
1

2

3

4

5
6

7
8

9

10

11

12

13

14

15

16

17

18

19

20

21

22
23

24

25

26

27

28

29

30

Available online at www.sciencedirect.com

DATAK 1076 No. of Pages 20, Model 3+

30 November 2007 Disk Used
ARTICLE IN PRESS
Data & Knowledge Engineering xxx (2007) xxx–xxx

www.elsevier.com/locate/datak
R
O

O
FTemporal queries and version management

in XML-based document archives

Fusheng Wang a,*, Carlo Zaniolo b

a Integrated Data Systems Department, Siemens Corporate Research, 755 College Road East, Princeton, NJ 08540, USA
b Computer Science Department, University of California, Los Angeles, 405 Hilgard Avenue, Los Angeles, CA 90095, USA

Received 21 September 2006; received in revised form 23 August 2007; accepted 29 August 2007
R
E
C

T
E
D

P
Abstract

By storing the successive versions of a document in an incremental fashion, XML repositories and data warehouses
achieve: (i) the efficient preservation of critical information and (ii) the ability to support historical queries on the evolution
of documents and their contents. In this paper, we present efficient techniques for managing multi-version document his-
tories and supporting powerful temporal queries on such documents. Our approach consists of: (i) concisely representing
the successive versions of a document as an XML document that implements a temporally-grouped data model and (ii)
using XML query languages, such as XQuery, to express complex queries on the content of a particular version, and
on the temporal evolution of the document elements and contents. We show that the data definition and manipulation
framework of XML and XQuery can effectively support temporal models and historical queries without requiring exten-
sions to the current standards; in fact, this approach is effective at representing and querying the histories of relational
database tables, which are difficult to manage using SQL. These conclusions emerge through a number of interesting case
studies presented in this paper that include W3C documents, the UCLA course catalog, and the CIA World Factbook.
� 2007 Published by Elsevier B.V.

Keywords: Version management; Temporal queries; XML documents; Web warehouses
R

N
C

O1. Introduction

Temporal queries and version management for Web archives are important components of Web informa-
tion systems. They are particularly important in applications such as document archives and digital libraries
that must ensure the permanence of e-documents. Indeed, the very computing technology that makes digital
repositories possible also makes it very easy to revise documents and publish the latest versions on the Web.
To avoid loss of critical information and achieve e-permanence, old versions must be preserved. We can expect
that in the future, ‘‘e-permanence” standards will be established for critical Web sites of public interest [17].
U

0169-023X/$ - see front matter � 2007 Published by Elsevier B.V.

doi:10.1016/j.datak.2007.08.002

* Corresponding author. Tel.: +1 609 203 5207; fax: +1 609 734 6565.
E-mail addresses: fusheng.wang@siemens.com (F. Wang), zaniolo@cs.ucla.edu (C. Zaniolo).

Please cite this article in press as: F. Wang, C. Zaniolo, Temporal queries and version management ..., Data Knowl.
Eng. (2007), doi:10.1016/j.datak.2007.08.002

mailto:fusheng.wang@siemens.com
mailto:zaniolo@cs.ucla.edu

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

2 F. Wang, C. Zaniolo / Data & Knowledge Engineering xxx (2007) xxx–xxx

DATAK 1076 No. of Pages 20, Model 3+

30 November 2007 Disk Used
ARTICLE IN PRESS
E
C

T
E
D

P
R

O
O

F

A first approach to preserve the content of successive document versions is storing each version as a sep-
arate document. However, this is very undesirable because of: (i) storage inefficiency, (ii) explosion of hits on
content-based searches, and (iii) difficulty of answering queries on the evolution of a document and its content.
Therefore, in this paper we propose XML-based techniques whereby a multi-version document is managed as
a unit, and successive versions are represented by their delta changes to optimize storage utilization and sup-
port efficiently complex historical queries on the evolution of the document and its elements (e.g., abstract,
figures, bibliography, etc.).

Similar problems and opportunities occur in data warehousing applications, where the need for temporal
data warehouses is well established [60,49]. Furthermore, as we move from traditional intra-company ware-
houses to inter-company warehouses, reliance on XML and Web-based environments is bound to grow. A
related new trend is Web warehouses (Fig. 1) designed to collect contents from Web sites of interest, and mon-
itor them at regular intervals to detect changes and provide subscribed services to a community of users [44].
Typical services provided include: (i) detecting changes from the previous version, (ii) forwarding significant
deltas to subscribers, (iii) answering continuous queries about changes, (iv) retrieving old versions, and (v)
supporting historical queries and trend analysis queries.

Thus, we focus on information systems, such as digital libraries and Web warehouses, that support sophis-
ticated change management and temporal queries for focused application domains. This differentiates our
Web warehouses and digital archives from systems such as the Wayback machine that are primarily interested
in preserving old snapshots of the global Web [4], rather than on providing sophisticated information services.
We instead want to provide the technology whereby powerful historical queries can be supported along with
sophisticated version-auditing techniques such as those supported by the Versioning Machine project [11].

A key problem that will be addressed in this paper is how to represent a multi-version document as an XML
document that (i) can be viewed by conventional XML browsers at remote sites and (ii) can also support com-
plex queries, including temporal ones, expressed in standard XML query languages, such as XQuery [15]. Pre-
vious works have focused on either problem rather than both: for instance, the reference-based representation
proposed in [27] achieves the first objective and it is also amenable to efficient implementation. However, the
approach proposed in [27] is not suitable for expressing temporal queries of any sophistication. In general,
the question of which data representation should be used for modelling time-dependent information and facil-
itating temporal queries has generated many unsolved research issues for database researchers. The difficulty of
such temporal issues is vividly demonstrated by the number and diversity of approaches that were proposed
over the years to solve the problem. In particular, for relational databases, more than 40 different approaches
were counted [61]; each featured a different combination of temporal data model and query language. Although
the design space of alternatives has been so extensively explored, as of today, no temporal data model and query
U
N

C
O

R
R

Web Crawler X-Diff Query Engine

Clients

Internet
XML Queries

Applications:
Historical queries
Link permanence
Continuous queries

New Version

Last Version

Repository and Index ManagerRepository and Index Manager

Fig. 1. Web information warehousing.

Please cite this article in press as: F. Wang, C. Zaniolo, Temporal queries and version management ..., Data Knowl.
Eng. (2007), doi:10.1016/j.datak.2007.08.002

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

F. Wang, C. Zaniolo / Data & Knowledge Engineering xxx (2007) xxx–xxx 3

DATAK 1076 No. of Pages 20, Model 3+

30 November 2007 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

F

language exists that is generally accepted in the research community or supported by major vendors. Fortu-
nately, the troublesome experience of relational systems with temporal information is in many ways due to
the inflexible flat structure of relational tables, and does not necessarily carry over to XML [55,56]. Indeed
XML provides a richer data model, whose structured hierarchy can be used to support temporally-grouped
data models that have long been recognized as the most natural and expressive for temporal information
[34,33]. Also XML provides a powerful query languages, XQuery, that, unlike SQL, achieves native extensibil-
ity and Turing completeness [42]. In fact, we will show in this paper that complex temporal queries on the his-
tory of a relational database can be expressed more easily once this history is published (or viewed) in XML.

The use of standard XML in archiving also dovetails with the requirements imposed by more traditional
applications of version management, such as software configuration and cooperative work [12,54]. As these
applications migrate to a Web-based environment, they increasingly use XML for representing and exchang-
ing information, often seeking standard vendor-supported tools for processing and exchanging their XML
documents. The importance of version management has been fully recognized by XML standard groups
[12], but because of the difficult research issues that remain open, standards have not been issued yet. This
current situation provides a window of opportunity to solve the technical challenges and lay the foundations
for this important piece of Web information systems technology.

This paper is organized as follows. Section 2 reviews previous work. Section 3 proposes our new scheme to
represent XML document changes, and Section 4 shows how complex temporal queries can be supported on
this scheme. Section 5 discusses the general approach of ICAP [10] and two use cases. Section 6 discusses
implementation techniques, and Section 7 concludes the paper.

