
A multi-layer framework for personalized social tag-based applications☆

Barbara Carminati a, Elena Ferrari a, Andrea Perego b,⁎
a Dipartimento di Scienze Teoriche ed Applicate, Università degli Studi dell'Insubria, Varese, Italy
b European Commission — Joint Research Centre, Ispra, Italy

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 May 2010
Received in revised form 25 June 2012
Accepted 25 June 2012
Available online 4 July 2012

Recent years have seen an increasing diffusion of online communities giving their members
the ability of specifying and sharing metadata concerning online resources. Such practice, also
known as social or collaborative tagging, has the purpose of collecting and sharing opinions
about Web resources and simplifying their retrieval. In this paper, we go one step further and
show how tags can have more enhanced applications to be exploited for customizing Web
content fruition. More precisely, we propose a multi-layer framework where data collected by
social tagging communities are complemented with additional services. Such services provide
users the ability of expressing their dis/agreement with existing tags, denoting the members
they trust based on their characteristics and relationships, or specifying policies on which
“quality” assessment of resources should be returned. Besides providing the formal specification
of the proposed framework, we illustrate two case studies we have implemented and the
experiments we have carried out in order to verify the feasibility of our approach.

© 2012 Elsevier B.V. All rights reserved.

Keywords:
Web-based information systems
Social Web
Semantic Web
Social tagging
Personalization

1. Introduction

In recent years, the widespread adoption of Web 2.0 related technologies has greatly facilitated user collaboration and
knowledge sharing, bringing several benefits to the field of Web metadata generation and management. Notable examples of
Web 2.0 technologies applied to Web metadata are those related to online communities, whose members have the ability of
specifying and sharing metadata (referred to as tags). These are the cases, for example, of Delicious (http://delicious.com),
RawSugar (http://rawsugar.com), Flickr (http://flickr.com), and Last.fm (http://last.fm). Such practice, also known as social or
collaborative tagging [1,2], has the purpose of collecting and sharing opinions about Web resources, and simplifying resource
retrieval by organizing them according to a tag-based browsing criterion.

The huge availability of social tagging systems has pushed the development of several applications exploiting these metadata,
hereafter called social tag-based applications. Recommender systems [3] are notable examples of social-tag based applications.
Here, users of online communities share resources that they consider relevant, and express personal opinions on them with the
purpose of making resource retrieval easier.

In general, social tag-based applications gather metadata associated with resources, elaborate them and exploit the obtained
results to trigger some actions (for example, resource recommendation, classification or filtering). Up to now, research on social
tag-based applications has mainly focused on personalized recommendations of tags (e.g., [4–6]) or resources (e.g., [7–10]), which
make use of techniques derived from the data mining area to predict which tags/resources might be relevant, and how much.

However, we believe that social tag-based applications can be further improved following several directions. First of all,
existing social tag-based applications do not consider much the issue of metadata trustworthiness. As metadata evaluation might
trigger crucial actions (for example, those related to resource filtering or access control), it is important to have an accurate estimation

Data & Knowledge Engineering 79–80 (2012) 62–86

☆ The work reported in this paper is partially funded by the European Community under the QUATRO Plus project (SIP-2006-211001) and by the Italian
Ministry of University, Education and Research under the ANONIMO project (PRIN-2007F9437X_004).
⁎ Corresponding author at: European Commission DG JRC, Via E. Fermi, 2749–TP 262, 21027 Ispra, Italy. Tel.: +39 0332786423; fax: +39 0332786325.

E-mail addresses: barbara.carminati@uninsubria.it (B. Carminati), elena.ferrari@uninsubria.it (E. Ferrari), andrea.perego@jrc.ec.europa.eu (A. Perego).

0169-023X/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.datak.2012.06.002

Contents lists available at SciVerse ScienceDirect

Data & Knowledge Engineering

j ourna l homepage: www.e lsev ie r .com/ locate /datak

http://delicious.com
http://rawsugar.com
http://flickr.com
http://last.fm
http://dx.doi.org/10.1016/j.datak.2012.06.002
mailto:barbara.carminati@uninsubria.it
mailto:elena.ferrari@uninsubria.it
mailto:andrea.perego@jrc.ec.europa.eu
http://dx.doi.org/10.1016/j.datak.2012.06.002
http://www.sciencedirect.com/science/journal/0169023X

of metadata trustworthiness, so to exclude untrustworthy metadata. As such, a mechanism able to assess the trustworthiness of social
metadata is needed. More precisely, we think that collaborative environments and Semantic Web technologies can help. In fact, the
availability of online communities consisting of thousands of users would help not only in increasing the number of labeled/tagged
resources, but also in assessing their trustworthiness [11].

So far, this issue has been addressed by providing a measure/definition of trust based on some statistics on tags' frequency
(see, e.g., [9]). As a naïve example, trustworthiness of a tag associated with a resource could be defined based on the percentage of
tags providing identical descriptions for that resource. However, in designingmechanisms to assess social metadata trustworthiness,
we think that it is fundamental to take into account also the explicit users' opinions on the metadata itself. Indeed, if users could
express their agreement/disagreement with the descriptions provided by metadata, this would further help in determining metadata
trustworthiness.

Further, we believe that several scenarios exist where taking into account user preferences during metadata selection could
bring to more meaningful resource descriptions. This is inspired by our normal behaviors in real life. Let us consider, for example,
the case of a person, say Kate, who is looking for some science-fiction books for a teenager. In real life, Kate might ask
recommendations and suggestions only to those of her friends that are considered expert in science-fiction books. Also, Kate
could restrict her selection only to recommendations of those experts that are teens. Applying the same approach in social
tag-based applications implies to make users able to denote who he/she considers trustworthy in describing resources, that is, who are
the users whose metadata have to be elaborated during resource evaluation. In contrast, existing social tag-based applications
process resources by elaborating the whole set of metadata associated with it (see for instance [12]).

Further, the tags associated with a resource and their trust values can be used by users to decide how a given resource has to
be processed, that is, they can be used to personalize application behaviors according to user preferences. For instance, a user might
prefer that a recommender system recommends only those books whose metadata state that their content is related to
science-fiction with trust value at least equal to 80%.

To cope with the above-discussed requirements, in this paper we propose a framework to support personalized social tag-based
applications based on trust policies and user preferences. Trust policies allow one to identify trusted users – i.e., users whose
metadata have to be considered – according to a variety of criteria (i.e., users' profiles, users' relationships, specific topics). In
contrast, user preferences allow users to specify one or more conditions on resources' descriptors and corresponding trust values,
and to state which “quality” assessment must be returned (e.g., “the resource is safe for children”) and, possibly, which action has
to be performed (e.g., recommend, filter, classify) in case at least one of the specified conditions is satisfied.

More precisely, we propose a multi-layer framework, where each layer is designed as a black box, providing basic services to
the upper layers. The framework supports a data layer, gathering metadata from social tagging systems, a rule layer, that enforces
trust policies and user preferences, and an application layer, which elaborates the metadata, filtered according to trust policies, by
returning the notices and actions stated by user preferences. As it will be discussed in Section 2, the literature offers several
proposals for the data layer and the application layer, but, to the best of our knowledge, nothing equivalent to our rule layer. More
precisely, the main difference of our proposal with regard to existing personalization approaches is that they address a specific
issue only, namely, tag/resource recommendation, whereas our framework is designed to be as flexible as possible with regard to
the purposes social tags are used for.

The novelty of this framework is in the supported features and in its modular architecture, thanks to which it is possible to
tailorize, or even disable, one or more components depending on the different contexts and requirements. We would like to
note, however, that, although in this framework trust computation plays an important role, it is just one of the components of
our framework. Also, it is not our purpose to propose a new trust system. Actually, our framework does not rely upon a specific
method for trust computation, but it is designed to support different methods depending on the considered application
scenario.

The work reported in this paper is an extension of [13], where we proposed a system for collaborative resource labeling and label
rating, showing how this can be exploited forWeb access personalization. In this paper,we significantly extend [13] in thatwemake it
independent fromwhich purpose and bywhat end user applications it is used. This is achieved by the introduction of the application
layer in architecture proposed in [13], obtaining thus amulti-layer framework.With respect to [13], in this paperwe have verified the
feasibility of the multi-layer approach by designing and developing a prototype system implementing the proposed framework, and
addressing a real world scenario. More precisely, we have tested the ability of our framework to (a) reuse datasets of existing
Web-based communities, (b) enhance them by providing support to trust policies and user preferences, and (c) return information
which can be exploited by end user applications for a variety of purposes. For this purpose, we have used the dataset provided by the
Delicious online community (i.e., tags and users' relationships) to implement two distinct case studies, namely, personalized Web
search and Web access personalization.

We would like to note that, in this paper, we focus on the technical feasibility of the framework we propose, in order to
demonstrate that it is technically possible to enhance existing social media by providing personalization features currently not
supported, and by exploiting the potential of user-generated content, as social tags are. Nonetheless, the paper includes a
preliminary evaluation of the usability and effectiveness of our framework, which gave us an important feedback on the issues at
stake, which we plan to address in future work.

The rest of the paper is organized as follows. Related work is discussed in Section 2. Section 3 provides an introduction to the
proposed multi-layer framework. Data layer is described in Section 4,whereas Section 5 presents the rule layer. We prove the
feasibility of the proposed framework by showing two case studies in Section 6. Section 7 concludes the paper and outlines future
research directions. Finally, Appendix A contains the main algorithms underlying our framework.

63B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

2. Related work

The social tagging phenomenon and its advantages in terms of knowledge acquisition and enhancement of Web users'
experience have been early recognized by scientists as a challenging research topic. Although work in this area spans over several
issues, in this section we will discuss the ones that we think are most relevant to our approach.

A first research direction concerns the mechanisms that can be used to increase social tags' effectiveness. In fact, since tags are
not terms from a predefined vocabulary, but keywords freely specified by end users, we may have different tags with the same
meaning (synonymy), same tags with different meaning (homonymy), tags with multiple meanings (polysemy). This negatively
affects the effectiveness of tag-based search, and leads to a low precision and recall of the obtained search results.

In order to address such issue, several solutions have been proposed, aiming at enforcing semantic interoperability (for the
state of the art in this area, we refer the reader to [12]). In particular, some works have built on the notion of emergent semantics,
i.e., the idea that, in widely distributed systems, semantics emerges from the agreement of the involved agents [14]. As an
example, [15] proposes an approach to derive emergent semantics in a social bookmarking service by using statistical analysis. On
the other side, [16] proposes to model a folksonomy – i.e., the set of social tags specified by users in an online community – as a
tripartite graph derived from the information concerning users, tags, and bookmarked resources. Graph transformations are then
used to derive lightweight ontologies of concepts and users.

The other main research direction focuses on using social tagging to enforce personalized recommendations. Basically, work
carried out in this area is based on the adaptation to social tagging of techniques already established in recommender systems
[3]. One of the addressed issues is social tag prediction, i.e., the possibility of predicting the set of tags applying to a not
bookmarked resource. As an example, in [4] resources are classified based on their textual content, anchor text, and the set of
websites the resources are linked from and to. Tags are then derived based on the similarity between the resource to be
annotated and the set of bookmarked resources. By contrast, in [5], social tags are used to build user profiles, which are then
exploited to cluster users with similar interests. Tag prediction is then carried out by suggesting to a given user the set of tags
specified by other users with a similar profile, i.e., in the same cluster. An alternative approach is proposed in [6], where tags are
predicted by extracting relevant terms from a resource, and then by computing their similarity with keywords representing the
documents' corpus of the personal desktop of a given user. Other related works have been carried out in the context of Web
services (see e.g., [17,18]).

User profiling is a technique which is used also in works aiming to recommend to a given user a set of bookmarked resources
relevant for his/her interests. For instance, in [7] a set of algorithms is proposed, extending Information Retrieval techniques to
build profiles and recommendations for Last.fm users. By contrast, [8] proposes to build user profiles by mining personal tags
through formal concept analysis, then obtaining a hierarchy of user's interests. A different strategy is proposed in [9], where tags
are hierarchically clustered by using measures like tag's frequency and distinctiveness. The system then computes how much a
given cluster is relevant for the interests of a given user based on the tags he/she specified. As a last example we can cite [10],
where, after having identified twelve tasks relevant to social tagging personalization, a probabilistic approach is adopted to model
three of them, namely, collaborative tagging, browsing, and search.

