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Abstract

We examine Euclidean distance-preserving data perturbation as a tool for privacy-preservingdata
mining. Such perturbations allow many important data mining algorithms (e.g.hierarchical and
k-means clustering), with only minor modification, to be applied to the perturbed data and pro-
duce exactly the same results as if applied to the original data. However, the issue of how well the
privacy of the original data is preserved needs careful study. We engage in this study by assuming
the role of an attacker armed with a small set of known original data tuples (inputs). Little work
has been done examining this kind of attack when the number ofknown original tuples is less
than the number of data dimensions. We focus on this important case, develop and rigorously
analyze an attack that utilizesany numberof known original tuples. The approach allows the
attacker to estimate the original data tuple associated with each perturbed tuple and calculate the
probability that the estimation results in a privacy breach. On a real 16-dimensional dataset, we
show that the attacker, with 4 known original tuples, can estimate an original unknown tuple with
less than 7% error with probability exceeding 0.8.
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1. Introduction

Owners of sensitive information face a dilemma in many situations. On the one hand, making
this data available for statistical analysis can violate the privacy of the individuals represented in
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the data or reveal sensitive information about the data owner. On the other hand, making the data
available can lead to discoveries that provide societal benefits. For example, mining health-care
data for security/fraud issues may require analyzing clinical records and pharmacy transaction
data of many individuals over a certain area. While the release of such data may violate privacy
laws, mining it can improve the overall quality of the health-care system. Privacy-Preserving
Data Mining (PPDM) strives to provide a solution to this dilemma. It aims to allow useful data
patterns to be extracted without compromising privacy.

Data perturbation represents one common approach in PPDM. Here, the original private
datasetX is perturbed and the resulting datasetY is released for analysis. Perturbation approaches
typically face a “privacy/accuracy” trade-off. On the one hand, perturbation must not allow the
original data records to be adequately recovered. On the other hand, it must allow “patterns”
that hold in the original data to be recovered. In many cases,increased privacy comes at the
cost of reduced accuracy and vice versa. For example, Agrawal and Srikant [1] proposed adding
randomly generatedi.i.d. noise to the dataset. They showed how the distribution from which
the original data arose can be estimated using only the perturbed data and the distribution of
the noise. However, Karguptaet al. [2] and Huanget al. [3] pointed out how, in many cases,
the noise can be filtered off leaving a reasonably good estimation of the original data (further
investigated by Guoet al. [4]). These results point to the fact that unless the variance of the
additive noise is sufficiently large, original data records can be recovered unacceptably well.
However, this increase in variance reduces the accuracy with which the original data distribution
can be estimated. This privacy/accuracy trade-off is not limited to additive noise; some other
data transformation techniques suffer from a similar problem,e.g.k-anonymity [5].

Recently, Euclidean distance-preserving data perturbation for thecensus model1has gained
attention ([7, 8, 9, 10, 11, 12, 13, 14]) because it mitigatesthe privacy/accuracy trade-off by
guaranteeing perfect accuracy. The census model using Euclidean distance-preserving data per-
turbation can be illustrated as follows. An organization has a private, real-valued datasetX (rep-
resented as a matrix where each column is a data record) and wishes to make it publicly available
for data analysis while keeping the individual records (columns) private. To accomplish this,
Y = T(X) is released to the public whereT(.) is a function, known only to the data owner that
preserves Euclidean distances between columns. With this nice property, many useful data min-
ing algorithms, with only minor modification, can be appliedto Y and produceexactly the same
patterns that would be extracted if the algorithm was applied directly toX. For example, assume
single-link, agglomerative hierarchical clustering (using Euclidean distance) is applied directly
to Y [15]. The cluster memberships in the resulting dendrogram will be identical to those in the
dendrogram produced if the same algorithm is applied toX.

However, the issue of how well the private data is hidden after Euclidean distance-preserving
data perturbation needs careful study. Without any prior knowledge, the attacker can do very
little (if anything) to accurately recover the private data. However, no prior knowledge seems
an unreasonable assumption in many situations. Consideration of prior knowledge-based at-
tack techniques against Euclidean distance-preserving transformations is an important avenue
of study. In this paper, we engage in this study by considering known inputprior knowledge
wherein the attacker knows a small set of original data tuples (inputs), but does not know their
associated perturbed data tuples. As pointed out in [13, 14], this knowledge could be obtained
through insider information. For example, consider a dataset where each record corresponds to

1The census model is widely studied in the field of security control for statistical databases [6].
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information about an individual (e.g.medical data, census data). It is reasonable to assume that
the individuals know (1) that a record for themselves appears in the dataset, and (2) the attributes
of the dataset. As such, each individual knows one record in the original dataset. A small group
of malicious individuals could then combine their insider information to produce a larger set of
known original data tuples.

Summary of our contributions: The goal of the attacker is to use the perturbed data tuples
and known original data tuples to produce good estimates ofunknownoriginal data tuples along
with links to their perturbed counterparts. To achieve this, we develop an attack technique called
theknown input attackwhich proceeds in three steps.

1. The attacker links as many of the known original data tuples (columns inX) to their corre-
sponding perturbed counterparts (columns inY).

2. For each unlinked perturbed data tuple, the attacker computes the breach probability of the
associated unknown original data tuple. This is the probability that the following stochastic
procedure will result in an accurate enough estimate of the associated unknown original
data tuple to be considered a privacy breach (the probability calculation is done by applying
a closed-form expression we derive later).

(a) A Euclidean distance-preserving transformation is uniformly chosen from the space
of such transformations that satisfy the original-perturbed (input-output) constraints
from step 1.

(b) The inverse of the chosen transformation is used to estimate original data tuples from
their perturbed counterparts.

3. The attacker chooses the perturbed data tuples which are most vulnerable to breach based
their probabilities from step 2,e.g. chooses the one with the maximum probability or
chooses all whose probability exceeds a threshold, and generates estimates of their associ-
ated known original data tuples.

When the number of linked, linearly independent known original data tuples exceeds the
number of data dimensions, the privacy breach probability,for all unknown original data tuples,
equals one as the estimates are guaranteed to be error-free.However, to our knowledge, little
work has been done for the case where the number of known original data tuples is less than
the number of data dimensions. This is an important case, since obtaining original data tuples
is likely difficult. The attacker ought to be able to utilize however as manyas she can get. Our
results demonstrate how the attacker can do this and with increasing probability of success with
respect to the number original data tuples obtained. Experiments on real and synthetic data show
that even with the number of known original data tuples significantly smaller than the number
of data dimensions, privacy can be breached with high probability. For example, on a real 16-
dimensional dataset, we show that the attacker can use 4 known original data tuples to estimate
an unknown original tuple with less than 7% error with probability exceeding 0.8.

