
ar
X

iv
:c

s/
03

11
03

1v
1 

 [
cs

.D
B

] 
 2

1 
N

ov
 2

00
3

Towards an Intelligent Database System Founded

on the SP Theory of Computing and Cognition

J Gerard Wolff

CognitionResearch.org.uk

June 1, 2018

Abstract

The SP theory of computing and cognition, described in previous pub-

lications, is an attractive model for intelligent databases because it pro-

vides a simple but versatile format for different kinds of knowledge, it has

capabilities in artificial intelligence, and it can also function like estab-

lished database models when that is required.

This paper describes how the SP model can emulate other models

used in database applications and compares the SP model with those

other models. The artificial intelligence capabilities of the SP model are

reviewed and its relationship with other artificial intelligence systems is

described. Also considered are ways in which current prototypes may be

translated into an ‘industrial strength’ working system.

Keywords: Intelligent database, information compression, multiple align-

ment, database model, relational database, hierarchical database, network

database.

1 Introduction

The SP theory is a new theory of computing and cognition developed with
the aim of integrating and simplifying a range of concepts in computing and
cognitive science, with a particular emphasis on concepts in artificial intelligence.
An overview of the theory is presented in Wolff (2003b) and more detail may
be found in earlier publications cited there.

Amongst other things, the SP theory provides an attractive model for
database applications, especially those requiring a measure of human-like ‘in-
telligence’. There is, of course, a wide variety of existing database systems that
exhibit varying degrees and kinds of intelligence (Bertino et al., 2001) and it is
reasonable to ask what may be gained by creating yet another system in that
domain. In brief, the attractions of the SP model in this connection are that:

• It provides an extraordinarily simple yet versatile format for representing
knowledge that facilitates the seamless integration of different kinds of
knowledge.

1

http://arxiv.org/abs/cs/0311031v1


• It provides a framework for processing that knowledge that integrates and
simplifies a range of artificial intelligence functions including probabilistic
and exact forms of reasoning, unsupervised learning, fuzzy pattern recog-
nition, best-match information retrieval, planning, problem solving and
others.

• At the same time, it can function like established database models, when
that is required.

Prototypes of the SP system have been developed as software simulations
running on an ordinary computer. These prototypes serve to demonstrate what
can be done with the system and they provide the examples shown in this
paper. But a programme of further development will be required to translate
the prototypes into a system with ‘industrial strength’.

1.1 Aims and Presentation

The main aims of this paper are:

• To describe how the SP model can emulate other models used in database
applications and to compare the SP model with those other models.

• To review the artificial intelligence capabilities of the SP model and its
relationship with other artificial intelligence systems.

• To consider how current prototypes may be translated into a working
system.

This paper does not aim to provide a comprehensive view of the SP theory
and applications because this has already been provided in Wolff (2003b) and
earlier publications. The narrower focus of this paper is on the SP system as
an intelligent database system.

In the next section, the SP theory is described in outline. After that, Sections
3, 4 and 5 are concerned with the first aim listed above, Section 6 is concerned
with the second aim and Section 7 with the third.

2 Outline of the SP Theory

The SP theory is an abstract model of any system for processing information,
either natural or artificial. The system is Turing-equivalent in the sense that
it can model the workings of a universal Turing machine but, unlike the uni-
versal Turing machine and equivalent models such as Lamda Calculus or Post’s
Canonical System, it has much more to say about the nature of ‘intelligence’
(Wolff, 1999a). The entire theory is based on principles of minimum length
encoding pioneered by Ray Solomonoff (1964) and others (see Li and Vitányi
(1997)).

2



In broad terms, the system receives ‘New’ information from its environment
and transfers it to a repository of ‘Old’ information. At the same time, it tries
to compress the information as much as possible by finding patterns that match
each other and merging or ‘unifying’ patterns that are the same. An important
part of this process is the building of ‘multiple alignments’ as described below.
This provides the key to recognition, information retrieval, reasoning, learning,
and other aspects of intelligence to be reviewed in Section 6.

2.1 Representation of Knowledge

In the SP system, all knowledge is stored as arrays of atomic symbols in one
or two dimensions called patterns. In work to date, the main focus has been
on 1-D patterns but it is envisaged that, at some stage, the concepts will be
generalised to patterns in two dimensions.

Although this may seem to be a very limited format, it is possible within
the system to model a wide range of existing formats for knowledge, includ-
ing context-free and context-sensitive grammars, condition-action rules, tables,
networks and trees of various kinds, including class-inclusion hierarchies, part-
whole-hierarchies and discrimination networks. Some examples will be seen
below.

In the SP system, a symbol is simply a ‘mark’ that can be matched with
other symbols to decide in each case whether it is the ‘same’ or ‘different’.
There are no symbols in the system with ‘hidden’ meaning such as ‘multiply’ as
the meaning of ‘×’ in arithmetic or ‘add’ as the meaning of ‘+’. However, it is
possible to define the meaning of any given symbol in the SP system in terms
of other symbols and patterns that are associated with it in the system.

Within the system, constructs such as ‘variable’, ‘value’, ‘type’, ‘class’, ‘sub-
class’, ‘object’, ‘iteration’, ‘true’, ‘false’, and ‘negation’ are not provided ex-
plicitly. However, the effect of these constructs can be achieved by the use of
patterns and symbols, and we shall see some examples below.

2.2 Processing of Knowledge

When any one New pattern is received, the system tries to find the best possible
match between the New pattern and one or more of the Old patterns. The result
of this process is the creation of one or more multiple alignments, examples of
which will be seen below.1 Each multiple alignment is evaluated in terms of
the principles of minimum length encoding as explained in Wolff (2003b) and
earlier papers cited there.

Figure 1 is a simple example of the way in which a multiple alignment can
achieve the effect of parsing a sentence, with SP patterns representing grammat-
ical rules. By convention, the New pattern—which in this case is the sentence
to be parsed—is always shown in column 0. All the other columns contain Old

1The concept of multiple alignment in the SP framework is similar to that concept in
bioinformatics but there are important differences described in Wolff (2003b).

3



patterns, one pattern per column in any order. The Old patterns in this ex-
ample represent grammatical rules. For example, the pattern ‘S NP #NP V
#V NP #NP #S’ in column 7 is equivalent to ‘S → NP V NP’ in the con-
vention of re-write rules, and the pattern ‘NP D #D N #N #NP’ in column
5 is equivalent to ‘NP → D N’. The entire multiple alignment divides the sen-
tence into labelled parts and subparts like a conventional parsing and assigns a
grammatical category to each word.

Contrary to what this example may suggest, the system has at least the
expressive power of a context-sensitive grammar. More elaborate examples of
natural language processing in the SP system and a much fuller discussion of
this area of application may be found in Wolff (2000).

