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ABSTRACT
In this paper, we investigate the problem of estimation of
a target database from summary databases derived from a
base data cube. We show that such estimates can be de-
rived by choosing a primary database which uses a proxy
database to estimate the results. This technique is common
in statistics, but an important issue we are addressing is
the accuracy of these estimates. Specifically, given multi-
ple primary and multiple proxy databases, that share the
same summary measure, the problem is how to select the
primary and proxy databases that will generate the most
accurate target database estimation possible. We propose
an algorithmic approach for determining the steps to select
or compute the source databases from multiple summary
databases, which makes use of the principles of information
entropy. We show that the source databases with the largest
number of cells in common provide the more accurate esti-
mates. We prove that this is consistent with maximizing
the entropy. We provide some experimental results on the
accuracy of the target database estimation in order to verify
our results.

Categories and Subject Descriptors
H.2 [Database Management]: Database Applications; H.2.8
[Database Applications]: [Statistical Databases]

General Terms
Management, Theory, Experimentation

1. INTRODUCTION
Providing exact answers to queries from large data cubes in
OLAP applications can be too slow, and in some cases, the
user may prefer a fast approximate answers. A more crucial
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case is when it is not possible to provide precise answers,
such as in socio-economic applications because only summa-
rized data is available for reasons of privacy. In such cases,
it is quite useful to generate an estimate or approximate an-
swers using approximate query processing techniques. A key
issue is the accuracy of the estimates for aggregate queries
(e.g., queries computing SUM or COUNT expressions), and
was the focus of recent research activity (e.g., (Palpanas,
Koudas & Mendelson 2005), (Pourabbas & Shoshani 2007)).

In (Pourabbas & Shoshani 2007), we discussed the esti-
mation of summary queries, evaluated over multiple source
summary databases. Such a summary query consists of re-
questing a summary measure of interest (e.g., household
income), called target measure, over a set of category at-
tributes, called target dimensions (e.g., State, Sex). In many
cases, it may not be possible to evaluate such a query from a
single source summary database, and two summary databases
have to be used. For example, suppose that one database
contains Income by (State,Age,Race) and the second con-
tains population by (State,Age,Sex,Education level). It is
possible to estimate the target database Income by (State,Sex)
by using the first database as the “primary” database (since
it has the target measure Income), and using the second
database as a “proxy” database (since it has the additional
desired target dimension Sex). Here the population sizes
are considered a proxy for the measure Income. The esti-
mation method used to generate the target database is the
linear indirect estimator (see Appendix-(A)), which takes
advantage of the fact that the summary databases were de-
rived from the same base data, and consequently are corre-
lated. The proposed method to estimate efficiently the tar-
get database was based on partitioning the dimensions of the
source databases into three types: “target” , “common”, and
“non-common”dimensions. We first determine the target di-
mensions, and classify the remaining dimensions as common
and non-common. In the example above, State and Sex are
target dimensions, Age is a common dimension, and Race
and Education level are non-common dimensions.

In that previous paper we examined two obvious computa-
tional methods for computing such a target database, called
the “Full cross product” (F) and the “Pre-aggregation” (P)
methods. Essentially, the estimation by the F method is
achieved by first calculating the target measure over the full
cross product of the dimensions from both databases using



proportional estimation, and then aggregating over all the
non-target dimensions. Since this method requires gener-
ating the full cross product, its cost is high. In contrast,
the estimation by the P method consists of aggregating over
all the non-target dimensions of both databases first, and
only then generating the cross product using proportional
estimation to obtain the result. The pre-aggregation re-
duces the size of the cross product greatly, and lowers the
cost of generating the estimation. However, we showed that
the P method, while computationally efficient, yields results
that are not as accurate as the F method. We proposed a
third method called “Partial Pre-aggregation” (PP) method,
which consists of summarizing only the non-common dimen-
sions first, and then applying the proportional estimation.
Using a measure of accuracy, called Average Relative Error-
ARE (see Appendix-(B)), we proved that the PP method
yields the same accuracy as the F method, but reduces sig-
nificantly the computational and space complexity. The re-
duction in cost is by a factor proportional to the multiplica-
tion of the cardinalities of the non-common dimensions.

In this paper, we consider an open question which was left
as future challenge in (Pourabbas & Shoshani 2007). The
question is how to select a primary and a proxy database
given that there are multiple primary databases available
with the same measure and multiple proxy databases with
the desired target dimensions in order to get the most accu-
rate estimation results.