Paper organization: Section 2 describes related work in data perturbation for privacy-
preserving data analysis. Section 3 discusses some background material - the definition ofT,
a Euclidean distance-preserving data perturbation, and the definition of a privacy breach. Sec-
tion 4 describes the main contribution of the paper - the known input attack outlined above.
Section 5 discusses the results of experiments on real and synthetic data to evaluate the behavior
of the attack. Section 6 provides a brief summary of the paperand a pointer to an idea for future
work. Proofs and some detailed derivations are included in an appendix.
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2. Related Work

In this section, we give a brief overview of a wide variety of data-perturbation techniques.
We first introduce methods that do not preserve Euclidean distance between data tuples. Then
we focus on research most relevant to this paper, a majority of which aim to preserve Euclidean
distance by projecting private data to a new space.

2.1. General Data Perturbation and Transformation Methods

Additive perturbation: Adding i.i.d. white noise to protect data privacy is one common ap-
proach for statistical disclosure control [6]. The perturbed data allows the retrieval of aggregate
statistics of the original data (e.g. sample mean and variance) without disclosing values of in-
dividual records. Moreover, additive white noise perturbation has received attention in the data
mining literature [1, 2, 3, 4]. Clearly, additive noise doesnot preserve Euclidean distance and,
therefore, is fundamentally different than the data perturbation we consider. An interesting ex-
ample along these lines is given by Mukherjeeet al. [16]. They considered additive noise to
the most dominate principal components of the dataset alongwith a modification of k-nearest-
neighbor classification [17] on the perturbed data to improve accuracy. Moreover, they nicely
extend to additive noise theρ1-to-ρ2 privacy breach measure originally introduced for categori-
cal data in [18]. Another example is Liuet al. [19]. They argued that the level of additive noise
ought to be flexible per record. They developed a modified addative noise approach allowing the
level of noise to be varied per record based on data owner preference.
Multiplicative perturbation: Two traditional multiplicative data perturbation schemeswere
studied in the statistics community [20]. One scheme multiplies each data element by a random
number that has a truncated Gaussian distribution with meanone and small variance. The other
takes a logarithmic transformation of the data first, adds multivariate Gaussian noise, then takes
the exponential functionexp(.) of the noise-added data. These perturbations allow summary
statistics (e.g., mean, variance) of the attributes to be estimated, but do not preserve Euclidean
distances among records.

To assess the security of traditional multiplicative perturbation together with additive per-
turbation, Trottiniet al. [21] proposed a Bayesian intruder model that considers bothprior and
posterior knowledge of the data. Their overall strategy of attacking the privacy of perturbed
data using prior knowledge is the same as ours. However, theyparticularly focused on linkage
privacy breaches, where an intruder tries to identify the identity (of a person) linked to a spe-
cific record; while we are primarily interested in data record recovery. Moreover, they did not
consider Euclidean distance-preserving perturbation as we do.
k-anonymization: Samarati and Sweeney [5, 22] originally developed thek-anonymitymodel
to transform person-specific data. Their work shows that an attacker can link a subset of data at-
tributes (called quasi-identifiers) with third-party information to uniquely identify a person even
when his personally identifiable information is not presentin the original data. To mitigate the
risk, the authors proposed the suppression or generalization of values of these quasi-identifiers
so that any records in the database, when projected onto the quasi-identifiers, cannot be distin-
guished from at leastk-1 others. This model has drawn much of attention because of itssimple
privacy definition. Since its initial appearance, a varietyof extensions have been developed to
anonymize transactional data [23], sequential data [24], and mobility data [25]. We refer inter-
ested readers to the survey book [26] for more details. It should be noted that none of these
approaches consider Euclidean distance-preserving perturbation as we do.
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Data micro-aggregation: Two multivariate micro-aggregation approaches have been proposed
by researchers in the data mining area. The technique presented by Aggarwal and Yu [27] parti-
tions the original data into multiple groups of predefined size. For each group, a certain level of
statistical information (e.g., mean and covariance) is maintained. This statistical information is
used to create anonymized data that has similar statisticalcharacteristics to the original dataset.
Li et al. [28] proposed a kd-tree based perturbation method, which recursively partitions a dataset
into subsets which are progressively more homogeneous after each partition. The private data
in each subset is then perturbed using the subset average. The relationships between attributes
are argued to be preserved reasonably well. However, neither of these two approaches preserves
Euclidean distance between the original data tuples.
Data swapping and shuffling: Data swapping transforms a database by exchanging values of
sensitive attributes among individual records. Records are exchanged in such a way that the
lower-order frequency counts or marginals are maintained.A variety of refinements and applica-
tions of data swapping have been addressed since its initialappearance. We refer readers to [29]
for a thorough treatment. Data shuffling [30] is similar to swapping, but is argued to improve on
many of the shortcomings of swapping for numeric data. However, neither swapping or shuffling
preserves Euclidean distance, which is the focus of this paper.
Other techniques: Evfimievskiet al. [18], Rizvi and Haritza [31] considered the use of cate-
gorical data perturbation in the context of association rule mining. Their algorithms delete real
items and add bogus items to the original records. Association rules present in the original data
can be estimated from the perturbed data. Along a related line, Verykioset al. [32] considered
perturbation techniques which allow the discovery of some association rules while hiding others
considered to be sensitive. We refer interested readers to Chapter 11 of the survey book [26] for
a nice overview of association rule hiding methods.

Oliveira and Zaiane [9] consider the application of a rotation, additive noise, and multi-
plicative noise, separately to each original dataattribute. As such, their transformation is not
guaranteed to preserve Euclidean distance between datatuples. However, Oliveira and Zaiane
argue, through experiments, that their overall data perturbation technique preserves the accuracy
of two clustering algorithms.

Similar to [9], Tinget al. [33] considered perturbation of the data attributes by an orthogonal
transformation. More precisely, Tinget al. considered left-multiplication of the original data
matrix by a randomly generated orthogonal matrix. However,they assume the original data
tuples arerows rather than columns, as we do. As a result, Euclidean distance between original
data tuples is not preserved, but, sample mean and covariance is. If the original data arose as
independent samples from multi-variate Gaussian distribution, then the perturbed data allows
inferences to be drawn about this underlying distribution just as well as the original data. For all
but small or very high-dimensional datasets, their approach is more resistant to prior knowledge
attacks than Euclidean distance-preserving perturbations. Their perturbation matrix ism×m(m is
the number of original data tuples), much bigger than Euclidean distance-preserving perturbation
matrices,n× n (n is the number of data dimensions).
A survey: Funget al. [34] provided a detailed survey of work related to this paper(using the
descriptive term ”privacy-preserving data publishing”).They discussed a wide range of data
perturbation and transformation techniques, as well as, approaches to breach privacy. They also
discussed scenarios other than the census model,e.g.multiple release data publishing and statis-
tical database querying.
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2.2. Euclidean Distance-Preserving Data Perturbation

In this part, we describe research most related to this paper. The majority of the work focuses
on Euclidean distance-preserving data perturbation.

