
Data & Knowledge Engineering 70 (2011) 409–434

Contents lists available at ScienceDirect

Data & Knowledge Engineering

j ourna l homepage: www.e lsev ie r.com/ locate /datak
Editorial

Mining business process variants: Challenges, scenarios, algorithms

Chen Li a,⁎, Manfred Reichert b, Andreas Wombacher c

a Information Systems Group, University of Twente, The Netherlands
b Institute of Databases and Information Systems, Ulm University, Germany
c Database Group, University of Twente, The Netherlands
a r t i c l e i n f o
⁎ Corresponding author. Tel.: +31 53 489 5334; fax
E-mail addresses: lic@cs.utwente.nl (C. Li), manfre

0169-023X/$ – see front matter © 2011 Elsevier B.V.
doi:10.1016/j.datak.2011.01.005
a b s t r a c t
Article history:
Received 25 April 2010
Accepted 18 January 2011
Available online 24 February 2011
During the last years a new generation of process-aware information systems has emerged,
which enables process model configurations at buildtime as well as process instance changes
during runtime. Respective model adaptations result in a large number of model variants that
are derived from the same process model, but slightly differ in structure. Generally, such model
variants are expensive to configure and maintain. In this paper we address two scenarios for
learning from process model adaptations and for discovering a reference model out of which
the variants can be configured with minimum efforts. The first one is characterized by a
reference process model and a collection of related process variants. The goal is to improve the
original reference process model such that it fits better to the variant models. The second
scenario comprises a collection of process variants, while the original reference model is
unknown; i.e., the goal is to “merge” these variants into a new reference process model. We
suggest two algorithms that are applicable in both scenarios, but have their pros and cons. We
provide a systematic comparison of the two algorithms and further contrast them with
conventional process mining techniques. Comparison results indicate good performance of our
algorithms and also show that specific techniques are needed for learning from process
configurations and adaptations. Finally, we provide results from a case study in automotive
industry in which we successfully applied our algorithms.

© 2011 Elsevier B.V. All rights reserved.
Keywords:
Process mining
Process configuration
Process change
Process variant
1. Introduction

In today's dynamic business world success of an enterprise increasingly depends on its ability to react to environmental
changes in a quick, flexible and cost-effective way [1–3]. To increase flexibility of Process-Aware Information Systems (PAIS)
different approaches have been suggested for adapting pre-modeled processes (i.e., to add, delete ormove process activities) [4,5].
Corresponding adaptations are not only needed for customizing a given reference process model to a particular context at
buildtime [6,7], but also become necessary for tailoring process instances during runtime in order to deal with exceptional
situations and changing needs [4,8]. As example consider medical guidelines [2]. Such guidelines need to be customized to fit the
particular healthcare environment in which they are applied. Additional adaptations become necessary when applying a tailored
guideline in the context of a particular patient [2]. Generally, respective process model adaptations lead to large collections of
process model variants (process variants for short) that are derived from the same process model, but slightly differ in
structure [1,9]. In case studies we conducted in healthcare and automotive engineering, we identified scenarios with dozens up to
hundreds of variants [10].
: +31 53 489 2927.
d.reichert@uni-ulm.de (M. Reichert), a.wombacher@utwente.nl (A. Wombacher).

All rights reserved.

http://dx.doi.org/10.1016/j.datak.2011.01.005
mailto:lic@cs.utwente.nl
mailto:manfred.reichert@uni-ulm.de
mailto:a.wombacher@utwente.nl
Unlabelled image
http://dx.doi.org/10.1016/j.datak.2011.01.005
Unlabelled image
http://www.sciencedirect.com/science/journal/0169023X

Fig. 1. Different scenarios for discovering reference process models.

410 C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
1.1. Problem statement

Though considerable efforts have been made to ease process configuration and adaptation [5–8], most existing approaches
have not utilized information about such structural adaptations yet [11]. Fig. 1. describes the overall goal of our research. Wewant
to learn from process model adaptations in order to discover a (new) reference process model covering the given variants best. By
adopting the discovered model in the PAIS, need for future process adaptations and costs for change will decrease. Generally,
finding such reference model is by far not trivial when considering control flow patterns like sequence, parallel branching,
conditional branching, and loops. Furthermore, “dramatic” changes of the current reference process model might be not always
preferred due to implementation costs or social reasons. Fig. 1. further differentiates between two scenarios. In the first scenario
the process variants are derived by configuring a known reference process model. When mining a new reference process model
without considering the current one, however, we might be confronted with significant structural differences between old and
new reference models. Process engineers should therefore have the flexibility to control to what degree they want to maximally
modify the original reference model to better fit to the given variant collection. Consequently, closeness of the new reference
model to the old one and closeness of this model to the variant models act as “counterforces”.

The second scenariowe consider is based on a collection of related process variants, but does not presume knowledge about the
original reference process model these variants were derived from. Here we want to discover a reference process model by
“merging” these variants without considering the “counterforces” described above. Due to this simplification, we want to design
an optimized solution approach (e.g., running faster or discovering better results) than the one suggested in the first scenario.

1.2. Contribution

Based on the assumptions that (1) process models are block-structured and (2) all activities in a process model have unique
labels1, this paper deals with the following research questions:

1. Given the original reference process model and a collection of related process variants, how can we derive a new reference
process model that fits “better” to the variants? — In this scenario we want to control the evolution of the reference process
model, i.e., to enable process engineers to control to what degree the new reference model “differs” from the original one and
how “close” it is to the process variants.

2. Given a collection of process variants without knowledge about the process model they were derived from, how can we
discover a suited reference process model in such a way that distance between this reference model and the process variants
becomes minimal?

3. Which algorithms foster these two scenarios best and what are their differences? How do these algorithms for mining process
variants differ from traditional process mining algorithms focusing on execution behavior?

As input for our analysis we solely require a collection of process variant models (and a reference process model in the first
scenario). In particular, we do NOT presume the existence of process change logs which comprise information about the change
patterns that were applied when configuring the variants out of the original reference model [13]. Furthermore we measure
closeness (or distance) between reference process model and process variant in terms of the number of high-level change
operations (e.g., to insert, delete or move activities [8]) needed to transform the reference process model into the respective
variant. Clearly, the shorter this distance is, the less the efforts for configuring this variant are.
1 The block-structure constraint is discussed in Section 2. Regarding unique activity labeling, we refer to [12] for an approach that matches activities with
different labels.

image of Fig.�1

411C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
In our first scenario, we discover a new reference model by performing a sequence of change operations on the original one. In
this context, process engineers have the flexibility to control similarity between the original reference model and the newly
discovered one, i.e., to specify how many change operations shall be maximally applied to the old reference model when
discovering the new one. As benefits, we can control the efforts for updating the reference process model, and we can avoid
Spaghetti-like model structures, which is a common challenge in the field of process mining [14,15]. Clearly, most relevant
changes (i.e., changes which significantly contribute to reduce average distance between discovered reference model and
variants) should be considered first and less relevant ones last. In our second scenario, we only need to “merge” the variants
without considering an original reference process model as “counterforce”. By utilizing this simplification we provide another
algorithm which shall perform better than the one designed for the first scenario. To elaborate this we systematically compare
these two algorithms for process variants mining.

Finally, we compare the suggested mining techniques with process mining algorithms [16]. The latter aims at discovering a
process model by analyzing execution behavior of completed process instances as captured in execution logs [15–18]. The latter
typically documents the start/end of each activity execution and therefore reflects behavior of the implemented processes. In
principle, process mining techniques can be applied in our context as well. However, they discover models which cover behavior
best; i.e., their goal is different from ours.

This paper significantly extends our work presented in [19]. It handles more process patterns (e.g., loops), provides more
technical and formal details, adds another mining algorithm, and discusses results from a case study. Finally, we compare our
algorithms for process variants mining with existing process mining algorithms based on different criteria.

The remainder of this paper is organized as follows. Section 2 gives necessary background information and Section 3 introduces a
running example. Section 4 deals with important measures for evaluating process variants in different aspects. Section 5 describes
heuristic algorithmwedesigned for Scenario 1,while Section 6 presents the clustering algorithm for handling Scenario 2.We compare
the two algorithms with each other as well as with traditional process mining algorithms in Section 7. Results of a case study in the
automotive domain are presented in Section 8. Section 9 discusses related work and Section 10 concludes with a summary.

2. Backgrounds

2.1. Process model

Let P denote the set of all sound process models. We denote a process model as sound if its execution cannot lead to deadlocks,
livelocks or other undesirable states (e.g., unreachable activities) [8,20]. Further, a process model S = N; E;…ð Þ∈P is defined in
terms of an Activity Net [8], where N constitutes a set of labeled activities and E a set of control edges (i.e., precedence relations)
linking these activities.2 We consider following process patterns: Sequence, AND-split, AND-join, XOR-split, XOR-join, and Loop
[21]. These patterns constitute the core of any process specification language and cover many of the process models we can find in
practice [22,23]. Based on themwe are able to compose more complex process structures if required (e.g., OR-split can bemapped
to AND- and XOR-splits [24]). When only using these basic process patterns, we obtain better understandable and less erroneous
models [25]. Fig. 3a depicts a simple example of an Activity Net.

2.2. Block structuring

We assume Activity Nets to be block-structured, i.e., sequences, branchings, and loops are represented as blocks with well-
defined start and end nodes. These blocks may be nested, but must not overlap; i.e., their nesting must be regular [8,26]. In a
process model S, a block can be a single activity, a self-contained fragment of S, or S itself. As example consider process model S
from Fig. 3. Here {A}, {A,B}, {C,F}, and {A,B,C,D,E,F,G} describe possible blocks contained in S. Note that we can represent a block B as
activity set, since the block structure itself becomes clear from process model S; e.g., block {A,B} corresponds to the parallel block
with AND-split and AND-join nodes in S. The concept of block-structuring can be found in process specification languages likeWS-
BPEL and XLANG. Furthermore, process management systems like AristaFlow BPM Suite [27] and CAKE2 [28] emerged, which are
applied in a variety of application domains and whose process modeling language is block-structured. When compared with non-
block-structured processmodels, block-structured ones are easier, understandable and have lower error probability [25,29,30]. If a
process model is not block-structured, in most cases we can transform it into a block-structured one [25,26,31]. For example, in a
case study we analyzed 214 processmodels from different domains and being expressed in different languages (e.g., Event Process
Chains and UML Activity Diagrams). More than 95% of themwere block-structured or could be transformed into a block-structured
representation [32]. For these reasons, we consider our mining algorithms for block-structured process variant models as highly
relevant.

2.3. Process change

A process change is accomplished by applying a sequence of high-level change operations to a given process model S [8]. Such
operations structurally modify the initial process model by altering its set of activities and their order relations.
2 An Activity Net contains more components than node set N and edge set E, which are factored out here.

412 C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
Definition 1. Process change and process variant. Let P denote the set of possible process models and C be the set of possible
process changes. □

Let S; S′∈P be two process models, let Δ∈C be a process change, and let σ = 〈Δ1;Δ2;…Δn〉∈ C� be a sequence of changes
performed on initial model S. Then:

• S[Δ〉S′ iff Δ is applicable to S and S′ is the (sound) process model resulting from the application of Δ to S.
• S[σ〉S′ iff ∃ S1; S2;…Sn+1∈P with S=S1, S′=Sn+1, and Si[Δi〉Si+1 for i∈{1,…n}. We also denote S′ as process variant of S.

Examples of high-level change operations include insert activity, delete activity, andmove activity as implemented in our ADEPT
change framework [8]. While insert and deletemodify the activity set of a process model,move changes activity positions and thus
model structure. A formal semantics of these change patterns can be found in [33]. For example, move(S,A,B,C) shifts activity A
from its current positionwithin processmodel S to the one after activity B and before activity C; delete(S,A), in turn, deletes activity
A from S. Finally, insert(S,A,B,C) adds activity A between B and C. Issues concerning the correct use of these change operations,
their generalization, and pre-/post-conditions are described in [8,34]. Though the depicted change operations are discussed in
relation to ADEPT, they are generic in the sense that they can be applied in connection with other process meta models as well
[4,33]; e.g., a process change as realized in ADEPT can be mapped to the concept of life-cycle inheritance known from Petri Nets
[20]. We refer to ADEPT since it covers by far most high-level change patterns and change support features when compared to
other adaptive PAIS eChangePatternJournal. Furthermore, with AristaFlow BPM Suite [27], an industrial-strength version of the
ADEPT technology has emerged.3 Based on the given change operations, we define distance and bias as follows:

Definition 2. Bias and distance. Let S, S′∈P be two process models. Then: Distance d(S, S′) between S and S′ corresponds to the
minimal number of high-level change operations needed to transform S into S′. We define d S;S′ð Þ = min jσ j jσ ∈ C�∧S σ 〉S′g��

.