1.1 The Problem
To explain the idea let us consider the following multiple
primary databases:

DBPR1=Income(State,Age)
DBPR2=Income(State,Labor status)
DBPR3=Income(Labor status,Age)
DBPR4=Income(State,Age,Labor status)

and multiple proxy databases:

DBPX1=Population(State,Age,Sex)
DBPX2=Population(State,Labor status,Sex)
DBPX3=Population(Age,Labor status,Sex)
DBPX4=Population(State,Age,Labor status,Sex)

where the cardinalities of the dimensions are: |State| =
52, |Age|=4 , |Labor status|=2, and |Sex|=2. Note that
the two categories of Labor status are In Labor Force and
Not in Labor Force according to U.S. Census Bureau. Let
Income(State,Labor status,Age,Sex) be the target database,
which should be estimated from the sets of summary databases
given above. If we select the first primary database, i.e. In-
come(State,Age), then we can apply DBPX2, DBPX3, and
DBPX4 to estimate the target database since only these
proxy databases contain auxiliary data on the dimensions
Labor status and Sex. Similarly, if we choose the second
primary database, we can only apply DBPX1, DBPX3, and
DBPX4. The third primary database needs auxiliary data
on dimensions State and Sex, which are provided by DBPX1,
DBPX2, and DBPX4. Whereas, for the last primary database
all four proxy databases can be applied. This is labeled as
Case 1 in Table 1, where we assume that all four primary
databases exist, as well as all four proxy databases exist.

Table 1: Cases
Cases Primary DBs Proxy DBs

Case (1) DBPR1 DBPX1

DBPR2 DBPX2

DBPR3 DBPX3

DBPR4 DBPX4

Case (2) DBPR1 DBPX1

DBPR2 DBPX2

DBPR3 DBPX3

DBPX4

Case (3) DBPR1 DBPX1

DBPR2 DBPX2

DBPR3 DBPX3

DBPR4

Case (4) DBPR1 DBPX1

DBPR2 DBPX2

DBPR3 DBPX3

We also include in Table 1 three additional cases where only
some of the primary or proxy databases are shown. These
cases will be used later to illustrate situations that require
special attention. In all four cases, as we mentioned before,
the main goal is to obtain more accurate estimated results
for the target database. Thus, to achieve this goal we have to
select two source databases. The problem is which databases
should we choose from a given set of primary and proxy
databases that provide more accurate estimation results.

The solution of the problem mentioned above is based on
two conjectures. The first one is that the more cells of com-
mon dimensions the primary database shares with the target
database the more accurate are the estimated results. A cell
is defined as the smallest element formed by the cross prod-
uct of the dimensions. Referring to the primary databases
shown in Case 1, DBPR4 not only shares the largest number
of cells of common dimensions with the target database but
also includes all the dimensions of the first three primary
databases. Note that in this case all common dimensions
are target dimensions. Now, let us consider Case 2 and
Case 4. The problem is which primary database should we
choose? In the next section, we will show that basing this
decision on the estimate of the maximum entropy provides
more accurate results.

The second conjecture is that the proxy database that shares
the largest number of cells of the common dimensions with
the primary database provides more accurate results. In
Case 1 and Case 2, DBPX4 is such a proxy database. A
similar problem arises when selecting the proxy database in
Case 3 and Case 4. In these cases, which approach should
be applied in order to select the proxy database for the esti-
mation of the target database? We discuss this problem in
the next section as well.

The problem addressed in this paper consists of the general
problem labeled by i shown in Table 2. In (Pourabbas &
Shoshani 2007), we studied the case iv. In this paper, we
examine the first general case. The problems ii, iii, and iv
are special cases of the problem i as well.



Table 2: Problems
Cases Primary DB Proxy DB

i M choice N choice

ii M choice N given

ii 1 given N choice

iv 1 given N given

1.2 Related Work
There was a significant amount of work in the literature on
approximate query processing. In (Malvestuto 1993), for in-
stance, the definition of a universal statistical database con-
taining several summary tables which share the same sum-
mary measure is examined. Given a query, a system of linear
equations over the universal database is constructed whose
solutions satisfy the query. In (Malvestuto & Pourabbas
2004), and (Malvestuto & Pourabbas 2005), the problem of
evaluating a summary query from a set of summary tables
sharing the same variable and an auxiliary table is discussed.
These works propose algorithms which make use of tech-
niques developed in the theory of acyclic database schemas.
In contrast, we focus here on the problem of the accuracy
of the query estimation. In our work, we consider a set of
proxy (or auxiliary) databases, which share the same sum-
mary measures.