Chen and Liu [7] observe that some classifiers are invariant with respect to Euclidean distance
between the training tuples. The authors quantify the privacy offered by a Euclidean distance
preserving perturbation in terms of the empirical covariance matrix with respect to the difference
between the original and perturbed data attributes. The authors’ privacy quantification does not
take into account prior knowledge, hence, the attack based on prior knowledge presented in our
paper applies directly to the Euclidean distance preserving data perturbation method of Chen
and Liu. An important issue not discussed by Chen and Liu is how the classifier learned from
perturbed data will be used to classify new tuples. Perturbing the new tuples and applying the
classifier would produce the same result as if a classifier built from the unperturbed training data
was applied to the unperturbed new tuples. But, the process of perturbing the new tuples and
applying the classifier need be done with great care to not leak information that could be used to
recover the original training tuples.

Oliveira and Zaiane [8] observe that some clustering algorithms are invariant with respect to
Euclidean distance between data tuples. The authors quantify privacy using an approach related
to that in Chen and Liu. Like Chen and Liu, Oliveira and Zaianedo not consider prior knowledge,
hence, the attack based on it presented in our paper applies directly to the Euclidean distance
preserving data perturbation method of Oliveira and Zaiane.

Liu et al. [10] developed two types of attacks to breach the privacy of distance-preserving
data perturbation.

1. Liu developed theknown-sample attackwhich assumes that the attacker has a moderate-
sized collection of independent samples chosen i.i.d. fromthe same distribution as the
private data. By mapping the principal components of the perturbed data to the principle
components of the original data (estimated from the sample), the attacker can reconstruct
the perturbation matrix and consequently recover the private data. The prior knowledge
assumption made by this attack is different than the assumption in our manuscript of a very
small set of known original tuples. For example, the known sample prior knowledge of
Liu requires the original dataset and known sample be drawn i.i.d. (from the same distri-
bution), while the assumption in our manuscript requires noi.i.d. or any other distribution
assumptions. If, in our manuscript, we make the additional assumption that the original
data is drawn i.i.d., then the known sample attack of Liu can,in theory, be applied. But,
the attack’s accuracy will be very low as the attack requiresa much larger sample than the
size of the known tuples we are considering.

2. Liu developed theknown input-output attackwhich assumes that the attacker knows a very
small subset of the original (private) data tuplesand their correspondences to perturbed
tuples (i.e. for each known original tuple, the attacker is assumed to know which is its
corresponding perturbed tuple). Their attack technique isthe same as a part of our attack
– choose an orthogonal matrix randomly from the set of those that satisfy the input-output
constraints. Then use a closed-form expression for the breach probability for each private
tuple to choose the best one to re-estimate. However, we significantly weaken and make
more realistic (providing an explicit scenario) the prior knowledge assumption. We assume
only that the attacker knows a very small subset of original (private) data tuples, but does
not know their correspondences to perturbed tuples. We extend the attack algorithm of
Liu to first infer the correspondences between the known original tuples and the perturbed
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tuples. Also, we provide a complete and rigorous mathematical analysis of the attack
(Liu did not do this). We also correct a mistake inρ(x j , ǫ), the probability closed-form
expression. Finally, we provide experimental results (run-time and accuracy) for the attack
(Liu did not do this).

Chenet al. [12] also discussed a known input attack technique. Unlike ours, they considered
a combination of distance-preserving data perturbation followed by additive noise. They also
assumed a stronger form of known input prior knowledge: the attacker knows a subset of private
data recordsand knows to which perturbed tuples they correspond. Finally, they assume that
the number of linearly independent known input data recordsis no smaller than the number of
data dimensions. They pointed out that linear regression can be used to re-estimate private data
tuples.

Mukherjeeet al. [11] considered the use of discrete Fourier transformation(DFT) and dis-
crete cosine transformation (DCT) to perturb the data. Onlythe high energy DFT/DCT coeffi-
cients are used, and the transformed data in the new domain approximately preserves Euclidean
distance. The DFT/DCT coefficients were further permuted to enhance the privacy protection
level. Note that DFT and DCT are (complex) orthogonal transforms. Hence, their perturbation
technique can be expressed as left multiplication by a (complex) orthogonal matrix (correspond-
ing to the DFT/DCT followed by a perturbation of the resulting coefficients), then a left multi-
plication by an identity matrix with some zeros on the diagonal (corresponding to dropping all
but the high-energy coefficients). They did not consider attacks based on prior knowledge. For
future work, it would be interesting to do so.

Turgayet al. [13] extended some of the results in [10]. They assume that the similarity matrix
of the original data is made public rather than,Y, the perturbed data itself. They describe how
an attacker, given at leastn+ 1 linearly independent original data tuplesandtheir corresponding
entries in the similarity matrix, can recover the private data (n is the number of data dimensions).
Like Chenet al., this differs from our known input attack in two main ways: (i) we do not require
prior knowledge beyond the known input tuples; (ii) our attack analysis smoothly encompasses
the case where the number of linearly independent known input tuples is greater thann as well
as less.

Wonget al. [14] considered data perturbation as a solution to privacy problems introduced by
data outsourcing wherein an un-trusted party holds the perturbed data and computes k-nearest-
neighbor queries against it on behalf of other parties. Among other things, they examined the
vulnerabilities of the perturbed data against an attacker armed with known input prior knowledge
(their ”level 2” prior knowledge). Independently of us, they briefly discussed a basic idea for
linking the known inputs to their perturbed counterparts that is similar to our linking technique
(although they provide only a cursory description omittingmany details).2 They point out how a
distance-preserving data perturbation can be undone if thenumber of linearly independent known
inputs that can be linked to perturbed tuples exceeds the number of data dimensions. Their work
differs from ours in that it says nothing about the case where the number of linearly independent,
linked known tuples is less than the number of data dimensions.

Kaplanet al. [35] considered the estimation of private trajectories (vectors of real numbers)
given various kinds of prior knowledge like Euclidean distances from the private trajectories to

2We described our linking technique in an earlier, unpublished, technical report version of this paper (citation omitted
because of the double-blind nature of this submission). This report appeared 3 months after Wong’s paper, and, at the
time we were unaware of Wong’s work.
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a known one. They develop an innovative algorithm that can incorporate a wide variety of types
of prior knowledge and produce estimates. The primary differences between Kaplan’s and our
work are as follows. Our work applies to the more general problem where the attacker has only a
collection of known inputs and does not know their perturbedcounterparts. We develop a novel
technique for linking the known inputs to their perturbed counterparts. Once this is done, Ka-
plan’s algorithm can be applied to estimate unknown privatetuples from the known input-output
pairs. However, unlike Kaplan’s, our approach provides precise estimation error guarantees,
namely, the precise value of the estimation error probability. Thus, with our approach, the at-
tacker can know (in probability) how good each of the estimates is, and, for example, pick the
best one. Through experiments, we found our approach to be significantly more accurate than
Kaplan’s. On the other hand, Kaplan’s approach has the advantage over ours of being more gen-
eral in the sense that it can incorporate a larger variety of prior knowledge into the attack. Our
approach is tailored to known input-output prior knowledge.