The personalization approaches discussed above might be seen as an alternative solution to our framework, as far as the
rule and application layers are concerned. However, they can be used to address a specific issue, namely, tag/resource
recommendation, whereas our framework is designed to be as flexible as possible with regard to the purposes social tags are
used for. From our perspective, the most relevant difference with our framework concerns how personalization is enforced. It
is important to note that all these approaches have a common denominator in that they statistically derive new information
from existing one, without requiring end users' opinion. This has great advantages in terms of usability, but has a major
drawback in the probabilistic nature of the obtained results. As a consequence, it cannot be used for purposes where false
positives might determine harmful consequences on the side of end users. For instance, they cannot be used to grant that a
resource is safe for children, or that it satisfies the privacy requirements of an end user. For these purposes, the explicit
specification of end users' preferences and requirements must be required, and this is exactly the issue addressed by the rule
layer of framework.

For these reasons, we see such approaches as services which can be incorporated into the data layer, where they can play a crucial
role in refining social tags. Semantic interoperability is actually a key issue which must be addressed in order to increase as much as
possible the effectiveness of social tagging. Moreover, besides simplifying to end users the tag specification task, social tag prediction
can help as well in building a common folksonomy. As far as personalized recommendation is concerned, this can be a service useful
as alternative to the rule layer of our framework, depending on users' purposes. In fact, we remind that the application layer can
interact with either the data or rule layers, thus deciding whether or not to use trust policies and user preferences.

The rule layer of our framework can be seen as an enhancement to social tagging services by the integration of some of the
features provided by Semantic Web rule languages (e.g., [19]) and Semantic Web policy frameworks— an issue that, to the best of
our knowledge, has not been addressed so far. Basically, Semantic Web policy frameworks are meant to support the specification
and enforcement of policies expressed in terms of constraints on the machine understandable resource descriptions provided by
Semantic Web languages. As such, they are one of the possible solutions to the issue of policy enforcement in highly distributed
systems, having a huge number of agents, with heterogeneous and dynamically evolving characteristics. Examples of such
frameworks are KAoS [20], REI [21], and Ponder [22,23], focusing mainly on access control, Protune [24,25], which provides
support also to trust negotiation and privacy policies, andWIQA [26], which gives end users the ability of using filtering policies in
order to denote given “quality” requirements that resources must satisfy.

64 B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

We would like to note, however, that our rule layer is not meant to be a new policy framework, specifically designed for social
tagging services, and developed from scratch due to the fact that existing policy frameworks cannot be applied or adapted to such an
application domain. By contrast, the rule layer just defines the minimum requirements to be satisfied in order to give end users the
ability to denote trustworthy users and to express their preferences. Therefore, since we do not put any constraint on how the services
supported by our rule layer are implemented, any framework/system can be a possible candidate, provided that the basic features of
the rule layer are supported. As far as thepolicy frameworksmentioned above are concerned,we think that the best candidatemight be
theWIQA framework, since it ismeant to be used by end users in order to filterWeb resourceswhich do not satisfy their requirements.

3. A multi-layer framework for personalized social tag-based applications

As represented in Fig. 1, the proposed framework consists of three main layers. The data layer groups all services in charge of
managing personal data of online communities' members and services generating the metadata. To make the framework able to
cooperate with different Web metadata services, we adopt the specification of the POWDER (Protocol for Web Description Resources)
W3CWorking Group,1 as interchange format for Web metadata [27]. POWDER can be used to associate any type of description with a
group of resources, and, additionally, to provide meta information about such descriptors (such as, who has specified them, when have
they been issued, what is their validity period). As it will be discussed in Section 4.2, the proposed multi-layer framework makes use of
the notion of descriptor, instead of the one of tag, to denote a keyword, or attribute–value pair, denoting a specific resource's char-
acteristic.Moreover, we use the notion of label to denote a set of descriptors applying to a given resource and specified by a given author.

In the proposed framework, besides labeling resources, social network members can express their dis/agreement about
existing labels, by specifying ratings on the contained descriptors. Therefore, the data layer also includes a rating service (see
Fig. 1). All data collected by services in the data layer are provided to the upper layers, that is, the rule layer and the application
layer. The first provides the services to support trust policies and user preferences, that is, to enforce rules for determining,
respectively, the trustworthiness of Web metadata and the quality of Web resources. Although there currently exist several
languages which can be used to enforce trust policies and user preferences (see e.g., Protune [24] and WIQA [26]), in this paper
we investigate Semantic Web technologies as the basis of the standard interchange format among our layers. More precisely, we
use RDF/OWL [28,29] to encode the data layer's components, whereas trust policies and user preferences are represented and
enforced through N3Logic rules [30]. We have adopted N3Logic, although it is not a standard Semantic Web language, not only
because of its support for rules, but also because it supports an effective mechanisms, i.e., quoted formulae, to express statements
about statements — a feature that we need, for example, to specify the author of a label. The alternative would have been the
technologies designed by the Rule Interchange Format (RIF) of the W3C (http://www.w3.org/2005/rules). However, such
technologies have reached only recently the status of a Semantic Web standard, and they are not fully implemented.

On the top of the proposed framework there is the application layer. This encloses those services (typically, user agents) that
elaborate the output of the data or rule layer, in order to address specific purposes (e.g., resource classifications, filtering). As
depicted in Fig. 1, the output is previously elaborated so as to compute the aggregate trust values and quality measures of Web
resources according to the specified trust policies and user preferences and the available ratings and Web metadata. This
computation is provided by the trust computation service in the rule layer. The application layer will also provide end users an
abstract view of our framework, hiding the complexity of its architecture. This is an important issue, as far as usability is
concerned, which is however out the scope of this paper, where we focus on system design, implementation, and evaluation.

Services

D
at

a
La

ye
r

R
ul

e
La

ye
r

A
pp

lic
at

io
n

La
ye

r

(Personalized) Recommendation, filering, search, etc.

User Preferences

Trust Computation

Trust Policies

Ratings

Web Metadata

Social Network Data

Services

D
at

a
La

ye
r

R
ul

e
La

ye
r

A
pp

lic
at

io
n

La
ye

r

Fig. 1. Architectural components of the proposed framework. Services delimited by dotted lines are optional.

1 Working Group page: http://www.w3.org/2007/powder.

65B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

http://www.w3.org/2005/rules
http://www.w3.org/2007/powder

The proposed multi-layer framework has the main advantage of being modular and therefore can complement existing
services without the need of their re-design. The use of Semantic Web technologies as the interchange format among layers
makes such task easier. Indeed, as reported in Fig. 1, with the exception of the Web metadata service, all the other services in the
data and rule layers are optional. For instance, a typical social tagging service supports just the Web metadata service and,
possibly, the one concerning social networks. Ratings, trust policies, and user preference services can then be added to enhance its
features by exploiting information already stored by the service.

In what follows, for the sake of brevity, we will refer to our framework using the acronym WPF (Web Personalization
Framework).

4. Data layer

In this section, we illustrate the first component of our framework, i.e., the data layer, which consists of the services in charge
of managing social network data, Web metadata, and ratings.

4.1. Social network data

Each WPF user is associated with a profile, corresponding to a set of personal data (such as first and last name, email address,
personal interests, nationality, job, expertise), encoded by one or more credentials. Besides the certified properties, a credential
contains the IDs of the Certification Authority (CA) issuing it, and of thememberwhom the credential refers to. Finally, the credential
is signed by the CA releasing it (see Example 1). Note that, there exist some attributes (e.g., those describing the interests of a given
user)which do not need to be certified. However, for simplicity, in this paper, we assume that all the credential attributes are certified.

Example 1. The following are examples of credentials released by CAs CA1 and CA2: C1=(CA1, Betsy, {profession=teacher}) ||DSig1;
C2=(CA2, Henry, {profession=physician}) || DSig2, where DSigi, 1≤ i≤2, denotes the digital signature of credential Ci.

In order to support an exchange format for users' credentials, their formal representation, reported by Example 1, is converted
into FOAF profiles [31]. FOAF (Friend of a Friend) is a widely used Semantic Web technology that allows the specification of
personal information.

In addition, we need to model the relationships established byWPF users in the community with the purpose of specifying and
sharing tags. Please note that relationships play a key role in our framework as they are used in trust policies to identify
trustworthy users, that is, users whose labels/ratings should be considered for trust computation. Indeed, according to the
proposed model such users can be specified by putting constraints on a user social graph (e.g., only my friends and the friends of
my friends are considered trustworthy).

Formally, we model such social networkSN as a tuple MSN ; ESN ;RTSN ;ϕESN

� �
, whereMSN andESN are, respectively, the nodes

and edges of a directed graph MSN ; ESNð Þ, RTSN is the set of supported relationship types, whereas ϕESN : ESN→RTSN is a function
assigning to each edge e∈ESN a relationship of type rt∈RTSN .

We say that two WPF users participate in a relationship of a given type rt, if there exists a path connecting them consisting
only of edges labeled with relationship type rt. The length of the path is the depth d of the corresponding relationship. If d=1, the
relationship is direct; if d>1, we say that the relationship is indirect. To model such notion of relationship, we use the REL-X
ontology,2 which defines an OWL class (relx:Relationship), and properties denoting the members (relx:hasMember), type (relx:
type), and depth (relx:depth) of a relationship.3

Example 2. Fig. 2 depicts a small portion of a social network. In the figure, the arrows at both ends of an edge are a shortcut to
denote mutual relationships, i.e., the existence of two edges between the same pair of nodes, associated with the same label, and
having opposite directions. More precisely, in Fig. 2 there exist direct relationships of type friendOf between Kate (K) and Phil (P),
Kate and Betsy (B), Phil and Henry (H), and of type colleagueOf between Kate and Betsy, Phil and Betsy, and Phil and Henry.
Moreover, there exist four indirect relationships of depth 2: one of type friendOf between Kate and Henry (corresponding to path
KPH) and Phil and Betsy (corresponding to path PKB); two of type collegueOf between Kate and Phil (corresponding to path KBP)
and Betsy and Henry (corresponding to path BPH). Finally, there exist two indirect relationships of depth 3: one of type friendOf
between Betsy and Henry (BKPH) and the other of type colleagueOf between Kate and Henry (KBPH).

It is interesting to note that up to now, existing social networks do not provide such functionality and as such our framework
cannot be directly applied on them. However, thanks to FOAF and REL-X ontologies, profile and relationship information can be
exported from existing social networks so as to be used in WPF. As an example, the framework could be integrated with Facebook
by developing a third-party Facebook application for thoseWPF users having a Facebook account. By means of this application, all

2 Namespace URI: http://www.dicom.uninsubria.it/dawsec/vocs/relx.
3 There exist other ontologies, like the one described in [32], which can be used for the same purpose. However, different from them, the REL-X ontology has

the advantage of allowing one to associate with a relationship not only a type, but also other information (in our case, its depth), without the need of making use
of RDF reification, which would make relationship specifications unnecessarily complex [33].

66 B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

http://www.dicom.uninsubria.it/dawsec/vocs/relx

the relevant information (i.e., profiles, relationships) could be easily extracted and used to generate the WPF social network. The
Facebook application could also be used to gather from WPF users their ratings and labels.

4.2. Web metadata

By abstracting from the various representations, Web metadata can be modeled as labels, which in turn consist of a set of
descriptors. Labels describe the content and/or characteristics of a (set of) resource and can be specified by resource owners, or by
WPF users. They are identified by a URI, and contain a set of resource descriptors rd1,…, rdn, which may be of two different types,
namely, resource property descriptors and resource content descriptors. Resource property descriptors are used to model specific
characteristics of the resource (such as the author's name, its title, the language used). They are modeled as pairs pn=pv, where
pn denotes the name of a resource property and pv denotes the value of pn. In contrast, resource content descriptors are used to
convey different information on resource content. This can be a description of the resource content itself, as well as represent
opinions on it. They are expressed as pairs t=ρ, where ρ∈ [0,1] denotes the relevance of t in describing the considered resource.
The set of resources to which a label refers to is denoted by a URI pattern, by which it is possible to express statements like “all the
resources hosted by www.example.org, where the URI path component starts with foo”.4 Besides resource descriptors, a label
contains the ID of the WPF user who created it, a timestamp, and, optionally, the validity period for the label.

Example 3. In the running examplewewill use to illustrate our framework,we suppose that Kate runs a blog – http://about-gmos.net –
about GeneticallyModified Organisms (GMOs), where she publishes her personal posts aswell as contributions from experts in the field.
Table 1 presents examples of resource labels, where, for simplicity, the timestamp and validity period have been omitted. Moreover, we
denote by LBn theURI of label n. Labels LB1 and LB3 describe all the resources hosted by about-gmos.net. Label LB1 has been specified byKate,
and it states that she is the author of the resources hosted by about-gmos.net, that the used language is English, and that topic gmos has a
relevance equal to 80% in describing their content. Label LB3 has been specified by Phil, and it states that topic biologyhas a relevance equal
to 40% for the description of the resources content. In contrast, labels LB2 and LB4 describe all the resources having a URI starting with
http://about-gmos.net/children. Label LB2, specified byKate, states that such resources are authored byHenry, that their title is “GMOs and
Child Nutrition”, and that the topic childCare has a relevance equal to 100%, whereas topic nutrition has a relevance equal to 60%. Finally,
label LB4 is specified by Phil, and it states that the corresponding resources are authored by Kate, and topic health has a relevance equal to
20%, whereas topic nutrition has a relevance equal to 40.