In (Hellerstein, Haas & Wang 1997) the authors propose a
framework for approximate answers to aggregation queries
called online aggregation in which the base data is scanned
in random order at query time and the approximate an-
swer is continuously updated as the scan proceeds. The
Approximate Query Answering (AQUA) (Gibbons & Matias
1998) system provides approximate answers using small pre-
computed synopses of the underlying base data. In (Palpanas
et al. 2005), the authors consider the problem of deriving
approximately the original data from the aggregates. They
propose a framework for estimating the original values based
on the notion of information entropy. In our work, we use
a different approach of estimating the values of the tar-
get database by using additional information from proxy
databases. We apply the principles of entropy over the mul-
tiple source databases in order to identify two databases,
which achieve more accurate results. We prove formally
that the source databases with the largest number of cells in
common provide more accurate estimated results. Based on
these results, we propose an algorithmic approach for deter-
mining the steps to select or compute the source databases
from multiple summary databases.

The paper is structured as follows. The next section pro-
vides the principles of entropy used in this paper. In this
section we also introduce the formal model which provides
the basis for a formal analysis of the results in this paper.
Section 3 discusses the problem of selecting two source sum-
mary databases from multiple primary and multiple proxy
databases in order to achieve maximum accuracy for the
target database. In Section 4, we develop an algorithmic
approach for determining the steps to achieve maximum
accuracy, and we prove theorems which show the source
databases with the largest number of cells in common pro-
vide the more accurate estimates. Section 5 illustrates some

experimental results on the accuracy of the target database
estimation. Section 6 contains the conclusions.

2. PRINCIPLES AND FORMAL MODEL
2.1 Principles of Entropy
In this section, we recall the principles of maximum entropy
and minimum cross-entropy, which will be used in the next
sections. The (Shannon)entropy H of a discrete probability
distribution p(x) is the non negative function

H(p) = −
∑
x∈X

p(x)logp(x) (1)

where X represents the set of tuples. H reaches its maxi-
mum value at the uniform distribution over X, i.e., log|X|.
In statistics and information theory, a maximum entropy
probability distribution is a probability distribution whose
entropy is at least as great as that of all other members of
a specified class of distributions.

Let P (X1, . . . , Xn) be an n-dimensional discrete probabil-
ity distribution to be estimated from P ′(X1, . . . , Xn) and
the set of all marginal distribution Pi(Xi) with i = 1, . . . , n
(“Marginals”is a commonly-used term in Statistics that refers
to the summary of rows and columns in the “margins” of a
table.) If X = {X1, , Xn}, we may find P that maximizes
the entropy H(P ) of P over all marginal probability distri-
butions such that it satisfies the following constrains:

• every element in P (X) is non-negative value
• ∑

P (X) = 1
• P (Xi) = Pi(Xi)

Note that in this paper, we will refer to the constraints men-
tioned above as the consistency conditions. Let P̂ (X) be
the maximum entropy approximation to P (X). The cross-
entropy (or relative entropy or Kullback-Leibler distance) be-

tween P̂ (X) and P (X) measures the similarity of two dis-
tribution and is defined as follows:

D(P̂ , P ) =
∑
X

P̂ (X)log
P̂ (X)

P (X)
(2)

Minimizing D(P̂ , P ) is the same as maximizing the entropy
of P . The technique used to compute the maximum en-
tropy estimate is Iterative Proportional Fitting Procedure-
IPFP (Deming & Stephan 1940), which starts with the zero

approximation P [0](X) = P ′(X) and determines the higher-
order approximations to P (X) according to the following
computation scheme:

first iteration cycle P [1](X) . . . P [n](X)

second iteration cycle P [n+1](X) . . . P [2n](X)
. . . . . . . . . . . .

h-th iteration cycle P [hn+1](X) . . . P [hn+n](X)
. . . . . . . . . . . .

where the approximation P [hn+i](X) in the (h + 1)-th iter-
ation cycle, 1 ≤ i ≤ n, is obtained by fitting the approxi-
mation P [hn+i−1](X) to the marginal distribution Pi(Xi) as
follows:

P [hn+i](X) =
Pi(Xi)

P [hn+i−1](Xi)
P [hn+i−1](X).