Furthermore, a sequence of change operations σ with S[σ〉S′ and |σ|=d(S, S′) is denoted as bias B(S, S′) between S and S′. □

Distance between process models S and S′ corresponds to the minimal number of high-level change operations needed for
transforming S into S′. The corresponding sequence of change operations is denoted as bias B(S, S′) between S and S′.4 Usually,
distance measures complexity for model configuration. As example take Fig. 2. Here, distance between process model S and
process variant S4 is four, since we minimally need to apply four change operations to transform S into S′ [35]. In general,
determining bias and distance between two process models has complexity at NP−hard level [35]. Note that we consider high-
level change operations instead of change primitives (i.e., elementary changes like adding or removing nodes or edges) tomeasure
model distance. This enables us to guarantee soundness of process models and also provides a more meaningful measure for
distance [4,35]. Finally, we define the notion of trace:

Definition 3. Trace. Let S = N; E;…ð Þ∈P be a process model. We define t as a trace of S iff:

• t≡ba1,a2,…,akN (with ai∈N) constitutes a valid and complete execution sequence of activities considering the control flow
defined by S. We define T S as the set of all traces that can be produced by process instances running on process model S.

• t(a≺b) is denoted as precedence relationship between activities a and b in trace t≡ba1,a2,…,akN iff: ∃ ib j : ai=a∧aj=b. □

We only consider trace logging events about ‘real’ activities, but no events related to silent ones, i.e., nodes within a process
model having no associated action and only existing for control flow purpose [35]. Fig. 2 depicts some examples. At this stage, we
consider two process models as being the same if they are trace equivalent, i.e., S≡S′ iff: T S≡T S′. Like most process mining
approaches, the stronger notion of bi-similarity [36] is not considered here.

3. Running example

Fig. 2 depicts an illustrating example of an original reference process model S and 6 process variants Si∈P that were configured
out of S through structural adaptations. All models are based on patterns like AND-split, AND-join, XOR-split, XOR-join and Loop
[21]. Note that the variants do not only differ in structure, but also in respect to their activity sets: e.g., activity X appears in 5 of the
6 variants (except S2), while Z only appears in S5. Furthermore variants are weighted. In our context, we define the weight wi of a
process variant Si as the number of process instances executed on the basis of Si; e.g., 25 instanceswere executed based on S1, while
20 instances ran on S2. If we only know the variants, but have no runtime information about related instance executions, we
assume variants to be equally weighted; i.e., every process variant has weight of 1.

We can compute the distance (cf. Def. 2) between original reference model S and each process variant Si. For example, when
comparing Swith S1 we obtain 5 as distance (cf. Fig. 2); i.e., we need to apply five high-level change operations to transform S into
S1: delete(loop), move(S,H, I,D), move(S, I, J,endFlow), move(S, J,B,endFlow), and insert(S,X,E,B) (cf. Def. 1). Based on weight wi of
each variant Si, we can compute average weighted distance between a reference model S and its variants.
3 Visit www.aristaflow-forum.de for more information and screen casts.
4 Generally, it is possible to have more than one minimal set of change operations to transform S into S′, i.e., a bias of S and S′ does not need to be unique. See

[20,35] for adetailed discussion of this issue.

Fig. 2. An illustrating example of a reference process model and related process variants.

413C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
Definition 4. Average weighted distance. Let S = N; E;…ð Þ∈P be a reference process model. Let further M be a set of process
variants Si = Ni; Ei;…ð Þ∈P, i=1,…,n, withwi representing the number of process instances that were executed on basis of Si. The
average weighted distance D S;Mð Þ between S and M can be computed as follows:
D S;Mð Þ =
∑n

i=1 d S;Sið Þ ⋅wi

∑n
i=1wi

ð1Þ

□

The complexity to compute averageweighted distance isNP−hard since the complexity to compute the distance between two
variants is NP−hard (cf. Def. 2). Regarding our example, the distance between S and S4 is 4, while the distances between S and Si
(i≠4) correspond to 5, (cf. Fig. 2). When considering variant weights, we obtain as average weighted distance: (5×25+5×20+
5×10+4×15+5×20+5×10)/(25+20+10+15+20+10)=4.85. This means we need to perform on average 4.85 high-
level change operations to configure a process variant (and related instance respectively) out of the reference process model.
Generally, average weighted distance between a reference model and its variants expresses how “close” they are.

Our goal is to discover a reference model with shorter average weighted distance to a given collection of (weighted) process
variants than the current reference model (Scenario 1) or minimal average weighted distance if the original reference model is
unknown (Scenario 2).

image of Fig.�2

Fig. 3. a) Process model, b) (simplified) Trace set, and c) related order matrix.

414 C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
4. Matrix-based representations of process models and process variant collections

As basic input for our mining algorithms, we take a collection of process variants and optionally the original reference model
they were derived from. In this section, we show how we represent this information in our mining framework.

4.1. Representing block-structured process models as order matrices

One key feature of any change framework is to maintain the structure of unchanged parts of a process model [5,8,27]; e.g.,
when deleting an activity this neither influences its successors nor predecessors and therefore also not their order relations [33,37].
To incorporate this in our approach, rather than only looking at direct predecessor–successor relations (i.e. control edges), we
consider transitive control dependencies for each pair of activities; i.e., for a given processmodel S = N; E;…ð Þ∈P and activities ai,
aj∈N, ai≠aj we examine structural order relations (including transitive ones). Logically, we determine order relations by
considering all traces producible by model S (cf. Def. 3). Fig. 3a shows an example of a process model S. Here, Ts constitutes an
infinite trace set due to the presence of the loop-block in S (cf. Fig. 3b).

4.1.1. Simplification of infinite trace sets
Such infinite number of traces precludes us to perform any detailed analysis of the trace set. Therefore we need to transform it

into a finite representation before. One common approach to describe a string with infinite length is to represent it as a finite set of
n-gram lists [38]. The general idea behind is to represent a single string as ordered list of substrings with length n (so-called n-
grams). In particular, only the first occurrence of an n-gram is considered, while later occurrences of the same n-gram are omitted.
Thus, an n-gram list represents a collection of strings having different lengths. In particular, an infinite language can be represented
as a finite set of n-gram lists; e.g., string bababababN can be represented as 2-gram b$a,ab,ba,b#N, where $ (#) represents the start
(end) of the string. Such an approach is commonlyused for analyzing loop structures in processmodels [39] or –more generally – in
the context of text indexing for substring matching [40]. Inspired by this, we define the notion of simplified trace set as follows:

Definition 5. Simplified trace set. Let S be a process model and Ts denote the trace set producible on S. Let Bk, k=(1,…,K) be loop-
blocks in S, and TBk denote the set of traces producible by the body of loop block Bk. Let further (tBk

)m be a sequence ofm∈N traces
b tBk

1 , tBk

2 ,…, tBk

mN with tjBk∈TBk , j∈{1,…,m}. We additionally define (tBk
)0≡bN as empty sequence. If we only consider the activities

corresponding to Bk, in any trace t∈Ts producible on S, t either has no entries 5 or must have structure b tBk
* ,(tBk

)mN, with t�Bk∈TBk
representing the first loop iteration and m∈N0 being the number of additional iterations and loop-block Bk was executed
according to trace t. We can simplify this structure by using b tBk

,τkN instead, where τk refers to (tBk
)m. When simplifying trace set

Ts this way, we obtain a finite set of traces Ts′ which we denote as Simplified Trace Set of process model S. □

In our simplified representation of a trace t∈T s, we only consider the first occurrence of trace tBk
* producible by loop-block Bk,

while omitting others that occur later within t. Instead, we represent such repetitive entries by a silent activity τk, which has no
associated action, but solely exists to indicate omission of other tBk

appearing later in trace t; i.e., τk represents the iterative
execution of loop-block Bk as captured in t.6 When omitting repetitive entries within trace set Ts, we obtain a finite trace set T ′

s for
further analysis. Note that when dealing with nested loops (i.e., a loop-block Bk contains another loop-block Bj), we first need to
5 This means the loop-block Bk has not been executed at all.
6 Despite its inspiration by n-gram, this approach is somewhat different from the n-gram representation of a string. In n-gram the length of the sub-string is a

fixed number n, while in our approach we use τk to represent traces producible by loop-block Bk. Obviously, traces producible by Bk do not need to have same
length.

image of Fig.�3

415C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
analyze Bj and then Bk; i.e., we need to first define τj to represent the iterative execution of loop-block Bj as captured in trace t and
then we define τk to represent loop-block Bk. As example consider process model S in Fig. 3a. Let B* denote the loop-block
comprising activities C and F. The trace set this block can produce corresponds to {bC,FN}. Therefore, any trace t∈Ts containing C
and F has structure bC,F,(C,F)mNwithm∈N0 depending on the number of times the loop iterates; e.g., bC,FN, bC,F,C,FN and bC,F,
C,F,C,FN are all valid traces producible by the loop-block. Let us define a silent activity τ corresponding to block B*. Then we can
simplify these traces by bC,F,τN where τ refers to the sequence of the traces producible on B*. This way, we can simplify infinite
trace set Ts to finite set T ′

s = bA;B;D;E;G N ;bB;A;D;E;G N ;bA;B;D;C; F; τ;G N ;bB;A;D;C; F;τ;G N (cf. Fig. 3b).

4.1.2. Representing a process model as order matrix
For process model S, the analysis results concerning its trace set Ts are aggregated in a so-called order matrix A, which considers

five types of order relations (cf. Def. 6):

Definition 6. Order matrix. Let S = N; E;…ð Þ∈P be a processmodel with activity setN={a1,a2,…,an}. Let further Ts denote the set
of all traces producible on S and let Ts′ be the simplified trace set of S according to Def. 5. Finally let Bk, k=(1,…,K) denote loop-
blocks in S and for every Bk let τk, k=(1,…,K) be a silent activity representing the iterative structure producible by Bk in Ts′. Then:

A is called order matrix of S with Aaiaj
representing the order relation between activities ai,aj∈N∪{τk|k=1,…,K}, i≠ j iff:

• Aaiaj
=‘1’ iff: (∀t∈Ts′ with ai,aj∈ t ⇒ t(ai≺aj))

If for all producible traces containing activities ai and aj, ai always appears BEFORE aj, we set Aaiaj to ‘1’, i.e., ai always precedes aj in
the flow of control.

• Aaiaj
=‘0’ iff: (∀t∈Ts′ with ai,aj∈ t ⇒ t(aj≺ai)).

If for all producible traces containing activities ai and aj, ai always appears AFTER aj, we set Aaiaj to ‘0’, i.e. ai always succeeds aj in
the flow of control.

• Aaiaj
=‘+’ iff: (∃t1∈Ts′ with ai,aj∈ t1∧ t1(ai≺aj)) ∧ (∃t2∈Ts′ with ai,aj∈ t2∧ t2(aj≺ai)).

If there exists at least one producible trace in which ai appears before aj and another one in which ai appears after aj, we set Aaiaj
to ‘+’; i.e., ai and aj are contained in different parallel branches.

• Aaiaj =‘-’ iff: (I∃t∈Ts′ : ai∈ t∧aj∈ t).
If there is no producible trace containing both activities ai and aj, we set Aaiaj to ‘−’, i.e. ai and aj are contained in different
branches of a conditional branching.

• Aaiaj
=‘L’, iff: ((ai∈Bk∧aj=τk)∨(aj∈Bk∧ai=τk)).