Before we briefly describe another two attacks based on independent component analysis
(ICA) [36], it is necessary to give a brief ICA overview.

2.2.1. ICA Overview
Given ann′-variate random vectorV, one common ICA model posits that this random vector

was generated by a linear combination of independent randomvariables,i.e.,V = AS with S an
n-variate random vector with independent components. Typically,S is further assumed to satisfy
the following additional assumptions: (i) at most one component is distributed as a Gaussian; (ii)
n′ ≥ n; and (iii) A has rankn (full rank).

One common scenario in practice: there is a set of unobservedsamples (the columns ofn×q
matrixS) that arose fromSwhich satisfies (i) - (iii) and whose components are independent. But
observed isn′ × q matrix V whose columns arose as linear combination of the rows ofS. The
columns ofV can be thought of as samples that arose from a random vectorV which satisfies
the above generative model. There are ICA algorithms whose goal is to recoverS andA from V
up to a row permutation and constant multiple. This ambiguity is inevitable due to the fact that
for any diagonal matrix (with all non-zeros on the diagonal)D, and permutation matrixP, if A,S
is a solution, then so is (ADP), (P−1D−1S).

2.2.2. ICA Based Attacks
Liu et al. [37] considered matrix multiplicative data perturbation,Y = MX, whereM is an

n′ × n matrix with each entry generated independently from the same distribution with mean
zero and varianceσ2. They discussed the application of the above ICA approach toestimate
X directly from Y: S = X, V = Y, S = X, V = Y, andA = M. They argued the approach
to be problematic because the ICA generative model imposes assumptions not likely to hold in
many practical situations: the components ofX are independent with at most one such being
Gaussian distributed. Moreover, they pointed out that the row permutation and constant multiple
ambiguity further hampers accurate recovery ofX. A similar observation is made later by Chen
et al. [12].

Guo and Wu [38] considered matrix multiplicative perturbation assuming only thatM is
an n × n matrix (orthogonal or otherwise). They assumed the attacker has known input prior
knowledge,i.e. she knows,̃X, a collection of original data columns fromX. They develop
an ICA-based attack technique for estimating the remainingcolumns inX. To avoid the ICA
problems described in the previous paragraph, they insteadapplied ICA separatelyto X̃ and
Y producing representations (AX̃,SX̃) and (AY,SY). They argued that these representations are
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related in a natural way allowingX to be estimated. Their approach, however, will be quite
inaccurate for extremely small numbers of known inputs. Moreover, their approach does not
provide the attacker with any sort of error information and she will thus not know which (if any)
of her original data tuple estimates are accurate.

3. Euclidean Distance-Preserving Perturbation and Privacy Breaches

This section provides: some common notation used throughout the article, the definition ofT
a Euclidean distance-preserving data perturbation, the definition of a privacy breach, and a small
example illustrating a Euclidean distance-preserving perturbation.

3.1. Notation and Conventions
In the rest of this paper, unless otherwise stated, the following notations and conventions

are used. “Euclidean distance-preserving” and “distance-preserving” are used interchangeably.
All matrices and vectors discussed are assumed to have real entries (unless otherwise stated).
All vectors are assumed to be column vectors andM′ denotes the transpose of any matrixM.
Given a vectorx, ||x|| denotes its Euclidean norm. Anm× n matrix M is said to beorthogonalif
M′M = In, then× n identity matrix.3 The set of alln× n, orthogonal matrices is denoted byOn.

Givenn× p andn× q matricesA andB, let [A|B] denote then× (p+ q) matrix whose first

p columns areA and lastq areB. Likewise, givenp× n andq× n matricesA andB, let

[
A
B

]

denote the (p+ q) × n matrix whose firstp rows areA and lastq areB.
The data owner’s private dataset is represented as ann × m matrix X, with each column

a record and each row an attribute (each record is assumed to be non-zero). The data owner
applies a Euclidean distance-preserving perturbation toX to produce ann × m data matrixY,
which is then released to the public or another party for analysis. ThatY was produced fromX
by a Euclidean distance-preserving data perturbation (butnot which one) is also make public.

3.2. Euclidean Distance-Preserving Perturbation
A function H : ℜn → ℜn is Euclidean distance-preserving if for allx, y ∈ ℜn, ||x − y||

= ||H(x) − H(y)||. HereH is also called arigid motion. It has been shown that any distance-
preserving function is equivalent to an orthogonal transformation followed by a translation [39,
pg. 128]. In other words,H may be specified by a pair (M, v) ∈ On ×ℜn, in that, for allx ∈ ℜn,

H(x) = Mx + v. If v = 0, H preserve Euclidean length:||x|| = ||H(x)||, as such, it movesx along
the surface of the hyper-sphere with radius||x|| and centered at the origin.

Recall that columns ofX (denotedx1, . . ., xm) refer to private data records. And, columns of
T(X) = Y (denotedy1, . . ., ym) refer to perturbed data records. The correspondence between the
private and perturbed data records is not assumed known,e.g. the perturbed version ofxi is not
necessarilyyi . Instead, the columns ofX are transformed using a Euclidean distance-preserving
function, then are permuted to produce the columns of the perturbed datasetY. Formally, the
perturbed datasetY, is produced as follows. The private data owner chooses (MT , vT), a secret
Euclidean distance-preserving function, andπ, a secret permutation of{1, . . . ,m}. Then, for
1 ≤ i ≤ m, the data owner producesyπ(i) = MT xi + vT .

Euclidean distance between the private data tuples is preserved in the perturbed dataset: for
all 1 ≤ i, j ≤ m, ||xi − x j || = ||yπ(i) − yπ( j)||. Moreover, ifvT = 0, then length of the private data
tuples is also preserved: for all 1≤ i ≤ m, ||xi || = ||yπ(i)||.

3If M is square, it is orthogonal if and only ifM′ = M−1 [39, pg. 17].
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3.3. Privacy Breach

For simplicity, we assume the attacker produces an estimatefor a single unknown original
data tuple.4 Formally, the attacker will employ a stochastic procedure and produce 1≤ j ≤ m
and non-zero, ˆx ∈ ℜn. Here,x̂ is an estimate ofx ĵ (with ĵ denotingπ−1( j)), the private original
data tuple that was perturbed to producey j .5 Givenǫ > 0, we define a privacy breach as follows.