This procedure converges monotonically to the maximum
entropy estimation. The iterations stop when the estimate
at two consecutive steps are the same or the difference of
estimates are less than a pre-defined value.

2.2 Formal model
We use here the formal model defined in (Pourabbas &
Shoshani 2007), which provides the basis for a formal anal-
ysis of the results. In the following sections, we assume
two source summary databases, called DBP and DBQ that
are used to produce a target database DBT . The databases
are defined as follows: DBP = MP ({Ai

P 0 < i ≤ m}),
DBQ = MQ({Aj

Q 0 < j ≤ n}), and DBT = MT ({Ak
T

0 < k ≤ t}), where MP , MQ, and MT are the measures
of the corresponding databases, Ai

P , Aj
Q, and Ak

T are the
corresponding dimensions, and m, n, and t are the cardinal-
ities of the corresponding dimensions. In defining a target
database over the two source summary databases, one of
the measures, either MP or MQ is selected. Without loss of
generality, suppose that MP is selected. Thus, MP = MT .
DBP is called the primary database, MQ is called the proxy
measure, and DBQ is called the proxy database.

Given two source summary databases DBP and DBQ that
are used to generate a target database DBT , we can classify
the source database dimensions as belonging to three dis-
joint groups: target dimensions, common dimensions, and
non-common dimensions. First, we pick the dimensions in
the source databases that are specified in the target database
for the target group; then the remaining dimensions are con-
sidered common if they are in both source databases, and
are considered non-common otherwise. Note that a target
dimension can exist in both source databases. We use the

following notation: DBP = MP (AC
P , AC

P , AT C

P , AT C

P ), and

DBQ = MQ(AC
Q, AC

Q, AT C

Q , AT C

Q ), where C, C, and T refer
to the common, non-common, and target dimension-groups,

respectively. Note that AC
P = AC

Q, and AT C

P = AT C

Q . We

use the notation AT for the group of target dimensions {Ak
T

0 < k ≤ t}. Thus, DBT = MT (AT ). Using the nota-

tion above, we have AT = AT C

P ∪ AT C

P ∪ AT C

Q . Note that

AT C

Q must always exist to make the proxy summarization

meaningful. However, AT C

P and AT C

P may or may not exist.

Indeed, if AT C

Q does not exist, then there is no need to use
DBQ, since the results can be obtained from DBP only.

For instance, let us consider the source summary databases:
Income(Age,Labor status,Sex), and Population(State,Age,Ra-
ce,Sex). Let us assume that the summary query expressed
over them is Income(State). In this case, Income(State) is
the target summary database, Population(State,Age,Race,Sex)
is the proxy database, and Income(Age,Labor status,Sex)
is the primary database. AT = {State} is the target di-

mension, where AT C

Population = AT C

Income =Ø, AT C

Population =

{State}, AT C

Income =Ø are the non-common target dimen-
sions, AC

Population = AC
Income = {Age, Sex} are the com-

mon dimensions between the source summary databases,

and AC
Population = {Race}, and AC

Income = {Labor status}
are the non-common dimensions. If the summary query
expressed over the source databases is Income(State,Age),

then AT = {State, Age} and accordingly, AT C

Population =

AT C

Income = {Age}, AT C

Population = {State}, AT C

Income =Ø, and

AC
Population = AC

Income = {Sex}.

3. DATABASE SELECTION
In this section, we investigate the problem of selecting two
source summary databases from multiple primary and mul-
tiple proxy databases in order to achieve maximum accuracy
for the target database. Only primary databases that have
the same measure as that of the target database need be
considered.

The proxy database is selected in order to provide the di-
mensions missing in the primary database and specified in
the target database. For all four cases shown in Section 1.1,
the Sex dimension in the multiple proxy databases is needed
for the target database and is not provided from primary
databases. We recall the results discussed in (Pourabbas
& Shoshani 2007) regarding the non-common dimensions or
the dimensions which are not specified in the target database
but exist in one of the source databases. According to the
Partial Pre-aggregation (PP) method, pre-aggregating the
source databases over the non-common dimensions, the es-
timation results are as accurate as the estimates obtained
by the full cross-product of all dimensions of the source
databases first and then aggregating over non-common di-
mensions. In this paper, we use this approach in considering
which primary and proxy databases to choose to maximize
accuracy.