0 1 2 3 4 5 6 7 8

S

NP ---------- NP

D ---- D

0

this ---------------------- this

#D --- #D

N ----------------- N

1

boy -------------------------------------------------- boy

#N ---------------- #N

#NP --------- #NP

V ----- V

0

loves ---------------------------------- loves

#V ---- #V

NP ------------------------------ NP

D --- D

1

that --------------- that

#D -- #D

N ---- N

0

girl -- girl

#N --- #N

#NP ----------------------------- #NP

#S

0 1 2 3 4 5 6 7 8

Figure 1: An example of a multiple alignment that achieves the effect of parsing
a sentence, with SP patterns in columns 1 to 8 representing grammatical rules.

4



In one operation, the creation of multiple alignments achieves a range of
computational effects, depending on the kinds of Old pattern that are stored
in the system. These effects include ‘parsing’ (as in the example just shown),
‘recognition’ of an unknown entity, ‘retrieval’ of stored information, probabilistic
‘reasoning’, logical ‘deduction’, mathematical ‘calculation’, and more.

In cases where the New pattern cannot be fully matched with the Old pat-
terns, the system may ‘learn’ by creating patterns that are derived from multiple
alignments where partial matching has been achieved or, if there are no such
multiple alignments, from the New pattern itself (Wolff, 2002b). These system-
generated patterns are added to the repository of Old patterns. Periodically,
these patterns are evaluated in terms the principles of minimum length encod-
ing and the repository of Old patterns may be purged of patterns that are least
useful in those terms.

2.3 Computer Models

In the development of the SP theory, computer models have been created as a
way of reducing vagueness and inconsistencies in the theory, as a way of verifying
that the system really does work according to expectations, and as a means of
demonstrating what the system can do. Two main models have been developed
to date:

• SP61 which is a partial model of the system that builds multiple align-
ments from New and Old patterns (Wolff, 2000). This model does not
attempt any learning and it does not add any patterns to its repository of
Old patterns. All the Old patterns in the model must be supplied by the
user when the program starts. This model is relatively stable and provides
all the examples in this article.

• SP70 which is an augmented version of SP61 that builds multiple align-
ments and can learn by adding system-generated patterns to its repository
of Old patterns (Wolff, 2003c, 2002b). This model has already demon-
strated significant capabilities for learning but further work is needed to
realise the full potential of the model.

2.4 Arithmetic and Procedural Code

Since the SP system can model the operation of a universal Turing machine,
it can, in principle, be used for any kind of arithmetic or mathematical oper-
ation and it can, in principle, perform any kind of ‘procedure’ that one might
program in a procedural programming language such as C++ or Cobol. That
said, most applications that have been developed to date have a ‘declarative’
flavour and the ways in which the system may be applied to arithmetic or other
mathematical operations have not yet been explored in any depth (but see Wolff
(2002a)). This has a bearing on how the system may be developed for database
applications, as will be discussed in Section 7.

5



2.5 Computational Complexity

Many problems in artificial intelligence are known to be intractable if one wishes
to obtain the best possible answer. But if one is content with answers that are
merely ‘good enough’, then it is often possible to achieve dramatic reductions
in time complexity or space complexity or both.

These remarks apply to the multiple alignment problem in bioinformatics
and to the version of that problem that has been developed in the SP system.
For any realistic example, an exhaustive search of the abstract space of possible
multiple alignments is not possible and constraints must be applied, pruning
away large parts of the search space. In current models, the main emphasis is
on hill climbing and related techniques that concentrate search in areas that are
proving productive without ruling out any part of the search space a priori—and
with enough flexibility to be able to escape from ‘local peaks’.

In a serial processing environment, the time complexity of the SP61 model
is approximately O(log2 Ns × NsOs), where Ns is the number of symbols in
the New pattern and Os is the total number of symbols in the patterns in
Old. In a parallel processing environment, the time complexity may approach
O(log2 Ns ×Ns), depending on how well the parallel processing is applied. The
space complexity in serial or parallel environments is approximately O(Os).

In a serial processing environment, the time complexity of the SP70 model
is approximately O(Np

2) where Np is the number of patterns in New and it is
assumed that they are all of the same size or nearly so. In a parallel processing
environment, the time complexity may approach O(Np), depending on how well
the parallel processing is applied. In serial or parallel environments, the space
complexity is approximately O(Np).

3 The Relational Model

This section and the two that follow describe how the SP model may achieve
the effect of popular database models used in ‘mainstream’ data processing
applications. This section discusses the relational model, Section 4 is concerned
with the object-oriented model and Section 5 considers the hierarchical and
network models.

Consider a typical table from a relational database like the one shown in
Figure 1 (from the DreamHome example in Connolly and Begg (2002, p. 80)).
The same information can be represented using SP patterns, as shown in Figure
2.

Readers who are familiar with XML (Bray et al., 2000) will see that the
way in which tables are represented with SP patterns is essentially the same
as the way in which they are represented in XML. Each pattern begins with a
symbol ‘<staff>’ that identifies it as a pattern representing a member of staff
and there is a corresponding symbol, ‘</staff>’, at the end. Likewise, each field
within each pattern is marked by start and end symbols such as ‘<staff no> ...
</staff no>’ and ‘<first name> ... </first name>’.

6



Staff No. First Name Last Name Position Sex DoB Salary Branch No.

SL21 John White Manager M 1-Oct-45 30000 B005

SG37 Ann Beech Assistant F 10-Nov-60 12000 B003

SG14 David Ford Supervisor M 24-Mar-58 18000 B003

SA9 Mary Howe Assistant F 19-Feb-70 9000 B007

SG5 Susan Brand Manager F 3-Jun-40 24000 B003

SL41 Julie Lee Assistant F 13-Jun-65 9000 B005

Table 1: A typical table representing members of staff in a company (from
Connolly and Begg (2002, p. 80)).

<staff> 0

<staff_no> SL21 </staff_no>

<first_name> John </first_name>

<last_name> White </last_name>

<position> Manager </position>

<sex> M </sex>

<dob> 1-Oct-45 </dob>

<salary> 30000 </salary>

<branch_no> B005 </branch_no>

</staff>)

<staff> 1

<staff_no> SG37 </staff_no>

<first_name> Ann </first_name>

<last_name> Beech </last_name>

<position> Assistant </position>

<sex> F </sex>

<dob> 10-Nov-60 </dob>

<salary> 12000 </salary>

<branch_no> B003 </branch_no>

</staff>)

Figure 2: Two SP patterns representing the first two rows of the table shown
in Table 1.

