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Abstract

In this paper we are proposing a new algorithmic ap-
proach for sanitizing raw data from sensitive knowledge in
the context of mining of association rules. The new ap-
proach (a) relies on the maxmin criterion which is a method
in decision theory for maximizing the minimum gain and (b)
builds upon the border theory of frequent itemsets.

1 Introduction

Oftentimes, privacy policies and regulations enforce us
to sanitize a data set from possible confidential information
and/or knowledge. The task we are called for solving in
this paper, known as association rule hiding, is to remove
certain patterns from a database that we consider sensitive,
by changing the data in such a way that everything but the
sensitive knowledge remains intact. The solution proposed
here builds upon the idea that we can minimize the impact
of the changes in the data, by considering only to minimize
the impact on the positive border of the frequent patterns.
As long as we succeed in maximizing the minimum gain,
all the non-sensitive frequent patterns which are not in the
positive border remain above the support threshold which
means that they are preserved.

The rest of this paper is organized as follows. Section 2
presents related work. In Section 3 we state the problem
by providing all the necessary background information, and
in Section 4 we expose our proposed maxmin technique for
the association rule hiding problem. In Section 5 we present
two algorithms and in Section 6 we discuss how the pro-
posed algorithms behave in comparison with other similar
algorithms proposed elsewhere. Finally, in Section 7 we
conclude our study.

2 Related Work

The problem of hiding sensitive knowledge either in the
form of frequent itemsets or in the form of sensitive rules
appeared for the first time in an early paper by Atallah et.
al. in [2]. The authors in this first work had investigated
the problem of hiding sensitive frequent patterns by using
a greedy approach. Dasseni et. al. in [3] generalized the
problem by considering the hiding of both sensitive fre-
quent itemsets and sensitive rules. The algorithms initially
proposed in [3] were later on improved and evaluated for
their performance in [9]. Saygin et. al. in [7] consider
the problem of hiding frequent patterns and rules by using
unknowns. An in depth experimentation and evaluation of
distortion and blocking techniques has been performed by
Pontikakis et. al. in [6]. Zaiane et. al. in [5] present a new
formalization of the association rule hiding problem which
try to remove/hide the inference channels created by rules
that exist in a released rule base.

3 Problem Formulation

We consider the knowledge hiding problem in the con-
text of frequent itemset mining of the association rule dis-
covery framework. In a database D, a large or frequent
itemset is a set of items A chosen from the universe of pos-
sible items I = {i1, i2, i3, . . . , in} that has greater support
– denoted as supp – by a minimum user specified support
threshold. The support of an itemset indicates the number
of database transactions that an itemset appears in. In the
association rule mining framework, by specifying a mini-
mum support threshold, we are in a position to discover the
large itemsets in an increasing order of cardinality.

The formalism of the border presented in [4] is important
in our problem formulation. Let P be a set of itemsets, and
� a partial order on P . Further, let F be closed downwards
under the relation �. The border Bd(F ) of F consists of
those itemsets φ such that all more general itemsets than φ
are in F and no itemsets more specific than φ is in F . Those
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itemsets φ in Bd(F ) that are in F are called the positive
border Bd+(F ), and those itemsets φ in Bd(F ) that are not
in F are the negative border Bd−(F ). Let us also consider a
subset S of the set of frequent itemsets F which includes the
sensitive rules in F , that needs to become safe in a statistical
sense. Such a requirement will force S to move to P \ F
and then it will necessitate a revision of both the positive
and negative border. The same idea was initially proposed
by Sun and Yu in [8].

4 A Max-Min Approach for Itemset Hiding

The Max-Min approach that we propose, relies on the
fact that we succeed in the hiding of the sensitive itemsets
while at the same time we minimize the impact of the hid-
ing process to the non-sensitive information. We achieve
this by considering only the effects of the hiding process
to the itemsets on the positive border, after the border has
been revised by taking into consideration the sensitive large
itemsets.