In the previous section, we conjectured that the primary
database which includes the largest number of cells of the
desired target dimensions is the better choice. Let us re-
call the set of primary databases shown in Case 1, and
shown in Table 3 (where we use the symbols “I” and “P”
to indicate Income and Population, respectively.) By mul-
tiplying the cardinalities of the dimensions we obtain the
number of cells for each choice. As can be seen in Table 3,
DBPR4 shares 416 cells for dimensions in common with the
target database Income(State, Labor status, Age, Sex). It
includes more cells with respect to the other three primary
databases. An important idea associated with the number
of cells is that of entropy. According to the principles dis-
cussed in Subsection 2.1, given a set of primary databases
we have to choose the one with the largest number of cells to
achieve the largest entropy (Jaynes 1979). In Section 4 we
prove in the first theorem that the more accurate estimate is
achieved when the primary database with the largest num-
ber of cells in common with the target database is selected.
For the databases shown in Table 3, the largest entropy is
achieved by DBPR4. This primary database also satisfies
the three constraints of consistency conditions listed in Sub-
section 2.1. Concerning the proxy databases (see Table 4), if
there are common dimensions, we conjecture that the proxy
database with the largest number of cells of the common
dimensions with the primary database achieves the more
accurate result. In this case, it is DBPX4. This conjecture
is also proven in Section 4 where we show in the second the-
orem that the more accurate estimate is achieved when the
proxy database with the largest number of cells in common
with the primary database is selected.



Table 3: Primary databases

Primary DB |A| Entropy D(Î − I)
DBPR1=I(State,Age) 208 6.45 0.06816

DBPR2=I(State,Labor status) 104 5.54 0.09071

DBPR3=I(Labor status,Age) 8 3.49 0.13815

DBPR4=I(State,Labor status,Age) 416 7.10 0.01623

Table 4: Proxy databases

Proxy DB |A|
DBPX1=P(State,Age,Sex) 416

DBPX2=P(State,Labor status,Sex) 208

DBPX3=P(Age,Labor status,Sex) 16

DBPX4=P(State,Age,Labor status,Sex) 832

The relative entropy (or loss of information) of the estimates
by applying each primary database to DBPX4 is shown in
Table 3, fourth column. Applying DBPR4, the amount of
information that we lose is less than the others. This indi-
cates that the estimate obtained by DBPR4 is more similar
to that of the real distribution of Income with respect to the
other primary databases. Thus, the combination of DBPR4

and DBPX4 provides the more accurate estimate. The accu-
racy results are given in Section 5. Suppose, in Table 3, that
only the first three databases are given (i.e. Case 2). In this
case, the maximum number of cells is provided by DBPR1,
but none of them satisfies the consistency conditions (see
Subsection 2.1). Thus, Income(State, Labor status, Age)
needs to be estimated. For this reason, we have to consider
all three primary databases by applying IPFP to estimate
Încome(State,Labor status,
Age). This estimates satisfies the above mentioned condition
because, for instance, aggregating that over “Age”, we have
Income(State,Labor status), over “Labor status” we obtain
Income(State,Age) and over“State”we obtain Income(Labor
status,Age). This estimate provides maximum entropy and
contains the largest number of cells in common with the tar-
get database (this is expressed in the Procedure in Section
4). In (Malvestuto & Pourabbas 2005), it is discussed that
this estimate is uniquely determined by the information-
theoretic principle of minimum cross-entropy and its dis-
tribution is defined as follows. (For the sake of brevity, the
symbols“S”,“L”,and“A”indicate“State”, “Labor status”, and
“Age”, respectively.)

Încome[0](S, A, L) = Pop(S, A, L)

Încome[1](S, A, L) = Income(S, A) Încome[0](S,A,L)∑
L Încome[0](S,A,L)

Încome[2](S, A, L) = Income(S, L) Încome[1](S,A,L)∑
A Încome[1](S,A,L)

Încome[3](S, A, L) = Income(A, L) Încome[2](S,A,L)∑
S Încome[2](S,A,L)

. . .