Definition 3.1. An ǫ-privacy breachoccurs if ||x̂− x ĵ || ≤ ||x ĵ ||ǫ, i.e. if the attacker’s estimate is
wrong with Euclidean relative error no more thanǫ.

In the next section, we describe and analyze the known input attack. The main focus of
analysis concerns,ρ(ǫ), the probability that anǫ-privacy breach occurred.

3.4. Example

Figure 1 illustrates a small private dataset (left) and the result of applying a simple Euclidean
distance-preserving perturbation (a 90-degree clockwiserotation and identityπ). In general,
Euclidean distance-preserving perturbations can be much more complex than the one illustrated
here.

Figure 1: A four record, original private dataset (left) andthe result of applying a simple Euclidean distance-preserving
perturbation: 90-degree clockwise rotation (the perturbed records permutation,π, is the identity).

4. Known Input Attack

For 1≤ a ≤ m− 1, let Xa denote the firsta columns ofX. The attacker is assumed to know
Xa and her attack proceeds in three steps. For the remainder of the paper we use interchangeably
“known inputs” and “known original data tuples”.

1. Infer as many as possible of the input-output mappings inπa (the restriction ofπ to
{1, . . . , a}), that is, find as many as possible perturbed counterparts ofXa in Y.

4As described in Section 1, this can easily be extended to produce estimates for as many unknown original data tuples
as desired.

5The attacker does not need to knowĵ; she is merely producing an estimate of the private data tuple that was perturbed
to produceyj .
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2. For each perturbed tupley j in Y which is not mapped onto byπa, compute the probability
that the following stochastic procedure will result in anǫ-privacy breach when estimating
the original tuple associated withy j (the probability calculation is done using a closed-
form expression derived later).

(a) EstimateMT by choosing a matrix,M̂, uniformly from the space of all orthogonal
matrices that map the tuples inXa to theirπa counterparts inY (as computed in step
1).

(b) Estimate the original tuple associated withy j asM̂′y j .
3. Choose they j with the highest probability from step 2 and produce ˆx = M̂′y j .

The bulk of our work involves the development and analysis ofan attack technique in the case
where the data perturbation is assumed to be orthogonal (does not involve a fixed translation,
vT = 0). The majority of this section is dedicated to developing and analyzing an attack in this
case. Then, in Subsection 4.5, we briefly describe how the attack and analysis can be extended
to arbitrary Euclidean distance-preserving perturbation(vT , 0).

4.1. Inferringπa

The attacker may not have enough information to inferπa, so, her goal is to inferπI (the
restriction ofπ to I ⊆ {1, . . . , a}), for as large anI as possible. Next, we describe how this goal
can be precisely stated as an algorithmic problem that the attacker can address given her available
information.

Given I ⊆ {1, . . . , a}, anassignment on Iis a 1-1 functionβ : I → {1, . . . ,m}. An assignment
β on I is valid if it satisfies both of the following conditions for alli, j ∈ I , (1) ||xi || = ||yβ(i)|| and
(2) ||xi − x j || = ||yβ(i) − yβ( j)||. Importantly, ifβ is not valid, it cannot be a correct linkage between
tuples inXa andY, i.e. β , πI . As such, there is at least one valid assignment onI , namelyπI ,
but, there may be more. Ifβ is the only valid assignment onI , then it must equalπI .

For notational convenience, we say thatI is uniquely validif there is only one valid assign-
ment onI . The attacker’s goal is to find amaximaluniquely validI , i.e. a uniquely validI such
that there does not exist uniquely validJ with |J| > |I |. It can be shown that there exists only
one maximal uniquely valid subset of{1, . . . , a}. Thus, the attacker’s goal is to find the maximal
uniquely valid subset of{1, . . . , a} along with its corresponding assignment.

The following straight-forward algorithm will meet the attacker’s goal by employing a top-
down, level-wise search of the subset space of{1, . . . , a}. The inner for-loop uses an implicit
linear ordering to enumerate the sizeℓ subsets without repeats and requiringO(1) space.

Algorithm 1 Overall Algorithm For Finding the Maximal Uniquely Valid Subset

1: Forℓ = a, . . . ,1, do
2: For all I ⊆ {1, . . . ,a} and|I | = ℓ, do
3: If I is uniquely valid, then outputI along with its corresponding assignment and terminate the algorithm.
4: Otherwise output∅.

Example revisited – part 1:consider the dataset and its perturbed version illustratedin Figure
1 and assume thatX3 = [x1x2x3] are the known original data tuples (a = 3). Algorithm 1 proceeds
as follows.

• Check ifI = {1, 2, 3} is uniquely valid. Since the distances ofy3 to y2 andy1 are the same as
those ofy4 to y2 andy1, then the assignmentβ : 1 7→ 1, 2 7→ 2, 3 7→ 4 is valid. The identity
assignment onI is also valid because, in this example,π is the identity permutation. Thus,
I has more than one valid assignment (is not uniquely valid).
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• Check if I = {1, 2} is uniquely valid. To see thatI is uniquely valid note that any valid
assignment,β, must assign 2 to itself or else||x2|| , ||yβ(2)||. And, it can be checked that
β(1) , 3, 4 in order to satisfy 1= ||x1 − x2|| = ||yβ(1) − yβ(2)||. Therefore,β must be the
identity assignment onI .

• The algorithm terminates and outputsI = {1, 2} as the maximal uniquely valid subset of
{1, 2, 3}with assignment 17→ 1, 2 7→ 2. Note: any ordering on the subsets of size two may
be considered. We chose lexicographic order for simplicity.

�

Now we develop an algorithm that, givenI ⊆ {1, . . . , a}, determines ifI is uniquely valid,
and, if so, also computes the corresponding assignment. Theidea is to search the space of all
assignments onI for valid ones. Once more than one valid assignment is identified, the search
is cut-off and the algorithm outputs thatI is not uniquely valid. Otherwise, exactly one valid
assignment,πI , will be found. In this case, the algorithm outputs thatI is uniquely valid and
returns the corresponding assignment. The algorithm performs a depth-first search with each
node,N1, in the search tree representing∅ ⊆ I1 ⊆ I andβ1 a valid assignment onI1. The search
proceeds by considering allÎ1 = I1 ∪ {î1} whereî ∈ (I \ I1) and all possible ways of extending
β1 to be a valid assignment,̂β1 on Î1. In turn, Î1 andβ̂1 represent a node,̂N1, in the search tree
immediately belowN1. If Î1 = I , then aNumValidAssignFoundcounter is incremented. If the
counter exceeds one, thenI has more than one valid assignment, and the search is terminated.