As mentioned in Section 3, we adopt POWDER as the interchange format forWebmetadata [27], to make easier processing and
aggregation of metadata originating from heterogeneous sources. In what follows, we therefore use the traditional term of label to
denote a set of descriptors encoded according to the POWDER syntax.

Example 4. Fig. 3 shows the RDF/OWL encoding of LB1 in Table 1 according to POWDER specifications [34] and using the N3
syntax.5 The ontology header at line 8 encodes the information about who issued the label, when it has been issued, and its

4 URI patterns are specified by using a simplified regular expression syntax, where the wildcard (∗) matches a string of 0,…,n URI characters.
5 Describing the POWDER format would require a discussion which is out of the scope of this paper. We refer the interested reader to [27,35,34]. For a better

understanding of our example, suffice it to say that an RDF/OWL POWDER document – i.e., a label, according to our terminology – is an OWL ontology including a
class description I, denoting the set of resources having a URI/IRI matching a given pattern, a set D1,…,Dn of class descriptions denoting the set of resources having
given characteristics, and a statement S denoting class I as a subclass of D1,…,Dn. Finally, the ontology header is used to denote the author, issue date, and validity
period of the POWDER document.

K

P

B

H

friendOf

col leagueOf

col leagueOf

col leagueOf

friendOf

friendOf

Fig. 2. A small portion of a social network.

67B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

http://www.example.org

validity period (we suppose here that LB1 has been issued on 12 December 2008, and that it is valid for a whole year after that
date). By contrast, the class description at line 10 denotes all the resources having a URI starting with http://about-gmos.net,
whereas the class descriptions at lines 12–14 denote the resources having Kate as author (line 12), those written in English (line
13), and those where the relevance of topic gmos is equal to 80% (line 14). Finally, line 16 implements the rule according to which
all the resources having a URI starting with http://about-gmos.net are (a subset of those) authored by Kate, written in English, and
have a content where the relevance of topic gmos is equal to 80%. This is expressed by stating that class Iriset is a subclass of
classes D1, D2, and D3.

4.3. Ratings

Tomake their evaluation easier, ratings applying to the same label are grouped into a label rating. The structure of a label rating
is similar to the one of a label in that it contains ratings for property descriptors (pn=pv) and content descriptors (t=ρ), both
modeled as pairs (pn=pv, rating) and (t=ρ, rating), respectively. The difference is that label rating URI pattern always
corresponds to a single resource – i.e., the label being rated – , and no validity period is specified since a rating is valid only during
the lifetime of the corresponding label.

Example 5. Table 2 reports examples of ratings for the labels in Table 1, where the timestamp component of each rating has been
omitted for brevity. As in Example 3, we assume that LB1,…,LB4 correspond to the URIs of the labels in Table 1. Ratings RT1 and RT2

have been specified by Betsy and they apply to labels LB3 and LB4, respectively. In RT1, Betsy agrees that the topic biology has a
relevance equal to 40% – i.e., (biology=0.4,1) – for the description of the corresponding resources, whereas in RT2 she disagrees
on the fact that the topic health has a relevance equal to 20% – i.e., (health=0.2,0) – , but she agrees that the topic nutrition has a
relevance equal to 40%— i.e., (nutrition=0.4,1). Rating RT3 applies to LB1: it has been specified by Henry, who agrees that the topic
gmos has a relevance equal to 80% — i.e., (gmos=0.8,1). Henry has specified also ratings RT4 and RT5 concerning labels LB2 and LB4,
respectively. In RT4, he disagrees on the fact that he has been claimed to be the author of the labeled resources, and that the
relevance of topic nutrition is equal to 60% – i.e., (author=Henry,0) and (nutrition=0.6,0) – , but he agrees that topic childCare
has a relevance equal to 100% — i.e., (childCare=1.0,1). In contrast, in RT5, Henry agrees that Kate is the author of the labeled
resources, and on the fact that topic nutrition has a relevance equal to 40%— i.e., (author=Kate,1) and (nutrition=0.4,1). Finally,
rating RT6 is specified by Phil on label LB1, and it expresses Phil's agreement about the descriptors stating that Kate is the resource's
author – i.e., (author=Kate,1) – , and that the topic gmos has a relevance equal to 80% — i.e., (gmos=0.8,1).

Example 6. Fig. 4 shows the N3 encoding of RT6 in Table 2. In order to associate a rating with the statements in label LB1, they are
enclosed into quoted formulae,6 and then the rating (voc:rating)7 is specified on them. Thus, lines 12–15 specify the rating about
the statement according to which Kate is the author of the resources having a URI starting with http://about-gmos.net, whereas
lines 16–19 specify the rating about the relevance of topic gmos for the same set of resources. Quoted formulae are then used also
to specify when the ratings have been issued (line 20), and who issued them (line 21).

5. Rule layer

In this section, we illustrate the main components of the rule layer, that is, trust policies and user preferences, describing also
how they can be enforced. It is important to recall that trust policies and user preferences play two different roles. As such they
can be seen as two complementary yet orthogonal components of the rule layer. Trust policies are used to select only some labels/
ratings to be considered for descriptor trust computation, by leveraging trust relationships among WPF users. In contrast, user
preferences are more similar to traditional access control policies, although they broaden their scope, in that they allow a user to

6 In N3, quoted formulae are statements delimited by curly brackets, used to represent multiple, and possibly nested, RDF graphs into the same document. As
already mentioned in Section 3, this allows one to specify “statements describing other statements”, thus providing an effective alternative to RDF reification,
which would dramatically increase the complexity of rating specification.

7 Here and in the remainder of the paper, we use the voc namespace prefix for properties and classes needed to model the notions of our approach.

Table 1
Examples of labels. Labels' issue date and validity period have been omitted in the table due to space constraints.

Example 3

URI Author URI Pattern Property descriptors Content descriptors

LB1 Kate http://about-gmos.net* author=Kate, lang=en gmos=0.8
LB2 Kate http://about-gmos.net/children* author=Henry, title=GMOs and

Child Nutrition
childCare=1.0,
nutrition=0.6

LB3 Phil http://about-gmos.net* ∅ biology=0.4
LB4 Phil http://about-gmos.net/children* author=Kate health=0.2,

nutrition=0.4

68 B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

state which quality assessments should be associated with a resource satisfying them (e.g., safe for children, relevant) on the basis
of several different dimensions (e.g., associated descriptors and/or their trust values). Therefore they are a means to associate a
sort of user-defined quality label to resources. Moreover, they allow to associate different actions to be performed when the
corresponding resource is accessed, based on the associated label.

5.1. Trust policies

Labels associated with a given resource, and the corresponding ratings, are used to determine the trustworthiness of the
corresponding descriptors, according to a trust computation algorithm that may vary depending on the considered application
scenario. Independent from the adopted trust computation method, it may be often the case that WPF users want to base trust
computation only on selected labels/ratings, specified by authors they consider trustworthy. For instance, they may trust only the
labels/ratings created by their friends or, depending on a specific topic (e.g., sport, books, movies) and/or specific resources, a
WPF user can consider relevant the opinions of somemembers (e.g., because they are expert in the field) and not relevant those of
others. It is then important that WPF users are provided the possibility of specifying which labels/ratings should be taken into
account when computing descriptors' trust values.

In our approach, such preferences can be expressed through trust policies. A trust policy specifies which WPF users are
considered trustworthy in labeling/rating a given set of resources. Therefore, while evaluating descriptors' trustworthiness, only
the descriptors and/or ratings authored by them are taken into account. Descriptors/ratings' authors can be identified either by
their IDs, or by specifying a set of constraints concerning their credentials and/or the relationships they participate in. Moreover, it
is possible to specify that a user is trustworthy only with regard to a given set of topics and/or resource properties. More precisely,
the notion of trust policy is formally defined as follows, where AN , T , and PN denote, respectively, the set of attribute names,
topics, and resource property names in the system.

Definition 1. A trust policy TP is a tuple (author, uriPattern, trustedM, T, PN), where:

• author∈MSN is the WPF user who specifies the policy;
• uriPattern is a URI pattern denoting the set of resources TP applies to;
• trustedM denotes the set of WPF users whose opinion is considered trustworthy with regard to resources denoted by uriPattern.
It can have one of the following forms, possibly combined:

1. a set M MSN of WPF users;
2. a set of attribute constraints of the form an OP av, where an∈AN is the name of an attribute in a user credential, av is an

attribute value, whereas OP is a comparison operator compatible with an's domain; the semantics of a set AC of attribute
constraints is equivalent to a conjunction;

3. a set of relationship constraints of the form (m,rt,max d), denoting all the WPF users participating with member m∈MSN in a
relationship of type rt∈RTSN , having a depth d≤max d; the semantics of a set RC of relationship constraints is equivalent to a
conjunction;

• TpT is a set of topics, possibly empty, for which the opinions of the WPF users denoted by trustedM are considered trustworthy
in describing the resources denoted by uriPattern; in case T=∅, the opinions of the WPF users denoted by trustedM are
considered trustworthy for any topic;

Fig. 3. OWL-encoding of LB1 in Table 1.

69B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

• PNpPN is a set of property names, possibly empty, for which the opinions of the WPF users denoted by trustedM are
considered trustworthy in describing the resources denoted by uriPattern; in case PN=∅, the opinions of the WPF users
denoted by trustedM are considered trustworthy for any property name.

Example 7. Table 3 reports examples of trust policies, all applying to the resources hosted by about-gmos.net. TP1 states that Betsy
considers trustworthy for topic ‘nutrition’ and for any resource property only thoseWPFuserswho are experts in dietology— i.e., Phil,
according to Example 1. TP2 specifies that Henry considers trustworthy for any topic and resource property only the WPF users who
are, at the same time, Henry's direct friends, and Henry's colleagues, with a maximum depth equal to 2 (i.e., only Phil, according to
Fig. 2). TP3 states that Kate considers trustworthy her direct friends for any topic and for resource property author. Finally, TP4 states
that Phil considers Kate trustworthy for topic gmos and for resource property author.

Suppose now that each WPF userm in Fig. 2 has specified, in addition to the trust policies in Table 3, a trust policy of the form
(m,∗,m,∅,∅), stating that m considers him/herself trustworthy for any resource, topic, and resource property.

When a user requires to access a resource rsc having a URI matching http://about-gmos.net*, the system verifies which
descriptors and ratings match the policies (see Table 4). Then, it computes the trust of the descriptors concerning resource rsc by
taking into account only the matching descriptors and ratings.

Example 8. As an example of how Semantic Web technologies can be used to represent trust policies, Fig. 5 shows the encoding
of TP3 in Table 3 into an N3 rule. More precisely, lines 14–16 correspond to the antecedent of the rule, stating the constraints on
the URI pattern (line 14), trustworthy members (line 15), and property/content descriptors (line 16). If such constraints are
satisfied, then a label or rating is marked as trustworthy (line 18). Finally, line 20 states that the author of such trust policy is Kate.

Trust policies may be of two different types, depending on the member who specifies them. More precisely, given a trust policy
TP=(m, uriPattern, trusteM, T, PN), if m is the owner of the resource(s) denoted by uriPattern, we call TP an owner-defined trust
policy (denoted as OTP); otherwise, TP is called user-defined trust policy (denoted as UTP). This distinction is introduced because
somehow the owner of a resourcewould like to statewhich are the users he/she considers trustworthywith respect to the description
of his/her resources (e.g., because they have the required expertise), and such policiesmay be taken into account by other users when

Fig. 4. OWL-encoding of RT6 in Table 2.

Table 2
Examples of label ratings.

ID Author Label's URI Ratings on property descriptors Ratings on content descriptors

RT1 Betsy LB3 ∅ (biology=0.4,1)
RT2 Betsy LB4 ∅ (health=0.2, 0),

(nutrition=0.4, 1)
RT3 Henry LB1 ∅ (gmos=0.8, 1)
RT4 Henry LB2 (author=Henry, 0) (childCare=1.0, 1),

(nutrition=0.6, 0)
RT5 Henry LB4 (author=Kate, 1) (nutrition=0.4, 1)
RT6 Phil LB1 (author=Kate, 1) (gmos=0.8, 1)

70 B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

they want to specify their own trust policies or when computing descriptors' trust values. As an example, suppose that a WPF user
owns aWeb site dealing with medicine. As resource owner, he/shemay trust only experts to specify labels for suchWeb site, and/or
rate the associated labels. How owner-defined policies are enforced depends on the application domain. For instance, they can be
used to prevent inexpert members from specifying labels and ratings. Alternatively, WPF users might be allowed to freely create
labels/ratings, but to use owner-defined trust policies in combination with user-defined trust policies, when evaluating descriptors'
trustworthiness. In our approach, to be as flexible as possible, we allowWPF users to specify through their user preferences whether
and how user- and owner-defined trust policies should be taken into account (see Definition 2).