4.1 Border Revision Theory

labelborder The algorithm that revises the positive bor-
der, starts from the minimum level of the frequent itemset
lattice corresponding to the shorter sensitive itemsets. It
then proceeds upwards to the itemset lattice by removing
from the lattice, all the sensitive itemsets along with their
super itemsets, until it reaches the upper limit of the lattice,
where it stops. After that, it moves downward the new fre-
quent lattice and it checks whether a frequent itemset has
a cover. An itemset cover is a super itemset of this item-
set that is also frequent. If a frequent itemset in the revised
frequent lattice does not have a cover, then it belongs to the
new positive border. The algorithm stops, when it reaches
the minimum level of the revised frequent itemset lattice.

In a similar manner, the algorithm that revises the neg-
ative border, starts from the bottom of the revised frequent
itemset lattice, which has been produced after the revision
of the positive border. After the formation of the revised
positive and negative border, the algorithms proposed in this
paper can take over the hiding of the sensitive itemsets by
actually modifying the database. Both of the algorithms
accept as input, the revised positive border, as well as the
intersection of the revised negative border with the list of
sensitive itemsets.

4.2 Hiding of a Sensitive Itemset

Let us assume that a sensitive itemset needs to be hidden.
For every item that belongs to a sensitive itemset we list the
set of positive border itemsets which depend on it. We call
an item that belongs to a sensitive itemset a tentative victim

item, and a set of maximally large itemset that belong to the
revised positive border and is affected by a tentative victim
item, as a tentative victim itemset. We also call the set of
tentative victim itemsets that depend on the same tentative
victim item vi as the vi-list. In every vi-list, we select the
itemset(s) with the minimum support which we call mini-
mum support itemsets. A minimum support itemset is the
most sensitive one among the itemsets in each vi-list since
it is the closest to the borderline between the positive and
the negative border.

From among all the minimum border itemsets, we se-
lect the itemset(s) with the highest (maximum) support. We
call such an itemset the max-min itemset, since this is the
only itemset among the different minimum support item-
sets which is the maximum distance away from the border.
The max-min itemset determines the tentative victim item
through which the hiding of the sensitive itemset will take
place. We call such an item a victim item. The proposed al-
gorithms modify the victim item indicated by the max-min
itemset in such a way that the value of the support of the
max-min itemset, if possible, not to be modified.

In the following discussion we present a number of the-
orems which are cornerstone in the functionality of the pro-
posed Max-Min algorithms. The first theorem is concerned
with two tentative victim itemsets that achieve the minimum
support value for their corresponding vi-lists. The theorem
indicates that if the support values for two minimum sup-
port itemsets are different, then by modifying the tentative
victim item that corresponds to the larger minimum support
itemset, the support of the smaller minimum support itemset
remains unaffected. This is true independently of whether
the larger minimum support itemset is affected or not by the
modification. We state the theorem more formally next.

Theorem 1 If two minimum support itemsets SA and SB

contain the tentative victim items A and B respectively and
have their supports such as supp(SA) > supp(SB), then
the minimum support itemset SB does not contain A.

PROOF Let us assume that SA and SB are two mini-
mum support itemsets corresponding to the tentative vic-
tim items A and B respectively. We also assume that
supp(SA) > supp(SB) and that SB contains the tenta-
tive victim item A. Since SB contains the tentative victim
item A, it should also appear in the list of tentative victim
itemsets of tentative victim item A along with SA. Because
supp(SA) > supp(SB), it means that the SB is the mini-
mum support itemset for the tentative victim item A. But we
claimed at the beginning that the minimum support itemset
for A is SA. For this reason, we have proved that SB cannot
contain sensitive item A.�
The direct consequence of Theorem 1 is that if we modify
the victim item A, and this has as a side effect that the max-
min decreases by one, no other minimum support value will
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be affected by this change.
The second theorem and its accompanying lemma apply

to the case when two sets of minimum support itemsets cor-
responding to two different tentative victim items happen to
have the same support. Below we state formally a theorem
that ensures that if the victim item corresponding to one set
of minimum support itemsets can change without affecting
the support of its minimum support itemsets, then the other
set of minimum support itemsets will not be affected either.

