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Abstract

We examine Euclidean distance-preserving data pertorbas a tool for privacy-preserving data
mining. Such perturbations allow many important data ngrafgorithms €.g. hierarchical and
k-means clustering), with only minor modification, to be bggto the perturbed data and pro-
duce exactly the same results as if applied to the origirtal ddowever, the issue of how well the
privacy of the original data is preserved needs carefulstdt engage in this study by assuming
the role of an attacker armed with a small set of known origita¢a tuples (inputs). Little work
has been done examining this kind of attack when the numblen@#/n original tuples is less
than the number of data dimensions. We focus on this impbcgse, develop and rigorously
analyze an attack that utilizesyy numbeiof known original tuples. The approach allows the
attacker to estimate the original data tuple associateuegith perturbed tuple and calculate the
probability that the estimation results in a privacy breadh a real 16-dimensional dataset, we
show that the attacker, with 4 known original tuples, cametie an original unknown tuple with
less than 7% error with probability exceeding 0.8.
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1. Introduction

Owners of sensitive information face a dilemma in many sitms. On the one hand, making
this data available for statistical analysis can violateghivacy of the individuals represented in
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the data or reveal sensitive information about the data avwethe other hand, making the data
available can lead to discoveries that provide societadfitsn For example, mining health-care
data for securitffraud issues may require analyzing clinical records andrmphay transaction
data of many individuals over a certain area. While the sdesd such data may violate privacy
laws, mining it can improve the overall quality of the headtire system. Privacy-Preserving
Data Mining (PPDM) strives to provide a solution to this dilma. It aims to allow useful data
patterns to be extracted without compromising privacy.

Data perturbation represents one common approach in PP, khe original private
dataseX is perturbed and the resulting datagés released for analysis. Perturbation approaches
typically face a “privacyaccuracy” trade-6. On the one hand, perturbation must not allow the
original data records to be adequately recovered. On ther bidnd, it must allow “patterns”
that hold in the original data to be recovered. In many caseseased privacy comes at the
cost of reduced accuracy and vice versa. For example, A¢eaeSrikant|[1] proposed adding
randomly generatedi.d. noise to the dataset. They showed how the distribution frdrichv
the original data arose can be estimated using only the bedwata and the distribution of
the noise. However, Kargupt al. [2] and Huanget al. [3] pointed out how, in many cases,
the noise can be filteredfdeaving a reasonably good estimation of the original daiet{ér
investigated by Guet al. [4]). These results point to the fact that unless the vagaofcthe
additive noise is dticiently large, original data records can be recovered wemably well.
However, this increase in variance reduces the accurabywtiich the original data distribution
can be estimated. This privgegcuracy tradef®is not limited to additive noise; some other
data transformation techniquesfau from a similar problereg.g.k-anonymity [5].

Recently, Euclidean distance-preserving data pertwbdtr thecensus modéhas gained
attention ([¥, 8,9, 10, 11, 12, 13,/14]) because it mitigdkes privacyaccuracy trade{ by
guaranteeing perfect accuracy. The census model usingdEanldistance-preserving data per-
turbation can be illustrated as follows. An organizatios hgrivate, real-valued datasé(rep-
resented as a matrix where each column is a data record) ahdsiwtio make it publicly available
for data analysis while keeping the individual records omhs) private. To accomplish this,
Y = T(X) is released to the public wheTd.) is a function, known only to the data owner that
preserves Euclidean distances between columns. Withiteégnoperty, many useful data min-
ing algorithms, with only minor modification, can be applted¥ and producexactly the same
patterns that would be extracted if the algorithm was applieectly toX. For example, assume
single-link, agglomerative hierarchical clustering (usEuclidean distance) is applied directly
to Y [15]. The cluster memberships in the resulting dendrogrédibe identical to those in the
dendrogram produced if the same algorithm is applied.to

However, the issue of how well the private data is hidderr &teclidean distance-preserving
data perturbation needs careful study. Without any primwkadge, the attacker can do very
little (if anything) to accurately recover the private datdowever, no prior knowledge seems
an unreasonable assumption in many situations. Consigierat prior knowledge-based at-
tack techniques against Euclidean distance-preservamgfiormations is an important avenue
of study. In this paper, we engage in this study by considetimown inputprior knowledge
wherein the attacker knows a small set of original data gifitgouts), but does not know their
associated perturbed data tuples. As pointed out in [13,thi¥] knowledge could be obtained
through insider information. For example, consider a datadere each record corresponds to

1The census model is widely studied in the field of securitytrbrior statistical databases [6].
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information about an individuak(g. medical data, census data). It is reasonable to assume that
the individuals know (1) that a record for themselves appiathe dataset, and (2) the attributes

of the dataset. As such, each individual knows one recorddmtiginal dataset. A small group

of malicious individuals could then combine their insideformation to produce a larger set of
known original data tuples.

Summary of our contributions: The goal of the attacker is to use the perturbed data tuples
and known original data tuples to produce good estimateskfiownoriginal data tuples along
with links to their perturbed counterparts. To achieve,thvis develop an attack technique called
theknown input attackvhich proceeds in three steps.

1. The attacker links as many of the known original data siftelumns inX) to their corre-
sponding perturbed counterparts (column¥)jn

2. For each unlinked perturbed data tuple, the attacker atesphe breach probability of the
associated unknown original data tuple. This is the prditabiat the following stochastic
procedure will result in an accurate enough estimate of #se@ated unknown original
datatuple to be considered a privacy breach (the probabdltulation is done by applying
a closed-form expression we derive later).

(a) A Euclidean distance-preserving transformation i$armly chosen from the space
of such transformations that satisfy the original-peréarinput-output) constraints
from step 1.

(b) The inverse of the chosen transformation is used to astiwriginal data tuples from
their perturbed counterparts.

3. The attacker chooses the perturbed data tuples which@stvulnerable to breach based
their probabilities from step 2.g. chooses the one with the maximum probability or
chooses all whose probability exceeds a threshold, andgesesestimates of their associ-
ated known original data tuples.

When the number of linked, linearly independent known oididata tuples exceeds the
number of data dimensions, the privacy breach probabitityall unknown original data tuples,
equals one as the estimates are guaranteed to be errol-fogeever, to our knowledge, little
work has been done for the case where the number of knowmatidgata tuples is less than
the number of data dimensions. This is an important casee sibtaining original data tuples
is likely difficult. The attacker ought to be able to utilize however as nanghe can get. Our
results demonstrate how the attacker can do this and witkasmg probability of success with
respect to the number original data tuples obtained. Expgaris on real and synthetic data show
that even with the number of known original data tuples digaitly smaller than the number
of data dimensions, privacy can be breached with high pritityald-or example, on a real 16-
dimensional dataset, we show that the attacker can use 4rkonginal data tuples to estimate
an unknown original tuple with less than 7% error with prabalexceeding 0.8.

Paper organization: Section[2 describes related work in data perturbation forapy-
preserving data analysis. Sectldn 3 discusses some bacidyroaterial - the definition of,

a Euclidean distance-preserving data perturbation, amdefinition of a privacy breach. Sec-
tion [4 describes the main contribution of the paper - the knawput attack outlined above.
Sectiorl b discusses the results of experiments on real antldetic data to evaluate the behavior
of the attack. Sectidnl 6 provides a brief summary of the papdra pointer to an idea for future
work. Proofs and some detailed derivations are included iappendix.



2. Related Work

In this section, we give a brief overview of a wide variety attaperturbation techniques.
We first introduce methods that do not preserve Euclideaamis between data tuples. Then
we focus on research most relevant to this paper, a majdnthich aim to preserve Euclidean
distance by projecting private data to a new space.

2.1. General Data Perturbation and Transformation Methods

Additive perturbation: Addingi.i.d. white noise to protect data privacy is one common ap-
proach for statistical disclosure control [6]. The peradialata allows the retrieval of aggregate
statistics of the original data(g. sample mean and variance) without disclosing values of in-
dividual records. Moreover, additive white noise perttidiahas received attention in the data
mining literature|[1| 2| 13,/4]. Clearly, additive noise doex preserve Euclidean distance and,
therefore, is fundamentally fierent than the data perturbation we consider. An interg&ia
ample along these lines is given by Mukhergeal. [LE]. They considered additive noise to
the most dominate principal components of the dataset alotiga modification of k-nearest-
neighbor classification [17] on the perturbed data to impragcuracy. Moreover, they nicely
extend to additive noise thg-to-p, privacy breach measure originally introduced for categori
cal data in|[18]. Another example is Let al. [1S]. They argued that the level of additive noise
ought to be flexible per record. They developed a modified taddiaoise approach allowing the
level of noise to be varied per record based on data ownegnamete.

Multiplicative perturbation: Two traditional multiplicative data perturbation schenvesre
studied in the statistics community [20]. One scheme miiggpeach data element by a random
number that has a truncated Gaussian distribution with roearand small variance. The other
takes a logarithmic transformation of the data first, addRivamiate Gaussian noise, then takes
the exponential functioexp(.) of the noise-added data. These perturbations allow summary
statistics €.g, mean, variance) of the attributes to be estimated, but dpneserve Euclidean
distances among records.