2. Previous work

The problem of document history management combines issues from document version management and
temporal databases, for which a large number of models and techniques have been proposed, but often for
situations different from the one considered here. For instance, while the problem of preserving the history
of an XML document is akin to that of transaction-time relational databases, much of the previous work
on temporal queries has been developed in the framework of valid-time databases. Therefore, from this large
body of work, we will only discuss previous research that is most relevant to our specific problem, with a focus
on the representation of temporal XML documents.

2.1. Temporal XML representations

The problem of supporting valid time on the Web was studied in [41] by Grandi and Mandreoli who pro-
posed a new <valid> markup tag for XML/HTML documents. Rather than temporal queries, the focus of
their work was visualization for temporal information, which they showed can be achieved via browsers and
XSLT [16]. Likewise, the problem of supporting historical queries was not addressed in [40], where a dimen-
sion-based method for managing changes in XML documents was instead proposed. In most previous
approaches, the introduction of a new temporal language (or at least of non-trivial time-oriented extensions)
is typically regarded as the sine-qua-non for achieving effective support of temporal queries. For instance, Oli-
boni et al. focus on managing semi-structured temporal data and propose a new language to query documents
containing such data [47]. For XML, several extensions have been proposed to the XML data model and its
query languages to manage and query temporal information. For instance, extensions to XPath were proposed
by Amagasa [18], Dyerson [35], and Mendelzon et al. [46], whereas Gao and Snodgrass proposed the sXQuery
language that adds various temporal constructs to XQuery [39]. In our approach, we will instead support tem-
poral representations and queries without any extension to XML and its query languages. An XML-based
representations for scientific data was presented in [21]. Our XML scheme presents several similarities with
[21], but we also provide full support for historical queries, a topic not discussed in [21].

As discussed in [44,63], maintenance of dynamic warehouses for XML data requires that the Web sites of
interest be periodically consulted, and the difference between the latest version and the previous one be
computed as edit scripts. The change detection algorithms used to generate such edit scripts efficiently are
briefly discussed next.
Please cite this article in press as: F. Wang, C. Zaniolo, Temporal queries and version management ..., Data Knowl.
Eng. (2007), doi:10.1016/j.datak.2007.08.002

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

4 F. Wang, C. Zaniolo / Data & Knowledge Engineering xxx (2007) xxx–xxx

DATAK 1076 No. of Pages 20, Model 3+

30 November 2007 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

F

2.2. Change detection

LaDiff [23] is a change detection algorithm for semi-structured information that approaches the problem by
dividing it into: (i) the Good Matching problem and (ii) the Minimum Conforming Edit Script problem. The
XyDiff algorithm for XML documents was proposed in [44,36]. To match the largest identical parts of both
documents, the algorithm uses ID attribute information, and a signature and a weight is computed for each
node from bottom-up. X-Diff [59] detects changes in XML documents based on an unordered model that is
applicable to published relational data. By using node signatures and node XHash values, the algorithm tries to
find the minimum-cost matching. CX-DIFF [38] provides customized change detection of XML content. An
interesting diff algorithm that uses relational databases was proposed in [64].

Commercial change detection tools include DeltaXML [3] and Microsoft XMLDiff [5]; these provide tools
to generate XML diff and represent it in XML format.

Different approaches for supporting multi-version documents use different schemes for storing these deltas in
secondary storage and processing them for version reconstruction and query execution. These are discussed next.

2.3. Managing the deltas

The RCS [53] scheme stores the most current version plus reverse-editing scripts to retrieve previous ver-
sions. An improvement to RCS was proposed in [26], where a temporal clustering scheme is introduced to
improve the efficiency of retrieving past versions from secondary store. These approaches lack an XML-com-
patible logical representation that can be used to support complex queries [26]. RBVM [27] unifies the logical
representation and the physical one by representing objects that remain unchanged as references to the objects
in old versions. However, this scheme can only handle simple queries; in fact, different storage representations
are needed for more complex queries [29,28]. Another scheme often used in the past for version control is
SCCS [50]. In SCCS, each text segment is clustered with all its successive changes; also pairs of timestamps
are associated with the segments and their changes to specify their lifespans. Version retrieval is performed
by scanning the file and retrieving valid segments according to timestamps. At the physical level, this is a
source of much inefficiency, since reconstruction of a single version now requires a complete scan of the file
which becomes large and larger as successive versions are added. The addition of indexes [50] only improves
the situation up to a point, since the segments belonging to the same version are not clustered together; thus,
retrieving a version can require accessing a different page for each of its segments [26].

2.4. Temporal databases

The management of multiple database versions has received much attention under the topic of transaction-
time temporal databases [61]. A large number of temporal data models were studied, and the design space for
the relational data model has been exhaustively explored [48]. Clifford et al. [34] classified them as two main
categories: temporally ungrouped and temporally grouped. The temporally-grouped data model is also referred
to as non-first-normal-form model or attribute time stamping, in which the domain of each attribute is extended
to include the temporal dimension. Although temporally-grouped models have long been known to be more
expressive and appealing to intuition [33,34], they cannot be supported easily in the framework of flat relations
and SQL, and therefore they have not been actually implemented in temporal database projects and prototypes
[48]. As we will see, temporal data models are instead supported well by XML and its query languages.

Object-oriented temporal models are compared in [51], and a formal temporal object-oriented data model is
proposed in [22]. The problem of version management in object-oriented and CAD databases has received a
significant amount of attention [20,37]. However, support for temporal queries is not discussed, although
query issues relating to time multigranularity were discussed in [24]. Schema versioning represents another
important topic frequently discussed in the context of object-oriented databases [61].

The work presented here represents a major extension of the work described in [57]. Thus, this paper pre-
sents significant new results, including: (1) extension to arbitrary XML documents by properly handling mixed
element and text nodes, (2) detailed explanation of version interval nesting, (3) new discussion on change
annotation and visualization, (4) generalized approach to arbitrary documents through significant new case
Please cite this article in press as: F. Wang, C. Zaniolo, Temporal queries and version management ..., Data Knowl.
Eng. (2007), doi:10.1016/j.datak.2007.08.002

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

F. Wang, C. Zaniolo / Data & Knowledge Engineering xxx (2007) xxx–xxx 5

DATAK 1076 No. of Pages 20, Model 3+

30 November 2007 Disk Used
ARTICLE IN PRESS
P
R

O
O

F

studies, including the CIA World Factbook, (5) the development of the XChronicler tool to build an XML
document that describes document revision history—called V-Document—and the algorithm it uses, (6)
examples to demonstrate user-defined functions, (7) detailed storage efficiency analysis of the approach,
and (8) XML schemas for sample versioned XML documents.

3. A logical model for versions

Although the SCCS scheme has many shortcomings at the physical level, we will show that it offers potential
benefits at the logical level. These are not significant in conventional systems, where the basic document seg-
ments managed by SCCS are lines of text, and the multi-version document generated by SCCS lacks any obvious
logical structure. However, when applied to the elements of a well-structured XML document, the basic SCCS
scheme can be extended to produce a well-structured XML document that can be used to display the version
history of the document on a Web browser, and also express complex queries on the document and its evolution.

We now discuss how to summarize and represent the successive versions of a document (Fig. 2) as an XML
document, called a V-Document (Fig. 3), upon which complex queries and temporal queries can be specified
using languages such as XPath or XQuery. In contrast to the relational model, XML provides the opportunity
to annotate elements and also have a sequence of such version-annotated elements instead of single separate
elements (namely relational tuples). In a V-Document, each element is assigned two attributes vstart and vend,
which represent the valid version interval (inclusively) of the element. In general, vstart and vend can be ver-
sion numbers or timestamps: vstart represents the initial version when the element is first added to the XML
document, and vend represents the last version in which such an element is valid. After the vend version, the
U
N

C
O

R
R

E
C

T
E
D

Fig. 2. Sample snapshots of versioned XML documents.

Please cite this article in press as: F. Wang, C. Zaniolo, Temporal queries and version management ..., Data Knowl.
Eng. (2007), doi:10.1016/j.datak.2007.08.002

R
O

O
F

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

Fig. 3. V-Document: XML representation of versioned document.

6 F. Wang, C. Zaniolo / Data & Knowledge Engineering xxx (2007) xxx–xxx

DATAK 1076 No. of Pages 20, Model 3+

30 November 2007 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

T
E
D

Pelement is either removed or changed. The value of vend can be set to now, to denote the ever-increasing time-
stamp value of the current version.

