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Abstract

Space constrained optimization problems arise in a variety of applications, ranging
from databases to ubiquitous computing. Typically, these problems involve selecting
a set of items of interest, subject to a space constraint.

We show that in many important applications, one faces variants of this basic
problem, in which the individual items are sets themselves, and each set is associated
with a benefit value. Since there are no known approximation algorithms for these
problems, we explore the use of greedy and randomized techniques. We present a
detailed performance and theoretical evaluation of the algorithms, highlighting the
efficiency of the proposed solutions.

Key words: space constrained set selection problem, optimization problem,
ubiquitous computing, data warehouses

1 Introduction

In recent years there has been a proliferation in the amount of information that
is being produced. The data that are being gathered and stored involve several
aspects of human activity. Retailers register individual transactions in their
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stores, businesses keep track of the interactions with customers and suppliers,
scientific laboratories record various measurements of interest. Obviously, the
volume of data generated in such situations is huge.

It is often times the case that not all data are stored, because of their sheer
size. In order to save space people usually aggregate data and only store the
aggregates. A typical scenario in a retail store data warehouse, which records
user transactions, would be to aggregate the sales at the day level [14]. Simi-
larly, scientific measurements such as temperature, precipitation, air pollution,
are aggregated at the hour level. In many cases even the size of the aggregated
data is too large, so that portions of it have to be moved to tertiary storage
or permanently deleted. Then, we have to choose which parts of the data to
keep around.

Limited space can become a restricting factor even when the amount of data
is not large, but when the actual available space is limited. Characteristic
examples of this scenario are handheld devices, which have small storage ca-
pacity, and for which space allocation should be done with care. Mobile users
in general face an analogous problem in terms of bandwidth. When the avail-
able bandwidth or connection time resources are limited, we have to choose
carefully which bytes to transmit over the communication link.

Observe that all the above examples lead to space constrained optimization
problems. We wish to fill the given space with the most useful of our data,
or in other words with the data that will give us the highest benefit. The
benefit is determined by the number and importance of the queries that we
can answer based on the stored data. The view selection problem [10] in the
context of data warehouses is an instance of such an optimization problem,
and has been studied extensively in the literature.

In this paper we study the above optimization problem for the case when the
benefit we get for admitting items in the solution is associated to sets of items,
and not to individual items. In both the Knapsack and the view selection
problems the benefit increases with each item that is added to the solution.
However, this is not true for the class of applications that we consider. In this
setting there are additional constraints inherent in the problem, which dictate
that when we select a new item to insert in the solution the added benefit is
zero, unless a set of related items are inserted as well. The above constraints
make the problem harder, and in Section 6 we discuss how they affect the
solution procedure. For the rest of the paper we refer to this optimization
problem as the Constrained Set Selection (COSS) problem.

Several problems that have been presented in the literature [21,24,17] are
related to the COSS problem. Nevertheless, none of the known results or
techniques seem to be applicable in this case [16]. This study is the first
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thorough examination of practical algorithms that solve the COSS problem.
Our experimental evaluation can serve both as a practitioner’s guide, and
also provide intuition about the nature of the problem from a theoretical
perspective.

In this paper, we make the following contributions.

• We formulate optimization problems concerning the selection of sets of items
that under a space constraint yield the highest benefit, where benefits are
associated to sets of items. This kind of problems appear in various domains,
and are very interesting in practice.

• We derive the complexity of the above optimization problems, and propose
several algorithms for their solution. Since there are no known polynomial
time approximation algorithms for these problems, we examine the use of
known optimization principles in this context [7], such as greedy and ran-
domization.

• We explore the properties of the above techniques with an experimental
evaluation. Our results illustrate the behavior of the algorithms under dif-
ferent settings, and highlight the benefits of each approach.

• We discuss some theoretical properties of the proposed algorithms. Based
on our analysis, we present worst case scenarios for the algorithms. This
offers insight into the operation of the algorithms, and provides a practical
guide for selecting among the techniques proposed.

The outline of the paper is as follows. Section 2 illustrates examples in which
the COSS problem is applicable, and Section 3 reviews the related work.
In Section 4 we present the formulation of the optimization problem, and
Section 5 proposes algorithms for their solution. In Section 6 we show exper-
imental results evaluating the performance and the utility of the proposed
algorithms. Finally, in Section 7 we present a theoretical analysis of the algo-
rithms and discuss their relative performance.

2 Applications of the COSS Problem

In the following sections we present with more detail two specific example
applications of the problem. The first application comes from the world of
data warehousing, and the second from pervasive computing.

2.1 Aggregate Selection for Approximate Querying in Datacubes

The volume of data stored in OLAP tables is typically huge, often times in
the order of multiple terabytes to petabytes. In large organizations, where
terabytes of data are generated every day, it is common practice to aggregate
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(b) Aggregated values for the upper half of the dataset.

Fig. 1. Example dimension hierarchies on two dimensional sales data.

these data in order to save storage space. During this procedure the detailed
information that produced the aggregates is lost. In other cases the detailed
data is moved to tertiary storage, which makes the task of accessing them
very cumbersome. Nevertheless, users are often interested in inquiring about
the data that generated the summarized form. In such cases, generating good
estimates for the original data in response to queries is a pressing concern.
Efficient solutions to the above problem have been proposed in the litera-
ture [5,25,4,22], where the reconstruction techniques are based solely on the
aggregated information in order to produce estimates for the detailed values.

Example 1 Figure 1(a) shows a typical OLAP table, with two dimension
attributes (location and jeans), and hierarchies defined in each dimension.
Assume that for the state of NY (i.e., the upper half of the table) we only
store the aggregated sales for each city and for each category as shown in
Figure 1(b), and that we have deleted all the detailed values. The users might
want to inquire about the number of redtab jeans sold in Queens NY (a point
query), or they might request the number of any kind of jeans sold in each city
of NY state (a range query). It turns out that we can use the information that
is stored in the aggregates, in order to provide approximate answers to the
above queries. The reconstruction algorithm will need both of the aggregates
shown in Figure 1(b), and will be able to produce estimates for all the values
marked as “x”.

Now consider the case where we are allowed only a limited amount of space for
storing the aggregates. We can compute the space requirements of the aggre-
gates, either by computing them, or by applying estimation techniques [26].
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In this setting, we would like to materialize the subset of the aggregates that
satisfies the given space constraint, and at the same time is necessary for the
reconstruction of the important queries. The importance, or benefit, of each
query can be determined automatically by observing the system workload, or
it can be manually set by the user. Note that, unlike the view selection prob-
lem in data warehouses [10], in this case we get no partial benefits if we only
materialize a subset of the aggregates. This is because the algorithms that
reconstruct the detailed values [25,4,22] require a specified set of aggregates
in its entirety.