To assess the security of traditional multiplicative pdration together with additive per-
turbation, Trottiniet al. [21] proposed a Bayesian intruder model that considers jpatin and
posterior knowledge of the data. Their overall strategy ttdcking the privacy of perturbed
data using prior knowledge is the same as ours. However,gasicularly focused on linkage
privacy breaches, where an intruder tries to identify trentdy (of a person) linked to a spe-
cific record; while we are primarily interested in data retogcovery. Moreover, they did not
consider Euclidean distance-preserving perturbationeaday
k-anonymization: Samarati and Sweeney [5,/ 22] originally developedkfaonymitymodel
to transform person-specific data. Their work shows thatt@aelker can link a subset of data at-
tributes (called quasi-identifiers) with third-party imfieation to uniquely identify a person even
when his personally identifiable information is not preserthe original data. To mitigate the
risk, the authors proposed the suppression or generalivafivalues of these quasi-identifiers
so that any records in the database, when projected ontaitts-mlentifiers, cannot be distin-
guished from at lea$t-1 others. This model has drawn much of attention because sihitgle
privacy definition. Since its initial appearance, a varietyextensions have been developed to
anonymize transactional data[23], sequential data [2%],raobility datal[25]. We refer inter-
ested readers to the survey book| [26] for more details. Iukhbe noted that none of these
approaches consider Euclidean distance-preservingrpatton as we do.
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Data micro-aggregation: Two multivariate micro-aggregation approaches have beepgsed
by researchers in the data mining area. The technique pessen Aggarwal and YU [27] parti-
tions the original data into multiple groups of predefinemsiFor each group, a certain level of
statistical information€.g, mean and covariance) is maintained. This statisticariné&ion is
used to create anonymized data that has similar statistieahcteristics to the original dataset.
Li etal.[28] proposed a kd-tree based perturbation method, whilrse/ely partitions a dataset
into subsets which are progressively more homogeneousestth partition. The private data
in each subset is then perturbed using the subset averageelBtionships between attributes
are argued to be preserved reasonably well. However, meithieese two approaches preserves
Euclidean distance between the original data tuples.

Data swapping and shdifling: Data swapping transforms a database by exchanging values of
sensitive attributes among individual records. Recorésexchanged in such a way that the
lower-order frequency counts or marginals are maintaifedariety of refinements and applica-
tions of data swapping have been addressed since its mppsarance. We refer readers.ta [29]
for a thorough treatment. Data gHing [30] is similar to swapping, but is argued to improve on
many of the shortcomings of swapping for numeric data. Hexeneither swapping or shiing
preserves Euclidean distance, which is the focus of thispap

Other techniques: Evfimievskiet al. [18], Rizvi and Haritzal[31] considered the use of cate-
gorical data perturbation in the context of associatioe ralning. Their algorithms delete real
items and add bogus items to the original records. Assodiatiles present in the original data
can be estimated from the perturbed data. Along a relatedVerykioset al. [32] considered
perturbation techniques which allow the discovery of sossmeiation rules while hiding others
considered to be sensitive. We refer interested readerbdpt€r 11 of the survey book [26] for
a nice overview of association rule hiding methods.

Oliveira and Zaiane [9] consider the application of a ratatiadditive noise, and multi-
plicative noise, separately to each original datimibute As such, their transformation is not
guaranteed to preserve Euclidean distance betweertuddés However, Oliveira and Zaiane
argue, through experiments, that their overall data peatizn technique preserves the accuracy
of two clustering algorithms.

Similar to [9], Tinget al. [33] considered perturbation of the data attributes by #mogonal
transformation. More precisely, Tingt al. considered left-multiplication of the original data
matrix by a randomly generated orthogonal matrix. Howetlegy assume the original data
tuples areows rather than columns, as we do. As a result, Euclidean distaetween original
data tuples is not preserved, but, sample mean and covariandf the original data arose as
independent samples from multi-variate Gaussian digtdhuthen the perturbed data allows
inferences to be drawn about this underlying distributigst ps well as the original data. For all
but small or very high-dimensional datasets, their apgrésemore resistant to prior knowledge
attacks than Euclidean distance-preserving perturbatibmeir perturbation matrix isxm(mis
the number of original data tuples), much bigger than Eediddistance-preserving perturbation
matricesn x n (nis the number of data dimensions).

A survey: Funget al. [34] provided a detailed survey of work related to this pafusing the
descriptive term "privacy-preserving data publishinghey discussed a wide range of data
perturbation and transformation techniques, as well gzoaghes to breach privacy. They also
discussed scenarios other than the census medemultiple release data publishing and statis-
tical database querying.



2.2. Euclidean Distance-Preserving Data Perturbation

In this part, we describe research most related to this p@permajority of the work focuses
on Euclidean distance-preserving data perturbation.

Chen and Liul[[7] observe that some classifiers are invarightrespect to Euclidean distance
between the training tuples. The authors quantify the pyivaifered by a Euclidean distance
preserving perturbation in terms of the empirical covaze@matrix with respect to theflierence
between the original and perturbed data attributes. THeoasitprivacy quantification does not
take into account prior knowledge, hence, the attack basgxior knowledge presented in our
paper applies directly to the Euclidean distance presgréiata perturbation method of Chen
and Liu. An important issue not discussed by Chen and Liu vg the classifier learned from
perturbed data will be used to classify new tuples. Penmgrliie new tuples and applying the
classifier would produce the same result as if a classifidt fioom the unperturbed training data
was applied to the unperturbed new tuples. But, the prodegsrturbing the new tuples and
applying the classifier need be done with great care to nktitdarmation that could be used to
recover the original training tuples.

Oliveira and Zaiane [8] observe that some clustering algors are invariant with respect to
Euclidean distance between data tuples. The authors fupritiacy using an approach related
to thatin Chen and Liu. Like Chen and Liu, Oliveira and Zaido@ot consider prior knowledge,
hence, the attack based on it presented in our paper appiétiylto the Euclidean distance
preserving data perturbation method of Oliveira and Zaiane

Liu et al.[10] developed two types of attacks to breach the privacyisthdce-preserving
data perturbation.

1. Liu developed th&nown-sample attackwhich assumes that the attacker has a moderate-
sized collection of independent samples chosen i.i.d. fileensame distribution as the
private data. By mapping the principal components of théupleed data to the principle
components of the original data (estimated from the samitie)attacker can reconstruct
the perturbation matrix and consequently recover the fridata. The prior knowledge
assumption made by this attack isfdrent than the assumption in our manuscript of a very
small set of known original tuples. For example, the knowmsia prior knowledge of
Liu requires the original dataset and known sample be drawi {from the same distri-
bution), while the assumption in our manuscript requiresirth or any other distribution
assumptions. If, in our manuscript, we make the additiosalimption that the original
data is drawn i.i.d., then the known sample attack of Liu @¢anheory, be applied. But,
the attack’s accuracy will be very low as the attack requaresich larger sample than the
size of the known tuples we are considering.

2. Liu developed th&nown input-output attackhich assumes that the attacker knows a very
small subset of the original (private) data tupéexl their correspondences to perturbed
tuples (i.e. for each known original tuple, the attackerssuaned to know which is its
corresponding perturbed tuple). Their attack techniquledéssame as a part of our attack
— choose an orthogonal matrix randomly from the set of thieaedatisfy the input-output
constraints. Then use a closed-form expression for thechngabability for each private
tuple to choose the best one to re-estimate. However, wéisamtly weaken and make
more realistic (providing an explicit scenario) the priookvledge assumption. We assume
only that the attacker knows a very small subset of origipaléte) data tuples, but does
not know their correspondences to perturbed tuples. Weextee attack algorithm of
Liu to first infer the correspondences between the knowrrmalduples and the perturbed
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tuples. Also, we provide a complete and rigorous mathemlaginalysis of the attack
(Liu did not do this). We also correct a mistake(x;, €), the probability closed-form

expression. Finally, we provide experimental results-tinre and accuracy) for the attack
(Liu did not do this).

Chenet al. [12] also discussed a known input attack technique. Unliksahey considered
a combination of distance-preserving data perturbatidiovied by additive noise. They also
assumed a stronger form of known input prior knowledge: ttecker knows a subset of private
data recordsnd knows to which perturbed tuples they correspond. Finadtlgytassume that
the number of linearly independent known input data rectza® smaller than the number of
data dimensions. They pointed out that linear regressinrbeaused to re-estimate private data
tuples.

Mukherjeeet al. [11] considered the use of discrete Fourier transformgiifir) and dis-
crete cosine transformation (DCT) to perturb the data. Gméyhigh energy DF/DCT coefi-
cients are used, and the transformed data in the new domainxamately preserves Euclidean
distance. The DFHDCT codficients were further permuted to enhance the privacy priotect
level. Note that DFT and DCT are (complex) orthogonal tramsf. Hence, their perturbation
technique can be expressed as left multiplication by a (éexhprthogonal matrix (correspond-
ing to the DFFDCT followed by a perturbation of the resulting ¢beients), then a left multi-
plication by an identity matrix with some zeros on the diagqieorresponding to dropping all
but the high-energy cdicients). They did not consider attacks based on prior kndgde For
future work, it would be interesting to do so.

Turgayet al. [13] extended some of the resultslin[10]. They assume tleaithilarity matrix
of the original data is made public rather thafy the perturbed data itself. They describe how
an attacker, given at least+ 1 linearly independent original data tupkesdtheir corresponding
entries in the similarity matrix, can recover the privatéada is the number of data dimensions).
Like Chenet al, this differs from our known input attack in two main ways: (i) we do regjuire
prior knowledge beyond the known input tuples; (ii) our elttanalysis smoothly encompasses
the case where the number of linearly independent knowrt iniples is greater thamas well
as less.