Thus, in our representation, we timestamp every element of our hierarchical structure, where the interval of
validity of an ancestor node always contains those of its descendant nodes, since descendant nodes cannot exist
without ancestors—e.g., Section 2.1 cannot exist without Section 2. This representation allows parent nodes to
exist without children nodes, as is natural in many applications. For instance, as discussed in the later sections,
this allows us to represent relational database tables that contain no tuples. For the case of Fig. 3, this means
that it will be possible to define sections without giving their titles and the subsections they contain—and thus
support useful queries such as ‘‘How many sections did the first version of this document contain?”.1

There are significant advantages to our scheme, including the following:

� There is no storage redundancy, since multiple identical nodes which do not change over time in successive
versions of the same document are represented as a single node timestamped with its validity interval (an
analysis on storage efficiency is discussed in Appendix 2).
� The document history is represented by a temporally-grouped model encoded as an XML document whose

DTD (or XML Schema) is automatically generated from the DTD (the schema) of the original document.
� Temporal queries and other complex queries can be easily expressed in V-Documents using standard XML

query languages.

3.1. Change management

We now consider a very simple document and its successive versions, as shown in Fig. 2.
For simplicity, the only primitive changes used in our V-Documents are DELETE, INSERT and

UPDATE. (Operations such as MOVE or COPY can be reduced to these.) These changes are detected by
the XML-Diff algorithm and represented in the V-Document by using the vstart and vend attribute that denote
the beginning and end timestamps of the version (or alternatively the version number).

UPDATE. When an element is updated, a new element with the same name will append immediately after
the original element; the attribute vstart of this new element is set to the current timestamp (or version num-
ber), and the attribute vend is set to the special symbol now that represents the ever-increasing current time-
1 In certain applications, the implicit constraints of the application might be such that certain nodes never appear without children—e.g.,
we might not allow sections to be defined unless at least a title is stored for them. In that case, the time intervals of a parent could be
computed by coalescing the intervals of its children. But, by timestamping every node in the document hierarchy, we obtain a uniform
representation that simplifies querying and maintenance.

Please cite this article in press as: F. Wang, C. Zaniolo, Temporal queries and version management ..., Data Knowl.
Eng. (2007), doi:10.1016/j.datak.2007.08.002

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

F. Wang, C. Zaniolo / Data & Knowledge Engineering xxx (2007) xxx–xxx 7

DATAK 1076 No. of Pages 20, Model 3+

30 November 2007 Disk Used
ARTICLE IN PRESS
E
D

P
R

O
O

F

stamp (or version number). The vend attribute of the old element is set to the last version before it was chan-
ged. The change of an element is not viewed as a change of its ancestors, unless the ancestors themselves are
changed. This is consistent with the results produced by the XML-Diff algorithms, where the only deltas listed
are those of the changed elements.

INSERT. When a new element is inserted, that element is inserted into the corresponding position in the V-

Document; the vstart attribute is set to the current timestamp (or version number), and vend is set to now.
DELETE. When an element is removed, the only information that must be changed is the vend attribute;

this is set to the last timestamp (or version number) where the element was valid.

3.2. Annotating and visualizing changes

The XML-based representation proposed here supports well the version control and auditing applications
considered in the Version Machine project [11]. In many situations, for instance, it is very desirable to add change
annotations that explain the reasons and background for such changes, or to use color coding to visualize
changes, possibly between non-successive versions. Now, the V-Document can be easily queried and processed
with the XML stylesheet language XSLT [16], to translate into other XML documents or HTML documents, and
changes between any two versions can thus be visualized through colors. For instance, three kinds of changes are
highlighted: added (yellow), updated (green), and deleted text (strikethrough). The approach is also general and
applicable to different types of XML documents. Since the V-Document preserves the structures of the snapshot
versions, the XSLT stylesheet for snapshot versions can be reused for version display on the Web.

For example, to mark newly added nodes between Version 1 and Version 2, we can compare each node’s
version interval, and if the interval is valid at Version 2, and not valid at Version 1, then this is a new node and
will be marked with a yellow background with the HTML tag span.

However, the most significant benefit achieved from the representation proposed here is that it does a good
job of supporting complex queries, particularly historical queries, which are discussed next.
U
N

C
O

R
R

E
C

T4. Historical queries

Using our change representation scheme, complex queries can be expressed easily. The following is a com-
plete list of temporal queries expressed in XQuery [15].

QUERY 1. Snapshot: show Section 2 of Section 1 as it was on 2006-11-02.

for $e in doc("V-Document.xml")/document/section

[vstart(.) <= "2006-11-02" and "2006-11-02" <= vend(.) and no = "1"]

return ($e/subsection
[vstart(.) <= "2006-11-02" and "2006-11-02" <= vend(.)]) [2]

Here, vstart($x) and vend($x) are two library functions that, respectively, return the start and end
timestamps of the element $x.

QUERY 2. Evolutionary History: show the history of the title of Section 1.

for $title in doc("V-Document.xml")/document/section[no="1"]/title

return $ title

QUERY 3. Duration Query: show section numbers and durations for sections that were revised within six
months (180 days).

for $title in doc("V-Document.xml")/document/section/title

let $ duration :¼substract-days(vend($title), vstart($ title))

where duration <= 180

return <section> {$no,$ duration} </section>
Please cite this article in press as: F. Wang, C. Zaniolo, Temporal queries and version management ..., Data Knowl.
Eng. (2007), doi:10.1016/j.datak.2007.08.002

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

8 F. Wang, C. Zaniolo / Data & Knowledge Engineering xxx (2007) xxx–xxx

DATAK 1076 No. of Pages 20, Model 3+

30 November 2007 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

F

The subtract-days is a function that computes the differences between dates, recasting the result as days.
In our next query, below, we show how to support the operators since and until of first-order temporal logic

[32].
QUERY 4. A Since B: show the sections which have remained unchanged since 2006-11-01.

for $sec in doc("V-Document.xml")/document/section

and vstart($ sec) <= "2006-11-01" and vend($sec) ="now"

return $sec

QUERY 5. A Until B: find the sections in which the title has remained unchanged until a new subsection
‘‘Motivation” was added.

for $sec1 in doc("V-Document.xml")/document/section

for $sec2 in doc("V-Document.xml")/document/section

let $title= sec2/title[1]

let $subsec :¼$sec1/subsection[.="Motivation"]
where not empty($title) and not empty($sec) and

vend($title) >= vstart($sec)
return $sec2

These examples shown above illustrate that the need for coalescing is often avoided or reduced by the use of
our temporally-grouped [34] XML representation, on which powerful temporal queries can be conveniently
expressed using XQuery.

4.1. Temporal functions

Since XQuery supports user-defined functions, a small library of functions has been defined in our ICAP
Project [10] to help users with temporal queries.

For instance, the functions vstart($e) and vend($e) used in the previous examples were introduced as a
convenience to users, but also for data independence since they can hide low-level details used in representing
time, e.g., ‘‘now.” (Internally, we use ‘‘end-of-time” values to denote the ‘now’ symbol. For instance, date ‘now’
is represented as ‘‘9999-12-31.”) Other functions that should be defined for user convenience are as follows:

� Time-interval functions: voverlaps($a,$b), vprecedes($a,$b), vcontains($a,$b), vequal-

s($a,$b), vmeets($a,$b) will return true or false according to two interval positions; overlapin-
terval($a,$b) returns the overlapping interval.
� Duration and date/time functions: vspan($e) returns the version span of a node, vstart($e) returns the

start version time of a node, vend($e) returns the end version time of a node, and vinterval($e)
returns the version interval of a node.