Unlike XML, there is no restriction on the styles of symbols that may be
used. For example, ‘<staff> ... </staff>’, ‘<staff no> ... </staff no>’ and
‘<first name> ... </first name>’ may be replaced by symbols such as ‘staff ...
#staff’, ‘staff no ... #staff no’ and ‘first name ... #first name’, like the symbols
used in Figure 1. Any other style that is convenient may also be used. In other
applications, it may not be necessary to provide start and end symbols in some
of the patterns, and in some cases, start and end symbols may not be needed
at all.

At first sight, the SP (and XML) representation of a table is much more long-
winded and cumbersome than the representation shown in Figure 2. But a table
in a relational database—as it appears on a computer screen or a computer print-

7



out—is a simplified representation of what is stored in computer memory or on
a computer disk. In relational database systems, the ‘internal’ representation of
each table contains memory pointers or tags that are close analogues of symbols
like ‘<staff>’, </staff>’, ‘<staff no>’ and ‘</staff no>’ that appear in the
SP and XML representations. In short, the SP representation is essentially the
same as the ‘internal’ representation of a table in a relational database. The way
tables are printed out or displayed on a computer screen is largely a cosmetic
matter and there is no reason why tables in an SP database should not be
printed or displayed in the conventional style.

3.1 Retrieval of Information: Query by Example

In the SP system, the most natural way to retrieve information is in the manner
of ‘query-by-example’. To achieve this, patterns like those shown in Figure 2 are
stored as Old patterns and the query is created as a New pattern in the same
format as the stored patterns but with fewer symbols. For example, if we wish
to identify all the female staff at branch number B003, our query pattern would
be ‘<staff> <sex> F </sex> <branch no> B003 </branch no> </staff>’ or
even ‘<staff> F B003 </staff>’.

Given this query as the New pattern and patterns like those in Figure 2 as
Old patterns, SP61 creates a variety of multiple alignments but only two of them
match all the symbols in the New pattern. These two multiple alignments—
shown in Figure 3—identify all the female staff in branch B003, as required. As
previously noted, the New pattern in any multiple alignment is always shown
in column 0 and the remaining columns contain Old patterns, one pattern per
column.

Of course, there is no need for the results of the user’s query to be displayed
in the manner shown in Figure 3. As with the representation of tables, there
is no reason in principle why information should not be displayed or printed in
whatever format is convenient.

3.1.1 Retrieving Information from Two or More Tables

With relational databases, it is of course quite usual for a single query to retrieve
information from two or more tables. This subsection shows how this can be
done in the SP model with an example corresponding to a simple join between
two tables.

In the DreamHome example (Connolly and Begg, 2002, p. 80), there is one
table for clients and another for viewings of properties by clients. If we wish
to know which clients have viewed one or more properties and the comments
they have made (example 5.24 in Connolly and Begg (2002, p. 138)), we may
achieve this with an SQL query like this:

SELECT c.client no, first name, last name, property no, comment

FROM Client c, Viewing v

WHERE c.client no = v.client no;

8



0 1 0 1

<staff> ------ <staff> <staff> ------ <staff>

4 1

<staff_no> <staff_no>

SG5 SG37

</staff_no> </staff_no>

<first_name> <first_name>

Susan Ann

</first_name> </first_name>

<last_name> <last_name>

Brand Beech

</last_name> </last_name>

<position> <position>

Manager Assistant

</position> </position>

<sex> -------- <sex> <sex> -------- <sex>

F ------------ F F ------------ F

</sex> ------- </sex> </sex> ------- </sex>

<dob> <dob>

3-Jun-40 10-Nov-60

</dob> </dob>

<salary> <salary>

24000 12000

</salary> </salary>

<branch_no> -- <branch_no> <branch_no> -- <branch_no>

B003 --------- B003 B003 --------- B003

</branch_no> - </branch_no> </branch_no> - </branch_no>

</staff> ----- </staff> </staff> ----- </staff>

0 1 0 1

(a) (b)

Figure 3: The two best multiple alignments found by SP61 with the pattern
‘<staff> <sex> F </sex> <branch no> B003 </branch no> </staff>’ in New
and patterns in Old that include patterns representing Table 1. These two
multiple alignments are the only ones that provide a match for all the symbols
in the New pattern (shown in row 0 in each case).

In the SP model, an equivalent effect can be achieved by creating multiple
alignments like the one shown in Figure 4. This is one of the five best multiple
alignments created by SP61 with the pattern shown in column 0 in New and
patterns corresponding to the two tables in Old. Each of these five multiple
alignments shows details of a viewing (in column 1) and the client who is doing
the viewing (in column 2). No other multiple alignments match all the symbols
in New.

If the system is to build multiple alignments like the one shown in Figure
4, it is necessary for each pattern representing a viewing to refer to the client

9



0 1 2

<viewing> ------ <viewing>

11

<client> ------- <client>

6

<client_no>

CR76 ----------- CR76

</client_no>

<first_name> -------------------- <first_name>

John

</first_name> ------------------- </first_name>

<last_name> --------------------- <last_name>

Kay

</last_name> -------------------- </last_name>

<tel_no>

0207-774-5632

</tel_no>

<pref_type>

Flat

</pref_type>

<max_rent>

425

</max_rent>

</client> ------ </client>

<property_no> -- <property_no>

PG4

</property_no> - </property_no>

<view_date>

20-Apr-01

</view_date>

<comment> ------ <comment>

too

remote

</comment> ----- </comment>

</viewing> ----- </viewing>

0 1 2

Figure 4: One of the five best multiple alignments created by SP61 with the
pattern shown in column 0 in New and patterns representing tables for clients
and viewings in Old.

as ‘<client> ... </client>’ rather than ‘<client no> ... </client no>’ (where
‘...’ represents ‘CR76’ or other client number). This allows the system to access
details of the client such as ‘first name’ and ‘last name’.2

2To be fully consistent, the same idea should also be applied to the way in which a
property for rent is referenced from each of the ‘viewing’ patterns. This would mean
that ‘<property no> ... </property no>’ in each ‘viewing’ pattern would be changed to

10



3.2 Retrieval of Information: Query Languages

The SP system does not, in itself, provide any query language like SQL for the
retrieval of information. However, the system has proved to be effective in the
processing of natural languages (see Wolff (2000) and Section 6, below) and there
is no reason in principle why the same should not be true of artificial languages
like SQL. If a query language is deemed necessary, it should be possible to specify
the syntax of such a language using SP patterns and to process them within
the multiple alignment framework to achieve information retrieval as required.
These are matters requiring further investigation.