Theorem 2 Let LA = {A1, A2, . . . , AK} and LB =
{B1, B2, . . . , BM}, the vi-lists for two tentative victim
items A and B correspondingly which are contained in
sensitive itemset S. Let also LSA

= {Ai1 , Ai2 , . . . , Aik
}

and LSB
= {Bj1 , Bj2 , . . . , Bjm

}, the sets of minimum
support itemsets that correspond to the tentative victim
items, such that sA = supp(Ai1) = supp(Ai2) = . . . =
supp(Aik

) < supp(Ai)where i /∈ {i1, i2, . . . , ik} and
sB = supp(Bj1) = supp(Bj2) = . . . = supp(Bjm

) <
supp(Bj) where j /∈ {j1, j2, . . . , jm}. If sA = sB and
the support of S is decreased through A without the border
itemsets in LSA

to be affected, then no itemset in LSB
will

be affected either.

PROOF If an itemset in LSB
is affected by the decrease

of the sensitive itemset through A, then this means that the
affected itemset contains A. If it contains A, it should also
belong to LSA

. But the theorem claims that no itemset from
LSA

is affected from the change in A. Because of that, no
itemset in LSB

will be affected either. �

The lemma below applies to the cases in complement to
those covered by Theorem 2 that the change in a victim item
causes a minimum support itemset from its corresponding
vi-list to loose support. If it so happens that the minimum
support itemset which looses support is the only one af-
fected in the vi-list by the change in the victim item, and
at the same time it is not included in the other set of min-
imum support itemsets, then no minimum support itemset
from the second set will be affected. The statement and its
proof follows more formally below.

Lemma 1 Let sA = sB and the support of S is decreased
through A. Let also Ai1 , Ai2 , . . . , Air

be a set of tentative
victim itemsets in LSA

which are both different from all the
tentative victim itemsets in LSB

and are also affected by the
decrease in the support of S through A, while the rest of
the border itemsets in LSA

are not affected. If this holds,
then no tentative victim itemset in LSB

is affected from the
decrease of S through A.

PROOF Since Ai1 , Ai2 , . . . , Air
∈ LSA

are both the only
border itemsets in LSA

which are affected by the change
in S through A, and they are different from all the border
itemsets in LSB

, no border itemset in LSB
will be affected.

If a border itemset Bis
∈ LSB

is being affected by a change

in A, then this border itemset should contain A and also
belong to LSA

. Therefore we would have an additional
itemset besides Ai1 , Ai2 , . . . , Air

∈ LSA
affected by the

change, which leads to a contradiction.�

4.3 Hiding of Sets of Sensitive Itemsets

The algorithms perform a sorting of the sensitive item-
sets based on their support in an increasing order of support,
and start the hiding process from the sensitive itemset with
the minimum support. After the algorithms finish the hid-
ing of the minimum support itemset, they continue with the
next itemset in order until they are done with the hiding of
every sensitive itemset. By adopting a heuristic like that we
enforce the requirement of the minimum impact followed
by all the proposed Max-Min algorithms, since the sensitive
itemset with the minimum support is the one that it is closer
to the border, and it is hidden in the smaller number of it-
erations. We can also easily prove that the support of the
minimum support itemset remains constantly smaller than
the support of all the other sensitive itemsets that remain to
be hidden. This has as a result that the complete hiding of a
certain sensitive itemset can be considered in isolation from
the hiding of all the other sensitive itemsets. The following
theorem makes the above idea concrete.

Theorem 3 Let S1, S2, . . . , Sn be the sensitive itemsets
which are sorted in increasing order of their supports. The
support of the minimum support sensitive itemset S1 will be
constantly smaller than the supports of all the other sensi-
tive itemsets S2, S3, . . . , Sn during the hiding of this item-
set.

PROOF In every iteration of a Max-Min algorithm, the sen-
sitive itemset in the foreground (the itemset selected each
time by the algorithm for hiding) looses one point from its
support. For any other sensitive itemset, the algorithm may
or may not reduce the support of this itemset by at most one.
For this reason, the difference in the support of the itemset
selected for hiding with all the rest, after the application of
the Max-Min algorithm, will be at least as it was at the be-
ginning of the hiding process. �

Because of the fact that different sensitive itemsets (except
the one on which the algorithm is applied each time) may
loose different amounts of support, after the hiding of each
sensitive itemset, the remaining (not hidden yet) itemsets
need to be sorted again in the increasing order of their sup-
ports. A Max-Min algorithm needs to decide also which
sensitive itemset to select next for hiding in case there is a
tie in the supports of different itemsets. In this case, the al-
gorithm considers the longer sensitive itemset first because
this itemset offers to the algorithm the higher degree of free-
dom with respect to the selection of the victim items.
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5 Max-Min Algorithms

In the following discussion we present two Max-Min al-
gorithms that hide sensitive itemsets in increasing sophisti-
cation.