More complex user-defined functions were provided to address both the issues of expressive power and user
convenience. For instance, we next describe a snapshot function that can be used to construct snapshots of
V-Documents of arbitrary structure and nesting:

QUERY 6. Snapshot: retrieve the version of the document on 2006-11-03:

for $e in doc("V-Document.xml")/document

return snapshot($e, "2002-01-03")

Here, snapshot($node, $versionTS) is a recursive XQuery function that checks the version interval of the ele-
ment and only returns the element and its descendants where vstart 6 versionTS 6 vend, defined as follows:
Please cite this article in press as: F. Wang, C. Zaniolo, Temporal queries and version management ..., Data Knowl.
Eng. (2007), doi:10.1016/j.datak.2007.08.002

292

293

294

295

296

297

298299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

F. Wang, C. Zaniolo / Data & Knowledge Engineering xxx (2007) xxx–xxx 9

DATAK 1076 No. of Pages 20, Model 3+

30 November 2007 Disk Used
ARTICLE IN PRESS

P
E

define function snapshot($e, $v) {
if((date($e/@vstart)<=date($v)) and (date($e/@vend)>=date($v)))
then element{name($e)} {
U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

F

$e/text(), $e/@*[string(name(.)) != "vstart" and string(name(.))!=

"vend"],

for $child in $e/*

return snapshot($child, $v)
}
else ()

}
Our function defined above can be used to retrieve snapshots of any parts of the document. For instance, to

retrieve the snapshot of the titles of Sections 1 and 2 on 2006-12-03, we can use this query:

for $d in doc("V-Document.xml")/document

[vstart(.) <= "2006-12-03" and vend(.) >= "2006-12-03"]

let $sec :¼$d/section[no="1" or no="2" and

vstart(.) <= "2006-12-03" and vend(.) >= "2006-12-03"]

return snapshot($/title, "2006-12-03")
Other useful functions in our temporal library include temporal aggregates discussed in the following

section.

5. A general approach

The approach proposed in the previous sections is quite general and can be used to preserve (a) the version
history of XML documents and (b) the transaction-time history of relational databases. These two application
scenarios have been the focus of two UCLA research projects, the ICAP [10] described next and the ArchIS [1]
project described in Section 5.4.

5.1. The ICAP Project

Nowadays, many Web documents of practical significance are managed using XML and revised frequently.
Thus, we did not have to stray very far to find our first case study: UCLA manages most of its catalogs and
other Web documents in XML and updates them periodically. For instance, a new XML version of the UCLA
course catalog is published every two years. In this semi-structured document, the courses offered by each
department are listed with their numbers, titles, credit units, the grading basis (letter grading or S/U), and
the requisites enforced for each course. Along with this structure information, we find a textual description
of the topics covered by the course, and other ad hoc annotations. In the ICAP project, we have used the
XChronicler tool, to build a V-document that captures the history of recent course catalogs. This V-document
makes it possible to use XQuery to pose queries, such as: Find the new courses introduced by the UCLA CS

department in the period 200-2004? and How long did it take for keywords such as ‘nanotechnology’ to migrate

from graduate course syllabi to undergraduate syllabi?.
The use of Web catalogs is ubiquitous in countless services and enterprizes of public and commercial inter-

est and growing every day. Inasmuch as catalogs are frequently revised, the ICAP technology provides a sim-
ple but effective approach for enhancing the information systems supporting such catalogs with historical
queries and flashback capabilities.

Two other application testbeds studied in the ICAP project were (i) the CIA World Factbook that is revised
every year [2] and (ii) the history of successive versions for the W3C XLink proposed standards [14].

5.2. Case study: the CIA world factbook

The CIA World Factbook is published by the Central Intelligence Agency and has been used as a repository
and handbook on population, government, military, and economic information for nations recognized by the
lease cite this article in press as: F. Wang, C. Zaniolo, Temporal queries and version management ..., Data Knowl.
ng. (2007), doi:10.1016/j.datak.2007.08.002

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

10 F. Wang, C. Zaniolo / Data & Knowledge Engineering xxx (2007) xxx–xxx

DATAK 1076 No. of Pages 20, Model 3+

30 November 2007 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

F

United States [2]. The report is updated annually and is made public on the Web. However, users can only
access the snapshot versions of the Factbook from each year, and there is no clue on how the geopolitical
and economic situation of the world has evolved over the years. Furthermore, the set of canned queries offered
by the Factbook Web site is very limited—only keyword search is provided.

5.2.1. Generate structured contents

The Factbook documents are currently stored in HTML form; however their regular structure makes it
easy to convert them into XML documents. Thus, we built a tool that can effectively crawl the Factbook

Web pages, extract contents from the pages, and construct a hierarchical XML representation for such
pages. Finally, the snapshots from recent years were assembled into a V-Document using the XChronicler
described in the next section; the resulting V-Document supports interesting queries on the recent political
and economic history of the world. Said V-Document, and the queries discussed next, are available at
http://stromboli.cs.ucla.edu/icap/.

5.2.2. Temporal queries on the factbook

The following XQuery examples demonstrate how we can specify structured temporal queries on the V-
Document derived from the World Factbook.

QUERY FB1. Find the military expenditure history of the United States.

for $x in document("factbook04T.xml")/factbook/

record[country=’United States’]

return $x/military/military_expenditure_dollar_figure

QUERY FB2. Retrieve Canada’s GDP on 2002-03-24.

for $x in document("factbook04T.xml")/factbook/

record[country=’Canada’]

return $x/economy/GDP[vstart(.) <=’2002-03-24’
and vend(.) >=’2002-03-24’]

QUERY FB3. Find Italy’s exchange rate history from 2002-02-01 to 2003-04-16.

for $x in document("factbook04T.xml")/factbook/

record[country=’Italy’]

return $x/economy/exchange_rates[vstart(.) <=’2003-04-16’
and vend(.) >=’2000-02-21’]

5.3. Version History for W3C XLink Specs

The W3C XLink Specs [14] provide an excellent example of the many technical memos and specs that are
now published in XML. These text-intensive documents, are frequently revised, because of (i) editorial
changes aiming at clarifying and improving the current document and (ii) changes and revisions reflecting
the evolution of the technology and systems that these documents are describing.

We have used the XChronicler tool to convert the three versions of XLink specs available to date into a V-
document that is managed by the ICAP system. We obtained a simple environment that is supportive of audit-
ing changes and exploring the reasons for such changes. Indeed, changes between successive versions of the
documents, or even between non-successive versions of the same, can be easily visualized through colors. Fur-
thermore, annotations can be easily attached to the changed elements in the document to explain the reasons
for the changes. Finally, easily-formulated high-level queries can be used to reveal important evolution infor-
mation such as: When were certain parts of the specs last revised?, and When was the reference to a particular

paper first introduced? We found that the most interesting answers are often returned when histories are que-
Please cite this article in press as: F. Wang, C. Zaniolo, Temporal queries and version management ..., Data Knowl.
Eng. (2007), doi:10.1016/j.datak.2007.08.002

http://stromboli.cs.ucla.edu/icap

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

F. Wang, C. Zaniolo / Data & Knowledge Engineering xxx (2007) xxx–xxx 11

DATAK 1076 No. of Pages 20, Model 3+

30 November 2007 Disk Used
ARTICLE IN PRESS
ried for unexpected and improbable events. For instance, when we posed the query, Find authors who were

dropped from the last version of XLink specs, the only answer returned was ‘‘Ben Trafford”. We then decided
to create an annotation that explains the background for such an unusual change and searched the Web for an
explanation of why Ben Trafford was so unceremoniously dropped from the author list of XLink. Initially, we
only found reasons for wanting to keep Ben Trafford as a document authors: countless Google entries showed
that he was a prolific writer, a popular speaker, and a charismatic technical leader working in the area of elec-
tronic books and related Web-technologies. But eventually, after visiting hundreds of links, we found:

A bizarre little tale.. . . A Dot-Com Saga . . .
Plea
Eng
O
FIn US v. Benjamin Trafford, Mr. Trafford was sentenced last Thursday (19 July 2001, after several post-

ponements) to six months in a medium-security federal penitentiary, followed by six months in a halfway
house, followed by three years’ probation. He will be deported to Canada at the start of probation and
barred from re-entering the US. He was also fined $30,000.
U
N

C
O

R
R

E
C

T
E
D

P
R

OThen the Web page http://crism.maden.org/writing/exmu.html proceeds by humorously recounting how, in
the heyday of Dot-Com, Ben was drawn into a stream of financial (and salacious) trespasses, culminating to
his conviction for stock fraud (thus explaining why he was removed from the XLink author list). This amusing
discovery, made possible by the ICAP system [10], illustrates that in real life changes are often more revealing
and informative than the status quo. Indeed, the ICAP approach combines the ability of flashing back to pre-
vious versions, with that or mining for significant patterns of changes, by using standard XML and its query
languages.