For any activity ai in a loop-block Bk, we define order relation Aaiτk between it and the corresponding silent activity τk as ‘L’. □

The first four order relations {1,0,+,−} specify the precedence relations between activities as captured in the trace set, while the
last one {L} indicates loop structureswithin the trace set. As example consider Fig. 3cwhich depicts the ordermatrix of processmodel
S. Since S contains one Loop-block, a silent activity τ is added to this order matrix. Note that this order matrix contains all five order
relations from Def. 6. For example, activities E and C will never appear in the same trace of the simplified trace set since they are
contained in different branches of an XOR block. Therefore, we assign ‘−’ to matrix element AEC. Since in all producible traces, which
contain both B and G, B always appears before G, we further obtain order relations ABG= ‘1’ and AGB= ‘0’. Special attention should be
paid to the order relations between silent activity τ and the other activities. The order relation between τ and activities C and F is set
to ‘L’, since both C and F are contained in the loop-block; in respect to all remaining activities, τ has the same order relations as C or F
have. Note that the main diagonal of an order matrix is empty since we do not compare an activity with itself.

Generally, it is not a good idea to first enumerate all traces of a process model and then to analyze the order relations captured by
them. Note that the trace set of a process model can become extremely large, particularly if the model contains multiple AND-blocks
or even infinite if it contains loop-blocks. In [41] we introduced algorithms for transforming a block-structured process model into its
corresponding order matrix and vice verse. Complexity of these two algorithms is O 2n2

� �
, where n equals the number of activities

plus the number of loop-blocks contained in the process model. In [41] we have further proven that such order matrix constitutes a
unique representation of a block-structured process model; i.e., if we transform a process model into an order matrix and then
transform this matrix back into a processmodel, the two process models are trace equivalent; i.e., they cover the same behavior [36].

4.2. Representing a collection of process variants as aggregated order matrix

Based on the notion of OrderMatrix (cf. Def. 6), we introduce Aggregated OrderMatrix to represent a collection of processmodel
variants. First, we compute the order matrix of each process variant. Regarding our running example from Fig. 2, we need to
compute six order matrices (cf. Fig. 4). Due to space limitations, Fig. 4 only shows a partial view of them here (i.e., activities H,I,J,X,
Y,Z as well as silent activity τ representing the Loop-block). Following this, we analyze the order relation for each pair of activities
based on all derived order matrices. As the order relation between two activities might be not the same in all order matrices, this
analysis does not result in a fixed relation, but in a distribution for the five types of order relations (cf. Def. 6). Regarding our
example, in 60% of all cases H succeeds I (as in S2, S3, S5 and S6), in 25% of all cases H precedes I (as in S1), and in 15% of all cases H
and I are contained in different branches of an XOR block (as in S4) (cf. Fig. 4). Generally, for a given variant collectionwe define the
order relation between activities a and b as a 5-dimensional vector Vab=(vab0 ,vab1 ,vab+,vab− ,vabL). Each field corresponds to the relative
frequency of the respective relation type (‘0’,‘1’,‘+’ or ‘−’,‘L’) as specified in Def. 6. Take our running example and consider Fig. 4:

Fig. 4. Aggregated order matrix based on process variants.

416 C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
vHI
1 =0.25 corresponds to the frequency of all order matrices with activities H and I having order relationship ‘1’, i.e., all cases for

which H precedes I; we obtain VHI=(0.6,0.25,0,0.15,0).

Definition 7. Aggregated order matrix. Let Si=(Ni,Ei,…)∈P, i=1,2,…,n be a collection of process variantswith activity setsNi. Let
further Ai be the ordermatrix of Si, andwi be the number of process instances that were executed on Si. The Aggregated OrderMatrix
of all process variants is defined as 2-dimensional matrix Vm×mwithm=|∪Ni| and eachmatrix element vajak=(vajak

0 ,vajak
1 ,vajak

+ ,vajak
− ,

vajak
L) being a 5-dimensional vector. For w∈{0,1,+,−,L}, element vajak

w expresses to what percentage, activities aj and ak have order
relation w within the given variant collection S1,…,Sn. Formally: ∀aj,ak∈∪Ni,aj≠ak:
vwajak =
∑Aiajak

=
0w 0wi

∑aj ;ak∈Ni
wi

: ð2Þ
□

Fig. 4 partially shows the aggregated order matrix V for the process variants from Fig. 1. Due to space limitations, we only
consider order relations for activities H,I,J,X,Y,Z, and silent activity τ which represents the Loop-block.

4.3. Measuring the activities frequencies within variant collection

Generally, the order relations computed by an aggregated order matrix may be not equally important. For example,
relationship VHI between H and I (cf. Fig. 4) is more important than relation VHZ, since H and I appear together in all six process
variants while H and Z only co-occur in S5 (cf. Fig. 1). We introduce co-existence matrix CE in order to represent the importance of
the different order relations occurring within an aggregated order matrix V.

Definition 8. Coexistence matrix. Let Si = Ni; Ei;…ð Þ∈P, i=1,2,…,n be a collection of process variants with activity sets Ni. Let
furtherwi represent the number of instances that were executed based on Si. The coexistence matrix of variant collection {S1,…,Sn}
is then defined as 2-dimensional matrix CEm×m with m=|∪Ni|. Each matrix element CEajak corresponds to the relative frequency
with which activities aj and ak appear together within the given collection of variants. Formally: ∀aj,ak∈∪Ni,aj≠ak:
CEajak =
∑Si:aj ;ak∈Ni

wi

∑n
i=1wi

ð3Þ
□

image of Fig.�4

H I J X Y Z τ

H 1 1 0.8 0.6 0.2 0.15

I 1 1 0.8 0.6 0.2 0.15

J 1 1 0.8 0.6 0.2 0.15

X 0.8 0.8 0.8 0.4 0.2 0.15

Y 0.6 0.6 0.6 0.4 0.2 0

Z 0.2 0.2 0.2 0.2 0.2 0

0.15 0.15 0.15 0.15 0 0τ

Fig. 5. Coexistence Matrix.

417C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
Fig. 5 shows the coexistence matrix for our running example. Again, we only depict the coexistence matrix for activities H,I,J,X,
Y,Z, and silent activity τ; e.g., we obtain CEHI=1 and CEHZ=0.2. This indicates that order relation between H and I is more
important than the one between H and Z.

For a given variants collection, we can further measure how frequent each activity ai appears using activity frequency:

Definition 9. Activity frequency. Let Si = Ni; Ei;…ð Þ∈P, i=1,2,…,n be a collection of variants with weights wi representing the
number of instances that were executed on Si. For each aj∈∪ i=1

n Ni, we define g(aj) as the relative frequencywith which aj appears
within the given variant collection. Formally:
g aj
� �

=
∑Si:aj∈Ni

wi

∑n
i=1wi

ð4Þ
□

Table 1 shows relative frequency of activities contained in the process variants of our running example (cf. Fig. 2); e.g., activity
X is present in 80% of the variants (i.e., in S1, S3, S4, S5, and S6), while Z only occurs in S5 (i.e., 20% of the variants). Since S4 contains a
loop-block, we obtain 15% as frequency with which silent activity τ occurs (cf. Def. 6).

5. Scenario 1: evolving reference process models by learning from past model adaptations: a heuristic approach

As discussed, measuring the distance between two models (cf. Def. 2) is an NP−hard problem, i.e., the time for computing
distance is exponential to the size of the process models. Consequently, the problem set out in our research question (i.e., finding a
reference process model with minimal average weighted distance to the variants) is an NP−hard problem as well. When
encountering real-life cases (i.e., dozens up to hundreds of variants with complex structure), finding “the optimum”would either
be too time-consuming or simply be not feasible. In this section, we present a heuristic search algorithm formining process variants,
while controlling the maximal distance between old and new reference process model (cf. Scenario 1).

Heuristic algorithms are widely used in fields like Artificial Intelligence [42], Data Mining [43] and Machine Learning [44]. A
problem employs heuristics when “it may have an exact solution, but the computational cost of finding it may be prohibitive” [42].
Although heuristic algorithms do not aim at finding the “real optimum” (i.e., it is neither possible to theoretically prove that the
discovered result is the optimumnor canwe say how close it is to the optimum), they are widely used in practice. Usually heuristic
algorithms provide a nice balance between goodness of the discovered solution and computation time needed for finding it [42].
Basically, our heuristic algorithm for process variants mining works as follows:

1. Use original reference model S as starting point.

2. Search for all neighboring process models with distance 1 to the currently considered reference process model. If we are

able to find a better model S′ among these candidate models (i.e., one with lower average weighted distance to the given
variant collection compared to S), we replace S by S′.

3. Repeat Step 2 until we either cannot find a better model or the maximally allowed distance between original and new
reference process model is reached. S′ then corresponds to our discovered reference model.

Generally, most important for any heuristic search algorithm are two aspects: the heuristic measure and the algorithm that uses
heuristics to search the state space. Section 5.1 introduces our structural fitness functionwhich measures the quality of a particular
candidate model, and Section 5.2 then introduces a best-first search algorithm to search the state space.

image of Fig.�5

Table 1
Relative frequency of each activity within the given variant collection.

Activity A B C D E F G H I J X Y Z τ

g(aj) 1 1 1 1 1 1 1 1 1 1 0.8 0.6 0.2 0.15

418 C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
5.1. Fitness function

Generally, the fitness function of any heuristic search algorithm should be quickly computable. Since search space may become
very large, we must be able to make a quick decision on which path to choose next. As discussed, average weighted distance (cf.
Def. 4) would be not a good choice since complexity for computing it isNP−hard. This section introduces a fitness function, which
can be used to approximately measure “closeness” between a candidate reference model and the given collection of variants. In
particular, it can be computed in polynomial time. Like in most heuristic search algorithms, the chosen fitness function is a
“reasonable guessing” rather than a precise measurement. Therefore, in Section 5.4 we investigate correlation between fitness
function and average weighted distance.

5.1.1. Activity coverage
For a candidate reference process model Sc = Nc; Ec;…ð Þ∈P, we first measure to what degree its activity set Nc covers the

activities that occur in the variant collection. Note that we also consider silent activities τk representing loop-blocks Bk of Sc in the
corresponding order matrix Ac (cf. Def. 6). We denote this measure as activity coverage AC(Sc) of Sc.

Definition 10. Activity coverage. Let Si=(Ni,Ei,…) i=1,…,n be a collection of process variants. Let furtherM=∪ i=1
n Ni be the set

of activities that are present in at least one of the variants. Let further Nc be the activity set of candidate process model Sc. Given
activity frequency g(aj) of each aj∈M, we compute activity coverage AC(Sc) of model Sc as follows:
AC Scð Þ =
∑aj∈Nc

g aj
� �

∑aj∈M g aj
� � ð5Þ

□

Obviously, AC(Sc)∈ [0,1] holds. Let us take original reference model S as candidate model. It contains activities A, B, C, D, E, F, G,
H, I, J, and τ (which represents the loop-block). Its activity coverage AC(S) represents to what degree S covers the activities in the
variant collection; AC(S) corresponds to 10:15

11:8 = 0:860.

5.1.2. Structure fitness of a candidate process models
AC(Sc) measures how representative activity set Nc of candidate model Sc is in respect to the given variant collection. However,

it does not state anything about the structure of candidate model Sc (i.e., order relations). We therefore introduce structure fitting
SF(Sc) as the second important metrics. It measures to what degree Sc structurally fits to the given variants collection. We use
aggregated order matrix (cf. Def. 7) and coexistence matrix (cf. Def. 8) for this purpose.