2.2 Profile-Driven Data Management

We draw our second example from the area of pervasive or mobile computing
[2,29,23]. The premise of pervasive computing is that all the relevant infor-
mation (at each point in time and space) should be accessible to any mobile
user. The users specify what information is relevant by using a profile lan-
guage, which allows each user to define a number of queries that wants to
be answered by the data items in the cache of the computer. Each query is
associated with a benefit value, which reflects the query’s utility to the user,
and needs a set of the data items in order to be answered. The data items
have specified storage requirements. Furthermore, each data item may help
answer more than one queries.

One of the problems in the aforementioned context is what data to send to a
mobile computer. The choice of the data to download is crucial, because it de-
termines which of the queries in the profile can be answered, and consequently
the total benefit that can be achieved. This is an interesting problem, in which
we have to take into account both the user profile that describes what data
are useful, and a space restriction on the mobile computer, or equivalently
a connection time restriction (in both cases we can only transmit a limited
specified amount of data).

Example 2 Consider a user visiting a new city [2]. The profile of such a user
could contain the following 3 statements (or queries).

(1) Find location, requires map.
(2) Find rental car, requires car agency list, and map.
(3) Find restaurant, requires restaurant list, and map.

In this example, if only one of the two required data items for queries 2 and
3 is present in the mobile computer, then we cannot answer those queries.
There is no use having a list of restaurants if there is no map available, and
vice versa. Therefore, the benefit gained is zero. Also observe that the map
item is useful in answering all 3 queries.
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3 Related Work

In the problem of view selection for data warehouses [10] we want, given a
space constraint, to materialize a set of views in order to minimize the response
time of queries to the data warehouse. In this case however, by selecting one
of the views required by a query we get a fraction of the associated benefit. A
subsequent study shows that the heuristics for the view selection problem do
not provide any competitiveness guarantee against the optimal solution [13],
and proposes the experimental comparison of the available algorithms. Many
other studies [9,27,28,1] deal with the view selection problem as well.

A similar optimization problem appears in the context of database design
under the name of vertical partitioning [19,20], where the Bond Energy Algo-
rithm [18] has been employeed for its solution. In this domain the problem can
be stated as follows. We have a set of applications accessing a particular set
of attributes in the relations of a database. Each attribute requires a certain
amount of space (to store the values of the attribute in the relation), and may
be used by more than one applications. We want to find an allocation of the
attributes to the memory hierarchy (e.g., main memory, local disk, network
disk) so as to minimize the execution time of the applications. Similar to the
view selection problem, partial benefits are credited, which is not true for our
case.

The COSS problem is related to a family of optimization problems known
as the Weighted constrained Maximum Value sub-Hypergraph problem [21],
and the studies show that even simple instances of the problem do not accept
polynomial solutions. We are not aware of any algorithms proposed for the
COSS problem in that area.

Much work has been devoted to the Set Cover problem [6], which is similar
to the optimization problem we are trying to solve, and efficient approxima-
tion algorithms [24] have been proposed for its solution. However, the same
techniques do not seem to be applicable in our case. Furthermore, the COSS
problem is also similar to the k-Catalog Segmentation problem [17]. But no
interesting positive results are known for this problem either. In this study we
try instead to examine the COSS optimization problem from a practical point
of view, and we hope that the results we report will stimulate more work in
this area.

The COSS problem has also appeared in the domains of aggregate selection for
approximate querying in datacubes [22], and profile-driven data management
[2], which exemplify its diverse practical applications. However, the solution
of the optimization problem was not studied. All the algorithms described in
this paper can be applied for the solution of the problem in these domains.
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4 Problem Formulation

In the following paragraphs we establish the terminology used in the rest of
the paper, we present the formal statement of the problem, and discuss its
complexity.

Let components be the individual data items that are available for use, and ob-
jects be the consumers of the components. When all the components required
by an object are selected in the solution we say that the object is satisfied.
Each object is associated with a benefit, which is claimed when the object is
satisfied. Components are associated with a space requirement, which is the
storage space they will occupy when selected. When a component is selected
we say that it is materialized.

Example 3 According to the terminology we introduced above, the problem of
view selection for approximate querying in datacubes (see Example 1) can be
translated as follows. The queries that we want to be able to reconstruct are
the objects, while the sets of aggregates needed by the reconstruction algorithm
are the components.

Similarly, in the profile-driven data management problem (see Example 2) the
objects are the queries contained in the user profile, and the components are
the data items required to answer the queries.

We can construct a bipartite graph G(U, V, E), where U is the set of objects,
V the set of components, and E the edge set of the graph. An edge exists
between u ∈ U and v ∈ V if component v is required by object u. An example
of the general form of the graph is shown in Figure 2.
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Fig. 2. An example of the bipartite graph G.
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Let V [i], 1 ≤ i ≤ |V | be a binary vector having 1 in position i if and only if
we have selected component vi for materialization, and s(vi), 1 ≤ i ≤ |V | be
a function determining the space requirements of component vi. Let U [j], 1 ≤
j ≤ |U |, be a binary vector having 1 in position j if and only if all the
components required by object uj have been materialized. Each object uj is
also associated with a value b(uj), which specifies its benefit, and is a mea-
sure of its importance. Given a constraint W on the total space available for
the marginals, we are interested in maximizing the total benefit of queries
answered, while satisfying the space constraint. Then, the Constrained Set
Selection (COSS) optimization problem can be stated as follows.

Problem 1 Maximize
∑

j U [j]b(uj), subject to
∑

i V [i]s(vi) ≤ W .

It is easy to show that the Knapsack problem reduces to a special case of the
COSS problem. Hence, according to the following lemma, the optimization
problem is NP-Hard.

Lemma 1 The COSS problem is NP-Hard.

Proof: We will show that the integral Knapsack problem reduces to COSS ′,
a special case of COSS. Hence, COSS ′ and subsequently COSS are NP-Hard.
In the Knapsack problem, we are given a space constraint B, and a set D of
data items, where item dk has space requirement s(dk) and benefit b(dk). We
wish to select a subset D′ of the items, so as to maximize the total benefit
∑

d∈D′ b(dk), subject to the constraint
∑

d∈D′ s(dk) ≤ B. Let COSS ′ be an
instance of COSS, where each and every object uk in U has unit benefit (i.e.,
b(uk) = 1), and requires one and only one component vk from V with space
requirement s(vk). Associate each component vk with b(dk) objects from U ,
and let s(vk) = s(dk). Then, the mapping of an item dk into a component vk

concludes the reduction. 2

Observe that in the special case where all the queries have the same benefit,
the problem is one of trying to satisfy the largest number of objects possible
given the space constraint.