Wonget al. [14] considered data perturbation as a solution to privaolems introduced by
data outsourcing wherein an un-trusted party holds theigetl data and computes k-nearest-
neighbor queries against it on behalf of other parties. Agnathmer things, they examined the
vulnerabilities of the perturbed data against an attackmed with known input prior knowledge
(their "level 2" prior knowledge). Independently of us, yhieriefly discussed a basic idea for
linking the known inputs to their perturbed counterpareg ik similar to our linking technique
(although they provide only a cursory description omittmgny detailsﬁ They point out how a
distance-preserving data perturbation can be undonetiith®er of linearly independent known
inputs that can be linked to perturbed tuples exceeds théeuaf data dimensions. Their work
differs from ours in that it says nothing about the case whereuhdar of linearly independent,
linked known tuples is less than the number of data dimession

Kaplanet al. [35] considered the estimation of private trajectoriex{oes of real numbers)
given various kinds of prior knowledge like Euclidean distes from the private trajectories to

2We described our linking technique in an earlier, unpulelisechnical report version of this paper (citation orditte
because of the double-blind nature of this submission)s Téport appeared 3 months after Wong'’s paper, and, at the
time we were unaware of Wong’s work.
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a known one. They develop an innovative algorithm that caariporate a wide variety of types
of prior knowledge and produce estimates. The primaffetBnces between Kaplan's and our
work are as follows. Our work applies to the more generallerolwhere the attacker has only a
collection of known inputs and does not know their perturbednterparts. We develop a novel
technique for linking the known inputs to their perturbedicterparts. Once this is done, Ka-
plan’s algorithm can be applied to estimate unknown pritgtées from the known input-output
pairs. However, unlike Kaplan's, our approach provide<isee estimation error guarantees,
namely, the precise value of the estimation error proligbilfhus, with our approach, the at-
tacker can know (in probability) how good each of the esteémas, and, for example, pick the
best one. Through experiments, we found our approach togoéisantly more accurate than
Kaplan’s. On the other hand, Kaplan’s approach has the aalyamver ours of being more gen-
eral in the sense that it can incorporate a larger varietyriof gnowledge into the attack. Our
approach is tailored to known input-output prior knowledge

Before we briefly describe another two attacks based on &vignt component analysis
(ICA) [36], it is necessary to give a brief ICA overview.

2.2.1. ICA Overview

Given ann’-variate random vectdV’, one common ICA model posits that this random vector
was generated by a linear combination of independent ran@oiablesj.e., V = AS with S an
n-variate random vector with independent components. ByicS is further assumed to satisfy
the following additional assumptions: (i) at most one comgut is distributed as a Gaussian; (ii)
n’ > n; and (iii) A has rankn (full rank).

One common scenario in practice: there is a set of unobssaragdles (the columns afx q
matrix S) that arose fron$ which satisfies (i) - (i) and whose components are indepaehdut
observed isY x g matrix V whose columns arose as linear combination of the rows. ofhe
columns ofV can be thought of as samples that arose from a random véttehich satisfies
the above generative model. There are ICA algorithms whoakig to recove andA fromV
up to a row permutation and constant multiple. This ambygigiinevitable due to the fact that
for any diagonal matrix (with all non-zeros on the diagoiialand permutation matri, if A, S
is a solution, then so isADP), (P~1D1S).

2.2.2. ICA Based Attacks

Liu et al. [37] considered matrix multiplicative data perturbatidh= MX, whereM is an
n’ x n matrix with each entry generated independently from theesdistribution with mean
zero and variance. They discussed the application of the above ICA approactstinate
Xdirectly fromY: S = X, V=Y,S = X,V =Y, andA = M. They argued the approach
to be problematic because the ICA generative model impassgptions not likely to hold in
many practical situations: the componentsXoire independent with at most one such being
Gaussian distributed. Moreover, they pointed out thatdlegermutation and constant multiple
ambiguity further hampers accurate recover)ofA similar observation is made later by Chen
et al.[12].

Guo and Wu[38] considered matrix multiplicative perturbatassuming only thaM is
ann x n matrix (orthogonal or otherwise). They assumed the attaleie known input prior
knowledge,i.e. she knows X, a collection of original data columns froX. They develop
an ICA-based attack technique for estimating the remainosigmns inX. To avoid the ICA
problems described in the previous paragraph, they insipatied ICA separatelyto X and
Y producing representations, S¢) and @Ay, Sy). They argued that these representations are
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related in a natural way allowin¥ to be estimated. Their approach, however, will be quite
inaccurate for extremely small numbers of known inputs. é&deer, their approach does not
provide the attacker with any sort of error information ahd will thus not know which (if any)

of her original data tuple estimates are accurate.

3. Euclidean Distance-Preserving Perturbation and Privag Breaches

This section provides: some common notation used througheuwarticle, the definition of
a Euclidean distance-preserving data perturbation, thieitien of a privacy breach, and a small
example illustrating a Euclidean distance-preservingupkeation.

3.1. Notation and Conventions

In the rest of this paper, unless otherwise stated, thevigllp notations and conventions
are used. “Euclidean distance-preserving” and “distgveserving” are used interchangeably.
All matrices and vectors discussed are assumed to havenease(unless otherwise stated).
All vectors are assumed to be column vectors 8fiddenotes the transpose of any mathkix
Given a vecto, ||X|| denotes its Euclidean norm. Anx n matrix M is said to beorthogonalif
M’M = I, then x nidentity matrix§ The set of alh x n, orthogonal matrices is denoted Qy.

Givenn x p andn x g matricesA andB, let [A|B] denote then x (p + g) matrix whose first

p columns areA and lastq areB. Likewise, givenp x h andq x h matricesA and B, Iet[ g ]
denote the§ + g) x n matrix whose firsp rows areA and lastg areB.

The data owner’s private dataset is represented as>am matrix X, with each column
a record and each row an attribute (each record is assumesl norizzero). The data owner
applies a Euclidean distance-preserving perturbatiod to produce am x m data matrixy,
which is then released to the public or another party foryaisl ThatY was produced fronx

by a Euclidean distance-preserving data perturbationn@invhich one) is also make public.

3.2. Euclidean Distance-Preserving Perturbation

A functionH : R" — R" is Euclidean distance-preserving if for ally € R", ||x - yl|
= ||[H(X) — H(y)|l. HereH is also called aigid motion It has been shown that any distance-
preserving function is equivalent to an orthogonal tramaftion followed by a translation [39,
pg. 128]. In other word€il may be specified by a paiM, v) € O, x R", in that, for allx € R",
H(x) = Mx + v. If v = 0, H preserve Euclidean lengthx|| = [H(X)||, as such, it movez along
the surface of the hyper-sphere with radiu$ and centered at the origin.

Recall that columns oK (denotedx, .. ., xm) refer to private data records. And, columns of
T(X) =Y (denotedys, ..., ym) refer to perturbed data records. The correspondence bptthe
private and perturbed data records is not assumed knegrthe perturbed version of is not
necessarily;. Instead, the columns of are transformed using a Euclidean distance-preserving
function, then are permuted to produce the columns of thiugesd dataseY. Formally, the
perturbed dataset, is produced as follows. The private data owner chooshs ), a secret
Euclidean distance-preserving function, anda secret permutation df,...,m}. Then, for
1 <i <m, the data owner producgs; = Mtx + vr.

Euclidean distance between the private data tuples is exsen the perturbed dataset: for
all 1 <i,j <m % = Xl = lyxt) — Y=(jll. Moreover, ifvy = 0, then length of the private data
tuples is also preserved: for allli < m, [[%]| = [[Yxg)ll-

3If M is square, it is orthogonal if and onlyM’ = M1 [39, pg. 17].
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3.3. Privacy Breach

For simplicity, we assume the attacker produces an estifoate single unknown original
data tupI& Formally, the attacker will employ a stochastic procedur@ produce 1< j < m
and non-zerox € R". Here,Xis an estimate ok; (with j denotingr~(j)), the private original
data tuple that was perturbed to prodlyiﬁ Givene > 0, we define a privacy breach as follows.

Definition 3.1. An e-privacy breactoccurs if||X — Xl < 1Ix;lle, i.e. if the attacker’s estimate is
wrong with Euclidean relative error no more than

In the next section, we describe and analyze the known inpatika The main focus of
analysis concerng(e), the probability that al-privacy breach occurred.

3.4. Example

Figurdl illustrates a small private dataset (left) and dseilt of applying a simple Euclidean
distance-preserving perturbation (a 90-degree clockwatation and identityr). In general,
Euclidean distance-preserving perturbations can be muck oomplex than the one illustrated
here.

2 ¢x1 2 ¢ vy4

2 2 4 y3

Figure 1: A four record, original private dataset (left) ahd result of applying a simple Euclidean distance-presgrv
perturbation: 90-degree clockwise rotation (the pertdntezords permutation, is the identity).

4. Known Input Attack

For1<a<m-1, letX; denote the firsh columns ofX. The attacker is assumed to know
Xa and her attack proceeds in three steps. For the remaindes paper we use interchangeably
“known inputs” and “known original data tuples”.