5.2. User preferences

Labels and ratings give end users the ability of being aware of the content/characteristics of the resources they access, whereas
trust policies allow users to state which descriptors, and associated ratings, must be considered to compute descriptors' scores. Once
returned to an end user, such information can be exploited by him/her as a basis to assess the “quality” of a resource against his/her
personal opinions and beliefs. For instance, if a resource is associated with a set of descriptors stating that it provides accurate and
reliablemedical information, andwhich have a trust value greater than 80%, an end usermight decide that such resource is “safe,” and
he/she can trust the providedmedical information. In general, the assessed quality of a resource depends on twomain factors (a) the
descriptors associated with it and their associated trust values and (b) for which purpose(s) an end user is accessing such resource.

We can therefore encode the criteria adopted by an end user to decide the quality of a resource to automate this process. More
precisely, in our framework, the automatic assessment of resources' quality is achieved by allowing a user to specify a further type of
policy, referred to as user preferences. User preferences state the conditions to be satisfied in order to return a given quality assessment
for a set of resources. These conditions are expressed as constraints on the associated descriptors and their trust values. Moreover, user
preferences give the possibility of stating whether user- and/or owner-defined trust policies specified for the requested resource must
be taken into account, and how theymust be combined.More precisely, a user preference allows one to statewhether only user-defined
or only owner-defined policies, or both/neither of themmust be considered to select the labels and ratings used to evaluate descriptors'
trustworthiness. If both user- and owner-defined trust policies must be used, it is also possible to specify whether the descriptors and
ratings denoted by user- and owner-defined trust policies must be combined by using a union or intersection operator. Finally, we give
the end user the possibility of deciding whether all or only some of the owner-defined trust policies must be taken into account.

As we have mentioned above, the notion of “quality” may vary depending on the end user's purpose(s), which might be quite
heterogeneous. In other words, this is an issue to be addressed by the application layer. Consequently, quality assessment at the
rule layer is expressed by a set of not predefined, system specific, statements denoting whether a given resource can be used for
given purposes. Finally, a user preference includes a set of options that are then used by the user agent to perform specific tasks.
For instance, considering a parental control scenario, such options might state whether access to a resource satisfying a given user
preference must be blocked or not.

The notion of user preference is therefore formally defined as follows.

Definition 2. A user preference UP is a tuple (author, uriPattern, PC, CC, settings, Q, options), where:

• author∈MSN is the WPF user who specifies UP;
• uriPattern is a URI pattern, denoting the set of resources UP applies to;
• PC is a set of triples (pc, tc,dc), where:
– pc is a property constraint of the form pn OP pv, where pn is a property name, pv is a property value, whereas OP is a

comparison operator compatible with pn's domain;

Table 4
Labels and ratings in Tables 1 and 2 satisfying (Y) or not satisfying (N) the trust policies in Table 3.

LB1 LB2 LB3 LB4 RT1 RT2 RT3 RT4 RT5 RT6

Betsy N N N Y Y Y N N N Y
Henry N N Y Y N N Y Y Y Y
Kate Y Y Y Y Y Y N N N Y
Phil Y N Y Y N N N N N Y

Table 3
Examples of trust policies concerning resources having a URI matching pattern http://about-gmos.net*.

ID Author URI Pattern Trustworthy members Topics Properties

TP1 Betsy http://about-gmos.net* Expertise=dietology nutrition ∅
TP2 Henry http://about-gmos.net* (Henry, friendOf, 1),

(Henry, colleagueOf, 2)
∅ ∅

TP3 Kate http://about-gmos.net* (Kate, friendOf, 1) ∅ author
TP4 Phil http://about-gmos.net* Kate gmos author

71B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

– tc is a trust constraint of the form tv OP τ, where τ∈ [0,1] is a trust value, and OP∈{=,b,>,≤,≥};
– dc is a distribution constraint of the form dv OP δ, where δ∈ [0,1] denotes the required percentage of descriptors satisfying pc,

and OP∈{=b,>,≤,≥};
• CC is a set of pairs (cc, tc), where cc is a resource content constraint of the form t OP ρ, where t is a topic, ρ∈ [0,1] denotes the
relevance of topic t, OP∈{=b,>,≤,≥}, whereas tcis a trust constraint on cc;

• settings is a triple (checkUTP, checkOTP, comb), where:
– checkUTP∈ all;nonef g denotes whether user-defined trust policies must (all) or must not (none) be taken into account;
– checkOTP∈ all;some;nonef g denotes whether owner-defined trust policies must (all), must not (none) be taken into

account, or if only those selected by the end user (some) must be considered;
– comb∈{∩,∪} denotes whether the sets of descriptors and ratings denoted by the user- and owner-defined trust policies must

be combined by using the union (∩) or intersection (∪) operator; in case checkUTP and/or checkOTP are set tonone, comb is
set to ∪, by default.

• Q is a set of attribute–value pairs assessing the quality of the resources satisfying UP;
• options is a set of attribute–value pairs, possibly empty, denoting the set of actions to be performed by a user agent when
accessing a resource satisfying UP.

It is important to note that the Q and options components of user preferences should be initialized with values from
vocabularies defined according to the reference application scenario. For instance, if the user agent aims at personalizing access to
Web resources, possible attribute–value pairs for options is ‘block=yes’ or ‘block=no’, whereas pairs for Q could be ‘safe-info’
and ‘relevance’ as attributes and ‘yes/no’ as possible values. However, to make meaningful examples, hereafter all examples will
refer to user preferences defined for the Web resource personalization application scenario.

Example 9. Table 5 reports examples of user preferences, all applying to the resources hosted by about-gmos.net. Preference UP1,
specified by Henry, denotes the resources hosted by about-gmos.net as carrying information which can be safely used (i.e.,
safe-info=yes), if (a) at least 50% (dv≥0.5) of the associated descriptors concerning property author, and having a trust value
greater than 50% (tv>0.5), have a value equal to Kate (author=Kate); (b) the content descriptors stating that topics gmos and
childCare have a relevance greater than 50% (gmos>0.5, childCare>0.5), with a trust value greater than 60% (tv>0.6). Preference
UP1 also states that the descriptors and ratings to be considered when computing descriptors trustworthiness are only those
satisfying at least one among the owner- and user-defined trust policies — i.e., all; all ∪ð Þ. Preference UP2, specified by Kate,
denotes as relevant all the resources whose author is Phil, provided that the descriptor author=Phil has a trust value and
distribution value equal to 100%. Note that, different from UP1, preference UP2 does not include content constraints, and it states that,
when evaluating descriptors' trustworthiness, the descriptors and ratings to be selected are those satisfying at least one among (a) the
user-defined policies or (b) those owner-defined policies selected at run-time by Kate (this is denoted by all; some;∪ð Þ).
Preference UP3, specified by Phil, includes both property and content constraints, and it states that, when evaluating descriptors
trustworthiness, only the descriptors and ratings satisfying (a) at least one among the owner-defined trust policies and (b) at least
one among the user-defined trust policiesmust be considered— i.e., all; all;∩ð Þ. Preference UP3 asks to block access to resources
hosted by about-gmos.net (i.e., block=yes), when (a) at least 50% of the associated descriptors concerning property author, and
having a trust value greater than 50%, have a value different from Kate, and (b) the content descriptors having a e greater than 40%
state that topics gmos and biology have a relevance greater than 80%. Finally, preference UP4, specified by Betsy, includes just content
constraints, and it denotes the resources satisfying them as carrying relevant information. For evaluating descriptors' trustworthiness,
UP4 states that only user-defined trust policies must be considered — i.e., all; none;∪ð Þ.

Fig. 5. N3-encoding of TP3 in Table 3.

72 B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

Example 10. As an example of how Semantic Web technologies can be used to represent user preferences, Fig. 6 shows the
encoding of UP1 in Table 5 into an N3 rule. More precisely, line 12 denotes the trust policies to be considered (in this case both
owner- and user-defined, combined by using OR, as required by UP1). If, after having evaluated the rules corresponding to the
selected trust policies, their conclusions (i.e., the statements inferred from the rules) satisfy the constraints on property/content
descriptors in the user preference (lines 14–17), then the resource is marked as carrying safe information, and access to it must be
granted (line 20). Finally, line 22 states that the author of such user preference is Henry.

5.3. Trust policies and user preferences enforcement

Whenever a userm requests access to a resource rsc, the system verifies whether the resource satisfies one or more of the user
preferences specified by m, and then returns the specified quality assessments and options, if any. To perform this task, the
enforcement mechanism (whose main algorithms are reported in Appendix A) takes as input the set of m's user preferences, the
set of m's trust policies, the set of owner-defined trust policies associated with rsc, the set of labels applying to rsc, and the set of
the corresponding ratings.

Fig. 7 depicts themain steps performed by the enforcementmechanism, considering, for simplicity, the case inwhich only a single
user preference must be processed. First, the set of labels received as input are processed in order to extract only the descriptors
relevant for the considered user preference. Then, from such set of descriptors themechanism filters out those not satisfying user and/
or owner defined preferences, according to what is stated in the considered user preference. If no trust policies apply to the
considered descriptors, the set of descriptors computed in the previous step is notmodified. Then, the trust value of each descriptor is
computed according to the selected trust computation algorithm. Then, the enforcement mechanism checks if the considered
descriptorsmatch the user preference. More precisely, property descriptors are evaluated against the dc constraints in the considered
user preference. Suppose, for instance, that a user preference has the following constraint: author=Kate, tv>0.4,dv>0.8. This
constraint is satisfied if more than 80% (dv>0.8) of the descriptors concerning property author, and having a trust value >0.4, have a
property value equal to Kate. By contrast, content descriptors are analyzed in order to compute the average relevance of a given topic
and then to compare it with the content constraints specified in the considered user preference. Suppose, for instance, that a user

Fig. 6. N3-encoding of UP1in Table 5.

Table 5
Examples of user preferences concerning resources having a URI matching pattern http://about-gmos.net*. The URI pattern component has been omitted in the
table due to space constraints.

ID Author Property constraints Content constraints Settings Assessment Options

UP1 Henry (author=Kate, tv>0.5, dv≥0.5) (gmos>0.5, tv>0.6),
(childCare>0.5, tv>0.6)

(all, all, ∪) Safe-info=yes Block=no

UP2 Kate (author=Phil, tv=1.0, dv=1.0) ∅ (all, some, ∪) Relevant=yes Block=no
UP3 Phil (author≠Kate, tv>0.5, dv>0.5) (gmos>0.8, tv>0.4),

(biology> tv>0.4)
(all, all, ∩) Safe-info=no Block=yes

UP4 Betsy ∅ (nutrition>0.8, tv>0.2) (all, none, ∪) Relevant=yes Block=no

73B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

preference has the following constraint: nutrition>0.2, tv>0.4. In order to verify whether it is satisfied, the average relevance value �ρ
of the set of descriptors on topic nutrition, having a value >0.4 is computed. If �ρ > 0:2, the resourcematches the user preference. If all
the constraints in the user preference are satisfied, then the associated quality assessments and options are returned.

Regarding the trust computation required in step 4 (cfr. Fig. 7), it is interesting to note that several algorithms (e.g., Eigentrust
[36] and PeerTrust [37]) may be used for trust computation, which might depend also on the possible values that ratings can
assume (e.g., ratings can be binary or scalar, using either discrete or continuous values). Additionally, each user could be
associated with a reputation score, which can then be used to assign a specific weight to his/her labels and ratings. This is an issue
that has been thoroughly investigated by recommender systems [3], among which there exist examples of online communities,
such as MovieLens [38] and MyWOT (http://mywot.com). However, in our framework we do not want to rely on a specific
method for trust computation. This because our framework is designed to be applied to different application domains, and thus it
has to be able to work with any trust computation algorithm, since it is well known that the notion of trust varies depending on
the context and the purposes for which it is used (see [39] for a discussion on this topic). For these reasons, in what follows we
denote as ψ(rd, rsc), the trust value of descriptor rd of resource rsc, computed by the selected trust computation algorithm. Also,
for simplicity, we assume that descriptors' trust is specified as a value in [0,1]. However, values from other domains, like strings
(e.g., {not trusted, trusted, very trusted}), can be adopted as a front end for the user, and then normalized to [0,1] (e.g., {0,0.5,1})
for internal processing.