Since we can represent a candidate process model Sc by its corresponding order matrix Ac (cf. Def. 6), we determine structure
fitting SF(Sc) between Sc and the variants by measuring how similar order matrix Ac and the aggregated order matrix V
(representing the variants) are. Take original reference model S as candidate process model Sc (i.e., Sc :=S). Obviously, AHI=‘0’
holds, i.e., H succeeds I in S (cf. Fig. 1). Consider now the aggregated order matrix V of the variants (cf. Fig. 3). Here order relation
between H and I is represented by the 5-dimensional vector VHI=(0.6,0.25,0,0.15,0). If we now want to compare how close AHI

and VHI are, we first need to build an aggregated order matrix Vc purely based on our candidate process model Sc (S in our case).
Trivially, as order relation between H and I in Vc, we obtain VHI

c =(1,0,0,0,0). We then compare VHI (which represents the
variants) with VHI

c (which represents the reference model). We use Euclidean metrics f(α,β) to measure closeness between two
vectors α=(x1,x2,…,xn) and β=(y1,y2,…,yn):
f α;βð Þ = α⋅β
jα j⋅ jβ j =

∑n
i=1 xiyiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

∑n
i=1 x

2
i

q
⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i=1 y
2
i

q ∈ 0;1½ � ð6Þ
f(α,β) computes cosine value of the angle θ between vectors α and β in Euclidean space. If f(α,β)=1 holds, α and β exactly
match in their directions; f(α,β)=0means, they do notmatch at all. Regarding our running example, we obtain f(VHI,VHI

c)=0.899.
This indicates high similarity between the order relation of H and I in the candidate process model with those captured by the
variants. Based on Euclideanmetrics, whichmeasures similarity between the order relations, and Coexistencematrix CE (cf. Def. 8),
which measures importance of the order relations, we formally define structure fitness SF(Sc) of a candidate model Sc as follows:

Definition 11. Structure fitness. Let Si=(Ni,Ei,…)∈P, i=1,2,…,n be a collection of process variants with activity sets Ni. Let
further CE be the coexistence matrix and V be the aggregated order matrix of the variants collection. For candidate model Sc, let

419C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
m=|Nc| correspond to the number of activities in Sc. Finally let Vc be the aggregated order matrix of Sc. Then we compute structure
fitness SF(Sc) as follows:
SF Scð Þ =
∑m

j=1∑m
k=1;k≠j f Vajak

;Vc
ajak

� �
× CEajak

� �
m × m−1ð Þ ∈ 0;1½ � ð7Þ

□

For every pair of activities aj,ak∈Nc, j≠k, we first compute similarity of corresponding order relations (as captured by V and Vc)
in terms of f(Vajak,Vajak

c). Second we determine importance of these order relations by calculating CEajak. Structure fitness SF(Sc) of
candidate model Sc then equals average of the similarity multiplied by importance of every order relation. For our example from
Fig. 2 we obtain SF(S)=0.632 when choosing S as candidate model.

5.1.3. Fitness function
Based on AC(Sc) and structure fitting SF(Sc), we can compute fitness Fit(Sc) of a candidate model Sc as follows:

Definition 12. Fitness. Let AC(Sc) be activity coverage of candidate model Sc and SF(Sc) be its structure fitting. We compute fitness
Fit(Sc) of Sc as follows: Fit(Sc)=AC(Sc)×SF(Sc). □

As AC(Sc)∈ [0,1] and SF(Sc)∈ [0,1], Fit(Sc)∈ [0,1] holds as well. Fit(Sc) indicates how “close” candidate model Sc is to the given
collection of variants. If Fit(Sc)=1, Sc will perfectly fit to the variants; i.e., no further adaptation is needed. Generally, the higher
Fit(Sc) is, the closer Sc is to the variants and the less configuration efforts are required. In our example from Fig. 2, original reference
model S has Fit(S)=AC(S)×SF(S)=0.860×0.632=0.543. As fitness of candidate model Sc is evaluated by multiplying activity
coverage AC(Sc) with structure fitting SF(Sc), a high value for Fit(Sc) does not only mean that Sc structurally fits well to the process
variants, but also that a reasonable number of activities is considered in the candidate model.

5.2. Constructing the search tree

We now show how to find candidate processmodels. We present a best-first algorithm for constructing a search tree to find the
best candidate model in the search space.

5.2.1. The search tree
Remember the general overview we gave on our heuristic search approach at the beginning of Section 5. Starting with the

current candidate model Sc, in each iteration we search for its direct “neighbors” (i.e., process models which have distance 1 to Sc).
Therebywe try to find a better candidatemodel S′cwith higher fitness value. Generally for a given processmodel Sc, we construct a
neighbor model by applying ONE insert, delete, or move operation to Sc. All activities aj∈∪Ni which appear in at least one variant
are candidate activities for change. While an insert operation adds an activity aj∉Nc to Sc, the other two operations delete or move
an activity aj∈Nc already present in Sc.

Generally, numerous processmodels can result when changing one particular activity aj on Sc. Note that the positions wherewe
can insert (aj∉Nc) or move (aj∈Nc) activity aj can be numerous. Section 5.2.2 provides details on how to find all process models
resulting from the change of one particular activity aj on Sc. First of all, we assume that we have already identified these neighbor
models, including the one with highest fitness value (denoted as the best kid Skid

j of Sc when changing aj). Fig. 6 illustrates our
search tree. Our search algorithm starts with setting the original reference model S as initial state, i.e., Sc=S (cf. Fig. 6). We further
define AS as active activity set, which contains all activities that might be subject to change. At the beginning AS={aj|aj∈∪ i=1

n Ni}
contains all activities that appear in at least one variant Si. For each activity aj∈AS we then determine the corresponding best kid
Skid
j of Sc. If Skid

j has higher fitness value than Sc, we mark it; otherwise, we remove aj from AS (cf. Fig. 6). Afterwards, we choose the
model with highest fitness value Skid

j among all best kids Skid
j
, and denote this model as best sibling Ssib. We then set Ssib as the first

intermediate search result and replace Sc by Ssib for further search. Finally, we remove aj from AS.
The described search method continues iteratively until termination condition is met, i.e., we either cannot find a better model

or allowed search distance is reached. Consequently, the process engineer obtains the flexibility to control to what degree the
discovered reference process model shall differ from the original one. The final search result Ssib corresponds to our discovered
referencemodel S′ (the nodemarked by a bull's eye and circle in Fig. 6). Please see Appendix A for an algorithm formally describing
the above steps.

5.2.2. Changing one particular activity
Section 5.2.1 showed how to construct a search tree by comparing best kids Skid

j . We now discuss how to find such best kid Skid
j
,

i.e., how to find all “neighbors” of candidate model Sc by performing one change operation in relation to a particular activity aj.
Consequently, Skid

j
is the model with highest fitness value among all considered ones. Regarding an activity aj, we consider three

types of basic change operations: delete, move and insert. The neighbor model resulting from the deletion of aj∈Nc can be easily
determined by removing aj from the process model and its order matrix [35]; movement of aj can be simulated by deleting aj and
sub-sequently re-inserting it at the desired position. Thus, the basic challenge in finding neighbors of candidate model Sc is to
apply one activity insertion such that block structuring and soundness of the resulting model are preserved. Obviously, the positions

Fig. 6. Constructing the search tree.

420 C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
wherewe can (correctly) insert aj into Sc are our subjects of interest. Fig. 7 provides an example. Givenmodel Sc, wewant to find all
process models that may result when inserting X into Sc. We apply two steps to “simulate” our activity insertion.

Step 1 block-enumeration. First, we enumerate all possible blocks, candidatemodel Sc contains. A block can be an atomic activity,
a self-contained fragment, or Sc itself. Let S = N; E;…ð Þ∈P be a process model with N={a1,…,an}. Let further textitA be the order
matrix of S. Two activities ai and aj can form a block iff: ∀ak∈N∖{ai,aj} :Aaiak=Aajak, i.e., two activities can form a block iff they have
same order relations in respect to remaining activities. As example consider Fig. 7a. Here activities C and D can form a block, since
they have same order relations to activities G, H, I, and J. As extension, two blocks Bj and Bk can bemerged to a bigger one iff [(aα,aβ,
aγ)∈Bj×Bk×(N∖Bj∪Bk) : Aaαaγ=Aaβaγ] holds; i.e., all activities aα∈Bj, aβ∈Bk show same order relations to the activities outside the
Fig. 7. Finding the neighboring models by inserting X into process model S.

image of Fig.�6
image of Fig.�7

421C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
two blocks; e.g., blocks {C,D} and {G} show same order relations in respect to H,I and J; therefore they can form a bigger block {C,D,
G}; i.e., we can determine a block containing x activities by merging two disjoint blocks containing j and k activities respectively
(x= j+k) (cf. Fig. 7). Based on this, we are able to enumerate all blockswith different sizes contained in a processmodel. Please see
Appendix B for an algorithm formally describing the above steps.

Step 2 cluster inserted activity with one block. After having enumerated all possible blocks for a given candidate model Sc, we can
insert activity aj in Sc such that we obtain a sound and block-structured model again. Assume that we want to insert X in S (cf.
Fig. 7). To ensure block structure of the resulting model, we “cluster” X with an enumerated block, i.e., we replace one of the
previously determined blocks B by a bigger block B′ containing both B and X. In this context, we set order relation between B and X
to w∈ {0,1,+,−} or w=L if X is a silent activity τ representing a loop-block, i.e., the order relations between X and all activities of B
are defined by w . One example is given in Fig. 7b: added activity X is clustered with block {C,D} using order relation w="0", i.e., X
becomes a successor of the sequence block containing C and D. To realize this clustering, we have to set order relations between X
on the one hand and block activities C and D on the other hand to “0”. Further, order relations between X and remaining activities
are the same as for C and D. Finally the three activities form a new block {C,D,X} replacing the old one (i.e., {C,D}). This way, we
obtain a sound and block-structured process model S′.

Every time we cluster an activity with a block, we actually add this activity to the position where it can form a bigger block
together with the selected one, i.e., we replace a self-contained block of a process model by a bigger one. Fig. 7b shows one
resultingmodel S′we obtain when adding X to Sc. Obviously, S′ is not the only neighboringmodel since we can insert X at different
positions; i.e., we can cluster each block enumerated in Step 1 with X by any one of the four order relations w∈ {0,1,+,−}, or by ‘L’
if X is a silent activity representing a loop-block. In our example from Fig. 7, Sc contains 14 blocks. Consequently, the number of
models that may result when adding X in Sc is 14×4=56 (or 14×1=14 if X is a silent activity τ); i.e., we can obtain 56 (14)
potential models. Fig. 7c shows some neighboring models of Sc. Note that the resulting models are not necessarily unique, i.e., it is
possible that some of them are the same. However, this is not an important issue in our context since Fit(Sc) can be quickly
computed; i.e., some redundant information does not significantly decrease performance of our algorithm.

5.3. Search result for running example

Fig. 8 presents the search result we obtain when applying our heuristic algorithm to the example from Fig. 2. We do not set any
limitation on the number of search steps in order to find the best reference model. Fig. 8 shows the evolution of the original
reference model S. First operation Δ1=move(S, J,B,endFlow) changes S into intermediate model R1, which shows highest fitness
value in comparison to all other neighbor models of S. Using R1 as next input for our algorithm, we discover R2 by applying
Δ2=delete(R1,Loop), and then R3 using Δ3= insert(R2,X,E,B). Finally, we obtain R4 by applying Δ3=move(R2, I,D,H) to R3. Since
we cannot find a “better” process model by changing R4 anymore, we obtain R4 as final result. Note that if we set constraints on
allowed search steps (i.e., we only allow to change original reference model S by maximum d change operations), the final search
result will be as follows: Rd if d≤4 or R3 if dN4. Table 2 further compares S and all (intermediate) search results.

It is not surprising that fitness value increases with continuing search since we use fitness to guide it. However we need to
examine whether the discovered process models are indeed getting better by computing their average weighted distance to the
variants, which is a precise measurement in our context. From Table 2, iterative improvement of average weighted distances
becomes clear, i.e., it drops monotonically from 4.85 to 2.4, which indicates that the algorithm performs as expected in the given
example.
Fig. 8. Search result by every change operation.

image of Fig.�8

Table 2
Search result by every change.

S R1 R2 R3 R4

Fitness 0.543 0.687 0.805 0.844 0.859
Average weighted distance 4.85 3.95 3.25 2.65 2.4
Change operation Move Delete Insert Move
Delta-fitness 0.143 0.118 0.039 0.009
Delta-distance 0.9 0.7 0.6 0.25

422 C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
One design goal for our heuristic search algorithm was to be able to only consider most relevant change operations, i.e., most
important changes (reducing average weighted distance between reference model and variants most) should be discovered at the
beginning. Therefore, we additionally evaluate delta-fitness and delta-distance, which indicate relative improvement of fitness
values and reduction of average weighted distance after each change; e.g., first operation Δ1 changes S into R1, which improves
fitness value (delta-fitness) by 0.143 and reduces average weighted distance (delta-distance) by 0.9. Similarly, Δ2 reduces average
weighted distance by 0.7, Δ3 by 0.6 and Δ4 by 0.25. Obviously, delta-distance is monotonically decreasing with increasing number
of change operations. This indicates that most important changes are performed at the beginning of the search, while less
important ones are performed at the end.