To make this search efficient, we employ a simple, but effective, pruning rule to quickly
eliminate possible extensions ofβ1 that are not valid assignments onÎ1 = I1 ∪ {î1}. LetC(I1, β1, î)
denote the set of all extensions ofβ1, î 7→ j, which appropriately preserve Euclidean distances;
formally put, all j ∈ ({1, . . . ,m} \ β1(I1)) which satisfies both of the following conditions: (1)
||x̂i || = ||y j ||, and (2) for alli1 ∈ I1, ||xi1 − x̂i || = ||yβ1(i1) − y j ||. It can be shown thatj < C(I1, β1, î)
does not represent a valid assignment. Therefore, to enumerate all possible, valid, extensions of
β1 on Î1, it suffices to consider those assignmentsβ̂1 on Î1 which are of the following form: (i)
for all ℓ ∈ I1, β̂1(ℓ) = β1(ℓ) and (ii) β̂1(î1) = j for somej in C(I1, β1, î).

Algorithms 2 and 3 describe the precise details of the determination whetherI is uniquely
valid (namely, the details of the search discussed in the previous two paragraphs).

Algorithm 2 Determining Unique Validity Main

Inputs: I ⊆ {1, . . . , a}.
1: Set global variableNumValidAssignFound= 0.
2: Call Algorithm 3 on inputs∅ andβ∅ (β∅ denotes the unique valid assignment on∅).
3: If NumValidAssignFound> 1, then return “I IS NOT UNIQUELY VALID”. Else, return “I IS UNIQUELY VALID

WITH ASSIGNMENT” βI .

Comment:The order by which the elements of (I \ I1) andC(I1, β1, î) are chosen in iterating
through the for loops in Algorithm 3 does not affect the correctness of the algorithm. However,
it may affect efficiency. For simplicity, the loops order the elements in these sets from smallest
to largest index number.

Algorithm 1 has worst-case computational complexityO(ma). While this is no better than
a simple brute-force approach, in our experiments, quite reasonable running times are observed
because few original data tuples will have the same length and/or few pairs of original data tuples
will have the same Euclidean distance.
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Algorithm 3 Determining Unique Validity Recursive

Inputs: I1 ⊆ I andβ1 a valid assignment onI1.
1: If I1 = I , then
2: NumValidAssignFound= NumValidAssignFound+ 1
3: If NumValidAssignFound== 1, then setβI to β1.
4: End If.
5: Else, do
6: For î ∈ (I \ I1) and as long asNumValidAssignFound≤ 1, do
7: For j ∈ C(I1, β1, î) and as long asNumValidAssignFound≤ 1, do
8: Extendβ1 to β̂1 s.t. β̂1(î) = j. Let Î1 = I1 ∪ î.
9: Call algorithm 3 on inputŝI1 andβ̂1.

4.2. Known Input-Output Attack

Assume, without loss of generality, that the attacker applies Algorithm 1 and learnsπq (0 ≤
q ≤ a), i.e. {1, . . . , q} is the maximal uniquely valid subset of{1, . . . , a}. Further, to simplify
notation, we may also assume thatπq(i) = i.6 Let Yq denote the firstq columns ofY. As such,
the attacker is assumed to knowXq and the fact thatYq = MT Xq whereMT is an unknown
orthogonal matrix. Based on this, she will apply an attack, called theknown input-output attack,
to produceq < j ≤ m, andx̂, which is an estimate ofx ĵ , the private tuple that was perturbed to
producey j . The known input-output attack was described in the last twosteps in the algorithm
at the beginning of Section 4. More formally, the known input-output attack is as follows. Let
M(Xq,Yq) denote the set of allM ∈ On such thatMXq = Yq.

1. For eachq < j ≤ m, compute the probability that the following stochastic procedure will
result in anǫ-privacy breech when estimatingx ĵ .

(a) EstimateMT by choosing a matrix,̂M, uniformly fromM(Xq,Yq).
(b) Estimatex ĵ asM̂′y j .7

2. Choose they j with the highest probability from step 2 and produce ˆx = M̂′y j .

A key component of the known input-output attack is the computation ofρ(x ĵ , ǫ)= Pr(||M̂′y j−
x ĵ || ≤ ||x ĵ ||ǫ), the probability that anǫ-privacy breach will result from the attacker estimatingx ĵ

asM̂′y j . In Section 4.4, we will develop a closed-form expression for ρ(x ĵ , ǫ). This expression
will only involve information known to the attacker; therefore, she can chooseq < j ≤ m so as
to maximizeρ(x ĵ , ǫ). Another key component of the known input-output algorithm is in choos-
ing M̂ uniformly fromM(Xq,Yq). In most cases,M(Xq,Yq) is uncountable and it is not obvious
how to chooseM̂. We will develop and algorithm for doing so in Section 4.4. Before getting to
Section 4.4, we discuss some important linear algebra background.

4.3. Linear Algebra background

Let Col(Xq) denote the column space ofXq andCol⊥(Xq) denote its orthogonal complement,
i.e., {z ∈ ℜn : z′w = 0, ∀w ∈ Col(Xq)}. Likewise, letCol(Yq) denote the column space ofYq

andCol⊥(Yq) denote its orthogonal compliment. Letk denote the dimension ofCol(Xq). The
“Fundamental Theorem of Linear Algebra” [40, pg. 95] implies that the dimension ofCol⊥(Xq)

6This can be achieved by the attacker appropriately reordering the columns ofXa andY.
7This is equivalent to a maximum likelihood estimate ofx ĵ .
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is n−k. SinceYq = MTXq andMT is orthogonal, then it can be shown thatCol(Yq) has dimension
k. Thus,Col⊥(Yq) has dimensionn− k.

Let Uk andVk denoten× k matrices whose columns form an orthonormal basis forCol(Xq)
andCol(Yq), respectively. It can easily be shown thatCol(MTUk) =Col(Yq) =Col(Vk). Let Un−k

andVn−k denoten× (n− k) matrices whose columns form an orthonormal basis forCol⊥(Xq) and
Col⊥(Yq), respectively. It can easily be shown thatCol(MTUn−k) = Col⊥(Yq) = Col(Vn−k).

4.4. A Closed-Form Expression forρ(x ĵ , ǫ)

Now we return to the issue of how to chooseM̂ uniformly fromM(Xq,Yq) and how to com-
puteρ(x ĵ , ǫ) = Pr(||M̂′y j − x ĵ || ≤ ||x ĵ ||ǫ) = Pr(||M̂′MT x ĵ − x ĵ ||).

To chooseM̂ uniformly fromM(Xq,Yq), the basic idea is to utilize standard algorithms for
choosing a matrixP uniformly fromOn−k, the set of all (n−k)× (n−k) orthogonal matrices, then
apply an appropriately designed transformation toP. The transformation will be an affine, bijec-
tion fromOn−k to M(Xq,Yq).8 The following technical result, proven in Appendix A, provides
this transformation.9

Theorem 4.1. Let L be the mapping P∈ On−k 7→ MTUkU′k + Vn−kPU′n−k. Then, L is an affine
bijection fromOn−k toM(Xq,Yq). And, L−1 is the mapping M∈M(Xq,Yq) 7→ V′n−kMUn−k.

