, respectively. 

Performance is measured in terms of recall and precision. As QS extracts all terms (including 

relevant and irrelevant terms) from the sampled documents, it attains a recall of 1.0 for all 

sample sets.  On the other hand, QS results in a much lower degree of precision. By comparison, 

2PS attains a lower recall since a number of relevant terms are eliminated as a result of their 

identical contents and tag structures. However, a higher degree of precision is obtained by 2PS, 



as a large amount of irrelevant information is eliminated. With regard to the overall 

performance, the results obtained from F1 demonstrate that 2PS performs better than QS for all 

sampled document sets from the three databases. In particular, 2PS attains much higher values 

in F1 for the CHID database.  

 
Table 8. The performance of extracting query-related information from Help Site sampled 

documents for QS and 2PS, measured in recall, precision and F1 
 

QS 2PS Sample 
set Recall Precision F1 Recall Precision F1 
1 1.0 0.88 0.93 0.93 0.97 0.95 
2 1.0 0.88 0.93 0.91 0.98 0.94 
3 1.0 0.86 0.92 0.91 0.97 0.94 
4 1.0 0.88 0.93 0.94 0.96 0.95 
5 1.0 0.85 0.91 0.92 0.97 0.94 

 
 

Table 9. The performance of extracting query-related information from CHID sampled 
documents for QS and 2PS, measured in recall, precision and F1 

 
QS 2PS Sample 

set Recall Precision F1 Recall Precision F1 
1 1.0 0.81 0.90 0.98 0.97 0.97 
2 1.0 0.80 0.89 0.98 0.98 0.98 
3 1.0 0.80 0.89 0.98 0.97 0.97 
4 1.0 0.81 0.90 0.98 0.97 0.97 
5 1.0 0.80 0.89 0.98 0.97 0.97 

 
 

Table 10. The performance of extracting query-related information from Wired News sampled 
documents for QS and 2PS, measured in recall, precision and F1 

 
QS 2PS Sample 

set Recall Precision F1 Recall Precision F1 
1 1.0 0.75 0.86 0.91 0.98 0.94 
2 1.0 0.74 0.85 0.90 0.97 0.93 
3 1.0 0.75 0.86 0.90 0.97 0.93 
4 1.0 0.75 0.86 0.91 0.98 0.94 
5 1.0 0.76 0.86 0.92 0.98 0.95 

 

Experimental results from the three document databases demonstrate that 2PS performs better 

than QS in the extraction of information when measured by the combination of recall and 



precision. However, 2PS incurs additional processing in detecting Web page templates from 

sampled documents.  The latter requires algorithms with a higher degree of complexity in order 

to generate statistics that contain a larger number of relevant terms. In contrast to 2PS, QS 

generates language models from the entire contents of documents sampled from databases, 

which results in the extraction of irrelevant contents. 

 

5. Conclusions and Future Work 

 

This paper presents a two-phase framework, 2PS, for the sampling, extraction, and 

summarisation of information from Hidden Web databases. 2PS extracts information relevant to 

queries from sampled documents and therefore generates statistics (i.e., terms and frequencies) 

with improved accuracy.  

 

We conduct a number of experiments on three real-world databases to determine the 

effectiveness of 2PS in the detection of Web page templates employed by databases to generate 

dynamic documents. The performance for the extraction of query-related information is also 

assessed. Experimental results demonstrate that our technique effectively identifies a large 

number of Web page templates from sampled documents. The detection of templates facilitates 

the elimination of information contained in templates. The results show that 2PS generates 

terms and frequencies of a higher degree of relevancy in terms of precision, when compared 

with query-based sampling.  

 

We obtain promising results by applying 2PS in experiments on three real-world document 

databases. Future work will include experiments on a larger number of Hidden Web databases 

to further assess the effectiveness of the proposed technique. 
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