Another important feature of our heuristic search is its ability to automatically decide which activities shall be included in the
reference model; i.e., a predefined threshold or filtering of less relevant activities are not needed. In our example, X is
automatically added, while the Loop block is automatically deleted. The only optimization we want to achieve is to reduce average
weighted distance, i.e., change operations (insert, move, and delete) are automatically balanced based on their contribution to
reduce average weighted distance.
5.4. Performance evaluation based on simulations

Using one example to measure performance of our heuristic mining algorithm is far from being enough. Since computing
average weighted distance is at NP−hard level, fitness function is only an approximation of it. Therefore, we have to analyze to
what degree delta-fitness is correlated with delta-distance? Furthermore, we are interested in to what degree important change
operations are performed at the beginning. If biggest distance reduction can be achieved with the first changes, setting search
limitations or filtering out the change operations performed at the end, does not constitute a problem. Therefore, we want to
know: To what degree important change operations are positioned at the beginning of our heuristic search?

We try to answer these questions using simulation; i.e., by generating thousands of data samples, we can provide a statistical
answer for them. In our simulation, we identify several parameters (e.g., size of the model and similarity of the variants) for which
we investigate whether or not they influence performance of our heuristic mining algorithm (see [45] for details). For example,
size of process variants ranged from 10 to 75 activities while their similarity to the reference process model ranged from 10% to
30%. In addition, 8 different scenarios concerning which activity to change and where the activities are changed are discussed as
well. By adjusting these parameters, we generate 72 groups of datasets (7272 models in total) covering different scenarios. Each
group contains a randomly generated reference process model and a collection of 100 different process variants. We generate each
variant by configuring the reference model according to a particular scenario. When performing our heuristic mining to discover
new reference models, we do not set constraints on search steps, i.e., the algorithm only terminates if no better model can be
discovered. All (intermediate) process models are documented (see Fig. 8 as example). We compute fitness and average weighted
distance of each intermediate process models. We further compute delta-fitness and delta-distance in order to examine the
influence of every change operation (see Table 2 for an example).

Correlation of delta-fitness and delta-distance. One important issue we want to investigate is how delta-fitness is correlated to
delta-distance. Every change operation leads to a particular change of the process model, and consequently creates a delta-fitness
xi and delta-distance yi. In total, we performed 284 changes in our simulation when discovering reference models. We use Pearson
correlation tomeasure correlation between delta-fitness and delta-distance [46]. Let X be delta-fitness and Y be delta-distance.We
obtain n data samples (xi,yi), i=1,…,n. Let x and y be the mean of X and Y, and let sx and sy be the standard deviation of X and Y.

Pearson correlation rxy then equals rxy =
∑xiyi−nxy
n−1ð Þsxsy

[46]. Results are summarized in Table 3. All correlation coefficients are
Table 3
Correlation analysis.

Correlation analysis Correlation comparison

of activity per variant # of data Correlation Significant? Pairwise Comparison Probability being same Significant?

Small-sized 10–15 33 0.762 Yes Small vs. Medium 0.130 Yes
Medium-sized 20–30 74 0.589 Yes Medium vs. Large 0.689 Yes
Large-sized 50–75 177 0.623 Yes Small vs. Large 0.170 Yes

423C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
significant and high (N0.5). The high positive correlation between delta-fitness and delta-distance indicates that when finding a
model with higher fitness value, we have very high chance to also reduce average weighted distance. We additionally compare
these three correlations. Results indicate that they do not show significant difference from each other, i.e., they are statistically the
same (see [45]). This implies that our algorithm provides search results of similar goodness independent from the number of
activities contained in the process variants.

Importance of top changes.We analyze to what degree our algorithm applies more important changes at the beginning. For this
purpose, we measure to what degree the top n% changes reduced average weighted distance. As example consider search results
from Table 2.We performed in total 4 change operations and reduced average weighted distance by 2.45 from 4.85 (based on S) to
2.4 (based on R4). Among the four change operations, the first one reduced average weighted distance by 0.9. When compared to
overall distance reduction of 2.45, the top 25% changes accomplished 0.9/2.45=36.73% of overall distance reduction. This number
indicates how important changes at the beginning are. We therefore evaluate distance reduction by analyzing the top 33.3% and
50.0% change operations. On average, the top 33.3% change operations contribute to 63.80% distance reductionwhile the top 50.0%
have achieved 78.93%. Consequently, the changes at the beginning are a lot more important than the ones performed later.

6. Scenario 2: discovering reference process model by mining process model variants: a clustering approach

We now present a clustering algorithm for mining a collection of process variants without knowledge about the original
reference model. Since we restrict ourselves to block-structured process models, we can build the new reference model by
enlarging blocks, i.e., we first identify two activities that can form a block, thenwemerge this blockwith other activities and blocks
respectively to form a larger block. This continues until all activities and blocks respectively are merged into one single block. This
block and its internal structure represent the newly discovered reference process model.

Based on the aggregated order matrix representing a collection of variants, our clustering approach for mining process variants
works as follows:

1. Determine the activity set to be considered in the new reference process model.

2. Determine the activities (blocks) to be clustered in a block.
3. Determine the order relation the clustered activities (blocks) shall have within this block.
4. After having built a new block in Steps 2 and 3, adjust the aggregated order matrix accordingly.
5. Repeat Steps 2–4 until all activities are clustered; i.e., until the new process model is constructed by enlarging blocks.

6.1. Determining the activity set of the reference process model

One fundamental challenge is to decide which activities shall be considered in the new reference model. As basis for this
decision we choose activity frequency (cf. Def. 9). The user may set a threshold such that only activities with activity frequency
higher than this threshold are considered in the reference process model. This way we can exclude activities with low frequency if
we only want to consider activities with frequency greater than 60% in our example, for instance, activities Y and Z as well as silent
activity τ will be excluded from the reference process model (excluding τ means the loop structure will not be considered).
Generally, process engineers have to set a threshold depending on whether they want to add more or fewer activities to the
reference process model. In the following, we use 60% as threshold.

6.2. Determining activities to be clustered

Taking anordermatrix (cf. Def. 6), twoactivities can formablock if theyhave the sameorder relationswith respect to the remaining
activities (cf. Section 5.2). We can apply similar idea when analyzing an aggregated order matrix. However, the relationship between
twoactivities in anaggregatedordermatrix is expressed as 5-dimensional vector showing thedistributionof theorder relations over all
process variants. When determining pairs of activities that can be clustered as a block, it would be too restrictive to require precise
matching as in the case of an ordermatrix. To dealwith this, we re-apply function f(α,β) (cf. Eq. 6)which expresses closeness between
two vectors α=(x1,x2,…,xn) and β=(y1,y2,…,yn). Using f(α,β) we introduce Separation metrics. It indicates to what degree two
activities of an aggregated ordermatrix are suited for being clustered to a block. More precisely, Separation(a,b) expresses how similar
order relations of activities a andb arewhen compared to the other activities. In our example fromFig. 2, Separation(A,B) is determined
by the closeness (measured in terms of the cosine value) of f(vAC,vBC), f(vAD,vBD), …, f(vAJ,vBJ), and f(vAX,vBX). We define cluster
separation as follows:
Separation a; bð Þ =
∑x∈N∖ a;bf g f

2 vax; vbxð Þ
jN j−2

∈ 0;1½ � ð8Þ
N corresponds to the set of activities. Like most clustering algorithms [43], we square the cosine value to emphasize the
differences between the two compared vectors. Finally, dividing this expression by |N|−2 normalizes its value to a range between
[0, 1]. The higher Separation(a,b) is, the better activities a and b are separable from others, and the more probable a and b should.
For our example from Fig. 1 we obtain Separation(A,B)=0.776. We determine the pair of activities best suited to form a block by

Fig. 9. Separation table.

424 C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
computing separation value for each activity pair. Fig. 9 depicts separation values for our running example from Fig. 2. We denote
this table as separation table. Obviously, A and F have the highest separation value of 1.0. We therefore choose A and F to form our
first block. Since separation(A,F)=1 holds, A and F can form a block in all six variants, i.e., we obtain the same results when directly
analyzing the variants (cf. Fig. 2).

6.3. Determining internal order relations

After clustering A and F in the first block, we need to determine the order relation between these activities. For this purpose, we
introduce Cohesion to measure how significant particular order relations between two activities of the same cluster are. In the
aggregated order matrix of our example, the relationship between activities A and F is depicted as 5-dimensional vector vAF=
(0,0,1,0,0). It shows distribution values of the five types of order relations. When building a reference process model, only one of
the five order relations can be chosen. Therefore, we want to choose the most significant order relation. Regarding our example,
significance of each order relation can be evaluated by the closeness vector vAF and having the five axes in the 5-dimensional space.
These axes can be represented by five benchmarking vectors: v0=(1,0,0,0,0), v1=(0,1,0,0,0), v+=(0,0,1,0,0), v−=
(0,0,0,1,0), and vL=(0,0,0,0,1). We can compute significance of each order relation using f([α,β]) (cf. Eq. 6). In our example, the
closest axis to vAF is v+ (with f(vAF,v+)=1). Therefore, we decide that A and F shall be organized in parallel within the newly
derived block (cf. Def. 6). We use Cohesion to evaluate how good our choice is:
7 Our
8 This

include
domina
Cohesion a; bð Þ =
maxw∈ 0;1;+ ;−;Lf g f vab; v

⋄
� �n o

−0:4472

1−0:4472
∈ 0;1½ � ð9Þ
Cohesion(a,b) equals one if there is a dominant order relation, i.e., vab is on one of the five axes; or equals zero if vab=
(0.2,0.2,0.2,0.2,0.2) holds (i.e., no order relation is more significant than the others). In our example, cohesion(A,F)=1 holds; this
indicates that A and F have order relation ‘+’ in all six process variants; we can obtain the same results by directly analyzing the
variants (cf. Fig. 2).

6.4. Recomputing the aggregated order matrix

We have discovered the first block of our reference process model which contains A and F having order relation ‘+’. We now
have to decide on the relationship between the newly created block and the remaining activities. We accomplish this by adapting
the aggregated order matrix.7 For this purpose, we compute the means of the order relations between {A, F} and remaining
activities; e.g., since vAI=(0,0.15,0,0.85,0) and vFI=(0,0.15,0,0.85,0), the order relation between new block {A,F} and activity I
correspond to (vAI+vFI)/2=(0,0.15,0,0.85,0).8 Such computation is applied to all remaining activities outside this block.
Generally, after clustering activities a and b, aggregated order matrix V′ can be re-calculated as follows:
∀x∈N∖ a; bf g :
v′a;bð Þx = vax + vbxð Þ= 2

v′x a;bð Þ = vxa + vxbð Þ= 2

(
ð10Þ

∀x; y∈N∖ a; bf g : v′xy = vxy ð11Þ
approach is different from traditional clustering algorithms [43], which only re-compute distances, but not the original dataset.
approach is an unweighted one; i.e., we simply take the average of the two vectors without considering their importance (e.g., how many activities are

d in the block). This way, we can ensure that when merging two blocks of different sizes, the order relations of the resulting block are not too much
ted by the bigger one. Such unweighted approach is widely used in other clustering approaches [43].

image of Fig.�9

Fig. 10. Reference process model discovered by clustering algorithm.

425C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
Since A and F are replaced by one block, the matrix resulting from this re-computation is one dimension smaller than V.
Afterwards, we treat this block like a single activity, but keep its internal structure in order to build up the new reference process
model at the end.

6.5. Applying the clustering algorithm to our example

We re-apply the steps described in Sections 6.2–6.4 until all activities and blocks respectively are clustered together. Fig. 10a
shows the reference process model we can discover for our example. It further depicts the blocks as constructed in each iteration
as well as the two evaluation measures Separation and Cohesion. Using separation and cohesion, we can evaluate how each part of
the reference process model fits to the variants. For example, it is clear that activities A and F can always form a block in the six
variants (high separation) and the order relation between A and F is also very consistent (high cohesion). By contrast, activity I
does not often succeed block {C,D} (low separation and cohesion). We can draw similar results if we have another look at the
process variants (cf. Fig. 2). Fig. 10b further shows two other reference process models we obtain when setting other threshold
values for determining the activity set (cf. Section 6.1).