1. Infer as many as possible of the input-output mappingsairfthe restriction ofr to
{1,...,a}), thatis, find as many as possible perturbed counterpaks iof Y.

4As described in Sectidd 1, this can easily be extended taipgdstimates for as many unknown original data tuples
as desired. A

5The attacker does not need to kngvshe is merely producing an estimate of the private date tilyait was perturbed
to producey;.
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2. For each perturbed tupyg in Y which is not mapped onto by, compute the probability
that the following stochastic procedure will result inaprivacy breach when estimating
the original tuple associated wit}) (the probability calculation is done using a closed-
form expression derived later).

(a) EstimateM; by choosing a matrixM, uniformly from the space of all orthogonal
matrices that map the tuples to theirr, counterparts iy (as computed in step
1).
(b) E)stimate the original tuple associated wiftas I\7I’y,-.
3. Choose thg; with the highest probability from step 2 and produce R?I’y,—.

The bulk of our work involves the development and analysedittack technique in the case
where the data perturbation is assumed to be orthogonas (umeinvolve a fixed translation,
vr = 0). The majority of this section is dedicated to developing analyzing an attack in this
case. Then, in Subsectibn k.5, we briefly describe how thelkattind analysis can be extended
to arbitrary Euclidean distance-preserving perturbatienz 0).

4.1. Inferringry

The attacker may not have enough information to infgrso, her goal is to infer, (the
restriction ofr to | C {1,...,a}), for as large an as possible. Next, we describe how this goal
can be precisely stated as an algorithmic problem that thelar can address given her available
information.

Givenl C {1,...,a}, anassignment onis a 1-1 functior3 : | — {1,..., m}. An assignment
Bonl isvalidif it satisfies both of the following conditions for &llj € I, (1) [Ixll = [lys)ll and
(2) I = Xl = lysy — Yacpll- Importantly, if3 is not valid, it cannot be a correct linkage between
tuples inX; andY, i.e. B8 # m. As such, there is at least one valid assignmeni,aramelyrn,
but, there may be more. is the only valid assignment dnthen it must equat, .

For notational convenience, we say thas uniquely validif there is only one valid assign-
ment onl. The attacker’s goal is to findraaximaluniquely validl, i.e. a uniquely validl such
that there does not exist uniquely validwith |J| > |l]. It can be shown that there exists only
one maximal uniquely valid subset fff, . . ., a}. Thus, the attacker’s goal is to find the maximal
uniquely valid subset dfl, .. ., a} along with its corresponding assignment.

The following straight-forward algorithm will meet the atker’s goal by employing a top-
down, level-wise search of the subset spacélof..,a}. The inner for-loop uses an implicit
linear ordering to enumerate the sizsubsets without repeats and requird(.) space.

Algorithm 1 Overall Algorithm For Finding the Maximal Uniquely Valid Bget

1: For{=a,...,1,do

2: Foralll c{1,..., ajand|l| = ¢, do

3: If 1 is uniquely valid, then outputalong with its corresponding assignment and terminate lfwithm.
4: Otherwise outpuf.

Example revisited — part Iconsider the dataset and its perturbed version illustiatEgjure
[Mand assume tha = [x1x2x3] are the known original data tuples € 3). Algorithmd proceeds
as follows.

e Checkifl ={1,2,3}is uniquely valid. Since the distancesygftoy, andy; are the same as
those ofy, to y, andy;, then the assignmegt: 1 — 1,2 — 2,3 4 is valid. The identity
assignment ohis also valid because, in this examptés the identity permutation. Thus,
| has more than one valid assignment (is not uniquely valid).
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e Check ifl = {1,2} is uniquely valid. To see thdtis uniquely valid note that any valid
assignmentB, must assign 2 to itself or eleo|| # llys@)ll. And, it can be checked that
B(1) # 3,4 in order to satisfy 1= |[x1 — Xl = Ilyg) — Ys@)ll. Therefores must be the
identity assignment oh

e The algorithm terminates and outputs- {1, 2} as the maximal uniquely valid subset of
{1, 2, 3} with assignment 1» 1,2 — 2. Note: any ordering on the subsets of size two may
be considered. We chose lexicographic order for simplicity

(I

Now we develop an algorithm that, givénc {1,...,a}, determines ifl is uniquely valid,
and, if so, also computes the corresponding assignmentidEaeis to search the space of all
assignments ohfor valid ones. Once more than one valid assignment is ifiedtithe search
is cut-df and the algorithm outputs thatis not uniquely valid. Otherwise, exactly one valid
assignmenty, will be found. In this case, the algorithm outputs thas uniquely valid and
returns the corresponding assignment. The algorithm pega depth-first search with each
node, N1, in the search tree representihg 11 C | andp, a valid assignment oh. The search
proceeds by considering au =1 U {i1} wherei € (1'\ 11) and all possible ways of extending
B1 to be a valid as&gnmerﬁl only. Inturn, iy and,Bl represent a nodwl, in the search tree
immediately belowN;. If 1 =1, then aNumValidAssignFoundounter is incremented. If the
counter exceeds one, thehas more than one valid assignment, and the search is teedina

To make this searchfiécient, we employ a simple, butfective, pruning rule to quickly
eliminate possible extensions@fthat are not valid assignments b= 11 U {i1). LetC(l1, B1.1)
denote the set of all extensions@f i — |, which appropriately preserve Euclidean distances;
formally put, allj € ({1,...,m}\ B1(l1)) which satisfies both of the following conditions: (1)
11l = llyjll, and (2) for alliy € 14, [I%, — %Il = IYs,6,) — Yjll- It can be shown thag ¢ C(11,81,1)
does not represent a valid assignment. Therefore, to emtenat possible, valid, extensions of
B1 on 1, it suffices to consider those assignmefiton 17 which are of the following form: (i)
forall € € 11, B1(€) = B1(¢) and (ii) B1(i1) = j for somej in C(11, B1,1).

Algorithms[2 and'B describe the precise details of the détextion whethei is uniquely
valid (namely, the details of the search discussed in theéquie two paragraphs).

Algorithm 2 Determining Unique Validity Main
Inputs: | c{1,..., aj.
1: Set global variabl&lumValidAssignFoune 0.
2: Call Algorithm[3 on input®) andgy (3p denotes the unique valid assignmentn
3: If NumValidAssignFound 1, then return I' IS NOT UNIQUELY VALID". Else, return “/ IS UNIQUELY VALID
WITH ASSIGNMENT" ;.

CommentThe order by which the elements df\(I;) andC(l1, 31, 1) are chosen in iterating
through the for loops in Algorithi] 3 does ndfect the correctness of the algorithm. However,
it may dfect dficiency. For simplicity, the loops order the elements in ¢hests from smallest
to largest index number.

Algorithm[1 has worst-case computational complexdym?). While this is no better than
a simple brute-force approach, in our experiments, quasarable running times are observed
because few original data tuples will have the same lengifoafew pairs of original data tuples
will have the same Euclidean distance.
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Algorithm 3 Determining Unique Validity Recursive

Inputs: 11 C | andB; a valid assignment oh.

1: If Iy =1, then

NumValidAssignFoung NumValidAssignFoune 1

If NumValidAssignFoune= 1, then sepB, to3;.

End If.

: Else, do

Fori € (1 \ 1) and as long ablumValidAssignFounet 1, do

Forj € C(11,B1,1) and as long ablumValid AssignFoung 1, do

ExtendB; to f1 s.t. f1(i) = j. Letly = Iy Ui,
Call algorithn3 on input$; andg;.

QONIORWN

4.2. Known Input-Output Attack

Assume, without loss of generality, that the attacker gsphilgorithn] and learns, (0 <
g < a),i.e. {1,...,q} is the maximal uniguely valid subset ¢f, ..., a}. Further, to simplify
notation, we may also assume thgti) = il1 Let Yy denote the first| columns ofY. As such,
the attacker is assumed to knog and the fact that¥y = MrX, where My is an unknown
orthogonal matrix. Based on this, she will apply an attaelled theknown input-output attagk
to produceg < j < m, andX; which is an estimate of;, the private tuple that was perturbed to
producey;. The known input-output attack was described in the lastdigps in the algorithm
at the beginning of Sectidd 4. More formally, the known inputput attack is as follows. Let
M(Xg, Yg) denote the set of aM € O, such thatM Xy = Yy

1. For eachy < j < m, compute the probability that the following stochasticqadure will
result in ane-privacy breech when estimating.
(a) EstimateMy by choosing a matrixi, uniformly fromM(Xg, Yg).
(b) Estimatex; asM'y; [1
2. Choose theg; with the highest probability from step 2 and produce My;.

A key component of the known input-output attack is the cotafpon ofp(x;, €) = Pr(|||\7|'yj—

Xl < lIx;lle), the probability that ar-privacy breach will result from the attacker estimatigg
as I\7I’y,-. In Sectior 4.1, we will develop a closed-form expressiarpfoc, €). This expression
will only involve information known to the attacker; theoeé, she can choosp< j < mso as
to maximizep(x;, €). Another key component of the known input-output alganitis in choos-
ing M uniformly from M(Xg, Yg). In most casesyI(Xq, Yg) is uncountable and it is not obvious
how to chooseM. We will develop and algorithm for doing so in Sectlonl4.4 f@e getting to
Sectior 4.4, we discuss some important linear algebra backg.