Algorithm 4 Uniform Choice FromM(Xq,Yq)

Inputs: Uk, ann× k matrix whose columns form an orthonormal basis ofCol(Xq), andMTUk (MT is unknown);Un−k
andVn−k, n× (n− k) matrices whose columns form an orthonormal basis ofCol⊥(Xq) andCol⊥(Yq), respectively.

Outputs: M̂ a uniformly chosen matrix fromM(Xq,Yq).
1: ChooseP uniformly fromOn−k using algorithm [41].
2: SetM̂ = L(P), i.e., MTUkU′k + Vn−kPU′n−k.

Two comments are in order regarding Algorithm 4. First, somespecial cases are interesting to
highlight: whenk = n, M̂ is chosen asMT ; whenk = n − 1, M̂ is one of two choices (one
of which equalsMT); otherwise,M̂ is, in theory, chosen from an uncountable set (containing
MT ). Second, it is not obvious how the attacker can compute the inputs to the algorithm,e.g.
MTUk. This issue will be discussed later when spelling out the details of the Known Input Attack
Algorithm, Algorithm 5.

Now we develop a closed-form expression forρ(x ĵ , ǫ). The key points are outlined, while
a more rigorous justification is provided in Appendix A. First of all, from Algorithm 4, M̂ =
MTUkU′k + Vn−kPU′n−k whereP is chosen uniformly fromOn−k. Therefore,

ρ(x ĵ , ǫ) = Pr(||M̂′MT x ĵ − x ĵ || ≤ ||x ĵ ||ǫ)
= Pr(||UkU

′
kx ĵ + Un−kP′V′n−kMT x ĵ − x ĵ || ≤ ||x ĵ ||ǫ).

Since

[
U′k

U′n−k

]
∈ On, then it can left-multiply each term in the left|| . . . || of the second probabil-

ity without changing the equality. As a result, the derivation continues

8That the resultingM̂ was chosenuniformly from M(Xq,Yq) could be more rigorously justified using left-invariance
of probability measures and the Haar probability measure overOn−k. But, such a discussion is not relevant to this paper
and is omitted.

9We defineO0 to contain a single, empty matrix. And, forP ∈ O0, we defineVn−kPU′n−k to be then× n zero matrix.
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· · · = Pr

(∣∣∣∣∣∣

∣∣∣∣∣∣

[
U′kx̂i

0

]
+

[
0

P′V′n−kMT x ĵ

]
−

[
U′kx ĵ

U′n−kx ĵ

]∣∣∣∣∣∣

∣∣∣∣∣∣ ≤ ||x ĵ ||ǫ
)

= Pr(||P′V′n−kMT x ĵ − U′n−kx ĵ || ≤ ||x ĵ ||ǫ).

SinceCol(MTUn−k) =Col(Vn−k), then there exists (n−k)× (n−k) matrixB such thatMTUn−kB =
Vn−k. It follows that (i)V′n−k = B′U′n−kM′T , (ii) B= U′n−kM′TVn−k. Thus,B is orthogonal.10 Using
(i), the derivation continues

· · · = Pr(||P′B′(U′n−kx ĵ) − (U′n−kx ĵ)|| ≤ ||x ĵ ||ǫ) (1)

= Pr(||P′(U′n−kx ĵ) − (U′n−kx ĵ)|| ≤ ||x ĵ ||ǫ) (2)

where the second equality is due to the fact thatB′ ∈ On−k, and thus (P′B′) can be regarded as
having been uniformly chosen fromOn−k just like P′ (a rigorous proof of the second equality is
provided in Appendix A). Putting the whole derivation together,

ρ(x ĵ , ǫ) = Pr(P uniformly chosen fromOn−k satisfies||P′(U′n−kx ĵ) − (U′n−kx ĵ)|| ≤ ||x ĵ ||ǫ). (3)

Let Sn−k(||U′n−kx ĵ ||) denote the hyper-sphere inℜn−k with radius||U′n−kx ĵ || and centered at the
origin. SinceP is chosen uniformly fromOn−k, then any point on the surface ofSn−k(||U′n−kx ĵ ||) is
equally likely to beP′(U′n−kx ĵ). LetSn−k(U′n−kx ĵ , ||x ĵ ||ǫ) denote the “hyper-sphere cap” consisting
of all points inSn−k(||U′n−kx ĵ ||) with distance fromU′n−kx ĵ no greater than||x ĵ ||ǫ. Therefore, (3)
becomes

ρ(x ĵ, ǫ) = Pr(a uniformly chosen point onSn−k(||U′n−kx ĵ ||) is also inSn−k(U′n−kx ĵ , ||x ĵ ||ǫ))

=
S A(Sn−k(U′n−kx ĵ , ||x ĵ ||ǫ))

S A(Sn−k(||U′n−kx ĵ ||))
(4)

whereS A(.) denotes the surface area of a subset of a hyper-sphere.11 Based on equations (4),
we prove, in Appendix A, the following closed form expression, forρ(x ĵ , ǫ), where,Γ(.) denotes

the standard gamma function,ac[]−1(x) denotesarccos

([
||x ĵ ||ǫ

||U′n−kx ĵ ||
√

2

]2
− 1

)
, andac1−[] (x) denotes

arccos

(
1−

[
||x ĵ ||ǫ

||U′n−kx ĵ ||
√

2

]2
)
.

10B′B= B′U′n−kM′T Vn−k = V′n−kVn−k = In−k.
11S1(||U′1x ĵ ||) consists of two points. We define

S A(S1(U′1x ĵ ,||x ĵ ||ǫ))
S A(S1(||U′1x ĵ ||))

as 0.5 ifS1(U′1x ĵ , ||x ĵ ||ǫ) is one point, and as 1

otherwise. Moreover, we define
S A(S0(U′0x ĵ ,||x ĵ ||ǫ))

S A(S0(||U′0x ĵ ||))
as 1.
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ρ(x ĵ , ǫ) =



1 if n− k = 0;
1 if ||x ĵ ||ǫ ≥ ||U′n−kx ĵ ||2 andn− k ≥ 1;
0.5 if ||x ĵ ||ǫ < ||U′n−kx ĵ ||2 andn− k = 1;

1− (1/π)ac[]−1(x) if ||U′n−kx ĵ ||
√

2 < ||x ĵ ||ǫ < ||U′n−kx ĵ ||2 andn− k = 2;

1− (n−k−1)Γ([n−k+2]/2)
(n−k)

√
πΓ([n−k+1]/2)

∫ ac[]−1(x)
θ1=0 sinn−k−1(θ1) dθ1 if ||U′n−kx ĵ ||

√
2 < ||x ĵ ||ǫ < ||U′n−kx ĵ ||2 andn− k ≥ 3;

(1/π)ac1−[] (x) if ||x ĵ ||ǫ ≤ ||U′n−kx ĵ ||
√

2 andn− k = 2;
(n−k−1)Γ([n−k+2]/2)
(n−k)

√
πΓ([n−k+1]/2)

∫ ac1−[] (x)
θ1=0 sinn−k−1(θ1) dθ1 if ||x ĵ ||ǫ ≤ ||U′n−kx ĵ ||

√
2 andn− k ≥ 3.