5 Algorithms for the COSS Problem

In the following paragraphs we propose several different algorithms for the so-
lution of the COSS problem. We start by discussing optimal algorithms, and
then present efficient greedy heuristics that can scale up to realistic sizes of the
problem. We also explore the applicability of simulated annealing, a random-
ized algorithm, and tabu search, a meta-heuristic technique. The above meth-
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ods have been used extensively in the past for solving a variety of hard prob-
lems, including scheduling, routing, and graph optimization [12,11,8]. Such
algorithms have the ability to explore a larger area in the solution space than
greedy algorithms, without getting stuck in local minima.

5.1 On Finding the Optimal Solution

There are two reasons we include an exhaustive algorithm in our discussion.
First, it will demonstrate the dramatic difference in execution time between
the optimal algorithm and the heuristics. The exhaustive algorithm has to test
O(2|U |) number of possible solutions, where |U | is the number of objects. Sec-
ond, and most important, it will serve as a basis for comparison of the quality
of the results with the heuristic approaches. Unfortunately, this comparison
will only be feasible for very small sizes of the problem.

Evidently, in order to find the optimal solution we do not need to enumerate
and examine every single possible answer in the solution space. Solutions with
sufficiently low cardinality (such that they are much lower than the space
constraint) are bound to be sub-optimal, because we can always add new
objects to the solution. Similarly, for answers that have already exceeded the
space constraint we can safely prune all the solutions with higher cardinality.
Finally, we can also prune the solutions that we know will never exceed the
current best solution. These are the partial solutions that even if we fill up
all the remaining space with the smallest objects, while assuming that these
objects carry the maximum benefit, their total benefit will be smaller than the
highest benefit we have seen so far. We will call the straight forward exhaustive
algorithm Naive, and the one that prunes the search space NaivePrune.

Dynamic programming has been applied for the solution of the Knapsack
problem, some instances of which can be solved in pseudo-polynomial time
[6]. However, this technique cannot be applied in our case. We will revisit this
issue in Section 7.2.

What makes the COSS problem difficult is the fact that in order to satisfy an
object we need all the corresponding components. Materializing a subset of
the components for some object does not credit us part of the object’s benefit.

5.2 Solutions Based on Bond Energy

We now present algorithms based on the Bond Energy Algorithm [18]. This
technique has been used for the vertical partitioning problem in databases [19].
A high level description of the algorithm we propose is shown in Figure 3. The
algorithm starts by computing a measure of interrelation between each pair
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Objective: Compute a solution for the COSS problem.
Input: A set U of objects, a set V of components, a space constraint W , and the bipartite

graph G(U, V,E), where eij ∈ E denotes that component vj is used by object ui.
Output: A set of components S ⊂ V to materialize.
1 procedure SolveCOSS()
2 let square matrix A[·] = 0;
3 let S = ∅; /* selected components S ⊂ V */
4 for i,j=1 to |V |
5 A[ij] =interrelation measure between components i and j;
6 A[·] = MakeBlockDiag(A[·]);
7 S = Split(A[·]);
8 return(S);

9 procedure MakeBlockDiag(A[·])
10 let matrix A′[·] be empty;
11 for i=1 to |V | − 1
12 select one of the remaining columns in A[·];
13 let fmax = 0; /* maximum increase in bond energy so far */
14 for j=1 to i+1
15 place new column in A′[·] in position j;
16 fmax = max(bond energy increase after placing new column in position j, fmax);
17 keep the A′[·] corresponding to fmax;
18 return(A′[·]);

19 procedure Split(A[·])
20 let fmax = 0; /* total benefit of best solution so far */
21 for i=1 to |V |
22 make first column of A[·] last, and first row last;
23 let j:=1;
24 let S = ∅; /* selected components S ⊂ V */
25 while (j< |V | ∧ components in S satisfy the space constraint)
26 S = S ∪ {component v corresponding to j-th column of A[·]};
27 fmax = max(total benefit of objects satisfied by components in S, fmax);
28 return(S corresponding to fmax);

Fig. 3. The BondEn algorithm.

of components vi, vj ⊂ V . The interrelation measures for all possible pairs of
components is captured in the square matrix A (line 5 of the algorithm):

A[i, j] =
∑

uk|uk∈U,eki∈E,ekj∈E

b(uk).

This measure is a function of the number and the benefit of the objects that
require both components, vi and vj . The larger the number of objects and
their benefits, the stronger the connection between the pair of components is.
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Then, the procedure MakeBlockDiag() permutes the columns of A (or equiv-
alently the rows since A is symmetric), and transforms it into a semiblock
diagonal form, where large interrelation values tend to be grouped together.
This transformation is expressed by the formula

max





|V |
∑

k=1

|V |
∑

l=1

A[k, l](A[k, l − 1] + A[k, l + 1] + A[k − 1, l] + A[k + 1, l])



 ,

which is the mathematical representation of the bond energy. We are seeking
for the maximum value of this expression over all possible arrangements of the
columns of matrix A. The algorithm proceeds greedily by considering a single
column at a time. The above procedure is very fast, avoiding to examine the
entire exponential search space, and is still able to find a near optimal form
for A [18].

In the final step the algorithm splits the set of components V into S and V −S.
Essentially, S is the set of components that can be used to satisfy the largest
fraction of high-benefit objects while restricting the amount of available space.
Just a single split point in A determines S and V − S. The loop in line 21
makes sure that we won’t miss good solutions for S even if S was originally
situated in the centre of A. We will refer to this algorithm as BondEn (Bond
Energy). Its time complexity is O(|V |3).

Note that in order to transform matrix A into a semiblock diagonal form, we
add one column at a time in the matrix position that results in the largest
increase to the overall bond energy. However, the selection of the column to
add is arbitrary. Instead, we can enhance the technique by using a greedy
column selection approach. That is, choosing in every step among all the
available columns (i.e., the ones not already placed) the one that leads to
the highest bond energy. We will call this version of the algorithm BondEnGr
(Bond Energy Greedy), and its time complexity now becomes O(|V |4). We also
experimented with another two variations of the algorithm, where we make
sure that during the split step we do not include in S any components required
by objects that are not satisfied. We call the above variations BondEn-SpAll
and BondEnGr-SpAll, which are the extensions of BondEn and BondEnGr
respectively.