5.4. Relational database history: the ArchIS project

The situation of relational databases is also of great practical and scientific interest because of the growing
number of time-oriented database applications and because past research on temporal databases has revealed
the difficulty of expressing temporal queries on flat relational tables using relations and SQL [61,51,48]. But,
rather than restricting ourselves to the relational data model and query languages, we can pursue an approach
similar to that we just used for the version history of XML documents. Thus, we can publish the transaction-
time history of the relational database in XML and pose temporal queries on such history using standard
XQuery. This leads to using a temporally-grouped representation that has long been recognized as the models
are more natural and powerful for temporal databases [34]. This representation that could not be easily real-
ized within the rigid structure of flat relational tables can now be supported quite naturally using XML.

While in a relational representation we will have to timestamp individual tuples as shown in Table 1, under
a temporally-grouped representation we timestamp columns as shown in Fig. 4, where each attribute value is
instead timestamped with its validity period.

The temporally-grouped information of Fig. 4 can be naturally represented using XML as shown in Fig. 5,
where each element is timestamped with its validity period by its tstart and tend attributes. Powerful historical
queries can then be naturally expressed against this representation using standard XQuery. No further discus-
sion of these queries will be given here, since they are similar to those we have discussed for V-documents, and
several examples have been given in [58]. The XML-published transaction-time history of a relational database
can then be stored and queried using a native XML database, as in the case of V-documents.

Alternatively, such histories can be shredded back into relations, and implemented with the help of existing
DBMS. This second solution is investigated in [58], where the V-documents were in fact shredded into H-
tables, and queries expressed in XQueries which are then mapped into equivalent SQL/XML queries. This
makes possible the use of temporal indexing and clustering techniques, that in combination with the support
for query optimization of SQL/XML provided by commercial systems, achieves very good levels of perfor-
mance and scalability [58].

6. Implementation of an XML document versioning system

In this section we discuss how V-Documents can be constructed from the successive versions of arbitrary
XML documents and stored for efficient support of temporal queries.
se cite this article in press as: F. Wang, C. Zaniolo, Temporal queries and version management ..., Data Knowl.
. (2007), doi:10.1016/j.datak.2007.08.002

http://crism.maden.org/writing/exmu.html

R
R

E
C

T
E
D

P
R

O
O

F

432

433

434

435

436

437

438

439

440

441

442

443

444

Table 1
The snapshot history of employees

Id Name Salary Title Deptno Start End

1001 Bob 60,000 Engineer d01 1995-01-01 1995-05-31
1001 Bob 70,000 Engineer d01 1995-06-01 1995-09-30
1001 Bob 70,000 Sr Engineer d02 1995-10-01 1996-01-31
1001 Bob 70,000 TechLeader d02 1996-02-01 1996-12-31

Fig. 4. Temporally-grouped history of employees.

Fig. 5. The history of the employee table is viewed as employees.xml.

12 F. Wang, C. Zaniolo / Data & Knowledge Engineering xxx (2007) xxx–xxx

DATAK 1076 No. of Pages 20, Model 3+

30 November 2007 Disk Used
ARTICLE IN PRESS
U
N

C
O6.1. XChronicler: generate V-Document from snapshot versions

As shown in Fig. 6, we built a tool named XChronicler [10] to generate the V-Document from the struc-
tured diffs taken between successive versions of an XML document (Algorithm 1).

First, the first snapshot version document is normalized as document X 1 by mapping attributes of elements
as subelements, and converting mixed text nodes into tagged nodes (discussed in Section 6.2). Document X 1 is
then timestamped as document V 1 by adding two attributes vstart and vend. (Here, V i represents the composed
version history V-Document from version 1 up to version i.)

Then, the second snapshot version document is normalized as document X 2, and the structured Diff1:2

between X 1 and X 2 is computed with MS XMLDiff tool [5]. Diff1:2 is represented as an XML document in
Microsoft XML Diff Language, an XML representation of updates. These updates in Diff1:2 are then applied
on V 1 to generate the composed history until the timestamp of version 2.

The above process is then repeated until the whole history is composed as V-Document V n, as per Algo-
rithm 1.
Please cite this article in press as: F. Wang, C. Zaniolo, Temporal queries and version management ..., Data Knowl.
Eng. (2007), doi:10.1016/j.datak.2007.08.002

446

447448
449
450
451
452
453
454
455
456
457
458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

F. Wang, C. Zaniolo / Data & Knowledge Engineering xxx (2007) xxx–xxx 13

DATAK 1076 No. of Pages 20, Model 3+

30 November 2007 Disk Used
ARTICLE IN PRESS
O
F

Algorithm 1 XChronicler Algorithm

1: Collect the timestamps of snapshot versions: T 1; T 2; . . . ; T n;
2: Normalize snapshot version 1 as document X 1 by mapping attributes of elements as subelements, and converting mixed text

nodes into tagged nodes;
3: Timestamp document X 1 as V-Document V 1 by adding vstart and vend attributes;
4: i 1
5: repeat

6: i i + 1
7: Normalize snapshot version i as document X i;
8: Compute the structured diff between document X i�1and X i and generate Diffi�1: i;
9: Construct document V i by applying update actions in Diffi�1: i on V i�1;

10: until(i > n).
E
D

P
R

O6.2. Handling attributes and mixed content

In our algorithm, we have assumed that the elements of our documents contain no attributes. Elements
containing attributes can also be supported in our V-Document by representing each attribute by a subelement
denoted by the special tag isAttr. For instance, if the section elements contain the attribute no, then we
represent them as follows:

<no isAttr="yes" vstart="2002-01-01" vend="now">1</no>
This transformation, and also the inverse transformation from child elements to attributes, is simple and

can be implemented in XQuery.
Mixed content

We also need to generalize our algorithm to situations where an element can contain text nodes that are
mixed with other elements. For example,
Plea
Eng
ThparaihbiXMLh/bi is a W3C standard.h/parai
This is handled by transforming a text node to an element mixtext:
C

<para>XML <mixtext>is a W3C standard.</mixtext></para>
R
R

EWith this transformation, all nodes can be associated with version intervals, and similar to attributes, the
reverse transformation can be done with XQuery.

With the two extensions discussed above, our approach becomes quite general and applicable to any XML
document.
6.3. Schema of the V-Document

One significant advantage of our scheme is that it preserves the hierarchical structure of original XML doc-
uments, and it has a well-defined DTD for the V-Document.
U
N

C
O

Fig. 6. XChronicler: generate V-Document from snapshot versions.

se cite this article in press as: F. Wang, C. Zaniolo, Temporal queries and version management ..., Data Knowl.
. (2007), doi:10.1016/j.datak.2007.08.002

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

14 F. Wang, C. Zaniolo / Data & Knowledge Engineering xxx (2007) xxx–xxx

DATAK 1076 No. of Pages 20, Model 3+

30 November 2007 Disk Used
ARTICLE IN PRESS
T
E
D

P
R

O
O

F

In particular, the DTD for the history of relations can be generated directly for their SQL schema.
As shown in Fig. 7, the DTD of the V-Document (Fig. 8) can be automatically generated from the snapshot

DTD. Each element is added with two new attributes, vstart and vend; an attribute of an element will be con-
verted as a child element, and child elements are set as repeatable for different version intervals.

When a schema is available for the snapshot XML document, the XML schema for the V-Document can be
derived in similar fashion, as shown in Appendix 1.

6.4. Efficient storage and retrieval

An important advantage of our approach is that significant savings in storage is achieved because the
approach eliminates the duplication of unchanged information that is caused by storing the different snap-
shots. These savings are realized for both evolving databases and evolving documents. For the first case,
we used a database containing the history of employees over 10 years, obtained by introducing regular
increases of salaries along with changes of titles and changes of departments. The history is published as a
new version represented in XML every 2 years for a consecutive 10 years (five versions). We stored the history
in two ways: snapshots and the V-Document. At each version, we computed the total storage up to this ver-
sion. Fig. 9 shows the comparison of storage between the V-Document and snapshots at different version
numbers. As the number of versions increases, the efficiency of the V-Document is apparent. Furthermore,
if we increase the number of snapshots, the storage used increases in proportion, while the storage used by
the V-Document remains largely unaffected.