Note that the zero approximation (or initial distribution) is
set to the proxy database with the same dimensions of the
estimate of Income. In this example, the mentioned proxy

is DBPX4, where Pop(S, A, L) =
∑

Sex Pop(S, A, L, Sex).

Case 4 differs from Case 2 in the proxy database compu-
tation. In order to apply IPFP to the primary databases,
the zero approximation should be set to P(S,L,A), but this

proxy is not provided. Our solution is to estimate P̂ (S, L, A,
Sex) from the proxy databases. We return to this point in
Section 5. The estimate of the primary database is obtained
by IPFP, where the zero approximation is defined by the
aggregation over Sex of P̂ (State, Labor status, Age, Sex)
given below:

P̂ (State, Labor status, Age, Sex) =

P (State, Age, Sex)Pop(State,Labor status,Sex)
Pop(State,Sex)

As a final remark, we emphasize that in each set of databases
there can be summary databases which are marginal of a
database in the same set. They are not considered in the
database selection because they are redundant.

4. ALGORITHMIC APPROACH
We propose the use of an algorithmic approach for deter-
mining the steps to achieve maximum accuracy. The proce-
dure is essentially based on two theorems introduced below.
Using the notation introduced in Subsection 2.2, we can for-
mulate the following definition and theorems.

Definition 1. Let MPk (AC
Pk

, AC
Pk

, AT C

Pk
, AT C

Pk
), MPl(A

C
Pl

,

AC
Pl

, AT C

Pl
, AT C

Pl
) be primary summary databases, and let

MQ(AC
Q, AC

Q, AT C

Q , AT C

Q ) be a proxy database. We define

M̂Pk to be the estimation result of the target database over

the primary summary database MPk (AC
Pk

, AC
Pk

, AT C

Pk
, AT C

Pk
).

Similarly, we define M̂Pl to be the estimation result of target

database over the primary database MPl(A
C
Pl

, AC
Pl

, AT C

Pl
, AT C

Pl
).

The expressions of the estimators above are defined by ap-
plying the PP method, according to which the source databases
are aggregated over non-common dimensions first:

MPk (AC
Pk

, AT C

Pk
, AT C

Pk
) =

∑
AC

Pk

MPk (AC
Pk

, AC
Pk

, AT C

Pk
, AT C

Pk
)

MPl(A
C
Pl

, AT C

Pl
, AT C

Pl
) =

∑
AC

Pl

MPl(A
C
Pl

, AC
Pl

, AT C

Pl
, AT C

Pl
)

MQ(AC
Q, AT C

Q , AT C

Q ) =
∑

AC
Q

MQ(AC
Q, AC

Q, AT C

Q , AT C

Q )

then, linear indirect estimation method is applied:

M̂Pk (AT C

Pk
, AT C

Pk
, AC

Q, AT C

Q )

= MPk (AC
Pk

, AT C

Pk
, AT C

Pk
)
MQ(AC

Q, AT C

Q , AT C

Q )

MQ(AC
Q, AT C

Q )

M̂Pl(A
T C

Pl
, AT C

Pl
, AC

Q, AT C

Q )

= MPl(A
C
Pl

, AT C

Pl
, AT C

Pl
)
MQ(AC

Q, AT C

Q , AT C

Q )

MQ(AC
Q, AT C

Q )

where, MQ(AC
Q, AT C

Q ) =
∑

AT C
Q

MQ(AC
Q, AT C

Q , AT C

Q ).

Theorem 1. Let MPk (AC
Pk

, AT C

Pk
, AT C

Pk
), MPl(A

C
Pl

, AT C

Pl
,

AT C

Pl
) be primary databases, and let MQ(AC

Q, AT C

Q , AT C

Q ) be



proxy database, where |APl | < |APk | < |AT |, ACPl
⊂ ACPk

,
and C represents common and common-target dimension groups.
Let M̂Pk and M̂Pl be the estimate of the target database ob-
tained by applying the primary databases MPk and MPl to
MQ, respectively. The primary database MPk achieves better
estimates with respect to MPl .