5.3 Solutions Based on Greedy Algorithms

The greedy algorithms provide a very fast alternative to solving the COSS
problem, and are particularly appealing even for very large instances of the
problem. The skeleton of the family of greedy algorithms we propose is de-
picted in Figure 4. They start with an empty solution set, and at each step
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Objective: Compute a solution for the COSS problem.
Input: A set U of objects, a set V of components, a space constraint W , and the bipartite

graph G(U, V,E), where eij ∈ E denotes that component vj is used by object ui.
Output: A set of components S ⊂ V to materialize.
1 procedure SolveCOSS()
2 let O = ∅; /* selected objects O ⊂ U */
3 let S = ∅; /* selected components S ⊂ V */
4 while (|S| < |V | ∧ components in S satisfy the space constraint)
5 among all the objects {u|u ∈ U ∧ u /∈ O} select ui that satisfies the greedy condition;
6 let O = O ∪ {ui};
7 let S = S ∪ {vj |eij ∈ E ∧ vj /∈ S};
8 return(S);

Fig. 4. The greedy algorithm.

they add to the solution set those components that satisfy the greedy condi-
tion. Before discussing the alternatives, we introduce some new notation that
will be necessary for the mathematical formulation. Let Sk be the set of com-
ponents that the algorithm has selected during the past k iterations, and Ok

be the set of objects that are satisfied given the components in Sk. We are
interested in deciding how to update those sets during iteration k + 1. Let
COk = U − Ok be the set of candidate objects for selection during iteration
k +1. Let Cl = {vj|elj ∈ E∧vj /∈ Sk} be the set of components, which are not
in Sk, required for object ui ∈ COk. The additional amount of space required
by these components is given by the formula f(ul) =

∑

vj∈Cl
s(vj). As before,

we assume that we know the graph G(U, V, E), where U is the set of objects,
V is the set of components, and E is the set of edges indicating which com-
ponents are needed in order to satisfy each object. The greedy step can take
any of the following four forms.

1. Accept to the solution set those components that will satisfy a new object,
and that require the least amount of space. More formally, for each object
ui ∈ COk calculate the additional space required for storing the correspond-
ing components, given by f(ui). Let ul = arg minui

f(ui) be the object that
requires the least additional space. Then, Ok+1 = Ok∪ul, and Sk+1 = Sk∪Cl.

This approach is trying to satisfy as many objects as possible. The intuition is
that if there are many objects answered then the total benefit of those objects
will be high. However, this may not be true if all the satisfied objects happen
to have low benefit values. The time complexity of this algorithm is O(|U |2),
and we will refer to it as GrSp (Greedy Space).

2. Accept to the solution set those components that will satisfy the new object
with the highest benefit attached to it. More formally, let ul = arg maxui∈COkb(ui)
be the object with the highest benefit among all the candidate objects. Then,
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Ok+1 = Ok ∪ ul, and Sk+1 = Sk ∪ Cl.

The goal of this alternative is to answer as many of the high-benefit objects
as possible. This approach is likely to fail if the required components have un-
expectedly high space requirements. We will refer to this algorithm as GrBen
(Greedy Benefit). Its time complexity is O(|U |2).

3. Accept to the solution set those components that will satisfy a new object,
and the ratio of the object benefit over the total space required by the selected
components is minimal. More formally, for each object ui ∈ COk calculate the
additional space required for storing the corresponding components, given by
f(ui). Let ul = arg maxui

b(ui)
f(ui)

be the object that has the highest benefit per

unit of additional space required by its components. Then, Ok+1 = Ok ∪ ul,
and Sk+1 = Sk ∪ Cl.

This variation of the algorithm is trying to account for the extreme cases we
identified as weaknesses to the previous two alternatives. We will refer to it
as GrBenSp (Greedy Benefit per unit Space). Its time complexity is O(|U |2).

4. Accept to the solution at each iteration an individual component. Select the
component that fits in the remaining space and yields the maximum B/s ratio,
where B is the total benefit of all the objects that are now satisfied because
of the selection of the new component, and s is the space requirements of the
new component. If the selection of no component causes any new objects to
be satisfied then the algorithm picks the component with the smallest space
requirements.

This algorithm explores the applicability of choosing components instead of
objects. We do not expect it to perform well when most of the objects require
more than one component in order to get satisfied. The time complexity of this
algorithm is O(|V |2) and we will refer to it as GrComp (Greedy Component).

5.4 Simulated Annealing

Simulated annealing [15] is a randomized hill climbing algorithm. With a cer-
tain probability, that declines over time, this algorithm is allowed to follow
directions in the solution space that result in solutions worse than those seen so
far. This technique enables the algorithm to avoid local minima and stabilize
in a final state that is close to optimal.

The simulated annealing algorithm that solves the COSS problem is depicted
in Figure 5. We start with an initial solution (lines 2 and 3) that is provided
by one of the greedy algorithms we presented earlier. Lines 7-16 implement
the hill climbing procedure. In simulated annealing apart from uphill moves,
downhill moves are also allowed under certain circumstances. More specifically,
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Objective: Compute a solution for the COSS problem.
Input: A set U of objects, a set V of components, a space constraint W , and the bipartite

graph G(U, V,E), where eij ∈ E denotes that component vj is used by object ui.
Output: A set of components S ⊂ V to materialize.
1 procedure SolveCOSS()
2 let O = O0; /* selected objects O ⊂ U */
3 let S = S0; /* selected components S ⊂ V , corresponding to O */
4 let T = T0;
5 let delta = 0;
6 let fmax = 0; /* total benefit of best solution so far */
7 while (T > 1)
8 for i=1 to total number of iterations
9 Onew =GetNewSimAnSolution(O);
10 let delta =(benefit of Onew)− (benefit of O);
11 if(delta ≥ 0)
12 O = Onew; /* accept the new solution */

13 if (delta < 0) then with probability e−
delta

T

14 O = Onew; /* accept the new solution */
15 fmax = max(benefit of O, fmax);
16 T = αT ; /* α < 1 */
17 S = marginals needed to answer queries in the O corresponding to fmax;
18 return(S);

19 procedure GetNewSimAnSolution(O)
20 let S = marginals needed to answer the queries in O;
21 pick object Oadmit ∈ {U − O} at random, and insert it to O;
22 if(total space needed by S > W )
23 pick an object Oevict ∈ {O − Oadmit} at random, and remove it from O;
24 if (total space needed by S > W )
25 penalize the total benefit of O proportionally to the benefit per space ratio of Oadmit

and the amount by which W is exceeded;
26 return(O);

Fig. 5. The SimAn algorithm.

a downhill move is accepted with probability e−(delta)/T (line 13), where delta is
the decrease in the cost function from the previous iteration, and T is a time-
varying parameter controlling the above probability. When T is high (in the
beginning of the process) the probability of accepting downhill moves is high.
Then, T is slowly decreased (line 16), and when the system freezes (T < 1)
no further moves are considered. Note that this process involves two loops.
While T remains fixed, the inner loop (lines 8-15) searches for solutions. In
our implementation the number of iterations executed is a constant number
(dependent on the problem size).