3.3 Comparison Between the SP Model and the Rela-

tional Model

One of the attractions of the relational model—and perhaps the main reason for
its popularity—is the simplicity of the idea of storing all database knowledge
in tables. This format is very suitable for much of the knowledge to be stored
in typical data processing applications but it is by no means ‘universal’. It is
not, for example, a good medium for representing any kind of grammar or the
kinds of if-then rules used in expert systems. It can be used to represent the
kinds of hierarchical structure associated with object-oriented design but it has
shortcomings in this connection, as we shall see in the next section.

A major difference between the relational model and the SP model is that
the SP model provides a format for knowledge that is even simpler than in the
relational model. Although this simplification may seem relatively slight, it has
a dramatic impact on what can be represented in the system. Many kinds of
knowledge that are outside the scope of the relational model can be accommo-
dated in the SP system and, as we shall see, it overcomes the weaknesses of the
relational model in representing hierarchical structures. At the same time, it
can accommodate the relational model when that is required.

The second main difference between the two models is that the relational
model is designed purely for the storage and retrieval of knowledge while the
SP model can, in addition, support a range of different kinds of intelligence, to
be reviewed in Section 6.

4 Object-Oriented Concepts

Since the invention of the Simula language for programming and simulation
in the 1960s (Birtwistle et al., 1973), there has been a growing recognition of
the value of organising software and databases into hierarchies of ‘classes’ and
‘subclasses’, with ‘inheritance’ of ‘attributes’ down each hierarchy to individual
‘objects’ at the bottom level. An associated idea is that any object may be
structured into a hierarchy of ‘parts’ and ‘subparts’. These ‘object-oriented’

‘<property> ... </property>’ and it would also mean that each of the five alignments would
include a column showing the property for rent.

11



concepts allow software and databases to model the structure of human con-
cepts (thus making them more comprehensible) and they help to minimise re-
dundancies in knowledge. And this makes it easier to modify any given body
of knowledge without introducing unwanted inconsistencies. In the database
world, object-oriented concepts have been developed in the ‘entity-relationship
model’ and the ‘enhanced entity-relationship model’ (see Connolly and Begg
(2002)) and also in a variety of ‘object-oriented databases’ (see Bertino et al.
(2001)). (In the remainder of this paper, the entity-relationship model and
enhanced entity-relationship model will be referred to collectively as the entity-
relationship model.)

In the SP system, all the object-oriented concepts mentioned in the previous
paragraph may be expressed and integrated using SP patterns, as illustrated
in Figure 5. As previously noted, column 0 contains the New pattern and the
remaining columns contain Old patterns, one pattern per column. The order of
the Old patterns is entirely arbitrary, without special significance.

In this figure, column 2 contains a pattern representing the class ‘vehicle’.
At this abstract level, a ‘vehicle’ in this example is something with a registra-
tion number, an engine, steering wheel, seats, and so on, but the details are
unspecified. Some of that detail is provided by the pattern in column 4 that
represents the subclass ‘car’. In this example, a car is a vehicle with 4 seats, 4
doors and 4 wheels and a relatively small space for carrying luggage. Yet more
detail is supplied by the pattern shown in column 1 that represents a specific
instance of a car with an identifier (‘v4’), a registration number (‘LMN 888’),
and with a gasoline type of engine with a capacity of 2 litres.

So far, we know relatively little about the engine in v4. More information is
supplied by the pattern in column 3 which represents the structure of the class
of internal combustion engines. At this abstract level, an engine is something
with fuel, a ‘capacity’, some level of ‘compression’, and a cylinder block, crank
shaft, piston and valves.

More detail about the engine in this vehicle is provided by the pattern in
column 5 which tells us that, as a gasoline-type engine, it runs on gasoline fuel,
that it has a (relatively) low compression and that, in addition to the parts
mentioned earlier, it has spark plugs and a carburettor. The main alternative
to gasoline-type engines is, of course, the diesel type—not shown in the figure—
which runs on diesel fuel, has a (relatively) high compression, and does not need
spark plugs or a carburettor.

Readers may wonder why the symbols ‘<v>’ and ‘</v>’ are used in the
patterns shown in columns 1, 2 and 4 and why ‘<e>’ and ‘</e>’ appear in
columns 1, 3 and 5. These symbols are, in effect, ‘punctuation’ symbols that
are needed to ensure that multiple alignments can be formed according to the
principles described in Wolff (2003b) and earlier publications.

4.1 Discussion

The multiple alignment concept, as it has been developed in the SP framework,
provides a means of expressing all the main constructs associated with object-

12



0 1 2 3 4 5

<vehicle> -------- <vehicle> ------------------------ <vehicle>

<car> ----------------------------------------------- <car>

<v4>

<v> -------------- <v> ------------------------------ <v>

<registration> --- <registration>

LMN - LMN

888 - 888

</registration> -- </registration>

<engine> --------- <engine> -------- <engine> ----------------------- <engine>

<gasoline_type> ----------------------------------------------------- <gasoline_type>

spark_plugs

carburettor

<e> -------------------------------- <e> ---------------------------- <e>

<fuel> ------------------------- <fuel>

gasoline

</fuel> ------------------------ </fuel>

<capacity> ------------------------- <capacity>

2000cc

</capacity> ------------------------ </capacity>

<compression> ------------------ <compression>

low

</compression> ----------------- </compression>

cylinder_block

crank_shaft

pistons

valves

</e> ------------------------------- </e> --------------------------- </e>

</gasoline_type> ---------------------------------------------------- </gasoline_type>

</engine> -------- </engine> ------- </engine> ---------------------- </engine>

steering_wheel

<seats> -------------------------- <seats>

4

</seats> ------------------------- </seats>

<doors> -------------------------- <doors>

4

</doors> ------------------------- </doors>

<load_space> --------------------- <load_space>

small

</load_space> -------------------- </load_space>

<wheels> ------------------------- <wheels>

4

</wheels> ------------------------ </wheels>

</v> ------------- </v> ----------------------------- </v>

</v4>

</car> ---------------------------------------------- </car>

</vehicle> ------- </vehicle> ----------------------- </vehicle>

0 1 2 3 4 5

Figure 5: A multiple alignment created by SP61 showing how object-oriented
constructs may be expressed in the SP framework.

oriented design:

• Classes, subclasses and objects. In Figure 5, there is a hierarchy of classes
from ‘vehicle’ at the top level (column 2) through ‘car’ at an intermediate
level (column 4) to an individual object (‘v4’ shown in column 1) at the
bottom level. The class ‘engine’ is also shown at an abstract level (column
3) and at a more concrete level (column 5).

13



• Inheritance of attributes. From the multiple alignment in Figure 5 we can
infer that v4 has a cylinder block, crank shaft, pistons and valves, that
the engine has a low compression, that the vehicle has 4 wheels, and so
on. None of these ‘attributes’ are specified in the pattern for v4 shown in
column 1. They are ‘inherited’ from patterns representing other classes,
in much the same way as in other object-oriented systems.