6.6. Proof-of-concept prototype

We implemented and tested both the heuristic and the clustering algorithm using Java. Fig. 11 depicts a screenshot of our
prototype.We use the ADEPT2 Process Template Editor [34] as tool for creating process variants. For each processmodel, the editor
can generate an XML representation with all relevant information being marked up. We store created variants in a repository
which can be accessed by our mining procedure. The mining algorithms were developed as stand-alone Java program,
independent from the process editor. This program can read the original reference model (if available) as well as all process
variants. It then generates the result models and stores them as accessible XML schemas. All intermediate search results are also
stored.

7. Algorithm comparisons

We now compare our heuristic algorithm (cf. Section 5) with our clustering approach (cf. Section 6). In Section 7.2, we then
compare the two algorithms with process mining techniques [16], i.e., algorithms that discover process models from execution
logs.

7.1. Comparing the two algorithms for process variant mining

7.1.1. Qualitative comparison
Inputs and Goals. Fig. 12 illustrates how our heuristic mining algorithm differs from the clustering one in respect to goals and

inputs. It represents each process variant Si as single (white) node in the two dimensional space. Our heuristic algorithm tries to
discover a new reference process model by performing a sequence of change operations on the original one. In particular, it

image of Fig.�10

Fig. 11. Screenshot of the prototype.

426 C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
balances two “forces”: one is to bring the new reference model Sc closer to the variants (i.e., to the bull's eye Snc at the right); the
other force is to not “move” it too far away from original reference model S, i.e., Sc should not differ too much from S. Our heuristic
algorithm provides such flexibility by allowing process engineers to set a maximum search distance. Our simulations (cf.
Section 5.4) showed that the change operations that are applied first to the (original) reference model are more important than
the ones positioned at the end i.e., they reduce distance between referencemodel and variantsmore. Consequently, when ignoring
less relevant changes, we do not influence overall distance reduction too much. While the above scenario presumes knowledge of
the original reference model, we also must cope with cases in which there exists only a collection of process variants, but no
original reference process model is known. The goal of our clustering approach therefore purely is to discover the “center” of the
variants, i.e., a reference process model with shortest average weighted distance to them. In particular, no knowledge about the
original referencemodel is required. In principle, it is also possible to apply our heuristic algorithm in this scenario.We just need to
start with an “empty”model S and do not set any search limitation. However, sincewe do not need to balance the two forces and to
perform the important change operations at the beginning of the search, the clustering algorithm is expected to be faster or can
provide additional information on the search result. We discuss this in Section 7.1.2.
Fig. 12. High-level overview of the two algorithms.

image of Fig.�11
image of Fig.�12

Table 4
Qualitative comparison between clustering algorithm and heuristic algorithm.

Clustering algorithm Heuristic algorithm

Input Collection of process variants. Collection of process variants+original reference process model
Goal Discover reference process model with shortest average

weighted distance to the variants
Discover better reference process model within certain distance
of the original one

Design principle Local view: Discover reference process model by
enlarging blocks

Global view: Discover reference process model by searching
better candidate models

Complexity O n2m + n3
� �

(n : # of activities; m : # of variants) NP−hard (in worst case scenario)
Pros & Cons 1. Runs very fast 1. Can automatically decide on activity set

2. Provides local view on how each part of the
reference process model fits to the variants

2. Can control the distance between the discovered and original
reference process models

3. Activity set can be flexibly chosen by user 3. Applies more important change operations at the beginning

427C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
Design principles and complexity. Our heuristic algorithm discovers a better reference model by applying a sequence of change
operations to the original one. To enable quick decisions on a large search space (cf. Section 5.2), we use a fitness function to
evaluate howwell a candidate model fits to the variants. This fitness function only provides a global evaluation, but does not show
how each part of the candidate model fits to the variants. On the contrary, the clustering algorithm discovers a reference process
model by enlarging blocks. By evaluating separation and cohesion, we are able to determine how well each part of the discovered
reference model fits to the variants; i.e., due to its different design the clustering algorithm returns more information than the
heuristic one. Complexity of the two algorithms differs as well. Despite polynomial complexity of computing the fitness of a
candidate model, worst case, enumerating all blocks in a candidate model has NP−hard complexity.9 On the contrary, our
clustering algorithm has polynomial complexity since computing separation and cohesion is both polynomial. To be more precise,
if n is the number of activities andm the number of variants, complexity of the clustering algorithm is O n2m + n3

� �
. This implies

that the clustering algorithm can quickly compute the reference process model of a large collection of process variants, while the
heuristic algorithm may take considerably longer.

Pros and cons. The differences between the two algorithms are summarized in Table 4. Additional attention should be paid to
the pros and cons of the two algorithms. Since the clustering algorithm has polynomial complexity, it runs significantly faster than
the heuristic algorithm. Using Separation and Cohesion, we obtain information about how each part of the discovered reference
process model fits to the variants. However, our clustering algorithm cannot control the discovery procedure or distinguish
important changes from less relevant ones as our heuristic algorithm does. Though for our running example, our clustering
algorithm discovered same process model (cf. Fig. 10) as our heuristic algorithm (cf. Fig. 8). In many other cases the discovered
model was less optimal for the clustering algorithm since its search space is considerably smaller.
7.1.2. Quantitative comparison
We now compare our two algorithms quantitatively by analyzing how fast they run and how good discovered models are. We

use the same data for this comparison as for the evaluation of our heuristic algorithm (cf Section 5.4). We generated 72 groups of
datasets representing different scenarios. Each group contains 1 reference process model and 100 process variants. Based on this,
with each algorithm we discovered a new reference process model and documented execution time and distance reduction
(between discoveredmodel and the original one). Results are summarized in Table 5, which indicates that the clustering algorithm
runs significantly faster than the heuristic one. However, results obtained with the clustering algorithm are less optimal compared
to the heuristic algorithm.
7.2. Comparison with existing process mining algorithms

Process mining has been extensively studied in literature. Its key idea is to discover a process model by analyzing execution
behavior of process instances as captured in execution logs [16]. The latter typically documents the start/end of each activity
execution, and therefore reflects behavior of implemented processes. In principle, process mining techniques [15–18] can be
applied in our context as well. Consider our example from Fig. 4. For each process variant Si, we could first obtain its trace set TSi by
enumerating all traces producible by Si [47]. If a process model contains loop structures (i.e., it can generate infinite number of
traces), without loss of generality, we assume that a loop-block is executed either once or twice. Despite this simplification,
however, the number of traces producible by a process model can be extremely large; e.g., if a parallel branching contains five
branches, of which each contains five activities, the number of producible traces is (5×5)!/(5!)5=623360743125120. This
explains why we conduct the comparison only in small scale.

The trace sets generated for the variants are merged into one trace set T taking the weight of each variant into account. As S1
accounts for 25% of the variants, for example, we ensure that each trace producible by S1 has the same number of instances and the
9 Worst-case, complexity of this algorithm is 2n where n corresponds to the number of activities. This worst-case scenario will only occur if any combination of
activities may form a block (like a process model for which all activities are ordered in parallel to each other). During our simulation, in most cases we were able
to enumerate all blocks of a process model within milliseconds. This indicates low complexity in practice.

Table 5
Performance comparison between clustering algorithm and heuristic algorithm.

Average execution time Average distance reduction

of activity per variant Clustering Algorithm Heuristic Algorithm Clustering Algorithm Heuristic Algorithm

Small-sized 10–15 0.013 0.184 6.93% 19.73%
Medium-sized 20–30 0.022 4.568 11.14% 22.59%
Large-sized 50–75 0.181 805.539 −8.97% 11.70%

428 C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
sum of all instances producible by S1 accounts for 25% of the instances in T as well. We consider T as execution log since it fully
covers behavior of the given variant collection.

Since all activities captured in execution logwill be included in the discovered processmodel by processmining algorithms (same
asour clustering algorithm),we introduce twoadditional datasets. In thefirst one,wefilter out all activities ajwhose activity frequency
g(aj) is lower than0.2 in thevariant collection (cf. Def. 9); i.e., in our example activity Z in S5 aswell as silent activity τ (representing the
loop in S4) are ignored. For this extended data set, we can determine trace set T0:2. In the second additional dataset, we filter out
activities whose activity frequency is lower than 0.6. Regarding our example, besides Z and τ, we then additionally filter out activity Y
in S2, S3, S5, and S6. Consequently, we obtain trace set T0:6 which contains all traces producible by the reduced variants. Note that T0:6

has the sameactivity set as themodel discovered by our heuristic algorithm (cf. R4 in Fig. 5). The enumerated trace sets T , T0:2 and T0:6

are imported into the ProM framework, which is one of the most popular tools for process mining and process analysis [48]. In our
comparison,we consider alpha algorithm [16], heuristicminer [17], genetic algorithm[15] andmulti-phaseminer [18]. Thesearewell-
known algorithms for discovering process models from execution logs.10
7.2.1. Evaluation criteria
Our algorithms focus on the structural perspective of processmodels, i.e., our goal is to configure the variantmodels out of a reference

model with minimal efforts (i.e., with minimal number of high-level changes). On the contrary, traditional process mining focuses on
processbehavior, i.e., the discoveredprocessmodel should cover thebehavior of thevariantmodels (shownby their trace sets) [15–18]. In
the following, we compare our algorithms with existing process mining algorithms from both structural and behavior perspectives.

Since most existing process mining algorithms are based either on Petri Nets or EPCs, to enable comparison, we transform the
process models discovered by the different algorithms either into Activity Nets, Petri Nets or EPCs (see [47,49] for respective
transformation techniques). Particularly, suchmodel transformation enables us to apply existingmetrics [14,23] and tools [48] for
process model evaluation instead of introducing new ones. We only briefly describe the metrices applied in this paper and refer
[14,23,48] for details. In the following we first introduce three parameters to evaluate the structure of process models, namely
average weighted distance, structural appropriateness and # of splits/joins in EPC.

1. Average weighted distancemeasures the efforts to configure the process variants out of the discovered reference process model.
The lower this parameter is the easier the variants can be configured.

2. Structural appropriatenessmeasures the complexity of a Petri Net by computing the ratio between labeled transitions and nodes
(transitions and places) [14]. The value range of this parameter is [0,1]; the higher it is, the simpler a Petri Net is.

3. # of Splits/Joins in EPC measures the number of splits and joins contained in an Event Process Chain (EPC). It can be used to
measure the complexity of an EPC [23]. The higher this parameter is, the more choices end users need to make when executing
the process model and the more complex the respective EPC is.

We additionally use three parameters to evaluate the behavior of discovered processmodels, namely behavior fitness, successful
execution and proper completion.

1. Behavior fitness evaluates whether the discovered process model (represented as Petri Net) complies with the behaviors captured in
the execution log [14]. Oneway to investigate behavior fitness is to replay the log on the Petri net. This is done in a non-blockingway,
i.e., if there are tokens missing to fire a transition in the discovered model, they are artificially created and replay proceeds [14]. The
value range of this parameter is [0,1] and the higher behavior fitness is, the better the discovered model covers the trace set.

2. Successful execution measures percentage of traces in an execution log that can be successfully executed by the discovered
process model [14]. The value range of this parameter is [0,1]; the higher it is, the more traces in the execution log can be re-
produced based on the discovered model.

3. Proper completionmeasures percentage of traces in an execution log that leads to proper completion [14]. Compared to “successful
execution” this parameter further requires that the analyzed process model reaches an end state after replaying a trace. The value
range of this parameter is [0,1]; the higher it is, the more traces from the execution log result in proper completion.
10 The enumerated trace sets T , T0:2 and T0:6, as well as the process models discovered by different algorithms based on them are available at http://wwwhome.
cs.utwente.nl/lic/Resources.html.

Table 6
Performance comparison with process mining algorithms.