4.3. Linear Algebra background

Let Col(Xg) denote the column space X andCol, (X,) denote its orthogonal complement,
i.e.,{ze R":Zw = 0, Yw € Col(Xy)}. Likewise, letCol(Yy) denote the column space ¥§
andCol,(Yy) denote its orthogonal compliment. Letdenote the dimension @ol(Xy). The
“Fundamental Theorem of Linear Algebra” [40, pg. 95] implibat the dimension @@ ol (X,)

6This can be achieved by the attacker appropriately reargéfie columns oK, andY.
"This is equivalent to a maximum likelihood estimatexpf
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isn—k. SinceYy = M1 Xy andMr is orthogonal, then it can be shown tiGadl(Y;) has dimension
k. Thus,Col, (Yg) has dimensiom — k.

Let U, andVy denoten x k matrices whose columns form an orthonormal basisCfoi{ X)
andCol(Yy), respectively. It can easily be shown tizadl(M+ Uy) = Col(Yy) = Col(Vi). LetUn
andV,_¢ denoten x (n— k) matrices whose columns form an orthonormal basi€ialr, (Xg) and
Col, (Yy), respectively. It can easily be shown ti@l(MyUn_) = Col, (Yg) = Col(Vy).

4.4. A Closed-Form Expression fofx;, €)

Now we return to the issue of how to chgdﬁeuniformly fromM(Xq, Yq) and how to com-
putep(x;, €) = Pr(IM’y; — x;ll < lIXjlle) = Pr(IIM"Mrx; — X;1).

To chooseM uniformly from M(Xq, Yg), the basic idea is to utilize standard algorithms for
choosing a matri¥ uniformly fromQy_y, the set of all (— k) x (n— k) orthogonal matrices, then
apply an appropriately designed transformatioRtd he transformation will be anfiane, bijec-

tion from Op_x to M(Xg, Yg) The following technical result, proven jn Appendi A, prdes
this transformatiof.

Theorem 4.1. Let L be the mapping B On_x — MtUU; + V,«PU/ . Then, L is an fiine
bijection fromOp_k to M(Xq, Yg). And, Lt is the mapping Me M(Xq, Yg) — V/_ MUp_.

Algorithm 4 Uniform Choice FromM(Xg, Yq)

Inputs: Uy, ann x k matrix whose columns form an orthonormal basi€ol(Xy), andMt Uy (M7 is unknown);Up_
andVy_g, n x (n - k) matrices whose columns form an orthonormal basSalf (Xg) andCol, (Yg), respectively.
Outputs: M a uniformly chosen matrix frorvI(Xg, Yg)-
1: ChooseP uniformly from On_k using algorithm|{[4/1].
2: SetM = L(P), i.e, MrUKU[ + Vi PU7_,.

Two comments are in order regarding Algorithin 4. First, s@pecial cases are interesting to
highlight: whenk = n, M is chosen a$vl;; whenk = n— 1, M is one of two choices (one
of which equalsMt); otherwise,M is, in theory, chosen from an uncountable set (containing
Mt). Second, it is not obvious how the attacker can computertpets to the algorithme.g.
Mt Uy. Thisissue will be discussed later when spelling out thaittedf the Known Input Attack
Algorithm, Algorithm[8.

Now we develop a closed-form expression f¢k;, €). The key points are outlined, while
a more rigorous justification is provided[in Appendi} A. Fids all, from Algorithm[2, M =
Mt UU; + Vi «PU’ |, whereP is chosen uniformly fron®, . Therefore,

Pr(IM’ My x; — xI| < [Ille)
Pr(|UkUpx; + Un PV, Mrx; — Xl < [IX5lle).

p(X;, €)

’

Since ULfk € Op, then it can left-multiply each term in the léfft. .|| of the second probabil-
—k
ity without changing the equality. As a result, the derigatcontinues

8That the resultingVl was choseminiformly from M(Xq, Yq) could be more rigorously justified using left-invariance
of probability measures and the Haar probability measuee ©y_x. But, such a discussion is not relevant to this paper
and is omitted.

9We defineQy to contain a single, empty matrix. And, fBre Oo, we defineVh_kPU; _, to be then x n zero matrix.
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oelll Vs 1o 0 1] uex
0 PV, Mt X; Unkai
F’I‘(||F”Vr;_kl\/l-rXJ¢ - U;_kXi|| < ||X]||6)

< ||x;||e)

SinceCol(MtUp_x) = Col(Vh—k), then there existi(- k) x (n—k) matrix B such thaM;U,_«B =
Vhk. Itfollows that () V) , = B'U/  MZ, (ii) B=U/ M7V, Thus,Bis orthogonal Using
(i), the derivation continues

Pr(IP' B/ (U ) — (U, X))l < lIXile) (1)
PH(IP' (U ,0) = (U 00l < lIXile) @

where the second equality is due to the fact ®a& O,_x, and thus P’B’) can be regarded as
having been uniformly chosen frof,_i just like P’ (a rigorous proof of the second equality is

provided if Appendix_A). Putting the whole derivation toget,

p(x;, €) = Pr(P uniformly chosen fron©y_ satisfies|P’(U},_x;) — (U x)Il < [IX;lle).  (3)

Let Sn,k(||Ur’17kae||) denote the hyper-sphere’R"* with radius||Ur’Fkx]f|| and centered at the
origin. SinceP is chosen uniformly fron®n_«, then any point on the surface $f_«(IlU;_X;ll) is
equally likely to beP’(U;_, x;). LetSn«(U[_, ;. lIX;ll€) denote the “hyper-sphere cap” consisting
of all points inSn«(IU;,_, %;ll) with distance fromJ/_, x; no greater thatix;lle. Therefore,[(B)
becomes

p(x;,€) = Pr(auniformly chosen point 08n-k(IIUy,_,X;ll) is also inSn_«(Uy,_ X, [1X;ll€))
S ASn (U2 x:, [IX:le
_ A( n k( n k/] ] )) (4)

S A(Sn—k(”Un,ka”))

whereS A) denotes the surface area of a subset of a hyper—s@nBased on equationkl(4),
we prove, iy Appendix_A, the following closed form expressitor o(x;, €), where I'(.) denotes

2
. Xz
the standard gamma functiogg -1 (X) denotearcco{[”u” ;”;‘/E _ 1)’ andacy_g(x) denotes
n-k"J
2
lIx;lle
arccoy1l-— [ ! ] .
S( VARSRE
10B'B = B'U,_ M} Vnk =V, Vnk = In-k.
. . . SAS1(UL x5, lIX:ll€) . . .
11 ’ ’
Sl(llullel) consists of two points. We def'nesp(sl(ﬁ#jh)) as 0.5 IfSl(lej*,llXjAllE) is one point, and as 1
S ASo(Ufx- x>
otherwise. Moreover, we definew as 1.

SASoUGx )
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1 ifn-k=0;

1 if ||xj||e > ||Ur’]_kxj||2 andn-k>1;
0.5 if ||fo||5 < ||Ur’]_kxjf||2 andn-k =1,
plxj.€) = L ((%l{lkrz?;ﬁg[;\{(ki)zl/z) aq)-1(9 ?f U, V2 < ixjle < U712 andn — e = 2
— R kil Jonso sin*1(9,)do; if U7l V2 < lIx;lle < U7, x;lI2 andn — k > 3;
(1/mac;p(x) if ||fo||5 < ||U,’17kxjf|| V2 andn-k=2;

(oo (el f;‘fg“(*) sin*-1(6;) doy if Ix;lle < [IU7,_x;ll v2 andn — k> 3,

®)

Comment:it can be shown thatUr;_kxiH is the distance frorrxi to its closest point irCol(Xg)
(the column space 0fg). Thus, the sensitivity of a tuple to breach is dependenhitsdength
relative to its distance to the column spaceXgf In particular, if the distance from; to the
column space oK, is suficiently small, less tharl|k;ll€)/2, then the breach probability is one
from the second case in equatigh (5).

Recall that the attacker seeks to use the closed-form esipresforp(x;, ) to decide for
whichq < j < mdoesx'= M’y; produce the best estimation ®Bf. This is naturally done by
choosingj to maximizep(xje, €). To allow for this, observe thawx]rne and||Ur’17kae|| equ:‘:@ Ily;lle
and||V/_,y;jll, respectively, which are known to the attacker. Theref@@ecan be rewritten as fol-

2 2
lows, whereagy_1(y) denoteﬁrcco{[L] - 1), andacy_p (y)denotesirccos(l - [ﬂ] )

V7 yill V2 V7 yill V2

1 ifn-k=0;
1 if llyjlle = IV;_yjll2 andn -k > 1;
0.5 if llyjlle <1IV;_y;ll2 andn -k = 1;

pxi =1 1= (Lmaga®) if IV Yill V2 < llyjlle < IV yjli2 andn —k = 2;

! R e f;“}o'l(y) sirk-L(gr)dor if Vil V2 < liyjlle < IV/_,¥jll2 andn — k > 3;

(I/macig(y) if llyjlle < IV/_yill V2 andn — k = 2;
Lchiezly) AoV skl ey i lyjlle < IV ¥l V2 andn— k> 3,

(6)

Now we put together all the parts and provide the pseudo-gbtihe full known input attack
algorithm (Algorithni®). Before doing so, first note th#t, Un_«, Vk, andV,_x can be computed
from Xy and Yy using standard procedures[40]. Secoht,Ux = YqA whereA is anq x k
matrix that can be compu@from Uy andXq. Third, a recursive procedure for computifig (6)
is described iff Appendix ]A.