• Cross-classification and multiple inheritance. The multiple alignment
framework supports cross-classification with multiple inheritance just as
easily as it does simple class hierarchies with single inheritance. With our
‘vehicle’ example, it would be easy enough to introduce patterns represent-
ing, say, ‘military vehicles’ or ‘civilian vehicles’, a classification which cuts
across the division of vehicles into categories such as ‘car’, ‘bus’, ‘van’, and
so on. In a similar way, vehicles can be cross-classified as ‘gasoline type’
or ‘diesel type’ on the strength of the engines they contain, as shown in
our example.

• Parts and subparts. In our example, the class ‘vehicle’ has parts such as
‘engine’, ‘steering wheel’, ‘seats’, and so on, and the ‘engine’ has parts
such as ‘cylinder block’, ‘crank shaft’ etc. If there was only one type
of engine, then all the parts and other attributes of engines could be
expressed within the ‘vehicle’ pattern, without the need for a separate
pattern to represent the engine. The reason that a separate pattern is
needed—with a corresponding slot in the ‘vehicle’ pattern—is that there
is more than one kind of engine. Another reason for representing the
class of engines with separate patterns is that engines may be used in a
variety of other things (e.g., boats, planes and generators), not just in
road vehicles.

4.1.1 Variables, Values and Types

It should be apparent that, in the SP system, a pair of neighbouring symbols
like ‘<fuel>’ and ‘</fuel>’ function very much like a ‘variable’ in a conventional
system. By appropriate alignment within a multiple alignment, such a variable
may receive a ‘value’ such as ‘gasoline’ or ‘diesel’ in this example. The range
of possible values that a given variable may take—the ‘type’ of the variable—is
defined implicitly within any given set of patterns in Old.

4.1.2 Variability of Concepts

Column 4 in Figure 5 shows a car as something with 4 seats, 4 doors and 4
wheels but of course we know that all of these values can vary. Sports cars
often have 2 seats and 2 doors, some budget cars have 3 wheels, and a stretch
limo may have many more seats and doors. In a more fully-developed example,
numbers of seats, doors and wheels would be unspecified at the level of ‘car’
and would be defined in subclasses like those that have been mentioned.

14



4.2 Comparison Between the SP Model and Other

Object-Oriented Systems

Perhaps the most striking difference between the SP system and other object-
oriented systems is the extraordinary simplicity of the format for knowledge in
the SP system, compared with the variety of constructs used in other system—
such as ‘classes’, ‘objects’, ‘methods’, ‘messages’, ‘isa’ links, ‘part-of’ links, and
more. This subsections considers a selection of other differences that are some-
what more subtle but are, nevertheless, important.

4.2.1 Parts, Attributes and Inheritance

In Simula and most object-oriented systems that have come after, there is a
distinction between ‘attributes’ of objects and ‘parts’ of objects. The former
are defined at compile time while the aggregation of parts to form wholes is
a run-time process. This means that the inheritance mechanism applies to
attributes but not to parts.

In the SP system, this distinction disappears. Parts of objects can be defined
at any level in a class hierarchy and inherited by all the lower level. There is
seamless integration of class hierarchies with part-whole hierarchies.

4.2.2 Objects, Classes and Metaclasses

By contrast with most object-oriented systems, the SP system makes no formal
distinction between ‘class’ and ‘object’. This accords with the observation that
what we perceive to be an individual object, such as ‘our car’, can itself be seen
to represent a variety of possibilities: ‘our car taking us on holiday’, ‘our car
carrying the shopping’, and so on. A pattern like the one shown in column 1
of Figure 5 could easily function as a class with vacant slots to be filled at a
more specific level by details of the passengers or load being carried, the rôle
the vehicle is playing, the colour it has been painted, and so on. This flexibility
is lost in systems that do make a formal distinction between classes and objects.

Another consequence of making a formal distinction between objects and
classes is that it points to the need for the concept of a ‘metaclass’:

“If each object is an instance of a class, and a class is an object, the
[object-oriented] model should provide the notion of metaclass. A
metaclass is the class of a class.” (Bertino et al., 2001, p. 43).

It is true that this construct is not provided in most object-oriented database
systems but it has been introduced in some artificial intelligence systems so that
classes can be derived from metaclasses in the same way that objects are derived
from classes. Of course, this logic points to the need for ‘metametaclasses’,
‘metametametaclasses’, and so on without limit.

Because the SP system makes no distinction between ‘object’ and ‘class’,
there is no need for the concept of ‘metaclass’ or anything beyond it. All these
constructs are represented by patterns.

15



4.2.3 The Entity-Relationship Model with a Relational Database

With minor variations, the entity-relationship model has become the mainstay
of data processing applications for business and administration. Diagrammatic
representations of entities and relationships are normally implemented with a
relational database and there are efficient software tools to do the translation,
hiding many of the details. Since this combination of entity-relationship model
and relational database has come to be so widely used, it will be the focus of
our discussion here.

A table can be used to represent a class, with the columns (fields) represent-
ing the attributes of the class and the rows representing individual instances of
the class. Each class or subclass in a class hierarchy can also be represented
by a table but in this case it is necessary to provide additional fields so that
the necessary connections can be made. For example, the class of ‘staff’ in a
company may be represented by a table like the one shown in Figure 1 and sep-
arate tables may be created for each of the subclasses ‘manager’, ‘supervisor’
and ‘assistant’, each of these with columns relevant to the particular subclass
but not for other subclasses. In addition, each of the tables for the subclasses
needs a column such as ‘Staff Number’ so that the record of an individual in
any one subclass can be connected to the corresponding record in the superclass.
Similar principles apply to the division of concepts into parts and subparts.

This system works quite well for many applications but it has a number of
shortcomings compared with the SP system:

• Using tables to represent classes means that the description of a class must
always take the form of a set of variables corresponding to the fields in
the table. In the SP system, it is possible to describe a class using any
combination of variables and literals, according to need. It is, for example,
possible to record that a vehicle has a steering wheel (as in column 2 of
Figure 5) without any implication that there may be alternative kinds of
steering wheel to be recorded in a field with that name. It is also possible
to provide a verbal description of any class, something that is outside the
scope of the relational model.

• Using tables to represent classes means that the record for every individual
must have start and end tags for every field in the table regardless of
whether or not that field is used. In the SP system, start and end tags
are only needed for the fields that contain a value in the record for any
individual.