The output of the enforcement mechanism is used by the application layer in order to perform a set of operations which
depend on the specific agent. As an example, the returned quality assessments can be displayed as graphical and/or textual
notifications (like a message window carrying a green icon and stating that the current resource can be safely used, since its
content is trustworthy). As far as user preference options are concerned, supposing, for instance, a block directive, the user agent
will deny access to the resource.

Example 11. Consider user preference UP1 in Table 5, and suppose that Henry requests access to a resource rsc having URI http://
about-gmos.net/children/, owned by Kate. In order to determine the action to be performed on rsc, the system first retrieves the
associated labels, and then extracts from them the set of descriptors concerning property author or topics gmos and childCare.

Then, according to UP1 settings, it selects only the descriptors and associated ratings satisfying one among Henry's trust
policies (i.e., TP2) or the owner-defined trust policies (i.e., TP3) — see Table 3. In this case, all the descriptors selected in the
previous phase satisfy TP2 or TP3, whereas the selected ratings are RT3, RT4, RT4, and RT6 (see Table 2).

Finally, the system computes (a) the trust value tvrd,rsc of each selected descriptor rd for resource rsc, (b) the average relevance
�ρcc of the topic in each selected content descriptor cc, and (c) the percentage δauthor=Kate of the set of property descriptors having
a trust value greater than 50% and satisfying author=Kate. Suppose that tvrd,rsc=1, if rd corresponds to gmos=0.8, childCare=
1.0, or author=Kate, whereas tvrd,rsc=0, if rd corresponds to author=Henry. In our case, we have: �ρcc ¼ 0:8, if cc concerns topic
gmos; �ρcc1:0, if cc concerns topic childCare; δauthor=Kate=1.0. Since UP1 is satisfied, the system grants access to resource rsc, and
marks it as carrying information which can be safely used.

It may happen that no labels are associated with the considered resource or no user preferences are satisfied or that the
satisfied user preferences specify different, conflicting assessments and options. For instance, according to a user preference, a
given resource is safe for children and access should be granted, whereas another one claims the opposite. How such situations
are treated may vary depending on the purpose user agents are designed for, and thus these are issues addressed by the
application layer. As an example, when no user preferences are satisfied or no labels are available, the user agent might notify
nothing to the end user, or, alternatively, it might return a default assessment, which is set by the end user in the configuration
parameters of the user agent itself. In contrast, in case of conflicting assessments and options, it is first important to make the end
user aware of such conflicts, so that he/she will be able to revise the relevant user preferences accordingly. In addition to this, a
conflict resolution mechanism might be supported in order to automatically determine the prevailing user preference, based on a
given set of directives specified by the end user. More precisely, the end user should be able to configure the user agent in order to

Fig. 7. Main steps of user preference enforcement.

74 B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

http://mywot.com

determine the prevailing quality assessments (e.g., referring to our example, the end user might decide that, between “safe for
children” and “not safe for children”, the latter must prevail).

6. Application layer: the delicious case studies

The output of the data and rule layers can be used by a set of agents belonging to the application layer for a variety of purposes
(cfr. Fig. 1). For instance, social network's data, Webmetadata, and ratings can be exploited by semantic search engines in order to
find users and resources matching given queries. It is also possible to aggregate such metadata in order to have a general measure
of their trustworthiness, which is however independent from the user submitting the query. In contrast, the rule layer can be used
to refine the information provided by the data layer by taking into account subjective trust (trust policies) and to denote the
quality, relevance, etc. of a resource for a specific user (user preferences).

This requires, however, the availability of a set of metadata huge enough to perform trust computation, and covering a
relevant subset of Web resources. In other words, we need to deal with the knowledge acquisition issue, typical of all knowledge
representation systems. However, as we have mentioned earlier in this paper, the success of social networking can be the
solution. More precisely, online communities supporting social tagging of Web resources and allowing their members to establish
relationships, provide a dataset which roughly corresponds to our data layer. Examples of such communities are Delicious (http://
delicious.com), Digg (http://digg.com), Reddit (http://www.reddit.com), StumbleUpon (http://www.stumbleupon.com). There-
fore, their datasets can be effectively reused by our framework.

Therefore, to provide an example of how our framework can be used in a real world scenario, we have developed a prototype system
where the datasets of social tagging online communities are used for two possible application layer services, namely (a) personalized
Web search, and (b) personalized access toWeb resources. As it is explained in more detail in Section 6.1, the former service is a search
enginewhich associates search results with the corresponding tags, ratings, and trust values, whereas the latter is in charge of enforcing
user preferences on the resources visited by a user, and of returning their quality assessment. As a starting point, we have used the
dataset of just oneof such communities, i.e., Delicious. However, our approach canbe applied also tomultiple social tagging communities,
by extending the modules in charge of retrieving the online datasets.

Delicious is a widely used social bookmarking service. Besides saving and sharing their lists of favorite Web sites, members are
also given the ability of tagging them, thus making the Delicious community able to browse theWeb according to a content-based
criterion. Moreover, Delicious members can also add contacts, thus setting up a social network. In November 2008, Delicious
claimed to have 5.3 million registered users and 180 million bookmarked URLs.8 As such, it provides a huge dataset which fits our
purposes. More precisely, Delicious tags and contacts correspond to the Web metadata and users' relationships contained in the
data layer of our framework (see Fig. 1). Therefore, it is possible to build on them the remaining services of the data layer, as well
as the rule and application layers. To achieve this, we have built a social networking system, referred to as WPF Social Network
(WSN, for short), which runs on top of the Delicious dataset. Besides implementing the social network and rating services, as well
as those services concerning the rule and application layers, the WSN can be used to specify the type of relationships existing
among its members, whereas Delicious supports just a generic relationship type.

Fig. 8 provides a graphical representation of how our framework has been built upon Delicious.
In the following sections, we provide the details about the WSN system architecture and implementation, and illustrate the

experiments that we have carried out in order to verify the feasibility of our approach.

6.1. System architecture

The main component of our prototype, depicted in Fig. 9, is the WSN Management System (WMS), which is in charge of
storing and managing data collected by the WSN, and to enforce trust policies and user preferences.

The WMS is a typical social networking service, providing a Web User Interface through which users can register and log in into
the system. Such interface allows members to create a profile, establish relationships, rate existing labels, specify trust policies and
user preferences. It can be used also to create labels which will be transparently uploaded to Delicious by using its API.9

The WMS is complemented by a WMS User Agent, which is implemented as a browser extension for Firefox. Such application
has been developed since the actions specified in the user preferences must be necessarily carried out on the accessed resource by
a client-side agent, integrated into the user's browser.

Moreover, it provides direct access to WMS services, like the Semantic, and Trust-aware Search Engine, described later in this
section. The WMS also includes a set of bases which correspond to the data managed by the different layers in Fig. 1. Each of such
bases is accessible through an API, which can be used to query and manage the stored data.

Thanks to them, it is possible to give access to WMS data to all authorized users and agents, even those external to the WMS.
For this purpose, such APIs support requests in multiple protocols, namely, REST [40], SOAP [41], and SPARQL [42].

To retrieve bookmarks and contacts fromDelicious, we have designed twomodules, namely the Label and Relationship Extractors,
which store the retrieved data into the label and relationship bases, respectively. We have decided to adopt this solution instead of
retrieving at runtime data from Delicious because this grants a better performance, as it will be explained in Section 6.1.2.

8 Source: “delicious blog” (http://blog.delicious.com/blog/2008/11/delicious-is-5.html).
9 The specification of the Delicious API is available at: http://delicious.com/help/api. Note that Delicious, while owned by Yahoo!, also supported anOAuth API,which

has been dismissed in April 2011 after the service has been acquired by AVOS Systems. At the time of writing this paper, the Delicious OAuth API was not yet restored.

75B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

http://delicious.com
http://delicious.com
http://digg.com
http://www.reddit.com
http://www.stumbleupon.com
http://blog.delicious.com/blog/2008/11/delicious-is-5.html
http://delicious.com/help/api

All the queries performed on the WMS bases are managed by the Request Manager.
The Request Manager is also invoked by the User Preference Engine (UPE), and the Semantic and Trust-aware Search Engine

(STSE), which are the two application layer services we have developed. The UPE is in charge of enforcing user preferences upon
submission of an access request to aWeb resource. Once a user preference has been evaluated, theUPE returns the quality assessment
of the requested resource, aswell as the set of options, if any, specified in the preference (e.g., whether to block or not the access to the
resource). This information is returned to the agent installed by the user submitting the access request (i.e., in his/her browser). The
STSE is a service which theWMSmakes available to any user and agent, even those outside theWMS itself. Basically, the STSE works
as a search engine, with the only difference that it returns search results by queryingWebmetadata stored by theWMS. Each search
result is associated with the corresponding aggregated tags and ratings, as well as the computed trust value. Typically, the STSE
returns search results only based on the data stored into the Label and Rating Bases. However, if the requesting user is recognized as a
member of the WMS, he/she can decide whether they can be evaluated also with respect to the existing trust policies and user
preferences. Search results are returned by default in RDF, but they can be converted into other formats by applying specific XSL
transformations (XSLTs) [43]. At the moment, XSLTs have been built to return search results in (X)HTML, RSS, and Atom formats.

6.1.1. The delicious dataset
As mentioned earlier in this section, Delicious provides a dataset consisting of two types of information: a set of bookmarks,

possibly associated with a set of tags, and the list of contacts of Delicious members. By contrast, Delicious does not support ratings
or anything similar to our trust policies and user preferences, whereas the profile of a Delicious member consists only of his/her
username, real name, email address, and, possibly, the URL of his/her homepage.

The Delicious dataset can be accessed through: the Delicious Web site and the Delicious API. For our purposes, it would be
preferable to use the API, since it returns exactly the requested information, in a format which is not supposed to vary over time,
and which can be extracted with a minimal processing overhead. However, the Delicious API has some disadvantages. First, it is
still under development and, as stated in its specification, it can be frequently subject to changes. Second, such API does not
provide access to all the data available from the Delicious Web site. Actually, the API is meant to give Delicious members the
ability of building applications accessing their profiles. Consequently, the API supports not only just a subset of the services
provided by Delicious, but the supported services are not flexible as on the Delicious Web site. A relevant example is the number
of bookmarks that can be retrieved. The API allows you to retrieve at most the 100 most recent bookmarks about a URL, whereas
through the Delicious Web site it is possible to access all the existing bookmarks about a URL (see Section 6.1.2 for more details).

Besides this, there exists another issue concerning the protection of private data. In order to use the API, the user must provide
his/her username and password. This means that, in order to exploit the API, the WMS has to be set up with usernames and
passwords of all WMS members, which is definitely a strong assumption. For all these reasons, we decided to retrieve the
Delicious dataset directly from the Delicious Web site.

Fig. 8. Integrating Delicious with the proposed personalization framework.

76 B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

6.1.2. Implementation details and issues
TheWMS is built on top of the PostgreSQLDBMS, by using the PHP language. Although the data collected by theWMSare served in

RDF, we have decided to use a relational DBMS instead of an RDF-based one (as Sesame), because at the moment the former still has
better performance. The PostgreSQL DBMS has been used not only to manage the WMS's bases, but also to perform the most costly
operations, such as labels' and ratings' aggregation, and the enforcement of trust policies and user preferences.We have adopted this
strategy, instead of developing specific applications, since we have to process a great amount of data, and a DBMS grants better
efficiency for such kind of tasks. By contrast, the PHP language has been usedmainly to develop the APIs of theWMS, the modules in
charge of returning data in different formats, and those in charge of extracting the Delicious dataset.

Themain issuewe had to dealwith has been how to extract the Delicious dataset. For our purposes, it would have been preferable
to extract the dataset at runtime, in order to have the most updated set of tags and contacts. However, this has major drawbacks in
terms of performance. This is only partially related to the time required to extract the dataset from the Delicious website, store it into
the WMS, and process it. In fact, the major drawback in terms of performance is determined by the time required by the Delicious
Web site to return the results of a query, and on how results are displayed. In the experiments we have carried out, Delicious requires
an average of ~1.6 s to respond to a request, whereas it returns amaximum of 100 search results per page. Thismeans that, ifN is the
number of bookmarks applying to a resource, extracting them from the Delicious website requires an average of 1:6⋅ N

100s. Moreover,
this implies that the procedure in charge of extracting the relevant information must be performed recursively on each of the pages.

For these reasons, we have decided to avoid retrieving the Delicious's dataset for each request, and to implement synchronization
strategies, according to which the set of tags concerning a resource is periodically updated offline. The synchronization depends on a
set of parameters, including the number of bookmarks associatedwith the resource, how frequently the resource is accessed byWMS
members, and how old are the retrieved tags.

Fig. 9. Architecture of the Delicious prototype.