Structure measurement Behavior measurement

Dataset Algorithms Average weighted
distance

Structural
appropriateness

of Joins/splits
in EPC

Behavior
fitness

Successful
execution

Proper
completion

T Heuristic Var. 2.4 0.481 6 0.876 0.353 0.353
Clustering 4.75 0.468 8 0.737 0.120 0.120
Alpha 8.55 0.441 15 0.646 0 0
Heuristic 8.85 0.258 31 0.437 0.042 0
Genetic 6.6 0.341 19 0.811 0.342 0.009
Multi-phase 2245 arcs and 515 transitions 19 In theory, all equals 1

T 0:2 Heuristic Var. 2.4 0.481 6 0.886 0.382 0.382
Clustering 2.6 0.482 6 0.784 0.133 0.133
Alpha 6.9 0.466 12 0.706 0 0
Heuristic 8.2 0.274 12 0.789 0.268 0
Genetic 5.9 0.424 13 0.846 0.460 0.009
Multi-phase 1534 arcs and 384 transitions 18 In theory, all equals 1

T 0:6 Heuristic Var. 2.4 0.481 6 0.851 0.327 0.337
Clustering
Alpha 6.85 0.5 7 0.814 0.407 0
Heuristic 7.85 0.462 10 0.736 0.407 0
Genetic 3.2 0.325 13 0.886 0.394 0.278
Multi-phase 1266 arcs and 302 transitions 17 In theory, all equals 1

429C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
7.2.2. Evaluation results
Our evaluation results are summarized in Table 6. To differentiate our heuristic algorithm from heuristic miner known from

process mining [17], we denote our heuristic algorithm as “Heuristic var.” in Table 6. It is not surprising that both our heuristic and
our clustering algorithm can discover a process model of simple structure. Independent from which dataset we use, the process
models discovered by our two algorithms have better scores for all three parameters relating to the structure of the discovered
model; i.e., they have lower average weighted distance, higher structural appropriateness, and less number of splits/joins in the
corresponding EPC model. Except multi-phase miner [18], none of the algorithms discovered a process model with behavior
fitness being 1. Note that multi-phase miner was designed in a way that it always discovers a processmodel with fitness 1. Despite
the fact that themodels discovered bymulti-phaseminer are extremely complex, they also allow formore behavior not covered by
the variants [14,18]; i.e., results are often overfitting.11 Consequently, we consider that the cost of multi-phase miner for reaching
behavior fitness 1 as too high. When excluding multi-phase miner, evaluation results show that even if we apply traditional
process mining algorithms for discovering a process model that covers behavior of the variants best, the resulting model might
NOT be able to support all behaviors captured by the variants. This indicates the necessity for process configurations: i.e., it is not
sufficient to maintain only one model which covers all behaviors; instead wemust enable process configurations at both run-time
and build-time to obtain different process variants which support specific behaviors in different scenarios.

Surprisingly, behavior measurements of the process model discovered by our heuristic algorithm are also very good. Note that
our heuristic algorithm discovers the same model (cf. R4 in Fig. 5) for T , T 0:2 and T 0:6. This model has the highest behavior fitness
for trace sets T and T 0:2, and only a few percent less than the genetic algorithm for T 0:6. This is rather unexpected because our
heuristic variantmining algorithm is focusing on structure rather than on behavior. Though our algorithm focuses on the discovery
of a reference model out of which the process variants can be easily configured, this implies that behavior of the discoveredmodel
has not been sacrificed that much. Since structure fitness is not 1, however, we should apply process configurations to obtain
suited process variants supporting the execution of different process instances best.

8. Automotive case study

Context. We conducted a case study in a large automotive company in which we analyzed variants of its product change
management process. Basically, this process comprises several phases like specification of a change request, handling of this
change request, change implementation, and roll-out. In the following we only consider the top-level process and comment on
sub-processes later on. Usually, the change management process starts with the initiation of a Change Request (CR), which must
then be detailed and assessed by different teams (e.g., from engineering and production planning). The gathered comments then
11 In principle, it is possible to measure overfitting using parameter like behavioral appropriateness [14], however, due to the complexity of the discovered
models, the conformance checker in Prom cannot measure some of models (besides Multi-Phase miner) in a reasonable time (e.g., within a couple of days),
therefore we did not include it in our comparison.

430 C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
have to be aggregated and approved by the CR board. In case of positive approval change implementation may start (e.g., detailing
the planning and triggering the re-engineering of parts affected by the change).

Data source. We identified 14 process variants dealing with (product) change management. These variants were captured in
separate process models being expressed in terms of UML Activity Diagrams and using standard process patterns like Sequence,
AND-/XOR-Splits, AND-/XOR-Joins, and Loop. Size of the variants ranged from 5 to 12 activities and their weights from 2 to 15
according to the relative frequency of corresponding process instances. However, none of the process variants was dominant or
significantly more relevant than others. All variant models were already block-structured or could be transformed into a behavior-
equivalent block-structured process model.

Sources of variance. Though the variant models show structural similarities they comprise parts which are only relevant for a
sub-collection of the variants. For critical changes, for example, the Quality Assurance Department needs to be involved in the
appraisal and commenting of the change request, while this is not required for normal changes. Concerning low-cost changes, in
turn, change implementation may start before the change request is finally approved. In this case, the implementation procedure
will have to be aborted and compensated if the approval is withheld. Other points of variations concern the preparation of the
approval task, the communication of implemented changes, and the triggering of secondary changes (raised by the requested
one). The left of Fig. 13 exemplarily shows 4 variant models from our case.

Case study results. Since we did not know the original reference process model, this case corresponds to Scenario 2. Therefore,
we first applied our clustering algorithm to “merge” the process variants. This way we obtained S′ (cf. Fig. 13) as reference process
model. As average weighted distance between S′ and the variants we obtained 2.06. The time to find the model was negligible
(0.031 s). We also applied our heuristic mining algorithm to the given case. Since there was no original reference process model,
we used the most frequent variant (cf. S1 in Fig. 13) as starting point of our search. We did not set any search limitations in this
context such that our heuristic algorithm could discover the best model. As result we obtained S′ (cf. Fig. 13) again as best
reference processmodel (after performing one change on S1). Though the heuristic algorithm ran longer than the clustering one to
find the reference process model, overall search time was only 1.062 s. We discussed the discovered reference model with process
engineers from the automotive company. They confirmed that it constitutes a good choice for representing the top level change
management process. When further applying our mining algorithms to sub-processes relating to the different phases of the
change management process (e.g., change implementation) and their variants we obtained good results as well.

The practical relevance and benefit of our variant mining algorithms further became evident in the context of another case
study we conducted in a clinical center. Here we analyzed more than 90 process variants for handling medical orders and medical
procedures respectively (e.g., X-ray inspections, cardiological examinations, and lab tests). By applying our algorithms to these 90
variants we obtained reference models that were closer to the variants than the old reference model.
Fig. 13. Example process variants in the change management case study.

image of Fig.�13

431C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
9. Related work

Though heuristic search algorithms and clustering algorithms are widely used in data mining [43], artificial intelligence [42],
and machine learning [44], only few approaches apply heuristics or clustering for process variant management. In particular, only
few solutions exist for learning from the adaptations that were applied when configuring a collection of process variants out of a
process model.

Structural process changes during runtime and approaches for flexible process configuration are intensively discussed in
literature [4,11]. A comprehensive analysis of theoretical and practical issues related to (dynamic) process changes is provided in
the context of the ADEPT2 change framework [8]. Furthermore, there exist approaches for dynamic structural changes of Petri nets
[20]. Based on such conceptual frameworks, the AristaFlow BPM suite [34] and tools for configurable processmodels [50] emerged.
Further, there exist approaches which support management and retrieval of separately modeled process variants. As example,
[51,52] allows storing, managing, and querying large collections of process variants within a repository. Graph-based search
techniques are used for retrieving variants that are similar to a user-defined process fragment. Obviously, this requires profound
knowledge about the structure of stored processes. Apart from this, no techniques for analyzing the different variants and for
learning from their specific customizations are provided.

ProCycle enables change reuse at the process instance level to effectively deal with recurrent problem situations [11]. ProCycle
applies case-based reasoning techniques to allow for semantic annotation as well as retrieval of process changes. Respective
process adaptations can then be re-applied in a similar problem context to configure other process instances later on. If the reuse
of a particular change exceeds a certain threshold, it becomes a candidate for adapting the process schema at type level. Though
the basic goal of ProCycle is similar to our approach, its techniques are simpler and do not consider change variation.

There are few techniques which foster learning from process variants by mining recorded change primitives (e.g., to add or
delete control edges). [53] measures process model similarity based on change primitives and suggests mining techniques using
this measure. Similar techniques exist in the field of association rule mining [43] or frequent sub-graphmining [54] as known from
graph theory [55]; here common edges between different nodes are discovered to construct a common sub-graph from a set of
graphs. However, this approach does not consider important features of process meta model; e.g., it is unable to deal with silent
activities, cannot differentiate between AND- and XOR-branchings or Loops.

To mine high level change operations, [13] presents an approach based on process mining techniques, i.e., the input consists of
a change log, and process mining algorithms are applied to discover the execution sequences of the changes (i.e., the change meta
process). However, this approach simply considers each change as individual operation such that the result is more like a
visualization of changes rather thanmining them. [56] shows a technique to rank activities based on their potential involvement in
process configurations. In Configurable Workflow Models [50], all process variants are combined together into one reference
process model based on inheritance rules known from Petri Nets [20]. Though questionnaire-based approaches can ease process
configuration [57], the resulting model turns out to be complex and contains many decision points [58]. This approach becomes
even more difficult when being confronted with a large collection of process variants, not being equally important. Here, an
extremely large process model may result which contains too many decision points and cannot differentiate between important
and trivial variants [59].

10. Summary and outlook

We presented challenges, scenarios and algorithms in respect to the mining of collections of process variants. In particular, we
introduced, evaluated and compared two different algorithms for discovering a reference process model out of a collection of
(block-structured) process variants. Adopting the discovered model as new reference process model makes (future) process
configuration easier, since less efforts for configuring the variants are required. Our heuristic algorithm can take the original
reference model into account such that the user can control to what degree the discoveredmodel may differ from the original one.
This way, we cannot only avoid spaghetti-like process models but also control howmuch changes we want to perform. Through a
simulation of several thousand process models, we found out that the heuristic algorithm also applies important changes at the
beginning of the search and its performance is able to scale up. The clustering algorithm does not presume knowledge of original
reference process model based on which process variants are configured. By only looking at the variant collection, it can quickly
discover a reference processmodel in polynomial time and provide additional information on howwell each part of the discovered
reference model fits to the variants. We successfully applied the suggested algorithms in a case study in the automotive domain.
We further compared our algorithms with existing process mining algorithms. Results indicate good performance of our
algorithms in both structure and behavior aspect. However, it would be useful to integrate our algorithms with existing process
mining algorithms such that it can take both structure and behavior perspective into account in order to cover more general cases
[16]. As learned from our case study, data-flow also constitutes an important part of process configurations. Therefore, it would be
advantageous to additionally consider the data-flow perspective.

Acknowledgment

This work was done in the MinAdept project, which has been supported by The Netherlands Organization for Scientific
Research under contract number 612.066.512.

432 C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
Appendix A. Heuristic search algorithm for variant mining
Appendix B. Block enumeration algorithm

Unlabelled image
Unlabelled image

433C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
References

[1] B. Mutschler, M. Reichert, J. Bumiller, Unleashing the effectiveness of process-oriented information systems: problem analysis, critical success factors and
implications, IEEE Trans. Sys. Man. Cybern. 38 (3) (2008) 280–291.

[2] R. Lenz, M. Reichert, IT support for healthcare processes — premises, challenges, perspectives, Data Knowl. Eng. 61 (1) (2007) 39–58.
[3] T.H. Davenport, Mission Critical — Realizing the Promise of Enterprise Systems, Harvard Business School, 2000.
[4] B. Weber, M. Reichert, S. Rinderle-Ma, Change patterns and change support features — enhancing flexibility in process-aware information systems, Data

Knowl. Eng. 66 (3) (2008) 438–466.
[5] B. Weber, S. Sadiq, M. Reichert, Beyond rigidity — dynamic process lifecycle support: a survey on dynamic changes in process-aware information systems,

Comput. Sci. R&D 23 (2) (2009) 47–65.
[6] A. Hallerbach, T. Bauer, M. Reichert, Managing process variants in the process lifecycle, ICEIS'08, Springer, 2008, pp. 154–161.
[7] M. Rosemann, W.M.P. van der Aalst, A configurable reference modelling language, Inf. Syst. 32 (1) (2007) 1–23.
[8] M. Reichert, P. Dadam, ADEPTflex — supporting dynamic changes of workflows without losing control, J. Intell. Inf. Syst. 10 (2) (1998) 93–129.
[9] M. Rosenmann, Potential pitfalls of process modeling: part b, BPM J. 12 (3) (2006) 127–136.