Proof Let the relative entropy of M̂Pk (AC
Pk

, AT C

Pk
, AT C′

Pk
, AT C

Q )

and M̂Pl(A
C
Pl

, AT C

Pl
, AT C′

Pl
, AT C

Q ) with respect to MP (AC
Pk

, AT C

Pk
,

AT C

Pk
, AT C

Q ) be defined according to expressions:

D(M̂Pk , MP ) =
∑

M̂Pk log
M̂Pk

MP

=
∑





MPk (AC

Pk
, AT C

Pk
, AT C

Pk
)
MQ(AC

Q, AT C

Q , AT C

Q )

MQ(AC
Pk

, AT C

Pk
)




log

MPk (AC
Pk

, AT C

Pk
, AT C

Pk
)
MQ(AC

Q, AT C

Q , AT C

Q )

MQ(AC
Pk

, AT C

Pk
)

MP (AC
Pk

, AT C

Pk
, AT C

Pk
, AT C

Q )

)

D(M̂Pl , MP ) =
∑

M̂Pl log
M̂Pl

MP

=
∑





MPl(A

C
Pl

, AT C

Pl
, AT C

Pl
)
MQ(AC

Q, AT C

Q , AT C

Q )

MQ(AC
Pl

, AT C

Pl
)




log

MPl(A
C
Pl

, AT C

Pl
, AT C

Pl
)
MQ(AC

Q, AT C

Q , AT C

Q )

MQ(AC
Pl

, AT C

Pl
)

MP (AC
Pl

, AT C

Pl
, AT C

Pl
, AT C

Q )

)

We show D(M̂Pk , MP ) < D(M̂Pl , MP ), or
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Definition 2. Let MP (AC
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Similar to Theorem 1,
∑FGlogG > 0 is shown. 2

To summarize the discussion above, the procedure for deter-
mining the steps to achieve maximum accuracy can be de-
fined by Procedure. It is composed by three parts. Note
that in step (3), the second part is called for the propose
of obtaining the proxy database which includes maximum
common dimensions with the primary databases.

Procedure

Input: Given target database DBT , multiple primary

databases DBPRi with 1 ≤ i ≤ n and multiple proxy

databases DBPXj 1 ≤ j ≤ m databases

Goal: Select two source databases to obtain maximum

accuracy for the estimate of DBT

Part 1- Selection of the primary database
(1) Given that MT = MPR start with selecting a primary

database;

(2) Select the primary database whose dimensions cover the

dimensions of all other primary databases (indicated by APR)

(3) If no such primary database exists run Part 2 and

then apply IPFP to multiple primary databases with

zero approximation fixed to DBPX pre-aggregated

over AT C

PX ;

(4) Once DBPR was chosen (step 2) or estimated (step 3),

pre-aggregate the non-common dimensions;

Part 2- Selection of the proxy database

(5) Consider only DBPX with dimensions APX = AT C

PX ∪APR;
(6) If there is no such proxy database, consider proxy

databases that have APX = AT C

PX , with additional

dimensions such that:

(a) if non-common, pre-aggregate dimensions;

(b) if common, apply IPFP to multiple proxy databases;

Part 3- Estimation of the target database
(7) Apply linear indirect estimation method to DBPR,

and DBPX .

5. EXPERIMENTAL RESULTS
We discuss the experimental results of the application of our
algorithmic approach to the four cases introduced in Subsec-
tion 1.1. For the experimental results, we use the values in
the base data to evaluate the estimated errors. We start
with Case 1. We note that DBPR4 and DBPX4 satisfy step
(2) and step (5). In fact, they provide the most accurate
results (see Table 5, first row). In Case 2, according to step
(3), IPFP is applied to the given primary databases. As we
mentioned in Section 3, the zero approximation is fixed to
DBPX4 which is pre-aggregated over the non-common tar-
get dimension. The convergence of the estimate of Income
is achieved after five iteration cycles. Note that, we could
have fixed the zero approximation of IPFP to every primary
database in order to estimate the primary database, but this
starting values effect the accuracy of the results. In fact,
the average relative error of the target database is 0.1732 vs
0.1625 by applying step (3). Overall, we note the accuracy
results in Case 2 is close to that of Case 4. Similarly, the
accuracy of results in Case 1 is close to that of Case 3. With
respect to Case 1, the accuracy of Case 3 is better that Case
2. It seems that the estimation of the proxy database does
not effect significantly the accuracy of the results. But, this
is not the case of the estimation of the primary database
(see the accuracy of Case 1 and Case 2). Obviously, the
accuracy of Case 4 is worse than the other cases.