• The SP system allows the description of class hierarchies and part-whole
hierarchies to be separated from the description of individual members
of those hierarchies. By contrast, the use of tables to represent class
hierarchies and part-whole hierarchies means that the structure of these
hierarchies must be reproduced, again and again, in every instance. Using
tables to represent either kind of hierarchy means that information that is
specific to any one individual is fragmented and must be pieced together

16



using keys. In the SP system, by contrast, information that is specific to
any one individual can always be represented with a single pattern. The
SP system provides for the smooth integration of class hierarchies and
part-whole hierarchies in a way that cannot be achieved using tables.

5 The Hierarchical and Network Models

Although the hierarchical and network models for databases have fallen out of
favour in ordinary data processing applications, the network model has seen
a revival, first with the development of the hypertext concept and then more
dramatically with the application of that concept to the world wide web. The
hierarchical model is the mainstay of hierarchical file systems and finds niche
applications in directories of various kinds.

In the SP system, any network or hierarchy can be represented using con-
nections between patterns like the connection between ‘engine’ and ‘vehicle’ in
Figure 5 (columns 3 and 2). The basic idea is that one pattern, ‘A’, may contain
the start and end symbols of another pattern, ‘B’, so that the two patterns can
be connected in a multiple alignment like this:

0 1 2

<A>

a1 - a1

<B> -- <B>

b1 -------- b1

</B> - </B>

a2 - a2

</A>

0 1 2.

In effect, the pair of symbols ‘<B> </B>’ in the ‘A’ pattern (column 1) are a
‘reference’ to the ‘B’ pattern (column 2). With this simple device, it is possible
to link patterns in hierarchies and networks of any complexity. Any one pattern
may appear recursively, two or more times within a multiple alignment, as
described in Wolff (2003b) and earlier publications.

Where the full versatility of this scheme is not needed, it is also possible to
create networks and hierarchies from patterns like ‘<A> ... <B>’, ‘<B> ...
<C>’ and ‘<C> ... <D>’ that can be linked end-to-end by alignment within
a multiple alignment.

6 The SP Model and Aspects of Intelligence

This section briefly reviews aspects of intelligence that have been shown to fall
within the scope of the SP system, highlighting those with particular relevance to

17



intelligent databases. The main points of difference between the SP system and
other artificial intelligence systems are also reviewed. Readers are referred to
Wolff (2003b) and other cited sources for more detail about artificial intelligence
capabilities of the system outlined here:

• Representation of knowledge. As previously mentioned, the format that
has been adopted for representing knowledge within the SP system has
proved to be remarkably versatile, despite its extreme simplicity. Given
the system for forming multiple alignments, flat patterns can be used
to represent context-free and context-sensitive grammars (Wolff, 2000),
networks, trees (including class-inclusion hierarchies and part-whole hier-
archies), tables, if-then rules and more. Some of this versatility has been
demonstrated above.

In the context of knowledge-based systems, a benefit of this versatile ‘uni-
versal’ format for knowledge is the scope that it offers for the seamless
integration of different kinds of knowledge, minimising the awkward in-
compatibilities that arise in many computing systems.

• Fuzzy pattern recognition and best-match information retrieval. At the
heart of the SP system is a version of dynamic programming (see
Sankoff and Kruskall (1983)) that allows the system to find ‘good’ full
and partial matches between patterns (Wolff, 1994).3 This allows the
system to recognise objects and patterns in a ‘fuzzy’ manner and to re-
trieve stored information without the need for an exact match between
the retrieval query and any item to be retrieved.

• Ontologies and ‘semantic’ retrieval of information. The SP system pro-
vides a powerful framework for the representation and processing of on-
tologies and for the retrieval of information by meanings rather than literal
matching of patterns (Wolff, 2003a).

• Analysis and production of natural languages. The syntax of natural lan-
guages may be represented with SP patterns and both the parsing and
the production of sentences may be achieved by the formation of multiple
alignments (Wolff, 2000). Non-syntactic ‘semantic’ structures may also be
represented and processed in the SP system. Recent work, not yet pub-
lished, has shown how syntax and semantics may be integrated within the
SP framework.

• Probabilistic reasoning. A major strength of the SP system is its support
for probabilistic ‘deduction’ in one step or via chains of reasoning, abduc-
tive reasoning, and nonmonotonic reasoning with default values (Wolff,
1999b). Relative probabilities of inferences may be calculated strictly in

3The technique that has been developed in the SP models has advantages compared with
standard techniques for dynamic programming: it can process arbitrarily long patterns with-
out excessive demands on memory, it can find many alternative matches, and the ‘depth’ or
thoroughness of searching can be determined by the user.

18



accordance with standard probability theory and the system provides an
explanation for the phenomenon of ‘explaining away’ (Pearl, 1988).

• Exact forms of reasoning. Although this area is less well developed, there
are good reasons to think that the SP system may also be applied to the
‘exact’ kinds of reasoning found in many areas of logic and mathematics,
where answers are either ‘true’ or ‘false’, with nothing in between (Wolff,
2002a).

• Planning and problem solving. The SP system has been applied success-
fully to the problem of finding a route between two places (Wolff, 2003b)
and it can solve geometric analogy problems translated into textual form
(Wolff, 1999b).

• Unsupervised learning. In its overall abstract structure, the SP system is
conceived as a system for unsupervised learning—and capabilities in this
area have now been demonstrated in the SP70 computer model (Wolff,
2003c, 2002b). The results are good enough to show that the approach
is sound but further development is needed to realise the full potential of
this model.

If this potential can be realised, this should reduce or eliminate the need for
human judgement in the normalisation of knowledge structures. The SP
system should be able to organise its knowledge automatically in a way
that minimises redundancies and reveals the natural structures in that
knowledge, including class hierarchies, part-whole hierarchies and their
integration. It should also be able to abstract rules and other generali-
sations from its stored knowledge, in the manner of datamining systems.
Of course, existing datamining techniques may also be applied to an SP
database.

6.1 Relationship with Other Artificial Intelligence Sys-

tems

It would take us too far afield to attempt a detailed comparison with artificial
intelligence systems in the kinds of areas mentioned above. As an attempt
to integrate ideas across a wide area, the SP system naturally has points of
similarity with many existing systems, but at the same time, it has its own
distinctive features.

Chief amongst these is the remarkable simplicity of the system combined
with its very wide scope, much wider than the great majority of artificial
intelligence systems, with the possible exception of unified theories of cog-
nition such as Soar (Laird et al., 1987; Rosenbloom et al., 1993) and ACT-R
(Anderson and Lebiere, 1998). Like those two systems, the development of the
SP system was inspired by the writings of Allen Newell, putting the case for
greater breadth and depth in theories of cognition (Newell, 1973, 1990).