[10] A. Hallerbach, T. Bauer, M. Reichert, Capturing variability in business process models: the Provop approach, Softw. Process Improv. Pract. (2009).
[11] B. Weber, M. Reichert, W. Wild, S. Rinderle-Ma, Providing integrated life cycle support in process-aware information systems, Int' J. Coop. Inf. Syst. 19 (1)

(2009)8 (IJCIS).
[12] R.M. Dijkman, M. Dumas, L. Garcia-Banuelos, R. Kaarik, Aligning business process models, EDOC'09, 2009, pp. 45–53.
[13] C.W. Günther, S. Rinderle-Ma, M. Reichert, W.M.P. van der Aalst, J. Recker, Using process mining to learn from process changes in evolutionary systems, Int. J.

Bus. Process Int. Mgnt. 3 (1) (2008) 61–78.
[14] A. Rozinat, W.M.P. van der Aalst, Conformance checking of processes based on monitoring real behavior, Inf. Syst. 33 (1) (2008) 64–95.
[15] A.K. Alves de Medeiros. Genetic Process Mining. PhD thesis, Eindhoven University of Technology, NL, 2006.
[16] W.M.P. van der Aalst, T. Weijters, L. Maruster, Workflow mining: discovering process models from event logs, IEEE Trans. Knowl. Data Eng. 16 (9) (2004)

1128–1142.
[17] A.J.M.M. Weijters, W.M.P. van der Aalst, Rediscovering workflow models from event-based data using little thumb, Integr. Comp. Aided Eng. 10 (2) (2003)

151–162.
[18] B.F. van Dongen, W.M.P. van der Aalst, Multi-phase process mining: building instance graphs, ER'04, Springer, 2004, pp. 362–376, LNCS 3288.
[19] C. Li, M. Reichert, A. Wombacher, Discovering reference models by mining process variants using a heuristic approach, BPM'09, LNCS 5701, Springer, 2009,

pp. 344–362.
[20] W.M.P. van der Aalst, T. Basten, Inheritance of workflows: an approach to tackling problems related to change, Theor. Comput. Sci. 270 (1–2) (2002) 125–203.
[21] W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, A.P. Barros, Workflow patterns, Distributed and Parallel Databases, 14, 1, 2003, pp. 5–51.
[22] M. zur Muehlen, J. Recker, How much language is enough? theoretical and practical use of the business process modeling notation, CAiSE'08, Springer, 2008,

pp. 465–479, LNCS 5074.
[23] J. Mendling, Metrics for Process Models: Empirical Foundations of Verification, Error Prediction and Guidelines for Correctness, volume 6 of LNBIP, Springer, 2008.
[24] J. Mendling, B.F. van Dongen, W.M.P. van der Aalst, Getting rid of or-joins and multiple start events in business process models, Enterp. Inf. Syst. 2 (4) (2008)

403–419.
[25] J. Mendling, H.A. Reijers, W.M.P. van der Aalst, Seven process modeling guidelines (7pmg), Inf. Softw. Technol. 52 (2) (2010) 127–136.
[26] B. Kiepuszewski, A.H.M. ter Hofstede, C. Bussler, On structured workflow modelling, CAiSE'00, Springer, 2000, pp. 431–445, LNCS 1789.
[27] P. Dadam, M. Reichert, The ADEPT project: a decade of research and development for robust and flexible process support — challenges and achievements,

Comput. Sci. R&D 23 (2) (2009) 81–97.
[28] M. Minor, A. Tartakovski, D. Schmalenand, R. Bergmann, Agile workflow technology and case-based change reuse for long-term processes, Int. J. Intell. Inf.

Technol. 4 (1) (2008) 80–98.
[29] H.A. Reijers, J. Mendling, Modularity in Process Models: Review and effects, Springer, 2008, pp. 20–35, LNCS 5240.
[30] C. Combi, M. Gambini, Flaws in the flow: the weakness of unstructured business process modeling languages dealing with data, OTM Conferences, 1, Springer,

2009, pp. 42–59, LNCS 5074.
[31] J. Vanhatalo, H. Volzer, J. Koehler, The refined process structure tree, Data Knowl. Eng. 68 (9) (2009) 793–818.
[32] L. Thom, M. Reichert, C. Iochpe, Activity patterns in process-aware information systems: basic concepts and empirical evidence, Int. J. Bus. Process Int. Mange.

4 (2) (2009) 93–110.
[33] S. Rinderle-Ma, M. Reichert, B. Weber, On the formal semantics of change patterns in process-aware information systems, ER'08, LNCS 5231, 2008,

pp. 279–293.
[34] M. Reichert, S. Rinderle, U. Kreher, P. Dadam, Adaptive process management with ADEPT2, ICDE'05, IEEE, 2005, pp. 1113–1114.
[35] C. Li, M. Reichert, A. Wombacher, On measuring process model similarity based on high-level change operations, ER'08, Springer, 2008, pp. 248–262, LNCS

5231.
[36] J. Hidders, M. Dumas,W.M.P. van der Aalst, A.H.M. ter Hofstede, J. Verelst, When are twoworkflows the same, CATS'05, 2005, pp. 3–11, Darlinghurst, Australia.
[37] M. Reichert, S. Rinderle-Ma, P. Dadam, Flexibility in process-aware information systems, LNCS Trans. Petri Nets Other Models Concurrency 2 (2009) 115–135.
[38] P.F. Brown, V.J. Della Pietra, P.V. de Souza, J.C. Lai, R.L. Mercer, Class-based n-gram models of natural language, Comput. Ling. 18 (4) (1992) 467–479.
[39] A. Wombacher, M. Rozie, Evaluation of workflow similarity measures in service discovery, Serv. Oriented Electron. Commer. (2006) 51–71.
[40] R.A. Baeza-Yates, Text-retrieval: theory and practice, IFIP'92, North-Holland Co, 1992, pp. 465–476.
[41] C. Li, M. Reichert, and A. Wombacher. Representing block-structured process models as order matrices: Basic concepts, formal properties, algorithms.

Technical Report TR-CTIT-09–47, University of Twente, 2009.
[42] G.F. Luger, Artificial Intelligence: Structures and Strategies for Complex Problem Solving, Pearson, 2005.
[43] P.N. Tan, M. Steinbach, V. Kumar, Introduction to Data Mining, Addison-Wesley, 2005.
[44] J. Ross Quinlan, C4.5: Programs for Machine Learning, Morgan Kaufmann Publishers Inc, 1993.
[45] C. Li, M. Reichert, A. Wombacher, A heuristic approach for discovering reference models by mining process model variants, Technical Report TR-CTIT-09-08,

University of Twente, The Netherlands, March 2009.
[46] D.J. Sheskin, Handbook of Parametric and Nonparametric Statistical Procedures, CRC Press, 2004.
[47] A. Wombacher, P. Fankhauser, E. Neuhold, Transforming bpel into annotated deterministic finite state automata for service discovery, Web Services, IEEE

International Conference on, 0:316, 2004.
[48] B.F. van Dongen, A.K.A. de Medeiros, H.M.W. Verbeek, A.J.M.M. Weijters, W.M.P. van der Aalst, The prom framework: a new era in process mining tool

support, ICATPN, 2005, p. 3536, LNCS.
[49] J. Dehnert, R. Rittgen, Relaxed soundness of business processes, CAiSE'01, Springer, 2001, pp. 157–170, LNCS 2068.
[50] F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, M. La Rosa, Configurable workflow models, Int. J. Coop. Inf. Syst. 17 (2) (2008) 177–221.
[51] R. Lu, S.W. Sadiq, Managing process variants as an information resource, BPM'06, 2006, pp. 426–431.
[52] R. Lu, S.W. Sadiq, On the discovery of preferred work practice through business process variants, ER, Springer, 2007, pp. 165–180.
[53] J. Bae, L. Liu, J. Caverlee, W.B. Rouse, Process mining, discovery, and integration using distance measures, ICWS'06, 2006, pp. 479–488, Washington, DC, USA.
[54] M. Kuramochi, G. Karypis, Frequent subgraph discovery, ICDM'01, IEEE, 2001, pp. 313–320.
[55] K.H. Rosen, Discrete Mathematics and Its Application, McGraw-Hill, 2003.
[56] C. Li, M. Reichert, A. Wombacher, What are the problem makers: ranking activities according to their relevance for process changes, ICWS'09, IEEE, 2009,

pp. 51–58.

434 C. Li et al. / Data & Knowledge Engineering 70 (2011) 409–434
[57] M. La Rosa, W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, Questionnaire-based variability modeling for system configuration, Softw. Syst. Model. 8 (2)
(2009) 251–274.

[58] F. Gottschalk, T.A.C. Wagemakers, M.H. Jansen-Vullers, W.M.P. van der Aalst, M. La Rosa, Configurable process models: experiences from a municipality case
study, CAiSE'09, 2009, pp. 486–500.

[59] J.S. Ash, M. Berg, E. Coiera, Some unintended consequences of information technology in health care: the nature of patient care information system-related
errors, J. Am. Med. Inf. Ass. 11 (2) (2004) 104–112.
Chen Li is a Ph.D student at University of Twente, the Netherlands. Previously, he obtained his Master degree at Utrecht University, the
Netherlands. His Ph.D research focuses on process variant management and process mining. In addition, his research interests also
include business intelligence, simulation, statistic analysis and requirement engineering.
Manfred Reichert holds a PhD in Computer Science and a Diploma in Mathematics. Since January 2008 he has been appointed as full
professor at the University of Ulm. Earlier, he was working as Associate Professor at the University of Twente (UT) in the Netherlands.
His major research interests include next generation process management technology (e.g., adaptive processes, process lifecycle
management, data-driven processes, mobile processes), service-oriented architectures (e.g., service interoperability, service
evolution), and advanced applications for IT solutions (e.g., e-health, automotive engineering). Together with Peter Dadam he
pioneered the work on the ADEPT process management system. Manfred has been participating in numerous research projects in the

BPM area and contributed numerous papers. Further, he has co-organized international and national conferences and workshops.
Manfred was PC-Co-Chair of the BPM'08 conference in Milan and General Co-Chair of the BPM'09 conference in Ulm.
Andreas Wombacher is an assistant professor at University Twente and co-coordinator of the strategic research objective Applied
Science of Services for Information Society Technologies (ASSIST). He did his master and Ph.D. degree at the Technical University of
Darmstadt. He gathered professional experience at IBM (Germany), the Integrated Publication and Information Systems Institute
(IPSI) of GMD (Germany), the University of Twente (Netherlands), and the Swiss Federal Institute of Technology in Lausanne (EPFL).
His research interests are in the area of service oriented architectures, distributed data management, and data processing with a focus
on sensor networks always under the perspective of processes. He has been involved in several organization and program committees.

Unlabelled image
Unlabelled image
Unlabelled image

	Mining business process variants: Challenges, scenarios, algorithms
	Introduction
	Problem statement
	Contribution

	Backgrounds
	Process model
	Block structuring
	Process change

	Running example
	Matrix-based representations of process models and process variant collections
	Representing block-structured process models as order matrices
	Simplification of infinite trace sets
	Representing a process model as order matrix

	Representing a collection of process variants as aggregated order matrix
	Measuring the activities frequencies within variant collection

	Scenario 1: evolving reference process models by learning from past model adaptations: a heuristic approach
	Fitness function
	Activity coverage
	Structure fitness of a candidate process models
	Fitness function

	Constructing the search tree
	The search tree
	Changing one particular activity

	Search result for running example
	Performance evaluation based on simulations

	Scenario 2: discovering reference process model by mining process model variants: a clustering approach
	Determining the activity set of the reference process model
	Determining activities to be clustered
	Determining internal order relations
	Recomputing the aggregated order matrix
	Applying the clustering algorithm to our example
	Proof-of-concept prototype

	Algorithm comparisons
	Comparing the two algorithms for process variant mining
	Qualitative comparison
	Quantitative comparison

	Comparison with existing process mining algorithms
	Evaluation criteria
	Evaluation results

	Automotive case study
	Related work
	Summary and outlook
	Acknowledgment
	Heuristic search algorithm for variant mining
	Block enumeration algorithm
	References