As a second example, we tested the version history of W3C XLink standards [14]: there are three versions,
published respectively on 2000-07-03, 2000-12-20, and 2000-06-27. The storage is shown in Fig. 10. Observe
that the storage savings achieved by the V-Document grow with the number of successive versions.

A practical benefit of our approach is that it can achieve effective support for historical queries by utilizing
only current XML and XQuery standards. Thus, any native XML database [8,13] or any XML-extended com-
mercial ORDBMS [6,45] can be used to archive the history of a relational database and a multi-version XML
document—as demonstrated by our ICAP and ArchIS systems that are also accessible through the Web [10,1].
(However, for efficiency reasons, the XML database engine should be adapted to support one of the proposed
U
N

C
O

R
R

E
C

Fig. 7. DTD of snapshot XML documents.

Fig. 8. DTD of the V-Document.

Please cite this article in press as: F. Wang, C. Zaniolo, Temporal queries and version management ..., Data Knowl.
Eng. (2007), doi:10.1016/j.datak.2007.08.002

R
O

O
F

507

508

509

510

511

512

513

514

515

516

517

518

519

520

Fig. 9. Employee database: storage used by V-Documents versus snapshots.

F. Wang, C. Zaniolo / Data & Knowledge Engineering xxx (2007) xxx–xxx 15

DATAK 1076 No. of Pages 20, Model 3+

30 November 2007 Disk Used
ARTICLE IN PRESS
E
C

T
E
D

Pclustering/indexing techniques discussed next.) For all its obvious advantages, this solution also inherits the
limitations that current native XML databases and XML-extended commercial ORDBMS face—in particu-
lar, in terms of scalability since their performance is frequently unsatisfactory when the size of the database
grows. Overcoming these limitations represents an important topic of research and the objective of much
R&D effort by commercial vendors; However, we will not discuss this general and vast topic since that will
take us well beyond the scope of this paper. We will only briefly mention some of the specialized clustering
and indexing techniques that have been proposed for improving the performance of temporal queries on
multi-versioned documents, and also mention that, for relational table histories, the scalability and perfor-
mance issues can be solved effectively by shredding the V-Documents back into relational tables.

6.4.1. Usefulness-based clustering

This is a powerful technique that can turn a clustering scheme for a single version into a temporal clustering
scheme for the multi-version V-Document. For instance, say that we want to minimize the number of disk
pages needed to retrieve data concerning all employees working in a given department. Thus, we can start
by clustering a single version on deptno. However, it is not clear how to store the later deltas describing
U
N

C
O

R
R

Fig. 10. XLink standards: storage used by V-Documents versus snapshots.

Please cite this article in press as: F. Wang, C. Zaniolo, Temporal queries and version management ..., Data Knowl.
Eng. (2007), doi:10.1016/j.datak.2007.08.002

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

16 F. Wang, C. Zaniolo / Data & Knowledge Engineering xxx (2007) xxx–xxx

DATAK 1076 No. of Pages 20, Model 3+

30 November 2007 Disk Used
ARTICLE IN PRESS
O
R

R
E
C

T
E
D

P
R

O
O

F

the changes in the document. A first possibility is to append them to this first version as shown in Fig. 11. As
discussed in [28], this organization presents some advantages but destroys the clustering of the original doc-
ument. A better approach consists of retaining the basic structure of Fig. 5, whereby the salary history of a
given employee is stored sequentially; thus the deltas of each element are appended to the end of the element,
rather than at the end of the whole document. However, as the history becomes longer, the initial clustering of
employees (by department) will be lost and, as time goes by, more and more pages are needed to retrieve the
employees working in a given department at a certain time (snapshot query). The usefulness-based scheme
solves this problem by monitoring the usefulness of each page—which is defined as the percentage of currently
valid objects in the page. When the page falls below the specified threshold, the objects currently alive are cop-
ied to a new page (and future deltas will also be placed in this page) Fig. 12. Reconstructing the document at a
certain time only requires retrieving the pages that were useful at that time [29]. The scheme is efficient and
robust [25,28]; The performance of snapshot queries on multi-version documents is basically that of queries
on a single version stored in smaller pages (i.e., pages whose size is reduced by the usefulness factor). subsub-
sectioShredding and relational databases

A frequently used technique consists in decomposing the documents into flat tables that can be more effi-
ciently managed by current OR DBMS. This technique is particularly effective in the case where the V-Doc-
uments actually represent an XML view of the history of an underlying relational database [56]. In [56,58], the
authors showed that the shredded V-Documents can be stored and managed efficiently as a set of relational
tables, whereby a separate table is used for the history of each attribute (such as salary). The usefulness-based
clustering scheme discussed above and standard relational indexing techniques are then all that is needed to
manage the history of our database efficiently. Complex historical queries written in XQuery can then be
implemented via their equivalent XML/SQL queries on such history relations [56]. Additional refinements,
such as schema history management and compression, can also be used [58].

We were able to solve the scalability problem for V-Documents representing the history of relational database
tables, but the case of arbitrary XML documents is more complex and requires more sophisticated techniques,
such as durable node numbers whereby information on the structure of the document is not lost upon shredding.

6.4.2. Durable node numbers
An XML document can be viewed as an ordered tree consisting of tree nodes (elements). A pre-order tra-

versal number can be used to identify the elements of the XML tree [62,43,52,29]. The SPaR(Sparse Preoder
and Range) numbering scheme [29] uses durable node numbers (DNN, range) that can sustain frequent
updates, which was first proposed in [43]. Thus the interval [dnn(X), dnn(X) + range(X)] is associated with
element X, and we represent it as [vstart, vend] in the V-Document (Fig. 5).

6.4.3. Complex queries

The use of DNN also facilitates the maintenance of indexes on multi-version documents. In fact, by using
DNNs, efficient indexing schemes [29] and query processing algorithms [30,28] can be used to support complex
queries on multi-version documents. For instance, multi-version B-Trees (MVBT) [19] indexing is used to sup-
port complex queries. The scheme [28] supports conventional and path expression queries.
U
N

C

Fig. 11. Storage organization.

Please cite this article in press as: F. Wang, C. Zaniolo, Temporal queries and version management ..., Data Knowl.
Eng. (2007), doi:10.1016/j.datak.2007.08.002

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604 Q1

F. Wang, C. Zaniolo / Data & Knowledge Engineering xxx (2007) xxx–xxx 17

DATAK 1076 No. of Pages 20, Model 3+

30 November 2007 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

F

To implement such clustering/indexing techniques for efficient storage and retrieval of multi-version XML
documents, the XML database has to be adapted accordingly with additional effort. For example, the durable
node numbers will be assigned and indexed for query processing where additional query optimization is needed.

Therefore, our general approach to supporting historical queries using XML and XQuery can be applied to
both relational databases and XML documents. But for the first case, mature technology is at hand to assure
performance and scalability, while in the second case the enabling technology is still coming of age. Because of
the continuous efforts by researchers and vendors, we see good progress on this front. For instance, the first-
generation XML extensions for ORDBMS were often based on character large objects (CLOBs), whereby
updating any element would normally require the deletion and reinsertion of the whole document. However,
the latest versions of commercial systems have addressed these problems, and thus can provide for efficient
incremental updating of our V-Document. The testbed applications that we studied so far include W3C doc-
uments [14], the UCLA course catalog [9], and the CIA World Factbook [2]. These documents are of relatively
modest size (less than 10 megabytes) and the same is true for their multi-version history—a practical confir-
mation of the good storage efficiency of V-Documents that follows from the simple analytical model presented
in Appendix 2. For documents of this size, the performance of our historical queries on both native XML dat-
abases and OR DBMS is quite satisfactory in practice. However, it is also clear that more research is needed to
develop techniques whereby XML databases can achieve levels of performance comparable to relational dat-
abases. Furthermore, extensions of such techniques for historical queries represent an important facet of this
ongoing research endeavor.