5.1 Algorithm MaxMin 1

The first algorithm MaxMin 1 hides a sensitive itemset
by selecting the victim item in such a way that the side ef-
fects to the minimum support itemsets in the positive bor-
der are minimized. To achieve this, it hides the victim item
from a transaction which supports the corresponding sen-
sitive itemset, so as the support of the minimum support
itemsets except possibly the support of the max-min item-
sets remains unchanged. MaxMin 1 algorithm assures that
if the value of the max-min is unique, then by modifying
the max-min itemset, no other minimum border itemset is
modified. This property holds because of Theorem 1. In
case the max-min value is attained by more than one tenta-
tive victim itemsets where each one corresponds to differ-
ent tentative victim items, MaxMin 1 randomly selects the
victim item to use for hiding. It is also indifferent to the al-
gorithm the number of different border itemsets that attain
the max-min value, because all of them indicate the same
victim item. The pseudocode of the proposed MaxMin 1
algorithm is shown in Figure 1.

1 Initialize list of sensitive itemsets
2 While sensitive itemsets not hidden {
3 Sort sensitive itemsets in increasing support
4 Select the minimum support sensitive itemset
5 Build the vi-list representation
6 While selected sensitive itemset not hidden {
7 Find max-min itemset by randomly resolving ties
8 Choose 1st transaction containing sensitive itemset
9 Remove the victim item
10 If sensitive itemset not hidden Then
11 Revise vi-list representation
12 Else exit inner loop }
13 Remove selected sensitive itemset from the list
14 If list of sensitive itemsets is empty Then
15 Exit inner loop }

Figure 1. Pseudocode for MaxMin 1.

5.2 Algorithm MaxMin 2

Algorithm MaxMin 2 checks whether the reduction in
the support of the sensitive itemset can be achieved without
modifying the support of any max-min itemset. By using
Theorem 1 we know in advance that no other minimum sup-
port itemset will be affected in this case. For achieving to
reduce the support of the sensitive itemset without affecting
the support of the max-min itemsets, we need to ensure that
each of the max-min itemsets is not a subset of the sensitive

itemset, and at the same time that there are transactions that
provide support to the sensitive itemset without supporting
the max-min itemset. In order to be able to get this infor-
mation we need to maintain for every sensitive itemset S
and every max-min itemset V in the vi-list, the list of trans-
actions that support them. If we denote the lists of these
transactions as LS and LV respectively, then by computing
the difference between these two lists (sets) LS − LV we
will know whether we can reduce the support of the sen-
sitive itemset without affecting the support of the max-min
itemset, if the result is a non-empty list.

In those cases where there are more than one max-min
itemsets that correspond to different tentative victim items
we go through all the vi-lists containing max-min itemsets
and check whether we can reduce the support of the sensi-
tive itemset without affecting any of the max-min itemsets
in each vi-list. If we can do this, then by making use of
Theorem 2 we can ensure that no other max-min itemset in
any other vi-list will be affected. In order to do this, we
need to find transactions that support the sensitive itemset
but do not support any of the max-min itemsets in the vi-
list. For this, we compute again the lists of transactions that
support both the sensitive itemset and the set of max-min
itemsets in every vi-list and we compute the difference of
the lists that correspond to the max-min itemsets from the
list of the sensitive itemset. If the result is not empty, then
we can reduce the support of the sensitive itemset without
affecting any other itemset. In case where the previous sce-