The function GetNewSimAnSolution() (lines 19-26) determines what the pro-
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posed solution for the next iteration of the algorithm is going to be. The next
solution is chosen at random among all the neighbours of the current solution.
We term two solutions as neighbours if we can derive one from the other by
adding a single object to one of the solutions, optionally followed by a deletion
of another object. This last step ensures that the current solution satisfies the
space constraint (lines 24-25). Nevertheless, the requirement that the current
solution should satisfy the space constraint at every step is not strict. In some
cases, when the new solution seems promising, we allow it to violate the space
constraint at the cost of a small penalty to the total benefit.

The complexity of the simulated annealing approach is determined by the
number of iterations. The work done in each iteration is really minimal, and
we can safely consider it as constant. The number of iterations is controlled by
the user, who sets the parameter T , and defines the way it is reduced. In our
experiments the parameter T was initially set to four times the total benefit
of the initial solution, the α parameter controlling the decrease of T was set to
0.95, and for each fixed value of T the inner loop of the algorithm executed a
number of iterations equal to 1/3 of the total number of objects. Varying the
above parameters did not have significant effects on the quality of solutions
found.

5.5 Tabu Search

Tabu search [8] is a metastrategy for guiding known heuristics to overcome
local optimality. A structure called tabu list, used as auxiliary memory, de-
scribes a set of moves that are not permitted. This way the algorithm can
avoid visiting solutions that has already visited in the past, and thus it is less
probable to get stuck in local minima or cycles.

The outline of the tabu search algorithm for the COSS problem is shown in
Figure 6. The algorithm starts with an initial solution (lines 2 and 3), which in
our implementation is derived using the greedy heuristics we presented earlier.
Then, the main loop (lines 6-10) iterates over the proposed solutions in order
to pick the best one. The function GetNewTabuSolution() (lines 13-20) selects
the solution (defined in terms of the selected objects) that will be examined
during the next iteration of the algorithm. The last step of the function is to
make sure that the proposed solution satisfies the space constraint (lines 18
and 19). However, as with simulated annealing, this requirement is not strict.

Note that the changes that lead to the new solution cannot involve any of the
objects in the tabu list Qtabu. In our implementation the tabu list keeps track
of the recently added or deleted objects. Nevertheless, this restriction can be
overridden when the new solution is the best obtained so far. When the new
solution is available, we update the tabu list (line 10), and proceed to the next
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Objective: Compute a solution for the COSS problem.
Input: A set U of objects, a set V of components, a space constraint W , and the bipartite

graph G(U, V,E), where eij ∈ E denotes that component vj is used by object ui.
Output: A set of components S ⊂ V to materialize.
1 procedure SolveCOSS()
2 let O = O0; /* selected objects O ⊂ U */
3 let S = S0; /* selected components S ⊂ V , corresponding to O */
4 let fmax = 0; /* total benefit of best solution so far */
5 let Otabu = ∅; /* set of tabu objects */
6 while (search not finished)
7 Onew =GetNewTabuSolution(O,Otabu);
8 fmax = max(benefit of Onew, fmax);
9 O = Onew;
10 update Otabu based on the changes to O;
11 S = components needed to satisfy objects in the O corresponding to fmax;
12 return(S);

13 procedure GetNewTabuSolution(O,Otabu)
14 let S = components needed to satisfy objects in O;
15 pick an object Oadmit ∈ {U − O − Otabu}, and insert it to O;
16 if(total space needed by S > W )
17 pick an object Oevict ∈ {O − Oadmit − Otabu}, and remove it from O;
18 if (total space needed by S > W )
19 penalize the total benefit of O proportionally to the benefit per space ratio of Oadmit

and the amount by which W is exceeded;
20 return(O);

Fig. 6. The Tabu algorithm.

iteration.

Similar to the simulated annealing method, the complexity of tabu search is
controlled by the user. An important difference in the case of tabu search is
the selection of the next solution. It can be as simple as a random change in
the current solution (like simulated annealing), or as involved as exhaustive
enumeration. Therefore, there is a tradeoff between the number of iterations
the algorithm will execute, and the complexity of each iteration. In our exper-
iments we use a greedy algorithm to select the new solution.

6 Experimental Evaluation

For the evaluation of the efficiency and behavior of the algorithms we use
synthetic datasets, where the number of objects range from 10 to 1000. The
number of components is in each case twice the number of objects, and more
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than half of the components help satisfy multiple objects. In order to assign
benefit values to objects and space requirements to components we generated
random numbers following uniform, Gaussian, and Zipfian distributions.

In the experiments we measure the sum of the benefits of the objects that
are satisfied given the components that are selected by the algorithms. We
are also interested in the computation time of the proposed algorithms. In all
cases we report the benefit of the solutions normalized by the total benefit of
all the objects in the problem. Similarly, the space constraint is normalized
by the total space requirements of all the components in the problem.

6.1 Scalability of the Algorithms

The first set of experiments examines the efficiency of the algorithms in terms
of the time required to produce the solution. Figure 7 shows how the run-time
of the algorithms changes when the number of objects increases. In Figure 7(a)
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Fig. 7. Scalability of the algorithms.

we depict the tremendous difference in the computation time needed by the
naive approach and the rest of the algorithms. NaivePrune, which is repre-
sented by the vertical line at the very left of the graph, is able to produce
answers in a reasonable time-frame only for problems involving fewer than
20 objects. As shown in Figure 7(b) the bond energy algorithms scale more
gracefully. Nevertheless, when the problem size becomes large, i.e., more than
600 objects for BondEn and more than 400 objects for BondEnGr, these algo-
rithms require more than 24 hours to produce a solution. Evidently, it is only
the greedy algorithms that are able to scale to thousands of objects. The time
they required was under 2 minutes in all cases we tested.
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6.2 Evaluating the Quality of the Solutions

In this set of experiments we evaluate the quality of the solutions produced by
the proposed algorithms. First we compare the variations of the bond energy
family of algorithms. Figure 8 illustrates the benefits for the solutions pro-
duced by BondEn, BondEnGr, BondEn-SpAll, and BondEnGr-SpAll for var-
ious values of the space constraint. The differences among the algorithms are

Fig. 8. Performance of the BondEn algorithms.

minimal in all the cases we considered. Observe also that the greedy method
of constructing the bond energy matrix (BondEnGr) in some cases improves
the quality of the solutions. However, the more involved split procedure (rep-
resented by BondEnGr-SpAll) is not able to achieve a better solution than the
simpler approach (BondEnGr). Since the above algorithms perform without
significant differences, for the rest of the experiments we only demonstrate
BondEn, which is the fastest among them.