Unlike hybrid systems, of which there are many, the SP system is not merely
a conjunction of two or more different systems, combining their capabilities and

19



also their complexities. The SP system is the result of a radical rethink of
concepts in artificial intelligence and beyond, aiming for integration in a radi-
cally simplified structure. The result is a conceptual framework with distinctive
features of which the main ones are:

• All kinds of knowledge are represented with flat patterns.

• All kinds of processing is achieved by compression of information by the
matching and unification of patterns.

• The use of a modified version of the concept of multiple alignment as a
vehicle for recognition of patterns, information retrieval, probabilistic and
exact forms of reasoning, and other artificial intelligence functions.

7 Developing the System

The SP computer models (SP61 and SP70) are good enough to demonstrate
what can be done with the system but fall short of what would be needed for
applications in industry, commerce or administration. This section considers
how the SP concepts that have been developed to date may be translated into
a practical system.

7.1 Parallel Processing

Although the computational complexity of both models in a serial processing
environment is within the bounds of what is normally considered to be ac-
ceptable, significant improvements are to be expected if the system can be de-
veloped with the benefit of parallel processing (Section 2.5). And of course,
parallel processing brings the additional benefit of faster processing in abso-
lute terms and, with suitable design, greater robustness in the face of system
failures. Parallel processing is now a recognised requirement to meet the high
computational demands of large scale databases (Abdelguerfi and Lavington,
1995; Abdelguerfi and Wong, 1998) and large-scale applications in artificial in-
telligence.

At the heart of the SP system is the building of multiple alignments and
the core operation here is a process for finding good full and partial matches
between patterns in the manner of dynamic programming. At this level, there
is considerable scope for the application of parallel processing because there are
often many pairs of patterns that need to be matched and this can be done
in parallel just as well as it can be done in sequence. There is also scope for
parallel processing at a more fine-grained level because the process of matching
involves a process of ‘broadcasting’ symbols to make yes/no matches with other
symbols and this is an intrinsically parallel operation.

The SP machine does not necessarily have to be developed in silicon. One
futuristic possibility is to exploit the potential of organic molecules such as DNA
or proteins—in solution—to achieve the effect of high-parallel pattern matching.

20



This kind of ‘molecular computation’ is already the subject of much research
(see, for example, Adleman (1994, 1998)) and techniques of that kind could,
conceivably, form the basis of a high-parallel SP machine.

Another possibility is to use light for the kind of high-speed, high-parallel
pattern matching that is needed at the heart of the SP machine. Apart from
its speed, an attraction of light in this connection is that light rays can cross
each other without interfering with each other, eliminating the need to segregate
one stream of signals from another (see, for example, Cho and Colomb (1998);
Louri and Hatch (1994)).

On relatively short time scales, a silicon version of the SP machine would
probably be the easiest option and it may be developed in at least four different
ways:

• It should be feasible to design new hardware for the kind of high-parallel
pattern matching that is needed.

• Given that SIMD and MIMD high-parallel computers are already in ex-
istence, an alternative strategy is to create the SP machine as a software
virtual machine running on one of these platforms.

• An existing high-parallel database system (see, for example, Page (1992);
Mahapatra and Mishra (2000)) may be modified to support the SP model.
Other models may, of course be retained alongside the SP model.

• The system may be developed using low-cost computers connected to-
gether in a LAN or even a WAN. Systems like Google have been devel-
oped in this way and they already provide high-speed pattern matching
of a kind that may be adapted for use within a software implementation
of the SP machine.

7.2 User Interface

A graphical user interface to the SP system is needed for the input of data
and queries, for the setting of parameters, and for viewing data and results.
Facilities that would be useful include:

• The possibility of translating SP patterns like those shown in Figure 2 into
a conventional tabular format (without start and end tags) for viewing or
printing.

• The representation of class hierarchies, part-whole hierarchies or other
kinds of hierarchy or network in graphical form, without showing the tags
that are used to link patterns together.

• The ability to represent multiple alignments as flat patterns, reducing each
column to a single symbol.

• Facilities for scrolling and zooming to view any large structure such as a
large multiple alignment, or a large hierarchy, network, or table.

21



• Menus and dialogue boxes for controlling the system and setting parame-
ters.

For some applications there may be a need to provide an SQL-like query
language. As indicated in Section 3.2, it seems likely that this may be achieved
within the SP framework by means of an appropriate set of SP patterns—but
the details of how that should be done would need investigation.

7.3 Hybrid Solutions

In the development and application of information systems, it is rarely possible
to introduce a new model and simultaneously discard all pre-established models.
There is normally a transition phase, which may be very prolonged, where two
or more models coexist as alternatives for different applications or are used in
some combination, according to need. As the SP system matures, it may form
hybrids with other systems in at least three different ways:

• As noted previously (Section 2.4), the SP system is not yet a rival for well-
established procedural languages like C++ or Cobol, and its application to
arithmetic and other areas of mathematics needs development. However,
there is no reason why the system should not be used in conjunction
with existing procedural languages, and with arithmetic or mathematical
functions, in very much the same way that the relational database model
is standardly used in conjunction with these non-relational languages and
functions in many data processing applications.

• Although in principle the SP system is a model for any kind of software, it
is likely to be some time before it would be feasible or sensible to translate
all existing applications into the form of SP patterns. Meanwhile, there
is no reason why an SP database system should not serve as a frame-
work within which existing applications may be embedded, in much the
same way that a relational or object-oriented database—or, indeed, an
hierarchical file system—may contain pointers to executable files of many
different kinds (see, for example, Cariño and Sterling (1998)).

• As noted previously, there is no reason why existing datamining techniques
should not be used with an SP database although, in the long run, this
kind of processing should fall within the scope of the SP model.

8 Conclusion

The SP model is an alternative to existing database models that offers sig-
nificant benefits compared with those models. Within the multiple alignment
framework it is possible to represent knowledge in a format that is both simple
and versatile, and processing within the framework provides a key to intelligence
in the recognition of patterns, retrieval of information, probabilistic and exact
kinds of reasoning, planning, problem solving and others.

22



The versatility of the SP framework means that existing database models
can be accommodated within the system and it can function in accordance with
any one of those models where that is required. At the same time, it offers a
range of options that are not available in systems that are dedicated to any of
the existing models.

Although more work is required in understanding how the model may be
developed for learning, other aspects are sufficiently robust and mature for de-
velopment into an industrial strength working system.

Acknowledgements

I am grateful to Thomas Connolly for constructive comments on this article.
The responsibility for all errors and oversights is, of course, my own.

References

M. Abdelguerfi and S. Lavington, editors. Emerging Trends in Database and

Knowledge-base Machines: The Application of Parallel Architectures to

Smart Information Systems. IEEE Computer Science Press, Los Alamitos,
Calif., 1995.