7. Conclusions

Preserving Web information for future uses represents a critical requirement for the modern information
society. In addition to retrieval and browsing capabilities, the preservation of XML repositories and relational
databases also requires the ability of supporting queries on the archived documents. At the present, these
requirements are not met and await for the development of new enabling technology. Therefore in this paper,
we have proposed a novel approach to the management of Web document archives and data warehouses,
which, in addition to preserving the original artifacts, also supports powerful historical queries on the evolu-
tion of the documents and their contents. Therefore, we have presented simple techniques (based on the hier-
archical timestamping of XML elements) and shown that said techniques can be used to represent and query
temporal information in XML and that they are effective on a wide assortment of information sources ranging
from textual documents to transaction-time relational databases.

The key features of the proposed approach are: (i) the evolution history of documents and databases is rep-
resented in standard XML using a temporally-grouped representation and (ii) complex temporal queries are
then expressed in XQuery, without requiring temporal extensions to the XML standards. Indeed, while we
relied on the use of several temporal functions to simplify our queries, similar functions can be easily added
by users to their current XML/XQuery systems. Therefore, an interesting conclusion that follows from these
results is that supporting temporal models and historical queries is significantly easier in an XML/XQuery-
based approach than in the traditional framework of relational tables and SQL. (This observation holds even
when SQL is enriched with temporal user-defined functions; in fact, even when enriched with special temporal
extensions, SQL failed to gain much popularity as a temporal query language.)

After focusing on the problems of modeling and querying temporal information at the logical level, we
briefly discussed various clustering and indexing approaches to achieve efficient execution of these queries.
The main issues regarding performance and scalability of (i) XML databases and (ii) temporal information
and queries were identified and discussed. Efficient support for temporal queries in the XML/XQuery frame-
work is thus emerging as an area of significant research opportunities and great importance for temporal
applications [28].

8. Uncited references

[7,31].
Please cite this article in press as: F. Wang, C. Zaniolo, Temporal queries and version management ..., Data Knowl.
Eng. (2007), doi:10.1016/j.datak.2007.08.002

605

606

607

608

609

610

611 Q2

612613

18 F. Wang, C. Zaniolo / Data & Knowledge Engineering xxx (2007) xxx–xxx

DATAK 1076 No. of Pages 20, Model 3+

30 November 2007 Disk Used
ARTICLE IN PRESS
F

Acknowledgements

The authors thank Shu-Yao Chien, Bertram Ludäscher, Richard Marchiano, and Vassilis Tsotras for many
inspiring discussions. We also thank Emanuele Ottavi for his implementation of XChronicler. This research
work was carried out as part of the ICAP (Incorporating Change Management into Archival Processes) pro-
ject sponsored by the National Historical Publications and Records Commission. We also want to thank the
reviewers for their insightful suggestions, which we were able to implement thoroughly, and which resulted in
significant improvements to the quality of the paper.

Appendix 1. XML schemas of the sample documents
U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

Fig. 12. (a) XML schema of the sample snapshot XML document and (b) XML schema of the sample V-Document.

Please cite this article in press as: F. Wang, C. Zaniolo, Temporal queries and version management ..., Data Knowl.
Eng. (2007), doi:10.1016/j.datak.2007.08.002

614

615

616

617

618

619

620

621

623623

624
625

627627

628
629

631631

632

634634

635
636

638638

639

640

642642

643
644

646646

647

648

649

650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666

F. Wang, C. Zaniolo / Data & Knowledge Engineering xxx (2007) xxx–xxx 19

DATAK 1076 No. of Pages 20, Model 3+

30 November 2007 Disk Used
ARTICLE IN PRESS
Appendix 2. Efficient storage

V-Documents also achieve efficient storage compared to snapshot-based versions, especially when the ratio
of update on documents is small.

Sauppose the deletion ratio, insertion ratio, and update ratio are Rdel, Rins, and Rupd, respectively. The size of
snapshot version n is Sn, and the total size of versions up to version n is S1!n. Here for simplification, we
assume that the update will not increase the size in a snapshot version; the size of additional timestamping
attributes can be ignored.

For the snapshot-based scheme, the size of Sn is as follows:
Plea
Eng
F

Sn ¼ Sn�1ð1þ Rins � RdelÞ ð1Þ

The total version size up to version n is
 O

V 1!n ¼ S1 þ S2 þ � � � þ Sn�1 þ Sn ¼ S1

ð1þ Rins � RdelÞn � 1

Rins � Rdel

ð2Þ
O

When (Rins � RdelÞ � 100%, Eq. (2) is approximately equal to
 RV 1!n ¼ S1

1þ nðRins � RdelÞ � 1

Rins � Rdel

¼ n � S1 ð3Þ
PFor V-Documents, we have
V 1!n ¼ V 1!n�1ð1þ Rins þ RupdÞ ð4Þ

Thus,
 D

V 1!n ¼ V 1!1ð1þ Rins þ RupdÞn�1 � S1ð1þ Rins þ RupdÞn�1 ð5Þ
Ewhere V 1!1 is close to S1.
When ðRins þ RupdÞ � 100%, Eq. (5) is approximately equal to
T

V 1!n ¼ S1ð1þ ðn� 1ÞðRins þ RupdÞÞ ð6Þ
CWhen n� 1, we have
S1!n ¼ n � S1 � ðRins þ RupdÞ ð7Þ
U
N

C
O

R
R

EEqs. (3) and (7) clearly show that when the update ratio is small, the V-Document has a significant storage
advantage.

References

[1] Archival Information Systems (ArchIS): Publishing and Querying the Transaction-Time History of Databases in XML, <http://
wis.cs.ucla.edu/projects/archis/index.html>.

[2] CIA: The World Factbook, <http://www.cia.gov/cia/publications/factbook/>.
[3] DeltaXML, <http://www.deltaxml.com/>.
[4] The Internet Archive–The Wayback Machine, <http://www.archive.org/>.
[5] Microsoft XML Diff, <http://apps.gotdotnet.com/xmltools/xmldiff/>.
[6] Oracle XML DB, <http://www.oracle.com/technology/tech/xml/xmldb/>.
[7] SQL/XML, <http://www.sqlx.org>.
[8] Tamino XML Database, <http://www.tamino.com/>.
[9] UCLA Catalog, <http://www.registrar.ucla.edu/catalog/>.

[10] UCLA ICAP Project, <http://wis.cs.ucla.edu/projects/icap/>.
[11] The Versioning Machine, <http://mith2.umd.edu/products/ver-mach/>.
[12] WebDAV, WWW Distributed Authoring and Versioning, www.ietf.org/html.charters/webdav-charter.html.
[13] X-Hive XML Server, <http://www.xhive.com/>.
[14] XML Linking Language (XLink), <http://www.w3.org/TR/xlink/>.
[15] XQuery 1.0: An XML Query Language, <http://www.w3.org/TR/xquery/>.
[16] XSL Transformations (XSLT), <http://www.w3.org/TR/xslt/>.
se cite this article in press as: F. Wang, C. Zaniolo, Temporal queries and version management ..., Data Knowl.
. (2007), doi:10.1016/j.datak.2007.08.002

http://wis.cs.ucla.edu/projects/archis/index.html
http://wis.cs.ucla.edu/projects/archis/index.html
http://www.cia.gov/cia/publications/factbook
http://www.deltaxml.com
http://www.archive.org
http://apps.gotdotnet.com/xmltools/xmldiff
http://www.oracle.com/technology/tech/xml/xmldb
http://www.sqlx.org
http://www.tamino.com
http://www.registrar.ucla.edu/catalog
http://wis.cs.ucla.edu/projects/icap
http://mith2.umd.edu/products/ver-mach
http://www.ietf.org/html.charters/webdav-charter.html
http://www.xhive.com
http://www.w3.org/TR/xlink
http://www.w3.org/TR/xquery
http://www.w3.org/TR/xslt

667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728

729

20 F. Wang, C. Zaniolo / Data & Knowledge Engineering xxx (2007) xxx–xxx

DATAK 1076 No. of Pages 20, Model 3+

30 November 2007 Disk Used
ARTICLE IN PRESS
U
N

C
O

R
R

E
C

T
E
D

P
R

O
O

F

[17] National Archives of Australia’s Policy Statement Archiving Web Resources: A Policy for Keeping Records of Web-based Activity in
the Commonwealth Government, <http://www.naa.gov.au/recordkeeping>.