CommentThee-privacy breach probability(e) equals maxj<mo(X;, €).

Example revisited - part 2consider the dataset and its perturbed version illustiatEdyure
[ with known original tuplesq, x,, x3. Part 1 of this example showed how Algorithin 1 inferred
the following mappings to perturbed tuples — y1 andx, — y,, henceXq = [x1%] and
Yq = [y1y2]. Consider perturbed tupla. The Known Input Attack will compute an estimate
of the original tuplex; associated witlys (x; = X4 in this case) ang(x;, €), thee-privacy breach
probability. Sincex; andx, are linearly dependerit,= 1, so,n — k = 1 and the second or third

12MTfo =Yij, so,|Ix;ll = IMT ;1| = lly;ll. Moreover, as shown earlier, there exBts On—k such thav| , =B'U; | M1.
Thus,|lU7_ X1l = 1B'Uf_, ME Mgl = 1IV7_yill-

13SinceCol(Uy) = Col(Xg), then by solving systems of linear equations (one for each columbgf aq x k matrix
A can be computed such thggA = Uy.
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Algorithm 5 Known Input Attack Algorithm
Inputs: Y, € > 0, andX,.
Outputs: a< j < mandxXe R" the corresponding estimate )qf
: ComputeYy = M1 Xq (Where 1< q < a) using Algorithn{.
: ComputeUy, Vk, Un—k, Vn-k, andMt Uy as described earlier.
For eachy < j <mdo

Computep(x;, €) using [8) as described A.
End For.
: Choose thg from the previous loop producing the Iargp(;kjf, €).
: Choosdx?IA uniformly from M(Xq, Yq) by applying Algorithn{.
: SetX'— M'y;.

cases of Equatidd 6 apply. It can be shown ¥at = V; = [0, 1]. So,|lyslle = 2¢ and||V/_,yal|2
= 4. Therefore, ife > 2, the second case applies aifd;, €) = 1, else, the third case applles and
p(X3,€) =05

There are only two Euclidean distance preserving transitioms fixing the origin that sat-
isfy the input-output constraintg — y; andx, — Y»: the 90-degree clockwise rotation (the
actual perturbation applied) and the 90-degree countekelise rotation, these are the elements
of M((Xz, Y2). SoXis chosen randomly between the inverse of these transfumnsatpplied to
yq resulting inX'= [2,0] or [-2,0]'. If € > 2, then either of these choices representgorivacy
breach s@(x;,€) = 1. If € < 2, then only one of these choices, (%, represent a breach so

p(X3,€) = 0.5. O

4.5. Known Input Attack on General Distance-PreservingaCRerturbation

Previously, we considered the case where the data permbaiassumed to be orthogonal
(does not involve a fixed translatiom; = 0). Now we briefly discuss how the attack technique
and its analysis can be extended to arbitrary Euclideaartist preserving perturbation-(+ 0).
Extending the algorithms for inferring 5. Since the length of the private data tuples may not
be preserved, then the definition of validity in Secfion 4 dstrbe changeds on | is valid if
Vi, j e 1, I1x = xjll = llysq) — Yepll- As well, the definition ofc(11, 81, 1) (givenl, C |, B; a valid
assignment oy, andi € (I \ I1)), must change: the set of glle ({1,...,m} \ B1(l1)) such that
forallis € 14, [I%, — %l = IVs,q,) — Yjll. With these changes, AlgorithrhE1, 2, aid 3 work correctly
as stated.

Extending the known input attack: The basic idea is simple and relies on the fact that the
samevy is added to all tuples in the perturbation )&& Fix one tuple, sayq andy;, and
consider the following dierencesq = (Xq — X1), . = (Xg — Xq- 1) andy; = (Yq— Y1), -

;= (Yq = Yg-1). Let Xq , denote the matrix W|th columrnq 1 andY‘ denote the
matrix with columnsy;, .. "y_—l Observe tha¥, ; = MrX, ; hence t11e attack and its analysis
from the orthogonal data perturbation case can be appllbd détails are straight-forward and
are omitted for brevity. However, a caveat is in order. Thacktdepends on the choice of the
tuple to fix. Therefore, the attacker examines them all arabsés the highest privacy breach
probability.

5. Experiments and Discussion

The experiments are designed to assess the computatibo@rey of the overall known in-
put attack and itsféectiveness at breaching privacy. We performed two setspergxents: (a)
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those involving only the known input attack, and (b) thoseparing the known input attack with
the attack of Kaplaet al. [35]. In both sets of experiments, we used two datasets awitiaal,
private data tupleX: 1) a 100,000 tuple synthetic dataset generated from a afiate Gaus-
sian distributioti]; 2) the Letter Recognition dataset, 20,000 tuples and 16enigrattributes,
from UCI machine learning repository [42] — we removed tgpldich were duplicated over the
numeric attributes yielding a final dataset of 18,668 tuplEse attacks were implemented in
Matlab 7 (R14) and all experiments were carried out on a Taakaptop with 1.83GHz Intel
Core 2 CPU, 1.99GB RAM, and WindowsXP system. We did not campar attack technique
against the ICA-based attack in [38] and the known sampéelain [10] because the extremely
small size of the known inputs will render these attackff@wive. In all Figures, the error bars
show one standard deviation above and below the average.

5.1. Experiments Only Involving the Known Input Attack

The first experiment fixeX and its perturbed versiov, but changes the number of known
input tuples,a. It proceeds by carrying out ten trials as follows. Seketihearly independent
tuples randomly fronX (these become the know inputs). Use Algorithm 1 to computbe
maximal uniquely valid assignment. Use steps 2-5 in Algonif3 to compute the(e), the
e-privacy breach probability (a closed-form was given imimggly above Algorithni ).

To measure the accuracy of the attack, we report the avefage)@and|l| over all ten trials.
To measure theficiency, we report the average time taken to computbe rest is ignored as
the overall attack computation time is dominated by Aldoriil). In Figure§I2 arld 3, results are
shown withe = 0.15. In Figurd#, accuracy results are shown with varyiagda fixed at four.

The second experiment fixes the number of known input tugledd at 0.15) but changes
the size of the original datd in order to assess the computatiorféilbgency of the attack. For the
Gaussian data, it uses the fikduples as< wherek takes a value if1000Q 2000Q. .., 10000Q.
Then, the attack proceeds by carrying out the following afiens ten times. Seleat= 50 lin-
early independenttuples randomly frot@nd use Algorithrll to compute the maximal uniquely
valid assignment. The average time taken to compuitis given in Figurd b top. For the Let-
ter Recognition daté takes a value i1200Q 400Q..., 18000 and the attack randomly select
a = 10 linearly independent tuples as the known inputs. Thea@eetime taken to fintis given
in Figure[® bottom.

Regarding the known input attack accuracy, the linking phafsthe attack (Algorithnill),
exhibits excellent performance. For synthetic data, itfgpmance is perfect in that all known
input tuples have their corresponding perturbed tupleriate(see Figurgl2 top). For real data,
its performance is nearly perfect — see Figure 3 top. As drpep(e) approaches one as
increases see Figurigls 2 and 3 bottom. Interestingly on titbeyc dataset, the transition from
p(€) = 0 — 1 occurs very sharply arourad= 60. Moreover, on the real datasgf¢) = 1 with
aas small as 4 (and we also observe in Figure 4 that the prdtyakinains fairly high fore as
small as 0.07).

Regarding computationaffeciency, the algorithm appears to require quite reasonaiein
all cases observed,g.less that 450 seconds on the synthetic dataset with 100 kigples (see
Figure2 middle) and less than 45 seconds on the real datéhet®known inputs (see Figuiré 3

14The mean vector is specified by independently generatingnl®bers from a univariate Gaussian with mean
zero and variance one. The covariance matrix is specified) hgdependently generating 100 data tuples each with
100 independently generated entries a from a univariates&au with mean zero and variance one, (ii) computing the
empirical covariance of this 100 tuple dataset.
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middle). With respect to known input set sizg,(the average computation time exhibits a linear
(synthetic data) or slower (real data) trend (see FiglirecdRRigure[3 middle). With respect to
dataset size (humber of private data tuples), the averagputation time exhibits a clear linear
trend for both synthetic and real data (see Fifuire 5). Thesgts demonstrate that, despite the
high worst-case computational complexity, the computetiimes on both real and synthetic data
are quite reasonable.

The experimental results support the conclusion that taelatan breach privacy in plausible
situations. For example, on the 16-dimensional, 1868&trgal dataset, the known input attack
achieves a privacy breach with probability one using fouovkn inputs and less than 30 seconds
of run-time.

5.2. Experiments Comparing the Known Input-Output Attaitk iaplan’s Attack

We compare the accuracy of the attacks with respect to ackatta goal of producing a
single perturbed tuple and an estimate of its unperturbedtespart. Since Kaplan’s attack does
not provide the attacker with any means to know how good ttimate is, the attacker has no
reason to choose one perturbed tuple over another, henesswme the attacker picks randomly.
On the other hand, our attack provides the attacker withdbreeoababilities, so, the attacker
chooses the perturbed tuple to maximize the breech pratyaais done in Algorithni b).