77B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

6.2. Experiments

In order to verify the feasibility of our approach, we have carried out a set of experiments to measure system performance
when enforcing user preferences. In this section, we first analyze time complexity, and then illustrate the results of the
experiments we have conducted.

As illustrated in Section 5.3, user preference enforcement requires the evaluation of labels and ratings, filtered based on the
constraints specified by the applicable trust policies. Let us then first consider the complexity of trust policy enforcement. Trust
policy enforcement is the most costly task, since it requires one to evaluate the whole information in the system. More precisely,
trustworthy members are selected by evaluating the users attributes (attribute constraints) or their relationships (relationship
constraints), whereas retrieving the relevant descriptors, and the corresponding trust values and distribution requires the
evaluation of the available Web metadata and the corresponding ratings.

According to our implementation strategies (Section 6.1.2), we have used a relational database to store all the system information.
Therefore, users' attributes, users' relationships, resource descriptors, and descriptor ratings are stored into specific tables. As a
consequence, the retrieval of this information is performed by SQL queries, which require in the worst case O(n) time complexity,
where n denotes the number of rows of the table the query is performed on. Since the tables storing users' attributes, resource
descriptors, and descriptor ratings use a different row to encode information of each single user attribute, resource descriptor, and
descriptor rating, the total number of rows in such tables is obviously given, respectively, by the sum of the number of attributes,
descriptors, and ratings of each user. By contrast, users' relationships correspond to the total number of shortest paths connecting
WPF users, computed by performing a breadth-first search (BFS) on the social network graph. The BFS is performed by querying the
table storing the direct contacts ofWPFmembers, that is, storing the number of edges of the graph, i.e. ESNj j. As such, the complexity is
given by ESNj j, whose estimation is difficult to have since the number of contacts per usermay greatly vary. However, we can estimate
the worst case, that is, when each user is connected with all the others: in such a scenario, we have ESNj j ¼ MSNj j � MSNj j−1ð Þ.
Moreover, since the edges of the social network graph are labeledwith relationship types, the same pair of users can be connected by
multiple edges. Consequently, we can use as an upper bound ESNj j ¼ MSNj j � MSNj j−1ð Þ � RTSNj j.

In order to evaluate user preferences, it is necessary to compute descriptors' distribution and trust values (see Definition 2).
The former computation is performed by a query that, for each URL and associated descriptor, returns the number of occurrences
of such descriptor on that URL, divided by the total number of descriptors specified for that URL. Consequently, such task requires
evaluating a number of rows equal to the total number of descriptors and ratings in the system.

As far as trust computation is concerned, its complexity depends on the adopted algorithm (see [39]). For testing purposes, the
descriptors' trust values are computed as follows:

1. let RD be a set of descriptors, specified by a given WPF user m, and associated with a given resource rsc;
2. for each rd∈RD, the sum of the ratings on rd is divided by the total number of users who created a rating for any of the

descriptors applying to rsc, thus obtaining a preliminary trust value trd,rsc;
3. the reputation score rm,rsc of userm for resource rsc is computed as the average of the preliminary trust values of the descriptors

in RD specified by m;
4. the final trust value of rd is given by the product of trd,rsc and rm,rsc.

As far as step 2 is concerned, we have used such strategy in order to give existing ratings a weight whichmay vary depending on
howmany of the users who have rated descriptors applying to rsc have also rated descriptor rd. Suchweightwwill then be equal to 1
when all the userswhohave rated descriptors applying to rsc have also rated descriptor rd;0bwb1, otherwise. The obtainedweighed
rating value of rd is a sort of global trust value of rd, i.e., a trust value which reflects the global opinion of the community. However,
such value can be refined by taking into account also howmuch trustworthy are the users who have labeled resource rsc, that is, by
taking into account what, in this context, we call the reputation of a user. This is achieved in two steps. First (step 2) we compute the
reputation score of a given user m, which depends on how much the other users agree on the labels he/she specified. Then (step 2)
such reputation score is used to weigh the trust value obtained in step 2, thus obtaining the final trust value of rd.

In order to have an estimation of the time complexity in real world scenarios, we have performed several experiments to
compute the time required by trust policy enforcement, by varying the number of selected users, descriptors, and ratings.

The experiments were conducted on a 3.60 GHz Dual-Core Intel Xeon GNU/Linux machine, with 4 GB RAM. We would like to
note that this hardware configuration is far from being suitable for a typical Web community, which might collect data from
millions of users, and thus this must be taken into account in evaluating the results of our experiments.

As far as trustworthy users are concerned, we have considered two different cases, depending on whether, in a trust policy,
they are denoted by attributes or relationship constraints. In order to test system performance when trustworthy users are
denoted by attribute constraints, we have varied the total number of users from 1000 to 10,000, and the average number of
attributes per user from 10 to 20. Fig. 10 reports the results of our experiments for a total number of users equal to 1000, 5000,
and 10,000, and by varying the percentage of trustworthy users selected by a trust policy. As can be seen, response times scale
linearly as expected with the total number of rows in the table storing users' profiles.

As we have illustrated earlier in this section, relationship constraints require performing a BFS on the network graph. We have
consequently carried out several experiments on the BFS by varying the graph order and degree (i.e., the total number of users
and the average number of contacts per user, respectively).

Note that, in the experiments, we have considered the worst case — i.e., when to retrieve trustworthy users denoted by
relationship constraints in the trust policy requires exploring the whole network graph.

78 B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

Fig. 11 summarizes the results of our experiments considering a total number of users ranging from 1000 to 6000 and
a number of contacts per user ranging from 10 to 100. As can been seen by comparing the response times reported in Figs. 10
and 11, enforcing relationship constraints is far less efficient than evaluating attribute constraints.

Note, however, that the worst case considered in our experiments on relationship constraints is not likely in a real world
scenario. In fact, social networks are topologically similar to small world networks, which are characterized by a small diameter
that grows logarithmically with the size of the graph [44–46]. Moreover, the constraints on the relationship type and depth are
used to limit the BFS on a subgraph of the social network, thus reducing the number of nodes and edges to be explored.

The evaluation of attribute and relationship constraints affects, however, only part of response times. In fact, after having
identified the set of trustworthy users denoted by a trust policy TP, the corresponding set of descriptors and ratings is retrieved
and aggregated in order to compute their trust value.

(a) Total number of users: 1,000

(b) Total number of users: 5,000

(c) Total number of users: 10,000

Fig. 10. Time required to select the users denoted by attribute constraints, considering a total number of users equal to 1,000 (a), 5,000 (b), and 10,000 (c).

79B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

Fig. 12 shows the results of our experiments about the time required to retrieve the set of descriptors and ratings specified by
the trustworthy users denoted by a trust policy TP (black area), by varying the number of descriptors and ratings from 1000 to
100,000. Moreover, Fig. 12 shows the time required to compute the trust value and distribution of the selected descriptors (gray
area). The reason why we do not distinguish descriptors from ratings in the figure is due to the fact that, as mentioned earlier in
this section, we have used the same table to store both descriptors and ratings.

Finally, Fig. 13 merges the results of the experiments reported in the previous figures, by showing the overall time required to
evaluate a trust policy, and assuming 10 descriptors and ratings for each of the selected trustworthy users, over a total of 1000
users. More precisely, Fig. 13(a) concerns a trust policy denoting users through attribute constraints, whereas Fig. 13(b) concerns
a trust policy denoting users through relationship constraints. As can be seen, in both cases, the maximum response time is
around 0.1 s.

By taking into account the hardware configuration we have used for our experiments, which is far from being powerful
enough for a typical Web community, we think that the results we have obtained are satisfactory and demonstrate the feasibility
of our approach.

6.3. Usability

Traditionally, system personalization in enforced by inferring users' preferences from their data and behaviors. In such a
scenario, testing system effectiveness means verifying whether and how much the system is able to guess users' interests, tastes,
opinions, etc.

The framework proposed in our paper adopts a different approach, since users' preferences are not inferred by the system, but
explicitly specified by end users. Consequently, precision and recall here measure whether and how much a given preference is
effective. Basically, this means verifying whether the specified preference and its enforcement reflects the users' intentions and
expectations. This issue is very similar to the one concerning the usability of policy specification and enforcement, typical of data
security — in particular, access control (see, e.g., [47]). In our specific case, the factors which may affect preference effectiveness
can be summarized as follows:

Fig. 12. Time required to select the set of descriptors and ratings specified by the users denoted by a trust policy TP, and to compute descriptors' trust value and distribution.

10
0.01

0.10

1.00

20 30 40 50 60 70 80 90 100

number of contacts per user

se
co

n
d

s

Fig. 11. Time required to select the set of users denoted by relationship constraints. Note that y-axis uses a logarithmic scale.

80 B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

• Preference specification usability. This is strictly related to the design of the preference specification interface; besides being
intuitive, it must help the user in specifying a preference reflecting as much as possible his/her intentions. Moreover, it must
help the user in understanding the effects of a policy specification. For instance, if users are allowed to specify conflicting
preferences, as in our framework, it is important to make users aware of the consequences of their decisions, and to verify
whether this is what they actually intended (e.g., a user may unintentionally specify conflicting policies);

• Preference expressiveness. Ideally, preferences should be able to express exactly what the user intends; in the real word, it is
necessary to find a trade-off among usability, expressiveness and efficiency of the enforcement, taking however into account
that, if too much expressive preferences may result in low usability, it is also true that a too low degree of expressiveness may
result in preferences which do not correctly reflect the users' intentions;

Moreover, even though all the requirements listed above are met, it may be often the case that the specified preferences do not
return the expected results. In fact, users may realize that the preferences they specified are either too loose or too restrictive for
their purposes. Also, preferences which have correctly worked until a given moment, may be less effective later on. This may
happen when preferences denote a set of resources whose content has changed during time, but also when a preference denotes a
set of un/trusted users based on their characteristics— i.e., a dynamic group of users whichmay change its overall trustworthiness
depending on the members who join or leave it. It is then necessary to give users the ability of verifying the effectiveness of their
preferences and to revise them, if necessary. Note that revising a preference may mean changing the original one and/or
specifying exceptions to it.

It is worth noting that all the issues discussed above are mainly related to the usability of the system's front end, and they must
be addressed accordingly. However, two issues are also strictly related to the characteristics of the underlying system, namely,
preference expressiveness and update. About the former, it is necessary that the semantics of the preferences supported by the
system is expressive enough to correctly represent users' intentions. About policy updates, the systemmust somehow support the
specification of exceptions to existing preferences which allow users to obtain the intended results. An example of how to support
exceptions is provided by our framework, which allows the specification of conflicting preferences and enforces conflict
resolution criteria.

As we have made clear throughout the paper, our contribution focuses on the technical feasibility of the framework we
propose, in order to demonstrate that it is technically possible to enhance existing social media by providing personalization
features currently not supported, and by exploiting the potential of user-generated content, as social tags are. We do think that it
is equally important to verify whether and how the complexity of our framework can be hidden to end users in order to make it
usable. However, this would require a separate study, which cannot be included in this paper.

Nonetheless, we have tried to obtain a preliminary evaluation about the usability issues of our framework by setting up an
experiment, involving a limited number of users, and testing a given set of features. Our main purpose was to verify whether our
framework actually supports the technical requirements concerning preference expressiveness and update, but we have also
partially verified other usability issues.

In order to carry out the experiment, we have involved 10 undergraduate students of the Computer Science course at the
University of Insubria. We have prepared a testing environment in one of our laboratories, configuring a desktop computer for
each one of the participants.

The test has been carried out on an instance of our system, where the front-end included a preference specification interface
designed specifically for the experiment. As it can be seen in Fig. 14, depicting a screenshot of the preference specification
interface, in the same page are provided both the list of existing preferences, and the preference specification form. If one of the
existing preferences is selected, the same form displays its parameters, and it can be used to update or delete the preference itself.
The different fields in the form correspond to the components of a user preference (see Definition 2, Section 5.2). For the

(a) (b)

Fig. 13. Time required to evaluate a trust policy TP, supposing a total number of users equal to 1000, and considering both the cases when users are denoted by attribute
constraints (a) and relationship constraints (b). The black area denotes the timeneeded to select the set of users satisfying TP, the dark gray area the time required to select the
corresponding set of descriptors and ratings, whereas the light gray area denotes the time required to compute the trust value and distribution of the selected descriptors.

81B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

experiment, we have enabled neither property constraints nor the (all, some,∪) component, and we simplified the specification of
content constraint. Moreover, the form includes also a field to denote the trusted users. This is meant to incorporate in the same
page also the specification of trust policies, in a transparent way. Finally, when specifying content constraints, the user can either
type a tag, search it among the existing ones, or simply click on the relevant item in the tag cloud. It is also possible to decide
which set of tags should be displayed in the cloud (most popular ones, tags specified by contacts, my tags).