In addition, we compare some accuracy results of the esti-
mates. Specifically, in Table 6, we compare the accuracy
results of the estimate of target database by applying each
primary database to P (State, Labor status, Age, Sex) and
the estimate of the primary database computed according
to step (3) of the proposed procedure. Table 7 illustrates



Table 5: Accuracy results of selected primary and
proxy databases in four cases

Cases DBPR DBPR ARE

Case (1) DBPR4 DBPX4 0.0962

Case (2) Î(S, A, L) DBPX4 0.1464

Case (3) DBPR4 P̂ (S, A, L, Sex) 0.1186

Case (4) Î(S, A, L) P̂ (S, A, L, Sex) 0.1625

Table 6: ARE of Î(State, Labor status, Age, Sex)
by applying the primary databases to
P (State, Labor status, Age, Sex)

Primary DB |A| ARE

I(State,Age) 208 0.3925

I(State,Labor status) 104 0.3991

I(Age,Labor status) 8 0.5300

Î(State, Age, Labor status) 416 0.1464

the accuracy results of the estimate of the target database
by applying to I(State, Labor status, Age) each given proxy
database and the estimated proxy database computed ac-
cording to step (6) of the proposed procedure.

Finally, Table 8 shows the accuracy results of the estimate
of the target database by applying the estimated primary
database Î(State, Labor status, Age) to each given proxy

database and the estimated proxy database P̂ (State, Labor
status, Age, Sex).

6. CONCLUSIONS
Given multiple primary and multiple proxy databases sum-
marized over a large base cube database, we investigate the
problem of selecting the source summary databases that pro-
vide the most precise estimate for a target database. The
databases in each set share the same summary measure. We
show that the primary and proxy databases with the largest
number of cells in common provide more accurate results.
Our methodology is based on the principles of information
entropy. Based on these results, we proposed an algorith-
mic approach for determining the steps to select or compute
the source databases from multiple summary databases. To
describe such proposed algorithm, some example databases
were used, and experimental results for them have been
demonstrated.

Table 7: ARE of Î(State, Labor status, Age, Sex)
by applying the primary database
I(State, Labor status, Age) to the following proxy
databases

Proxy DB |A| ARE

P(State,Age,Sex) 416 0.2111

P(State,Labor status,Sex) 208 0.1470

P(Age,Labor status,Sex) 16 0.1439

P̂ (State, Age, Labor status, Sex) 832 0.1186

Table 8: ARE of Î(State, Labor status, Age, Sex)
by applying the primary database
Î(State, Labor status, Age) to proxy databases

Proxy DB |A| ARE

P(State,Age,Sex) 416 0.2389

P(State,Labor status,Sex) 208 0.1909

P(Age,Labor status,Sex) 16 0.1827

P̂ (State, Age, Labor status, Sex) 832 0.1625
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APPENDIX
A. THE LINEAR INDIRECT ESTIMATION



The main idea of such an approach is to use data from sur-
veys of variables of interest at the national or regional level,
and to obtain estimates at more geographically disaggre-
gated levels such as counties or other small areas. An indi-
rect estimation calculates values of the variable of interest
using available auxiliary (called predictor or proxy) data at
the local level that are correlated with the variable of inter-
est (Ghosh & Rao 1994). Formally, let i denote a small area.
A target measure Y (d) is provided over a set of dimensions
d. Y (d) was generated from Y (d) =

∑
i Y (i, d). Y (i, d) is

no longer available. However, auxiliary information in the
form of X(i, d) is available. A linear indirect estimation of
Y for small area i is defined by:

Ŷ (i) =
∑

d Ŷ (i, d) =
∑

d Y (d)
X(i, d)

X(d)

where X(d) =
∑

i X(i, d). X(i, d)/X(d) represents the pro-
portion of the population of small area i relative to the total
population over set of dimensions d, and

∑
i Ŷ (i) must be

equal to
∑

d Y (d) (Ghosh & Rao 1994).

B. AVERAGE RELATIVE ERROR
A method that is commonly used for measuring accuracy
is the average relative error (ARE) (Ghosh & Rao 1994).
Formally, the average relative error (ARE) is:

ARE =
1

m

m∑
i=1

|v̂i − vi|
vi

.

where v̂i and vi are, respectively, the estimated and precise
(or base data) values, and m is the number of small areas
for which estimated values were calculated.