The experiments proceed as follows.andY are fixed anda, the number of known input
tuples, is varied. 100 trials are carried out as follows. e8&d linearly independent tuples
randomly fromX (these become the know inputs) and do both of the followingCljoose a
tuple y, randomly fromY whose unperturbed counterpagtin X is not among the known
inputs. Use Kaplan’'s attagkto produce an estimate, 0f x;. Record the Euclidean relative
error of the estimaté|x; — X||/1x;l|. (if) Use our Algorithn[ﬁ to choose the tuplg fromY with

15With a learning rate of 0.05 and 500 iterations, values okeskempirically to produce the best results
18With € = 0.15 and 0.1 for the Gaussian and Letter data, respectively.
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maximume—privacy breech probability and whose unperturbed couatéxp does not appear
among thea known inputs, then produce an estimatef X;. Record the Euclidean relative error
of the estimatenxjc - >‘<||/||xi||.

Figurel® shows the average relative error of the attacks tndaiasets. From the Figure it
is clear that our approach allows the attacker to producgrafiantly more accurate estimate.
We do not provide a figure comparing the run-times of the ktdecause Kaplan’s computes
an estimate from only one perturbed tuple while ours,ffea@, computes an estimate from all
perturbed tuples. However, the time required by our algorito produce an estimate from a
single, randomly chosen, perturbed tuple is 100 to 1000tifaster than Kaplan’s.

6. Conclusion

We examined the vulnerability of Euclidean distance-pndng data perturbation when a
small set of original data tuples are known to the attackes.d@feloped a stochastic technique
22
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allowing the attacker to estimate, for each perturbed tupke original unknown data tuple and
calculate the probability that the estimation results inegey breach. For perturbations which
fix the origin, this probability is dependent on the lengthtloé original tuple relative to its
distance from the column space of the known inputs. Theeefbe probability increases as the
number of known original tuples does, reaching one when tmaher of linearly independent
known original tuples reaches the number of data dimensidie assumption of fixing the
origin can be dropped, resulting in a slightly more compé#dabreach probability calculation.
Our experiments on real and synthetic data showed that eilerthe number of known original
tuples significantly smaller than the number of data dinmmmsiprivacy is breached with high
probability. For example, on a real 16-dimensional datasé&nhown original tuples is enough
for the attacker to estimate an unknown original tuple wétbslthan 7% error with probability
exceeding 0.8.

We conclude the paper by pointing to an interesting directar future work, extending
techniques in this paper to apply to random projection dataupbation:Y = ¢~Y/2RXwhereRis
an¢ x n matrix with each entry generated independently and froraredstrd normal distribution
(this type of data perturbation fér< nwas discussed in [37]). It can be shown that maRis
orthogonal on expectation and the probability of orthodipnapproaches one exponentially fast
with £. By increasing, the data owner can guarantee that distances are presethedhitrarily
high probability. However, such an increase intuitivelyukkbseem to increase the vulnerability
with respect to a known input attack. Some preliminary rissaibng these lines can be found in
[43].
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Appendix A. Supplementary Material

Appendix A.1. Known Input Attack: Proof of Theoien 4.1

Theorenid.1: LetL be the mapping € On-x = MtUU; + Vo kPU/_,. Then,L is an dfine
bijection fromQOn_ to M(Xg, Yg). And, L~* is the mappingvl € M(Xq, Yg) = V! MUp_y.

To prove this theorem we rely upon the following key techhieault.

Lemma Appendix A.1. Let P denote the setMtUcU| + V,_.kPU;_, : P € Ony}. Then
M(Xg, Yg) = P.

Proof: Let M(Uy, MtUy) denote the set of aM € O, such thatMUy = MyUy. First we show
thatM(Xg, Yq) = M(Ux, M7Uy). SinceCol(X;) = Col(Uy), then there existi x p matrix A such
thatUiA = Xg. SinceA hask columns, themank(A) < k. Furthermore, [40, pg. 201] implies
thatk = rank(UxA) < min{k, rank(A)}, thus,rank(A) = k. Therefore, from/[40, pg. 90A has a
right inverse.

For anyM € O, we have

MeM(Xg,Yg) © MUKA= MTUKA
& MUk = MtUg.
The laste follows from the fact thatA has a right inverse. We conclude thdi(Xg, Yq) =
M(Ug, Mt Uy). Now we complete the proof by showing thdi{Uy, Mt Uy) = P.

(1) For anyM ¢ P, there exist® € On_k such thatM = {M7UcU| + V,,_«PU; _}. We have
then

MUk MTUkU&Uk +Vn—kPUr'1_kUk

= MrUg.

If we can show thaM is orthogonal, thet € M(Uy, Mt Uy), so,P € M(Ug, MtUy), as desired.
Let U denote PJy|Un-i] (clearlyU € Oy). Observe

M'M = UgUMsMpUUL + UULMsV, (PU?
+ UnkP' V. MrUU/ + U PV, M7U, PU/
= UgUg+0+0+ U/,
= UU =1,
where the first zero in the second equality is due to the faattGlol(MrUy) = Col(Yy), so,
V! MrUg=0.
(2) Now consideM € M(Ug, MtUy). It can be shown th&ol(V,,_x) = Col(M Un_k) Thus,
there existsi{ — k) x (n — k) matrix P with V,_xP = MU,,_x. Observe that
PP = P (Vr’]kan_k)P
(Vn—k P)/ (Vn—k P)
(MUnfk)/(MUnfk) = Infk.

17Since MUp-k)’ MU = 0, thenCol(MUp_) = Col, (MU). SinceMUy = Mt U andCol(Mr U) = Col(Y), then it
follows thatCol, (MUy) = Col, (M1 Uy) = Col_(Yq) = Col(Vq_x).
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Thus,P € O,_. Moreover,

MU

M[UklUp]
[M7rUMUn_]
[M1 Uy Vh_iP].

Thus,

<
I

’
Un—k

MrUU; + Vo PUY .

[MTUkIVn—kP][ Ui ]

ThereforeM € P, so,M(Ug, MtUy) C P, as desired. O

Now we prove Theorem4.1.

Proof: Clearly L is an dfine map. Moreover, Lemnja Appendix A.1 directly implies that
mapsOn-k ontoM(Xq, Yg). To see thak is one-to-one, considél;, P, € On_k such that (P1)
L(P2). By definition, MrUkU; + Vp_kP1U/ |, = M7UU; + Vi PoU!, thus,V, «P1U;
Vn-kP2U!_,. ThereforePy = V! Vi «P1U/  Un g = V! Vo kPoU!  Un i = Pa.

To complete the proof, consid@ € On_x. We haveV! ,L(P)Unk =V,  MtUUUp +
V! VakPU/_ Unk = 0+ P. Moreover, consideM € M(Xg, Yg). By Lemmg Appendix All,
there existPy € Onk such thaM = MrUU; +V, «PuU; . We havel (V] MU, k) = L(Pwm)
= M. Therefore, the inverse dfis M € M(Xq, Yg) = V;_ MUp . [l

Appendix A.2. Known Input Attack: A Rigorous DevelopmenhefClosed-Form Expression
for p(X;, €)
Up to (), we had derived the following result (fBrchosen uniformly fron©,_):

p(x;.€) = Pr(IP'B/ (U7, %) = (U )l < lIxgle). (A1)

whereB € O,k and satisfiedtUn_«B = V... Now we provide a rigorous proof dfl(2)e. the
r.h.s. above equaBr(HP’(U;_kxi) - (U;_kxj)u < ||Xj||e). To do so, we need some material from
measure theory.

BecauseéD, i is a locally compact topological group [39, pg. 293], it hadaar probability
measure, denoted hy overB, the Borel algebra of,_x. This is commonly regarded as the
standard uniform probability measure o@®y . Its key property ideft-invariance for all 8 € B
and allM € On_k, u(8) = u(MB), i.e.,shifting B by a rigid motion does not change its probability
assignment.

Let On«(U;_,X:. I;ll€) denote the set of aP € Ok such that|P’(U;_x:) — (U}_X:)Il <
lIX;lle). LetOF (U _,x. lIx;ll€) denote the set of alt € Ok such that|P’B'(U;_, x;)—(U/,_ X;)Il <
||xJe||e By definition ofu we have,

H(Onk(Up_ X5, l1X;ll€)) Pr(P uniformly chosen fron©y_ lies in On_«(U],_ X;, 1X;ll€))

Pr(IIP (U7_) — (U7 )l < lixglle),

18Since On-k(U/,_,. ;. lI;lle) and (O)Elk(url]_kvallelle) are topologically closed sets, then they are Borel subisfets
On-k, thereforey is defined on each of these.
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and,

u(OF (U . 11xll€)) Pr(P uniformly chosen fronDy, lies inOF (U, x;. IXjll€))

Pr(IP'B' (U}, %)) — (U )l < lIxle).

Therefore,

Pr(IP'B'(Uf, %) — (Ui )l < lIxslle) = m(OF (U7, 1Ixlle))
= u(BOF (U, lIxille))
= u(Onk(Up_X;. l1X;ll€)) (A.2)
= Pr(IP' (U} %) — (U )l < lIxille)
where the second equality is due to the left-invariance ahd the third equality is due to the
fact thatBOZ (U}, X;. I;ll€) can be shown to equl, «(U;_,X;, lIX;le).