In the next set of experiments we compare the quality of the solutions of the
bond energy and the greedy algorithms. The graphs in Figure 9 illustrate the
normalized total benefit of the solutions when we vary the space constraint,
and the graph G remains the same. The two graphs correspond to the cases
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Fig. 9. Varying the space constraint.

where the assigned object benefits and component space requirements follow
uniform, and Zipfian distributions, respectively. Figure 10 depicts the relative
ordering of the algorithms in terms of the quality of the solution, when we vary

18



Fig. 10. Varying the graph G.

the graph G. As we move in the graph from left to right there is an increase
in the average number of objects that are connected to each component (i.e.,
we increase the degrees of the component nodes in G). The best performance
across all experiments is achieved by GrBenSp, closely followed by GrSp. The
BondEn and GrBen algorithms perform in the middle range, while GrComp
performs the worst.

The poor performance of GrComp is explained by the nature of the algorithm,
which builds the solution one component at a time, instead of sets of compo-
nents like the rest of the algorithms. This choice restricts GrComp, and does
not allow it to start accumulating benefit until all the components related to
a specific object are brought in the solution. This explains the slow rate at
which the algorithm improves the solution at the lower left part of the graph
in Figure 9(a).

We also conducted a series of experiments where we varied the number of ob-
jects. Figure 11 depicts the total benefit achieved by each algorithm. We report
the results of running the algorithms on the same graph G, where the query
benefits and the component space requirements were produced from uniform
(Figure 11(a)), and Zipfian (Figure 11(b)) distributions. These experiments
show that the relative ordering in performance for all the algorithms we con-
sider remains the same across various problem sizes.
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Fig. 11. Varying the number of objects.
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In Table 1 we report the results of the experiments with SimAn and Tabu.
We use the solution provided by GrBenSp as the base solution, and report
the improvement on this solution achieved by each one of the two algorithms.
The initial solution for both SimAn and Tabu is provided by GrBenSp, and
this is also the method used by Tabu to select solutions at each iteration. We
experimented with varying the number of objects and the space constraint,
and we allowed the algorithms to run an equal amount of time to the time
required by GrBenSp to produce the solution.

GrBenSp SimAn Tabu

objects constraint

100 0.5 1 1.012 1.012

250 0.5 1 1 1.003

500 0.5 1 1.003 1.003

(a) Varying the number of objects

GrBenSp SimAn Tabu

objects constraint

250 0.1 1 1 1.05

250 0.3 1 1 1.002

250 0.5 1 1 1.003

(b) Varying the space constraint
Table 1
Improvement in the GrBenSp solution by SimAn and Tabu.

Unlike SimAn, Tabu was able to improve on the initial solution in all the cases
tested. We believe that the reason Tabu outperforms SimAn is because the
solution space is too large, and this makes it extremely difficult for SimAn to
head to the correct direction. Remember that SimAn moves in the solution
space by selecting at random one of the numerous solutions that are neigh-
bors of the current solution. On the other hand, the Tabu algorithm directs
its search in the solution space more effectively, because it employs a more
structured way of taking steps at each iteration.

6.2.1 Comparison to Optimal Solution

An interesting observation is the fact that both SimAn and Tabu improve the
solution only by a small amount (less than or equal to 5% for the cases we
tested). A natural question then is how close to optimal is the solution provided
by GrBenSp in the first place. Unfortunately, it is not easy to find the optimal
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solution for the experiments we presented, because the size of the problem is
prohibitively large. Therefore, we conducted a series of experiments where the
number of objects was set to 10, for which we could get the optimal solution
to compare against the other algorithms. The results of these experiments are
depicted in Figure 12. The graphs show the benefit of the solutions produced
by GrBenSp and Tabu normalized by the benefit of the optimal solution (which
is always 1). In the graph shown in Figure 12(a) we vary the space constraint.
In Figure 12(b) each point in the graph represents an experiment with a
different graph G connecting objects to components. As we move in the graph
from left to right there is an increase in the average number of objects that are
connected to each component. The left-most point in the graph corresponds
to the case where each component is connected to a single object, and the
problem degenerates to the Knapsack problem.

Note that in many settings in both graphs GrBenSp finds a solution very
close to optimal. Though, there are also cases where it achieves slightly more
than half the benefit of the optimal. These experiments indicate that the
GrBenSp algorithm is in many circumstances effective at finding near-optimal
solutions. This explains the fact that SimAn and Tabu could not find much
better solutions than the greedy algorithm in our previous experiments (see
Table 1). Nevertheless, the graphs show that the Tabu algorithm is able to
improve upon GrBenSp, and find a very good solution in almost all the cases
where GrBenSp performs poorly.

(a) Varying the space constraint (b) Varying the graph G

Fig. 12. GrBenSp and Tabu compared to optimal.

7 Discussion

In the following paragraphs, we investigate in more detail some properties of
the algorithms. These are properties relevant to the ability of the algorithms to
provide high quality solutions under different circumstances. More specifically,
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we examine the behavior of the proposed solutions when the space constraint
is not a strict one. That is, when a solution that uses a little bit more of space
is acceptable. Furthermore, we try to quantify the quality of the solutions
in some worst case scenarios, when compared to the optimal solution. This
analysis indicates how poor the performance of the algorithms can become
under certain conditions. Finally, we conclude by summarizing the benefits and
drawbacks of each approach, and by providing a practical guide for selecting
among the proposed solutions.

7.1 Soft Space Constraints

So far we have made the assumption that the space constraint is a fixed number
given in the input of the COSS problem, and the algorithm that provides the
solution is not supposed to violate this constraint. However, it is not always
the case that a strict space constraint is what we are after. Often, the space
constraint is merely an indication or approximation of the amount of space
that is available. In such cases, we may allow the solutions produced by the
algorithms to exceed the space constraint by a small amount. Since we cannot
easily quantify what a suitable small amount would be in each case, it is left to
the user to examine the solutions, and decide whether the increase in benefit
justifies the larger space requirements.

We now describe how we can change the algorithms in order to operate in this
environment. The goal is to alter the algorithms so that they incrementally
produce solutions which occupy more space and, naturally, have larger total
benefit.