The experiment has been designed and carried out according to the following phases:

Preparatory phase. From Delicious, we have collected the URLs of 50 resources annotated with the most popular tags, and we
have then partitioned them into 10 groups of 5 resources each. We have then created 10 user accounts on Delicious, and
established mutual relationships of type ‘colleague’ among all them. We have then setup 10 web pages, each one relative to a
single user and listing a single group of resources, along the corresponding links. All these pages were linked from a page
including the numbered list of user.
First phase. Users, after entering the testing environment, have been asked to access their page, log in into the system, and
create bookmarks for the 5 resources assigned to them. When creating a bookmark, users were asked to choose from a
minimum of 2 to a maximum of 5 tags among those suggested by Delicious.
Second phase. We have collected the set of tags chosen by the users, and we have then selected those more frequently
specified. Then, we have asked the users to access the preference specification page, and to create 4 preferences each using a
single tag among those selected before. Users have then been asked to access the resources bookmarked by the other users,
check the response given by the system, based on the specified preferences and on the content of the page, and then rate such
response to denote whether and how much it had met the expected results.
Third phase. We have then collected the evaluations carried out by the users about the effectiveness of the preferences they
have specified. Users have then been asked to revise the specified preferences, if necessary, in order to obtain the expected
result. They have been given the options to revise the preference specification itself and/or to create exceptions. Users have
then re-tested the updated preferences.
Fourth phase. Users were given a questionnaire, and asked to rate the included questions by choosing one of the following
options: “no”, “neutral”, “yes”, “don't know”, and to motivate them. The included questions were the following:
• Would you use this application in your everyday life?
• Have you find it useful?
• Have you found it easy to specify preferences?
• Is the logic underlying preference enforcement clear?

We have then collected the questionnaires and then started a discussion with the users by reviewing their answers.
The results of such discussion can be summarized as follows:

• The majority of the users were not sure they would have used the application regularly in their everyday life, but they all
shared the view that the application would be useful for some contents. Also, most of the users said that they have been
positively impressed by the accurate evaluation of the quality of some of the resources they accessed.

Fig. 14. A screenshot of the preference specification interface.

82 B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

• Nearly all the users said the preference specification interface needs improvements, to be more intuitive, and to reduce as
much as possible the time and effort needed to specify a preference. A suggestion was to provide preference templates,
which can then be customized by user by changing only the relevant settings.

• None of the users said that he/she was not able to specify the intended preferences — i.e., the preference semantics was
found to be expressive enough for their purposes.

• Most of the users found the preference revision mechanism helpful to correct the unexpected results. However, they also
said that when specifying exceptions more complex than those concerning specific websites, the expected result was often
different from the expected one.

• Most of the users said that the application did not significantly increase the response delay of the overall system.

From the outcome of this experiment, we can say that the problems concerning effectiveness are mainly related to usability
issues, whereas we had, in general, a positive feedback on the efficiency of the system and the flexibility of our preferences. Such
results are far from being conclusive, since more accurate feedback requires setting up an experiment involving a higher number
of users with heterogeneous profiles, and testing all the features in the system. Anyway, they already give important information
about our framework and its front end, and also provide a first set of suggestions on how to improve usability.

7. Conclusions and future work

In this paper, we have presented a multi-layer framework, based on Semantic Web technologies, able to enhance the services
provided by today social tag-based applications. To this purpose, the framework exploits social network facilities and their ability to
support collaborative labeling and rating. Key features of our framework are the support for customizable trust policies and user
preferences. To test the developed framework, we have implemented two distinct case studies, both based on the Delicious dataset,
where the services provided by the framework are used for personalized Web search and Web access personalization.

Besides integrating additional datasets from further social tagging communities, future work will include, on one side,
investigating optimization techniques and implementation solutions, different from the ones we have adopted, in order to
improve system performance and scalability, and, on the other side, studying how our framework can be extended in order to
apply to other application domains. Another important research issue concerns the design principles to be used in the application
layer in order to make end users able to effectively and transparently exploit the services supported by our framework. A further
relevant future work will be devoted to address the usability issues of the proposed framework. In particular, we believe that the
multi-layer framework could be greatly improved by providing users a set of tools in support of labels, trust policies and user
preferences specification. However, we are aware that a usable GUI could not be enough, since the proposed system may suffer
problems similar to those encountered in the specification of privacy settings in social networks. In this context, many empirical
studies (see, e.g., [48]) have shown that average users have difficulties in understanding also the simple privacy settings provided
by today's online social networks. To overcome this problem, a promising trend is to exploit data mining techniques to infer the
best privacy preferences for social network users, on the basis of the available social network data [49]. As future work, we intend
to exploit similar techniques to infer trust policies and users preferences.

Appendix A. Algorithms for trust policies and user preferences enforcement

User preferences are enforced by function ENFUP, illustrated by Algorithm 1. For simplicity, in the algorithm, it is described
only the case when the PN and T components of trust policies (i.e., the set of properties and topics, respectively), and the PC and
CC components of user preferences (i.e., the set of property and content constraints, respectively) are different from the empty
set. The algorithm can be easily extended to relax such assumption. Here and in what follows, given a tuple t, we denote by t.comp
the value of the component comp of tuple t. Therefore, we denote by UP.author, UP.uriPattern, UP.PC, UP.CC, UP.settings, UP.Q, and
UP.options the different components of a user preference UP.

Function ENFUP takes as arguments the set UP of m's user preferences, the set UTP of m's trust policies, the set OTP of
owner-defined policies associated with rsc, the set LB of labels applying to rsc, and set RT of the corresponding ratings. It returns a
set of quality assessments, resulting from the analysis of the labels/ratings associated with rsc, on the basis of the input user
preferences and trust policies. As first step (lines 2–5), function ENFUP sets variables Assessments and Options to∅, and performs a
first selection of the user preferences to be considered, based on the URI pattern constraint. The resulting user preferences are
collected into variable Prefs. Then, the function selects the set LB∈LB of not expired labels.

Then, (lines 6–10), for each preference UP∈Prefs, the labels in LB are processed in order to extract only the descriptors relevant
for UP. More precisely, given a label LB∈LB, the function stores into variable PDes the descriptors in LB concerning properties on
which the resource property constraints in UP are specified. Whereas those descriptors concerning the topics on which the
resource content constraints in UP are specified are stored into variable CDes.

Then, the function analyzes the settings component of the considered user preference (lines 11–23). First (lines 12–14) it
verifies whether the currently considered user preference requires that user-defined policies must be taken into account, and, in
such a case, it invokes function ENFTP (see Algorithm 2). Function ENFTP takes as arguments a set of trust policies (in this case
UTP), the sets of descriptors PDes and CDes, and the set RT of ratings, and returns the set of descriptors and ratings satisfying at
least one of the policies in UTP.

83B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

A similar procedure is performed on owner-defined policies, if this is required by the currently considered user preference
(lines 15–23). The set of owner-defined policies to be evaluated is stored into variable OTP which, if the checkOTP flag in the
current user preference is set to some, will correspond to the set of policies selected by the user (line 18); otherwise, OTP
corresponds to all the owner-defined policies applying to the considered resource (line 20). Variable OTP is then passed as
argument to function ENFTP, which returns the set of descriptors and ratings satisfying at least one of the policies in OTP . In the
next phase (lines 24-27), the set of descriptors and ratings satisfying user- and owner-defined trust policies are combined
according to the comb flag in the considered user preference.

The subsequent part of the algorithm (lines 28–31) computes the trust value of each property and content descriptor in PDes
and CDes.

Then (lines 32–49), the descriptors in PDes and CDes matching the property names and topics in the currently considered user
preference are processed. Property descriptors in PDes are evaluated against the dc constraints expressed in the currently considered user
preference (lines 34–39). In contrast, content descriptors in CDes are analyzed in order to compute the average relevance of a given topic
and then to compare it with the content constraints specified in the currently considered user preference (lines 43–48).

Algorithm 1. User preference enforcement

84 B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

Algorithm 2. Trust policy enforcement

Therefore, the algorithm iteratively considers each constraint (pc, tc, dc) in UP.PC, and selects the descriptors concerning the
property in pc, that satisfy tc. Such descriptors are stored into variable ValidPD (line 34). Then, the algorithm verifies whether the
selected descriptors satisfy the distribution constraint dc (lines 35–39). If this is the case, it goes on to perform the same
verification with the next constraint in UP.PC; otherwise, it sets variable check to 0, and terminates the loop on the constraints in
UP.PC.

If all the constraints in UP.PC are satisfied (line 41), the algorithm verifies whether the content constraints in UP.CC are satisfied
or not (lines 42–49). The algorithm iteratively considers each constraint (cc, tc) in UP.CC, and selects those descriptors concerning
the topic t contained into cc, that satisfy the trust constraint tc. Such descriptors are stored into variable ValidCD (line 43). Then
(lines 44–48), the algorithm computes the average relevance of topic t, and verifies whether it satisfies cc. If this is the case, it goes
on to perform the same verification with the next constraint in UP.CC; otherwise, it sets variable check to 0, and terminates the
loop on the constraints in UP.CC. If all the constraints in UP.CC are satisfied, the quality assessment specified in UP is added to
variable Assessments and UP's options, if any, are added to variable Options (lines 50–53).

When all the user preferences have been analyzed, the function returns the quality assessments and the options included in
the satisfied user preferences (line 56).

References

[1] S.A. Golder, B.A. Huberman, The structure of collaborative tagging systems, Computing Research Repository abs/cs/0508082. URL, http://arxiv.org/abs/cs/
0508082, 2005.

[2] J. Voß, Tagging, Folksonomy & Co - Renaissance of Manual Indexing?, Computing Research Repository abs/cs/0508082. URL, http://arxiv.org/abs/cs/
0701072, 2007.

[3] G. Adomavicius, A. Tuzhilin, Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions, IEEE
Transactions on Knowledge and Data Engineering 17 (6) (2005) 734–749, http://dx.doi.org/10.1109/TKDE.2005.99.

[4] P. Heymann, D. Ramage, H. Garcia-Molina, Social tag prediction, In: SIGIR 2008, ACM Press, 2008, pp. 531–538, http://dx.doi.org/10.1145/1390334.1390425.
[5] E. Frías-Martinez, M. Cebrián, A. Jaimes, A study on the granularity of user modeling for tag prediction, In: IEEE/WIC/ACM WIIAT 2008, IEEE CS, 2008,

pp. 828–831, http://dx.doi.org/10.1109/WIIAT.2008.67.
[6] P. Chirita, S. Costache, S. Handschuh, W. Nejdl, P-TAG: Large scale automatic generation of personalized annotation tags for the Web, In: WWW 2007, IEEE

CS, 2007, pp. 845–854, http://dx.doi.org/10.1145/1242572.1242686.
[7] C.S. Firan, W. Nejdl, R. Paiu, The benefit of using tag-based profiles, In: LA-WEB 2007, IEEE CS, 2007, pp. 32–41, http://dx.doi.org/10.1109/LA-WEB.2007.24.
[8] Z. Yun, F. Boqin, Tag-based user modeling using formal concept analysis, In: CIT 2008, IEEE CS, 2008, pp. 485–490, http://dx.doi.org/10.1109/CIT.

2008.4594723.
[9] A. Shepitsen, J. Gemmell, B. Mobasher, R. Burke, Personalized recommendation in social tagging systems using hierarchical clustering, In: RecSys 2008, ACM

Press, 2008, pp. 259–266, http://dx.doi.org/10.1145/1454008.1454048.
[10] J. Wang, M. Clements, J. Yang, A.P. de Vries, M.J. Reinders, Personalization of tagging systems, Information Processing and Management 46 (1) (2010) 58–70,

http://dx.doi.org/10.1016/j.ipm.2009.06.002.
[11] E. Bertino, C. Dai, M. Kantarcioglu, The challenge of assuring data trustworthiness, In: DASFAA 2009, Vol. 5463 of LNCS, Springer, 2009, pp. 22–33,

http://dx.doi.org/10.1007/978-3-642-00887-0_2.
[12] H.L. Kim, A. Passant, J.G. Breslin, S. Scerri, S. Decker, Review and alignment of tag ontologies for semantically-linked data in collaborative tagging spaces, In:

ICSC 2008, IEEE CS, 2008, pp. 315–322, http://dx.doi.org/10.1109/ICSC.2008.79.
[13] B. Carminati, E. Ferrari, A. Perego, Combining social networks and Semantic Web technologies for personalizing Web access, In: CollaborateCom 2008.