Since the last equality above was for intuitive purposeg,amt will ignore it in completing
the derivation of a closed form expressidn. (A.1) dnd (An2ply

p(X;, €) = p(Onk(U)_ x5, l1X;ll€))-

Recall thaSn_k(HU,q_kx]fH) denotes the hyper-sphereRi ¥ with radius||Ur’1_kx]f|| and centered at
the origin andSn-«(U;_, x;, lIx;ll€) denotes the points contained 8y «(lIU;_,x;ll) whose distance
fromU/_, x; is no greater thajfx;le. Using basic principles from measure theory, it can be shown
thafd

S ASn-k(U7 X5 l1Xll€))
S ASn«(lIU],_x10)
We have arrived at Equatiofl(4) from Sectlonl4.4. Next, wevdethe desired closed-form

expression[{5). To simplify exposition, we prove the follog/result form > 0,z € R™, and
¢ > 0 (by plugging inm=n -k, z=U/_,x;, andc = [IX;le, (®) follows).

#(On—k(Uf X5, lIx5ll€)) =

1 if m=0;
1 if c> (2|2 andm > 1;
0.5 if c<||2|2 andm = 1;
SASm(z0) | 1-(Y/marccog[c/(I2l V2)? - if 21 V2 < ¢ < ||z|2 andm = 2; A3)
S ASm(llZ) 1- %mm:ﬁl/g arccoi[c/(uzu \/2)1 Dsim L) doy  if 1] VZ < ¢ < 212 andm > 3; .
(1/m)arccogl - [c/(||z|| V2)P) if ¢ < 121 V2 andm = 2;
(:;-}E([mf]]//;)) farccoil—[c/(nz!\\f)] ) sin™1(61) dé, if ¢ < ||zl V2 andm > 3.

Before proving[(A.B) we establish:

S AS1 (U] x: X
1951(||U1Xj||) consists of two points. Recall that we defi a A(ls(l(m’ l)l(X’H!; )
%
. . S ASo(UpXjlIx;lle))
as 1 otherwise. Moreover, we defi SV as 1.

as 0.5 ifSl(Uifo, ||fo||e) is one point, and
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pi - theta

theta

Figure A.7: The hyper-sphe&y(||2l) and two “north pole” Figure A.8: The hyper-spher8n(||Z]) and one “south

caps ¢ < [|7| v2). pole” cap (12| V2 < ¢ < [|Z|2).
brb‘lnb/z
F >2 ==, A4
orb > 2 andr > 0,S ASp(r)) M(b+272) (A.4)
; : : dvoks d
Indﬁgg;_\l/vnhVol(.) denotlng volume, it can be shown tH&&(Sp(r)) = % = Vol(Sp(1)) e
= fmayz- The last equality follows fror_n [44]. Now we return to progiA.3).
If m = 0, then the surface area ratio equals 1 by definitiorc ¥ ||Z|2 andm > 1, then

the ratio equals 1 sinc®n(z c) = Sy(||Z]). If ¢ < ||Z|2 andm = 1, then, the ratio equals 0.5
sinceS;i(z c) = {z} andS;(||2]) = {z, —2z. For the remainder of the derivation, we assume that
m > 2 and, without loss of generality,is at the “north pole” of the hyper-sphesg(||Z), i.e. z
=(1,0,0,---,0).

Casec < ||Z| V2: The set of points 08ny(||z) whose distance from equalsc is the inter-
section ofSy(]|l]) with the hyper-plane whose perpendicularis of lengthh as seen in Figure
[A7] Thus,Sn(z c) are all those points 08n(]|2]) not below that hyper-plane.

Sub-casam = 2: SinceS,(||Z)|) is an ordinary circle, then the anglén Figurd A7 determines
the surface area ratio as followd 22704 — g/, Moreover, sincé is the top angle of an
isosceles triangle with sides of lendifj] and base of length, thensin(6/2) = ¢/(2||Z]). The
half-angle formula implies that= arccog1 — [c/(|Z| V2)]?). Therefore, as desired,

S AS2(z )
S AS(I12D)
Sub-casem > 3: Here, computing the surface area ratio is more complicatel requires
an appeal to the integral definition of the cap surface areasider the intersection &mn(||Z|)
with the hyper-plane whose perpendicularts of length 0< h; < has seenin Figufe AL.7. The
surface area of this intersection equals the surface arf8a.efr(hy)). Thus, [A.%) implies

= (1/m)arccog - [c/(/1Z] V2)]?). (A5)
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S ASm(z c))

h
[ sAsmactuy dn
hy=0

= w " m-2
B ( '((m+1)/2) ) fhlo(f(hl)) dhy.

To evaluate the integral, we change coordinates tith ||Z|(1 — coq61)). So,h; = 0, himplies
that¢; = 0, arccog1 - h/||). And, r(|Z|(1 - cog6y)) = |IZllsin(6) = G- Therefore,

h , arccog1-h/||z)) ,dhy
f (r(h)™2dhy = f (122 - cosfon)) ™ doy
=0 61=0 01
arccog1-h/||zll)
_ f 2™ 2sin™2(6y)|12Isin(61) d6;
6,=0
arccog1-h/||zll)
i [ Sir™ (6:) .
6,=0

Plugging this into the previous equations A Smn(z c)) and using[(A}), we get

sinm‘l(al) do,

SASm(zc) ((m — D)™ D2)|2™1r((m + 2)/2)) famwf‘l"‘/ﬂ')
SASH(Il) I((m+ 1)/2)mi|Z|m-1xm?2 610

(M= Dr(m+2)/2)) (e
- ( T((m+ 1)/2)mvx )fg sin™(61) déx.

1=0
Sinceh = % then, as desired, we get
SASm(zc) ((m-1)((m+2)/2) farccof«l[c/zuw/ilz) I
SAS(ID) ~ ( T(m+ 1)/2)mvx ) nso sin™(61)d. (A.6)

Case||lZ| V2 < ¢ < ||Z12: As depicted in FigurE_Al8Sy(z ) contains the entire northern
hemisphere 08(||Z]). Let Sn(-z ¢) denote the “south pole” cap defined lvy(andc’) in Figure
A8 (clearlyc’ < ||Z| V2). We have

SASn(z0) _, _ SASm(=z¢)

S ASm(li2) S ASm(li2l))
By replacing t” with “ ¢’” in (A.5) and [A.8) then plugging the resulting expressiatoi (A1)
we get,

(A7)

SASm(zq) | 1-@/m)arccogl - [¢/(lzl V2)F) if m=2;

= e 2
SAS(i) ~ | 1- 2z eeodt /A Gty dgy it m 3.

(A8)

From FigurdA.8, it can be seen thais the top angle on an isosceles triangle with sides of
length||z| and base of length’. So, sin(6/2) = ﬁ The half-angle formula impliesog6) =
1—[c'/(l21 V2)]?. Similar reasoning showsgr — 6) = 1 — [¢/(/12] V2)]2. Since 0< 6 < n/2,
thencos(z - 6) = ~cog(6). Thus, /(121 V2)I? - 1= 1 - [¢'/(12| V2)I. Plugging 2- [-£51?in
17 in (A.8) yields the desired results.
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Appendix A.3. Known Input Attack: Computing the ClosedyHaxpression fop(x:, €)

Next we develop recursive procedures for computidg (6).s Emounts to computing the
following two functions: ())GR(mM) = T([m + 2]/2)/T([m + 1]/2) for m > 1; (ii) Sl(zm) =
arccos?) sin™1(#;) doy for 1 > z> 0 andm > 1. Indeed,[(B) is equivalent to

91:0
1 ifn-k=0;
1 if llyjlle > IV/_,yjll2 andn - k > 1;
05 if llyjlle < IV/_yjll2 andn - k = 1;
2
B llyjlle _ Cn . - —k=2
1 (1/7r)arccos{[uvé_kyj” 5 1] it IV il V2 < llyjlle < IV/_yjll2 andn - k = 2;
2
p(xs,€) = _ (-k=1)GRI-K) llylle _1n- i IV, i - oy - ;
j 1 v S '[[uv;_ky,-u 5| —Ln-k| IVl V2 < llyjlie < IV/_,yjli2 andn - k > 3;
2
e — - ko
(1/7r)arccos[1 [\\V,;_kyjllﬁ] ] if llyjlle < 1IV7_Yill V2andn-k = 2;
2
(n—k=1)GR(n-K) _ lly;jlle _ . ) . _
v S |[1 [Hv;_ky,-uﬁ] .n k] if llyjlle < IV;_yjll V2 andn— k > 3.

(A9)

To computeGR(m) for m > 1, we use the following factdi(z + 1) = ZI'(2) for z> 0,1'(1/2)
= +/m, andl'(1) = 1. Thus, we get a recursive procedure for compu@ir{m).

% if m=1;
GRm) ={ = ifm=2; (A.10)
(7%)GRmM-2) ifm=>3.

To computeS I(z m) for 1 > z > 0 andm > 1, we use the following factssin™2(arccogz)) =
[1-2]™2/2if m> 3. And,S I(z.m) = | [ sin™(61) d61 | (arccog2)) - | [ sin™(6) dén (0).
And,

w ifm-1=0;
[f Sinm_l(ol) del] (W) = _COS(W) - fm-1=1; (A.ll)
B2 | [ sin™3(61) doa | (w) - st weodw) i m_ 1 > 2;
Therefore,
arccog?) if m=1;
Sizm) =4 1-2 - ifm=2; (A12)
m25 1z m-2)- 2T i m> 3
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