[18] T. Amagasa, M. Yoshikawa, S. Uemura, A data model for temporal XML documents, in: DEXA, 2002.
[19] B. Becker, S. Gschwind, T. Ohler, B. Seeger, P. Widmayer, On optimal multiversion access structures, in: Proceedings of the

Symposium on Large Spatial Databases, vol. 692, 1993.
[20] David Beech, Brom Mahbod, Generalized version control in an object-oriented database, in: ICDE, 1988, pp. 14–22.
[21] P. Buneman, S. Khanna, K. Tajima, W. Tan, Archiving scientific data, ACM Trans. Database Syst 29 (1) (2004) 2–42.
[22] Elisa Bertino, Elena Ferrai, Giovanna Guerrini, A formal temporal object-oriented data model, in: EDBT, 1996.
[23] S. Chawathe, A. Rajaraman, H. Garcia-Molina, J. Widom, Change detection in hierarchically structured information, in: SIGMOD,

1996.
[24] E. Camossi, E. Bertino, G. Guerrini, M. Mesiti, Automatic evolution of multigranular temporal objects, in: TIME, 2002.
[25] S.-Y. Chien, V.J. Tsotras, C. Zaniolo, Version Management of XML Documents, in: WebDB, 2000.
[26] S.-Y. Chien, V.J. Tsotras, C. Zaniolo, Copy-based versus edit-base version management schemes for structured documents, in: RIDE,

2001.
[27] S.-Y. Chien, V.J. Tsotras, C. Zaniolo, Efficient management of multiversion documents by object referencing, in: VLDB, 2001.
[28] S.-Y. Chien, V. Tsotras, C. Zaniolo, D. Zhang, Supporting complex queries on multiversion XML documents, in: ACM TOIT,

February 2006.
[29] S.-Y. Chien, V.J. Tsotras, C. Zaniolo, D. Zhang, Storing and querying multiversion XML documents using durable node numbers, in:

WISE, 2001.
[30] S.-Y. Chien, Z. Vagena, D. Zhang, V.J. Tsotras, C. Zaniolo, Efficient structural joins on indexed XML documents, in: VLDB, 2002.
[31] C.X. Chen, C. Zaniolo, Universal temporal extensions for database languages, in: ICDE, 1999.
[32] J. Chomicki, D. Toman, M.H. Böhlen, Querying ATSQL databases with temporal logic, ACM TODS 26 (2) (2001) 145–178.
[33] J. Clifford, Formal Semantics and Pragmatics for Natural Language Querying, Cambridge University Press, 1990.
[34] J. Clifford, A. Croker, F. Grandi, A. Tuzhilin, On temporal grouping, in: Proceedings of the International Workshop on Temporal

Databases, 1995.
[35] C.E. Dyreson, Observing transaction-time semantics with TTXPath, in: WISE, 2001.
[36] Gregory Cobena, Serge Abiteboul, Amelie Marian, Detecting changes in XML documents, in: ICDE, 2002.
[37] Hong-Tai Chou, Won Kim, A unifying framework for version control in a CAD environment, in: VLDB, 1986, pp. 336–344.
[38] J. Jacob, A. Sachde, S. Chakravarthy, CX-DIFF: a change detection algorithm for XML content and change visualization for

WebVigiL, Data Knowledge Eng 52 (2004) 209–230.
[39] D. Gao, R.T. Snodgrass, Temporal slicing in the evaluation of XML queries, in: VLDB, 2003.
[40] M. Gergatsoulis, Y. Stavrakas, Representing changes in xml documents using dimensions, in: Xsym, 2003.
[41] F. Grandi, F. Mandreoli, The valid web: an XML/XSL infrastructure for temporal management of web documents, in: ADVIS, 2000.
[42] S. Kepser. A simple proof for the turing-completeness of XSLT and XQuery, in: Extreme Markup Languages, 2004.
[43] Q. Li, B. Moon, Indexing and querying XML data for regular path expressions, in: VLDB, 2001.
[44] A. Marian et al., Change-centric management of versions in an XML warehouse, in: VLDB, 2001.
[45] S. Pal, M. Fussell, I. Dolobowsky, XML support in Microsoft SQL Server 2005, <http://msdn.microsoft.com/library/>.
[46] A.O. Mendelzon, F. Rizzolo, A. Vaisman, Indexing temporal XML documents, in: VLDB, 2004.
[47] B. Oliboni, E. Quintarelli, L. Tanca, Temporal aspects of semistructured data, in: TIME, 2001.
[48] G. Ozsoyoglu, R.T. Snodgrass, Temporal and real-time databases: a survey”, IEEE Trans. Knowledge Data Eng. 7 (4) (1995) 513–

532.
[49] Dimitris Papadias, Yufei Tao, Panos Kalnis, Jun Zhang, Indexing spatio-temporal data warehouses, in: ICDE, 2002.
[50] M.J. Rochkind, The source code control system, IEEE Trans. Software Eng. SE-1 (4) (1975) 364–370.
[51] R. Snodgrass, Temporal object-oriented databases: a critical comparison, in: Modern Database Systems: The Object Model,

Interoperability and Beyond, Addions-Wesley/ACM Press, 1995.
[52] D. Srivastava, S. Al-Khalifa, H.V. Jagadish, N. Koudas, J.M. Patel, Y.Wu, Structural joins: a primitive for efficient XML query

pattern matching, in: ICDE, 2002.
[53] W.F. Tichy, RCS—A System for Version Control, Software – Practice Exp. 15 (7) (1985) 637–654.
[54] Fabio Vitali, Versioning hypermedia, ACM Comput. Surveys 31 (4es) (1999) 24.
[55] F. Wang, C. Zaniolo, Preserving and querying histories of XML-published relational databases, in: ECDM, 2002.
[56] F. Wang, C. Zaniolo, Publishing and querying the histories of archived relational databases in XML, in: WISE, 2003.
[57] F. Wang, C. Zaniolo, Temporal queries in XML document archives and web warehouses, in: TIME, 2003.
[58] F. Wang, X. Zhou, C. Zaniolo, Using XML to build efficient transaction-time temporal database systems on relational databases,

Technical Report 81, TimeCenter, http://www.cs.auc.dk/TimeCenter, March 2005.
[59] Y. Wang, D.J. DeWitt, J. Cai, X-Diff: a fast change detection algorithm for XML documents, in: ICDE, 2003.
[60] Jun Yang, Temporal Data Warehousing, Ph.D. Dissertation, Stanford University, 2001.
[61] C. Zaniolo, S. Ceri, C. Faloutsos, R.T. Snodgrass, V.S. Subrahmanian, R. Zicari, Advanced Database Systems, Morgan Kaufmann

Publishers, 1997.
[62] C. Zhang, J.F. Naughton, D.J. DeWitt, Q. Luo, G.M. Lohman, On supporting containment queries in relational database

management systems, in: SIGMOD, 2001.
[63] S. Abiteboul, S. Cluet, G. Ferran, M. Rousset, The Xyleme project, Comp. Networks 39 (3) (2002) 225–238.
[64] Y. Chen, S.K. Madria, S.S. Bhowmick, DiffXML: change detection in XML data, in: DASFAA, 2004, pp. 289–301.
Please cite this article in press as: F. Wang, C. Zaniolo, Temporal queries and version management ..., Data Knowl.
Eng. (2007), doi:10.1016/j.datak.2007.08.002

http://www.naa.gov.au/recordkeeping
http://msdn.microsoft.com/library
http://www.cs.auc.dk

	Temporal queries and version management in XML-based document archives
	Introduction
	Previous work
	Temporal XML representations
	Change detection
	Managing the deltas
	Temporal databases

	A logical model for versions
	Change management
	Annotating and visualizing changes

	Historical queries
	Temporal functions

	A general approach
	The ICAP Project
	Case study: the CIA world factbook
	Generate structured contents
	Temporal queries on the factbook

	Version History for W3C XLink Specs
	Relational database history: the ArchIS project

	Implementation of an XML document versioning system
	XChronicler: generate V-Document from snapshot versions
	Handling attributes and mixed content
	Schema of the V-Document
	Efficient storage and retrieval
	Usefulness-based clustering
	Durable node numbers
	Complex queries

	Conclusions
	Uncited references
	Acknowledgements
	XML schemas of the sample documents
	Efficient storage
	References