Revised Selected Papers, Vol. 10 of LNICST, Springer, 2009, pp. 126–144, http://dx.doi.org/10.1007/978-3-642-03354-4_11.
[14] S. Staab, Emergent semantics, IEEE Intelligent Systems 17 (1) (2002) 78–86, http://dx.doi.org/10.1109/5254.988491.
[15] X. Wu, L. Zhang, Y. Yu, Exploring social annotations for the Semantic Web, In: WWW 2006, ACM Press, 2006, pp. 417–426, http://dx.doi.org/10.1145/

1135777.1135839.
[16] P. Mika, Ontologies are us: a unified model of social networks and semantics, Journal of Web Semantics 5 (1) (2007) 5–15, http://dx.doi.org/10.1016/

j.websem.2006.11.002.
[17] J. He, Y. Zhang, G. Huang, J. Cao, A smart Web service based on the context of things, ACM Transactions on Internet Technology 11 (3) (2012) 13:1–13:23,

http://dx.doi.org/10.1145/2078316.2078321.
[18] J. Yu, Q.Z. Sheng, J. Han, Y. Wu, C. Liu, A semantically enhanced service repository for user-centric service discovery and management, Data & Knowledge

Engineering 72 (2012) 202–218, http://dx.doi.org/10.1016/j.datak.2011.10.005.

85B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

http://arxiv.org/abs/cs/0508082
http://arxiv.org/abs/cs/0508082
http://arxiv.org/abs/cs/0701072
http://arxiv.org/abs/cs/0701072
http://dx.doi.org/10.1109/TKDE.2005.99
http://dx.doi.org/10.1145/1390334.1390425
http://dx.doi.org/10.1109/WIIAT.2008.67
http://dx.doi.org/10.1145/1242572.1242686
http://dx.doi.org/10.1109/LA-WEB.2007.24
http://dx.doi.org/10.1109/CIT.2008.4594723
http://dx.doi.org/10.1109/CIT.2008.4594723
http://dx.doi.org/10.1145/1454008.1454048
http://dx.doi.org/10.1016/j.ipm.2009.06.002
http://dx.doi.org/10.1007/978-3-642-00887-0_2
http://dx.doi.org/10.1109/ICSC.2008.79
http://dx.doi.org/10.1007/978-3-642-03354-4_11
http://dx.doi.org/10.1109/5254.988491
http://dx.doi.org/10.1145/1135777.1135839
http://dx.doi.org/10.1145/1135777.1135839
http://dx.doi.org/10.1016/j.websem.2006.11.002
http://dx.doi.org/10.1016/j.websem.2006.11.002
http://dx.doi.org/10.1145/2078316.2078321
http://dx.doi.org/10.1016/j.datak.2011.10.005

[19] E. Kontopoulos, N. Bassiliades, G. Antoniou, Deploying defeasible logic rule bases for the Semantic Web, Data & Knowledge Engineering 66 (1) (2008)
116–146, http://dx.doi.org/10.1016/j.datak.2008.02.005.

[20] A. Uszok, J.M. Bradshaw, M. Johnson, R. Jeffers, A. Tate, J. Dalton, S. Aitken, KAoS policy management for semantic Web services, IEEE Intelligent Systems 19
(4) (2004) 32–41, http://dx.doi.org/10.1109/MIS.2004.31.

[21] L. Kagal, M. Paolucci, N. Srinivasan, G. Denker, T.W. Finin, K.P. Sycara, Authorization and privacy for semantic Web services, IEEE Intelligent Systems 19 (4)
(2004) 50–56, http://dx.doi.org/10.1109/MIS.2004.23.

[22] N.Damianou,N.Dulay, E. Lupu,M. Sloman, The Ponder policy specification language, In: POLICY2001, Vol. 1995of LNCS, Springer, 2001, pp. 18–38, http://dx.doi.org/10.
1007/3-540-44569-2_2.

[23] K.P. Twidle, E. Lupu, N. Dulay, M. Sloman, Ponder2 — a policy environment for autonomous pervasive systems, In: POLICY 2008, IEEE CS, 2008, pp. 245–246,
http://dx.doi.org/10.1109/POLICY.2008.10.

[24] P.A. Bonatti, D. Olmedilla, Driving and monitoring provisional trust negotiation with metapolicies, In: POLICY 2005, IEEE CS, 2005, pp. 14–23, http://dx.doi.org/10.
1109/POLICY.2005.13.

[25] P.A. Bonatti, D. Olmedilla, J. Peer, Advanced policy explanations on the Web, In: ECAI 2006, Vol. 141 of FAIA, IOS Press, 2006, pp. 200–204, URL http://www.
booksonline.iospress.nl/Content/View.aspx?piid=1675.

[26] C. Bizer, R. Cyganiak, Quality-driven information filtering using the WIQA policy framework, Journal of Web Semantics 7 (1) (2009) 1–10, http://dx.doi.org/10.
1016/j.websem.2008.02.005.

[27] P. Archer, K. Smith, A. Perego, Protocol for Web description resources (POWDER): description resources, W3C Recommendation, World Wide Web
Consortium. URL, http://www.w3.org/TR/powder-dr/ Sep. 2009.

[28] G. Klyne, J.J. Carroll, B. McBride, Resource description framework (RDF): concepts and abstract syntax, W3C Recommendation, World Wide Web
Consortium. URL, http://www.w3.org/TR/rdf-concepts/ Feb. 2004.

[29] P.F. Patel-Schneider, P. Hayes, I. Horrocks, OWL Web ontology language: semantics and abstract syntax, W3C Recommendation, World Wide Web
Consortium. URL, http://www.w3.org/TR/owl-semantics/ Feb. 2004.

[30] T. Berners-Lee, D. Connolly, L. Kagal, Y. Scharf, J. Hendler, N3Logic: a logical framework for the World Wide Web, Theory and Practice of Logic Programming
8 (3) (2008) 249–269, http://dx.doi.org/10.1017/S1471068407003213.

[31] D. Brickley, L. Miller, FOAF vocabulary specification v0.91, Namespace Document. URL, http://xmlns.com/foaf/spec/ Nov. 2007.
[32] I. Davis, E. Vitiello Jr., RELATIONSHIP: a vocabulary for describing relationships between people, Namespace Document. URL, http://vocab.org/relationship/

May 2009.
[33] J.J. Carroll, C. Bizer, P.J. Hayes, P. Stickler, Named graphs, Journal of Web Semantics 3 (4) (2005) 247–267, http://dx.doi.org/10.1016/j.websem.2005.09.001.
[34] S. Konstantopoulos, P. Archer, Protocol for Web description resources (POWDER): formal semantics, W3C Recommendation, World Wide Web Consortium.

URL, http://www.w3.org/TR/powder-formal/ Sep. 2009.
[35] P. Archer, A. Perego, K. Smith, Protocol for Web description resources (POWDER): grouping of resources, W3C Recommendation, World Wide Web

Consortium. URL, http://www.w3.org/TR/powder-grouping/ Sep. 2009.
[36] S.D. Kamvar, M.T. Schlosser, H. Garcia-Molina, The Eigentrust algorithm for reputation management in P2P networks, In: WWW 2003, ACM Press, 2003,

pp. 640–651, http://dx.doi.org/10.1145/775152.775242.
[37] L. Xiong, L. Liu, PeerTrust: supporting reputation-based trust for peer-to-peer electronic communities, IEEE Transactions on Knowledge and Data

Engineering 16 (7) (2004) 843–857, http://dx.doi.org/10.1109/TKDE.2004.1318566.
[38] S. Sen, S.K. Lam, A.M. Rashid, D. Cosley, D. Frankowski, J. Osterhouse, F.M. Harper, J. Riedl, Tagging, communities, vocabulary, evolution, In: CSCW 2006, ACM

Press, 2006, pp. 181–190, http://dx.doi.org/10.1145/1180875.1180904.
[39] A. Jøsang, R. Ismail, C. Boyd, A survey of trust and reputation systems for online service provision, Decision Support Systems 43 (2) (2007) 618–644,

http://dx.doi.org/10.1016/j.dss.2005.05.019.
[40] R. T. Fielding, Architectural styles and the design of network-based software architectures, Ph.D. thesis, University of California, Irvine (2000). URL http://

www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation_2up.pdf
[41] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H.F. Nielsen, A. Karmarkar, Y. Lafon, SOAP version 1.2 part 1: messaging framework (second edition),

W3C Recommendation, World Wide Web Consortium. URL, http://www.w3.org/TR/soap12-part1/ Apr. 2007.
[42] K.G. Clark, L. Feigenbaum, E. Torres, SPARQL protocol for RDF, W3C Recommendation, World Wide Web Consortium. URL, http://www.w3.org/TR/rdf-

sparql-protocol/ Jan. 2008.
[43] J. Clark, XSL transformations (XSLT) – version 1.0, W3C Recommendation, World Wide Web Consortium. URL, http://www.w3.org/TR/xslt Nov. 1999.
[44] D.J. Watts, Small Worlds: The Dynamics of Networks between Order and Randomness, Princeton University Press, Princeton, NJ, 2003.
[45] J. Kleinberg, The small-world phenomenon: an algorithmic perspective, In: STOC 2000, ACM Press, 2000, pp. 163–170, http://dx.doi.org/10.1145/335305.335325.
[46] C. Martel, V. Nguyen, Analyzing Kleinberg's (and other) small-world models, In: PODC 2004, ACM Press, 2004, pp. 179–188, http://dx.doi.org/10.1145/

1011767.1011794.
[47] M. Hart, R. Johnson, A. Stent, More content — less control: access control in the Web 2.0, In: W2SP 2007, 2007, URL http://seclab.cs.rice.edu/w2sp/2007/

papers/paper-193-z6706.pdf.
[48] K. Strater, H. Richter, Examining privacy and disclosure in a social networking community, In: SOUPS 2007, Vol. 229 of ICPS, ACM Press, 2007, pp. 157–158,

http://dx.doi.org/10.1145/1280680.1280706.
[49] L. Fang, K. LeFevre, Privacy wizards for social networking sites, In: WWW 2010, ACM Press, 2010, pp. 351–360, http://dx.doi.org/10.1145/1772690.1772727.

86 B. Carminati et al. / Data & Knowledge Engineering 79–80 (2012) 62–86

http://dx.doi.org/10.1016/j.datak.2008.02.005
http://dx.doi.org/10.1109/MIS.2004.31
http://dx.doi.org/10.1109/MIS.2004.23
http://dx.doi.org/10.1007/3-540-44569-2_2
http://dx.doi.org/10.1007/3-540-44569-2_2
http://dx.doi.org/10.1109/POLICY.2008.10
http://dx.doi.org/10.1109/POLICY.2005.13
http://dx.doi.org/10.1109/POLICY.2005.13
http://www.booksonline.iospress.nl/Content/View.aspx?piid=1675
http://www.booksonline.iospress.nl/Content/View.aspx?piid=1675
http://dx.doi.org/10.1016/j.websem.2008.02.005
http://dx.doi.org/10.1016/j.websem.2008.02.005
http://www.w3.org/TR/powder-dr/
http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/owl-semantics/
http://dx.doi.org/10.1017/S1471068407003213
http://xmlns.com/foaf/spec/
http://vocab.org/relationship/
http://dx.doi.org/10.1016/j.websem.2005.09.001
http://www.w3.org/TR/powder-formal/
http://www.w3.org/TR/powder-grouping/
http://dx.doi.org/10.1145/775152.775242
http://dx.doi.org/10.1109/TKDE.2004.1318566
http://dx.doi.org/10.1145/1180875.1180904
http://dx.doi.org/10.1016/j.dss.2005.05.019
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation_2up.pdf
http://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation_2up.pdf
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/TR/rdf-sparql-protocol/
http://www.w3.org/TR/rdf-sparql-protocol/
http://www.w3.org/TR/xslt
http://dx.doi.org/10.1145/335305.335325
http://dx.doi.org/10.1145/1011767.1011794
http://dx.doi.org/10.1145/1011767.1011794
http://seclab.cs.rice.edu/w2sp/2007/papers/paper-193-z6706.pdf
http://seclab.cs.rice.edu/w2sp/2007/papers/paper-193-z6706.pdf
http://dx.doi.org/10.1145/1280680.1280706
http://dx.doi.org/10.1145/1772690.1772727

	A multi-layer framework for personalized social tag-based applications
	1. Introduction
	2. Related work
	3. A multi-layer framework for personalized social tag-based applications
	4. Data layer
	4.1. Social network data
	4.2. Web metadata
	4.3. Ratings

	5. Rule layer
	5.1. Trust policies
	5.2. User preferences
	5.3. Trust policies and user preferences enforcement

	6. Application layer: the delicious case studies
	6.1. System architecture
	6.1.1. The delicious dataset
	6.1.2. Implementation details and issues

	6.2. Experiments
	6.3. Usability

	7. Conclusions and future work
	Appendix A. Algorithms for trust policies and user preferences enforcement
	References