Bond Energy: The bond energy algorithms cannot readily provide the new
solution, because they have to rerun the Split procedure (see Figure 3),
which determines which components should be in the solution. Running the
Split procedure each time we allow more space for the solution is an expen-
sive operation, requiring time O(|V |2). Each new solution is not necessarily
a superset of the previous one, since we select the components from scratch.

Greedy: It suffices to change the condition in line 4 (see Figure 4), which
checks whether the solution satisfies the space constraint. Once we remove
this condition, the greedy algorithms can produce with linear complexity
at each iteration a new solution with increased space requirements. At each
step we are only adding new objects or components, thus, we get a solution
that is a superset of the solution of the previous iteration.

Simulated Annealing: In this case we only need to remove the conditions
in lines 22 and 24 (see Figure 5) that check if the current solution requires
space more than the space constraint. Since the process of forming a solution
involves a randomization step, there is no guarantee that the new solution
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will be a superset of the old one.
Tabu Search: Similar to simulated annealing, the only change is to remove

the conditions of lines 16 and 18 (see Figure 6). Once again, the solutions
produced by the algorithm are not guaranteed to be supersets of the previous
solutions.

In the following section, we focus on the greedy algorithms. More specifically,
we examine the performance of these algorithms (in terms of the quality of so-
lutions) in relation to the performance of the greedy solution for the Knapsack
problem.

7.2 On the Optimality of the Greedy Solutions

As we have already discussed, the COSS problem degenerates to the Knapsack
problem when each component satisfies at most one object. In this case, we
can consider the set of components required by each object as a single super-
component, and attach to it a space requirement equal to the sum of the space
requirements of the corresponding components.

We can also show that the following theorem holds.

Theorem 1 Consider the Knapsack problem with n objects. Let the space
constraint W be equal to the space needed by the i objects, 1 ≤ i ≤ n, with the
highest benefit per space ratio. In this case the greedy algorithm that chooses
items based on their benefit per space ratio finds the optimal solution.

Proof: Figure 13 illustrates a linear ordering of the n objects according to
their benefit per space values. We name u1 the object that has the highest

u 1

 1

uuuu 2  k  k+1  n

 0  2  k-1  kspace

objects

 k+1  n-1  nw w w w w ww

Fig. 13. A linear ordering of n objects for the Knapsack problem.

benefit per space ratio, and un the object that has the lowest. This linear
ordering represents the order in which the greedy algorithm will select objects
to insert in the solution. Assume that we set the space constraint to W = wk+1,
which is the total space required by the first k + 1 objects. Then we solve
the Knapsack problem using this space constraint. We know that the greedy
algorithm that chooses items based on their benefit per space ratio is optimal
(in benefit) for the fractional Knapsack problem [3]. Observe though, that in
our case the space constraint is carefully set so that all the selected objects will
fit exactly in the available space, and none will need to be divided. (Remember
that the greedy algorithm will select the objects from left to right, in the order
they appear in Figure 13.) Note that the same is true for all the choices of
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W = wi, where 1 ≤ i ≤ n. Therefore, the greedy algorithm that chooses items
based on their benefit per space ratio is also optimal for the Knapsack problem
when the space constraint is set to wi, where 1 ≤ i ≤ n. 2

This theorem is interesting in our context. It says that, when we can relax
the space constraint, we can solve the Knapsack problem using the greedy
benefit per space algorithm, stop after selecting any number of items, and we
are guaranteed that the solution we have is optimal for the amount of space
used. Given the above analysis, a question that arises naturally is whether this
optimality property carries over to the COSS problem and the corresponding
algorithm GrBenSp.

Unfortunately, the answer is negative. The reason is that unlike Knapsack, in
the COSS problem each component may help satisfy more than one object.
The result of these interdependencies is that a solution that is optimal for
some space constraint W1 is not necessarily a subset of the optimal solution
for a space constraint W2 > W1. Consequently, there is no linear ordering of
the objects in the sense depicted in Figure 13. Hence, the optimality property
of the greedy algorithm does not hold for the COSS problem. Theorem 2
formally states this observation.

Theorem 2 The COSS problem does not have the optimality property. That
is, the optimal solution for some space constraint W1 is not necessarily a subset
of the optimal solution for a space constraint W2 > W1.

Proof: We prove this theorem using a counter-example. Consider the instance
of the COSS problem depicted in Figure 14. We indicate the benefit of each
object and the space requirements for each of the components by the numbers
in parentheses below the names of the objects and components. Assume that
the space constraint is W1 = 12 units. Then, the optimal solution for this
particular instance of the COSS problem is the set of objects O1 = {u3, u4}
with total benefit 17 units. Now let the space constraint be W2 = 16 units.
In this case, the optimal solution is composed of the set of objects O2 =
{u1, u2, u3} with total benefit 24 units. We observe that the optimal solution
O2 is not a superset of O1, even though the space constraint W2 is greater
than W1. 2

7.3 Analysis of the Greedy Algorithms

In this section, we present theoretical results on the behaviour of the greedy
algorithms when compared to optimal. These results are interesting, because
they indicate what the worst performance of the algorithms might be, and
they can help us choose among those algorithms.
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Fig. 14. Counter-example that demonstrates the fact that for the COSS problem,
the optimal solution for one space constraint value is not necessarily a subset of
the optimal solution for larger space constraint values. The numbers in parentheses
indicate the benefit and required space of the objects and components respectively.

In Figures 15 and 16 we illustrate examples where the algorithms perform
poorly in terms of quality of the solution. The benefit of each object and the
space requirements for each of the components are indicated by the numbers
in parentheses below the names of the objects and components. In all cases b
represents a measure of the objects’ benefit, while the space constraint is set
to W units.

Theorem 3 In the worst case, the GrComp algorithm provides a solution
that is at least (W

2
− 1)b times worse than the optimal solution, for any b > 0

and W > 3.

Proof: In the instance of the COSS problem depicted in Figure 15(a) Gr-
Comp will first select component v1, because the selection of no component
will yield any benefit, and v1 has the minimum space requirements among
all the components. Subsequently, it will select component v2 in order to get
the benefit from satisfying object u0, for a total benefit of 1. After that there
are no more objects that can be satisfied, since the total space required by
the set of the selected components, i.e., {v1, v2}, is equal to the space con-
straint W . On the contrary, the optimal algorithm will select the components
{v3, . . . , vW/2−1} (W/2 components in total), for a total benefit of (W

2
− 1)b.