1Initialize list of sensitive itemsets
2 While sensitive itemsets not hidden {
3 Sort sensitive itemsets in increasing order of support
4 Select the minimum support sensitive itemset
5 Build vi-list representation
6 While selected sensitive itemset not hidden {
7 Determine the max-min itemsets
8 If max-min attained by a vi-list {
9 Compute Lsensitive - Lmax-min
10 If the list is not empty Then
11 Remove victim item from a transaction in the list
12 Else Remove victim itemset from a transaction that

affects minimum number of max-min itemsets
13 } Else {
14 While not done with $vi1$-lists {
15 Compute Lsensitive-Lmax-min
16 If the list is not empty Then
17 Remove victim itemset from a transaction
18 Else While not done with vi2-list and vi1 != vi2 {
19 Compute Lvi1-list’-Lvi1-list’’-Lvi2-list
20 If list is not empty Then
21 Remove victim item from a transaction
22 else Remove victim item that affects minimum

number of max-min itemsets } } }
23 If sensitive itemset not hidden then
24 Revise vi-list representation
25 else exit inner loop }
26 Remove selected sensitive itemset from the list
27 If list of sensitive items is empty then
28 Exit inner loop }

Figure 2. Pseudocode for MaxMin 2.

nario is not feasible we consider pairs of vi-lists in every
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iteration of the algorithm. We call the first list in the pair as
vi1-list and the second vi2-list. Then what we try to do is to
find a set of minimum support itemsets in a vi1-list that will
loose support by a change in the corresponding victim item,
which are different from all the minimum support itemsets
of another vi2-list that attain the max-min value, while we
can maintain the support of the rest of the minimum support
itemsets in vi1-list, then by Lemma 1 we can ensure that
the max-min value in vi2-list will remain the same. Finally,
there is no other option than to reduce the support of the
sensitive itemset while we reduce the support of the max-
min itemset as well. The sketch of the MaxMin 2 algorithm
is given in Figure 2.

6 Experiments and Evaluation

We have compared our algorithms with the border based
approach which proposed by Sun and Yu in [8]. For eval-
uation purposes we have created a table that indicates the
performance of our algorithms versus the performance of
the border based approach for hiding different sets of item-
sets from the itemset lattice of the example presented in
[8]. Table 1 contains four columns. The first presents the

Table 1. Comparison of Border based,
MaxMin 1 and MaxMin 2 algorithms.

Sensitive Border MaxMin 1 MaxMin 2
Itemsets Based
ab 2/0 2/0 2/0
ad 4/1 4/1 4/0

cd 4/2 4/3 4/3

abd 1/0 1/0 1/0
cde 1/1 1/2 1/1

ab, acd 4/1 3/0 3/0

ac, abd 4/1 3/1 3/0

ad, bcd 5/1 5/1 5/0

bc, cde 2/1 2/1 2/1
ce, abd 2/0 2/1 2/0

ac, abd, cde 4/1 4/2 3/1

ab, de, acd 5/2 4/1 3/0

ac, ad, bcd 5/0 6/1 5/0

abd, acd, cde 4/2 3/2 3/2

abd, acd, bcd 4/0 3/0 3/0

ab, bc, cd, de 9/2 8/2 7/0

set of sensitive itemsets and the rest three indicate the per-
formance of the algorithms compared. The performance
of each algorithm is measured by using the notation m/n
where m indicates the number of changes in raw data and n
indicates the number of side effects. The information listed
in Table 1 indicates that for the reference example, as the
number of sensitive itemsets grows, MaxMin 2 algorithm

outperforms both the Border based and the MaxMin 1 algo-
rithm. The results presented above are consistent with sim-
ilar comparisons that we have performed with larger data
sets generated by the IBM Synthetic Data Generator [1].

7 Conclusions

We have presented two new algorithms which rely on the
maxmin criterion for the hiding of sensitive itemsets in an
association rule hiding framework. Both algorithms apply
the idea of the maxmin criterion in order to minimize the
impact of the hiding process to the revised positive border
which is produced by removing the sensitive itemsets and
their super itemsets from the lattice of frequent itemsets. By
restricting the impact on the border, we can be very efficient
in the selection of items which must be selected for hiding,
while at the same time it can be ensured that non-border
itemsets are protected from hiding. An initial evaluation in-
dicated that the proposed algorithms being at the same time
less computationally demanding, outperform other similar
approaches.
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