M. Abdelguerfi and K.-F. Wong. Parallel Database Techniques. IEEE
Computer Science Press, Los Alamitos, Calif., 1998.

L. M. Adleman. Molecular computation of solutions to combinatorial
problems. Science, 266:1021–1024, 1994.

L. M. Adleman. Computing with DNA. Scientific American, 279(2):54–61,
1998.

J. R. Anderson and C. J. Lebiere. The Atomic Components of Thought.
Lawrence Erlbaum, Mahwah, NJ, 1998.

E. Bertino, B. Catania, and G. P. Zarri. Intelligent Database Systems.
Addison-Wesley, Harlow, 2001.

G. M. Birtwistle, O-J Dahl, B. Myhrhaug, and K. Nygaard. Simula Begin.
Studentlitteratur, Lund, 1973.

T. Bray, J. Paoli, C. M. Sperberg-McQueen, and E. Maler. Extensible Markup
Language (XML) 1.0 (second edition). Technical report, World Wide Web
Consortium, 2000. W3C recommendation, 6 October 2000. Copy:
www.w3.org/TR/REC-xml.

F. Cariño and W. Sterling. Parallel strategies and new concepts for a petabyte
multimedia database computer. In Parallel Database Techniques

Abdelguerfi and Wong (1998), pages 139–164.

23



O. H. Cho and R. M. Colomb. Associative random access machines and
data-parallel multiway binary-search join. Future Generation Computer

Systems, 13(6):451–467, 1998.

T. Connolly and C. Begg. Database Systems. Addison-Wesley, London, 2002.

J. E. Laird, A. Newell, and P. S. Rosenbloom. Soar: an architecture for
general intelligence. Artificial Intelligence, 33:1–64, 1987.

M. Li and P. Vitányi. An Introduction to Kolmogorov Complexity and Its

Applications. Springer-Verlag, New York, 1997.

A. Louri and J. A. Hatch. An optical associative parallel processor for
high-speed database-processing—theoretical concepts and experimental
results. Computer, 27(11):65–72, 1994.

T. Mahapatra and S. Mishra. Oracle Parallel Processing. O’Reilly, UK, 2000.

A. Newell. You can’t play 20 questions with nature and win: projective
comments on the papers in this symposium. In W. G. Chase, editor, Visual
Information Processing. Academic Press, New York, 1973.

A. Newell, editor. Unified Theories of Cognition. Harvard University Press,
Cambridge, Mass., 1990.

J. Page. A study of a parallel database machine and its performance: the NCR
Teradata DBC-1012. Lecture Notes in Computer Science, 618:115–137, 1992.

J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann,
San Francisco, 1988.

P. S. Rosenbloom, J. E. Laird, and A. Newell. The Soar Papers: Readings on

Integrated Intelligence. MIT Press, Cambridge, Mass., 1993.

D. Sankoff and J. B. Kruskall. Time Warps, String Edits, and

Macromolecules: the Theory and Practice of Sequence Comparisons.
Addison-Wesley, Reading, MA, 1983.

R. J. Solomonoff. A formal theory of inductive inference. parts I and II.
Information and Control, 7:1–22 and 224–254, 1964.

J. G. Wolff. A scaleable technique for best-match retrieval of sequential
information using metrics-guided search. Journal of Information Science, 20
(1):16–28, 1994. Copy: www.cognitionresearch.org.uk/papers/ir/ir.htm.

J. G. Wolff. ‘Computing’ as information compression by multiple alignment,
unification and search. Journal of Universal Computer Science, 5(11):
777–815, 1999a. In uk.arxiv.org/abs/cs.AI/0307013.

24



J. G. Wolff. Probabilistic reasoning as information compression by multiple
alignment, unification and search: an introduction and overview. Journal of
Universal Computer Science, 5(7):418–462, 1999b. In
uk.arxiv.org/abs/cs.AI/0307010.

J. G. Wolff. Syntax, parsing and production of natural language in a
framework of information compression by multiple alignment, unification
and search. Journal of Universal Computer Science, 6(8):781–829, 2000. In
uk.arxiv.org/abs/cs.AI/0307014.

J. G. Wolff. Mathematics and logic as information compression by multiple
alignment, unification and search. Technical report,
CognitionResearch.org.uk, 2002a. Copy:
www.cognitionresearch.org.uk/papers/cml/cml.htm.

J. G. Wolff. Unsupervised learning in a framework of information compression
by multiple alignment, unification and search. Technical report,
CognitionResearch.org.uk, 2002b. In uk.arxiv.org/abs/cs.AI/0302015. A
short version of this paper was presented at the ECML/PKDD 2003
Workshop on Context-Free Grammar Learning, Dubrovnik, September 2003.

J. G. Wolff. An alternative to RDF-based languages for the representation and
processing of ontologies in the Semantic Web. Technical report,
CognitionResearch.org.uk, 2003a. In uk.arxiv.org/abs/cs.AI/0307063.

J. G. Wolff. Information compression by multiple alignment, unification and
search as a unifying principle in computing and cognition. Artificial
Intelligence Review, 19(3):193–230, 2003b. In
uk.arxiv.org/abs/cs.AI/0307025.

J. G. Wolff. Unsupervised grammar induction in a framework of information
compression by multiple alignment, unification and search. In C. de la
Higuera, P. Adriaans, M. van Zaanen, and J. Oncina, editors, Proceedings of

the Workshop and Tutorial on Learning Context-Free Grammars, pages
113–124, 2003c. This workshop was held in association with the 14th
European Conference on Machine Learning and the 7th European
Conference on Principles and Practice of Knowledge Discovery in Databases
(ECML/PKDD 2003), September 2003, Cavtat-Dubrovnik, Croata.

25


	Introduction
	Aims and Presentation

	Outline of the SP Theory
	Representation of Knowledge
	Processing of Knowledge
	Computer Models
	Arithmetic and Procedural Code
	Computational Complexity

	The Relational Model
	Retrieval of Information: Query by Example
	Retrieving Information from Two or More Tables

	Retrieval of Information: Query Languages
	Comparison Between the SP Model and the Relational Model

	Object-Oriented Concepts
	Discussion
	Variables, Values and Types
	Variability of Concepts

	Comparison Between the SP Model and Other Object-Oriented Systems
	Parts, Attributes and Inheritance
	Objects, Classes and Metaclasses
	The Entity-Relationship Model with a Relational Database


	The Hierarchical and Network Models
	The SP Model and Aspects of Intelligence
	Relationship with Other Artificial Intelligence Systems

	Developing the System
	Parallel Processing
	User Interface
	Hybrid Solutions

	Conclusion