Therefore, GrComp can be (W
2
−1)b times worse than the optimal solution. 2

Theorem 4 In the worst case, the GrBen algorithm provides a solution that
is at least (W −1)(1− 1

b
) times worse than the optimal solution, for any b > 0

and W > 2.
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Proof: In Figure 15(b) we give an example for GrBen. In this case the algo-
rithm will accept in the solution object u0, because it has the highest benefit
value among all the objects. The space required by u0, or equivalently {v1, v2},
is W . Then the algorithm terminates, since it will have used up all the avail-
able space. The benefit for this solution is b. The optimal solution includes the
objects {u1, . . . , uW−1}, for a total benefit of (W − 1)(b− 1). This means that
the solution of GrBen can be (W − 1)(1 − 1

b
) times worse than the optimal

solution. 2
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Fig. 15. Example scenarios for GrComp and GrBen.

Theorem 5 In the worst case, the GrSp algorithm provides a solution that
is at least 1.33b times worse than the optimal solution, for any b > 0 and in
the limit as W → ∞.

Proof: For the GrSp algorithm consider the scenario depicted in Figure 16(a).
The algorithm will select the objects {u1, . . . , uW/2}. The components needed
to satisfy these objects have the lowest space requirements, i.e., they occupy
space of 2 units per object. In contrast, all the rest of the objects require
space of 3 units each. The selected objects are W/2 altogether, they yield
a total benefit of W/2, and the corresponding components occupy all the
available space W . The optimal solution in this case is comprised of the objects
{uW/2+1, . . . , uW/2+2W/3−1}. The number of the selected objects is (2W

3
−1), and

their total benefit is (2W
3
−1)b. Thus, GrSp can be (2W/3−1)

W/2
b times worse than

optimal. For sufficiently large values of W the above quantity is approximated
by 1.33b. 2
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Theorem 6 In the worst case, the GrBenSp algorithm provides a solution
that is at least 1.77 times worse than the optimal solution, in the limit as
b → ∞.

Proof: Consider the example illustrated in Figure 16(b), for which we assume
that the space constraint is W = 2b. During the first iteration the GrBenSp
algorithm will select object u3, because it has the largest ratio of benefit per
space required by the corresponding components, which are {v3, v4}. This ratio
is 1 for u3, and less than 1 for all the other objects.

In the next iteration the object u4 is selected. Note that in order to satisfy
u4 only the component v5 is needed, since v4 was selected in the previous
iteration. The object u4 is selected because its benefit per space ratio, 5b+2

3b
,

is higher than the one of u2, which requires component v2, and has a ratio of
5b−4
3b

. The other two choices have lower ratios, as well. The object u1, which
requires components {v1, v2}, has a ratio of b−1

b
, and object u5, which requires

components {v5, v6}, has a ratio of 1
b
.

In the third iteration the algorithm selects object u5, which now only needs
component v6, since v5 is already selected. Observe that the benefit per space
ratio of this choice (2

b
) is not better than the ration of u1 ( b−1

b
). However, it is

the only viable choice at this point, because the remaining available space is
just b/2.

In summary, the GrBenSp algorithm selects the set of objects {u3, u4, u5}, and
the corresponding components {v3, v4, v5, v6}, which occupy space 2b = W .
The total benefit of this solution is 11b+8

6
.

The optimal solution for this example consists of the set of objects {u1, u2, u3}.
The required components occupy all the available space W , and the total
benefit of the solution is 13b−8

4
.

Therefore, the solution of GrBenSp can be 39b−24
22b+16

times worse than opti-
mal. For sufficiently large values of b the above quantity is approximated by
1.77. 2

7.4 Choosing Among the Alternatives

The experiments demonstrate that the bond energy algorithms perform worse
than some of the greedy approaches. At a first glance this is a rather surprising
result, given that the BondEn algorithms have higher complexity and seem
to make choices with greater care. However, we observe that all the decisions
that BondEn makes are based on just pairs of components, despite the fact
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Fig. 16. Example scenarios for GrSp and GrBenSp.

that in many cases it is a larger number of components that are interrelated.
The experiments show that this prevents BondEn from capturing the true,
more complex, associations inherent in the problem, narrows the information
upon which the algorithm operates, and leads to poor decisions. Thus, BondEn
should not be the algorithm of choice, especially since it does not scale as well
as the greedy algorithms.

The greedy approaches are better than the bond energy algorithms for another
reason as well. They are able to incrementally compute a new solution when
the space constraint is relaxed. This is an important factor in the selection
of the algorithm, since it removes the requirement of a hard space constraint,
and gives the user the flexibility to choose among a range of slightly different
space requirements which may lead to solutions with significant variations in
the benefit values. On the contrary, the bond energy algorithms cannot readily
provide the new solution, because they have to rerun the split procedure (see
Figure 3), which is expensive.

The distinction among the greedy algorithms is quite clear between the best
(GrBenSp and GrSp) and the worst (GrBen and GrComp) performers (see
Figures 8(b) and 9(a)). However, it is not clear from the experiments whether
GrBenSp or GrSp is a better choice, since they both have the same time
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complexity and provide solutions of similar quality.

In order to answer the above question we have to turn our attention to the
analysis presented in Section 7.3. This analysis shows that three of the greedy
approaches we examined, including GrSp, may perform arbitrarily poorly un-
der certain circumstances. The same does not seem to be true for the GrBenSp
algorithm. We believe that GrBenSp is a better choice in this sense, since it
avoids making poor decisions that lead to solutions very far from optimal.

Finally, we should note that Tabu can in many cases improve on the solution
provided by the greedy algorithms. An interesting observation is that when
we turned off the tabu list functionality the performance of the algorithm
deteriorated. This indicates that Tabu is indeed making well-calculated moves,
and that the tabu list enables the algorithm to avoid local minima and explore
new areas in the solution space. Therefore, it is beneficial to run this algorithm
when the time allows it.

8 Conclusions

Space constrained optimization problems are still significant despite the ad-
vances in storage technologies. In this paper, we focused on the specific prob-
lem of COSS, where benefit values are associated to sets of items, instead of
individual items. We derived the complexity of this problem, and since there
are no known approximation algorithms for these problems, we explored the
use of greedy and randomized techniques.

We presented an extensive experimental evaluation of the algorithms that illus-
trates the relative performance of the different approaches, and demonstrates
the scalability of the greedy solutions. Finally, we examined some properties of
the algorithms from a theoretical perspective, and presented a worst-case anal-
ysis. The results of this analysis can be useful in practice for choosing among
the alternatives. Both our experimental and theoretical analysis demonstrate
that GrBenSp is a practical solution for the COSS problem.
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