(5)

Comment:it can be shown that||U′n−kx ĵ || is the distance fromx ĵ to its closest point inCol(Xq)
(the column space ofXq). Thus, the sensitivity of a tuple to breach is dependent upon its length
relative to its distance to the column space ofXq. In particular, if the distance fromx ĵ to the
column space ofXq is sufficiently small, less than (||x ĵ ||ǫ)/2, then the breach probability is one
from the second case in equation (5).

Recall that the attacker seeks to use the closed-form expressions forρ(x ĵ , ǫ) to decide for
which q < j ≤ m does ˆx = M̂′y j produce the best estimation ofx ĵ . This is naturally done by
choosingj to maximizeρ(x ĵ, ǫ). To allow for this, observe that||x ĵ ||ǫ and||U′n−kx ĵ || equal12 ||y j ||ǫ
and||V′n−ky j ||, respectively, which are known to the attacker. Therefore,(5) can be rewritten as fol-

lows, whereac[]−1(y) denotesarccos

([
||y j ||ǫ

||V′n−ky j ||
√

2

]2
− 1

)
, andac1−[] (y) denotesarccos

(
1−

[
||y j ||ǫ

||V′n−ky j ||
√

2

]2
)
.

ρ(x ĵ , ǫ) =



1 if n− k = 0;
1 if ||yj ||ǫ ≥ ||V′n−kyj ||2 andn− k ≥ 1;
0.5 if ||yj ||ǫ < ||V′n−kyj ||2 andn− k = 1;
1− (1/π)ac[]−1(y) if ||V′n−kyj ||

√
2 < ||yj ||ǫ < ||V′n−kyj ||2 andn− k = 2;

1− (n−k−1)Γ([n−k+2]/2)
(n−k)

√
πΓ([n−k+1]/2)

∫ ac[]−1(y)
θ1=0 sinn−k−1(θ1) dθ1 if ||V′n−kyj ||

√
2 < ||yj ||ǫ < ||V′n−kyj ||2 andn− k ≥ 3;

(1/π)ac1−[] (y) if ||yj ||ǫ ≤ ||V′n−kyj ||
√

2 andn− k = 2;
(n−k−1)Γ([n−k+2]/2)
(n−k)

√
πΓ([n−k+1]/2)

∫ ac1−[] (y)
θ1=0 sinn−k−1(θ1) dθ1 if ||yj ||ǫ ≤ ||V′n−kyj ||

√
2 andn− k ≥ 3.

(6)

Now we put together all the parts and provide the pseudo-codeof the full known input attack
algorithm (Algorithm 5). Before doing so, first note thatUk, Un−k, Vk, andVn−k can be computed
from Xq andYq using standard procedures [40]. Second,MTUk = YqA whereA is an q × k
matrix that can be computed13 from Uk andXq. Third, a recursive procedure for computing (6)
is described in Appendix A.

Comment:Theǫ-privacy breach probabilityρ(ǫ) equals maxq< j≤mρ(x ĵ , ǫ).
Example revisited - part 2:consider the dataset and its perturbed version illustratedin Figure

1 with known original tuplesx1, x2, x3. Part 1 of this example showed how Algorithm 1 inferred
the following mappings to perturbed tuplesx1 7→ y1 and x2 7→ y2, henceXq = [x1x2] and
Yq = [y1y2]. Consider perturbed tupley4. The Known Input Attack will compute ˆx an estimate
of the original tuplex4̂ associated withy4 (x4̂ = x4 in this case) andρ(x4̂, ǫ), theǫ-privacy breach
probability. Sincex1 andx2 are linearly dependent,k = 1, so,n− k = 1 and the second or third

12MT x ĵ = yj , so,||x ĵ || = ||MT x ĵ || = ||yj ||. Moreover, as shown earlier, there existsB ∈ On−k such thatV′n−k = B′U′n−kM′T .
Thus,||U′n−kx ĵ || = ||B′U′n−kM′T MT x ĵ || = ||V′n−kyj ||.

13SinceCol(Uk) =Col(Xq), then by solvingk systems of linear equations (one for each column ofUk), aq× k matrix
A can be computed such thatXqA = Uk.
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Algorithm 5 Known Input Attack Algorithm

Inputs: Y, ǫ ≥ 0, andXa.
Outputs: a < j ≤ m andx̂ ∈ ℜn the corresponding estimate ofx ĵ .
1: ComputeYq = MT Xq (where 1≤ q ≤ a) using Algorithm 1.
2: ComputeUk,Vk,Un−k,Vn−k, andMTUk as described earlier.
3: For eachq < j ≤ m do
4: Computeρ(x ĵ , ǫ) using (6) as described in Appendix A.
5: End For.
6: Choose thej from the previous loop producing the largestρ(x ĵ , ǫ).

7: ChooseM̂ uniformly fromM(Xq,Yq) by applying Algorithm 4.
8: Setx̂← M̂′yj .

cases of Equation 6 apply. It can be shown thatV′n−k = V′1 = [0, 1]. So,||y4||ǫ = 2ǫ and||V′n−ky4||2
= 4. Therefore, ifǫ ≥ 2, the second case applies andρ(x4̂, ǫ) = 1, else, the third case applies and
ρ(x4̂, ǫ) = 0.5.

There are only two Euclidean distance preserving transformations fixing the origin that sat-
isfy the input-output constraintsx1 7→ y1 and x2 7→ y2: the 90-degree clockwise rotation (the
actual perturbation applied) and the 90-degree counter-clockwise rotation, these are the elements
of M(X2,Y2). So x̂ is chosen randomly between the inverse of these transformations applied to
y4 resulting inx̂ = [2, 0]′ or [−2, 0]′. If ǫ ≥ 2, then either of these choices represent anǫ−privacy
breach soρ(x4̂, ǫ) = 1. If ǫ < 2, then only one of these choices, [2, 0]′, represent a breach so
ρ(x4̂, ǫ) = 0.5. �

4.5. Known Input Attack on General Distance-Preserving Data Perturbation

Previously, we considered the case where the data perturbation is assumed to be orthogonal
(does not involve a fixed translation,vT = 0). Now we briefly discuss how the attack technique
and its analysis can be extended to arbitrary Euclidean distance-preserving perturbation (vT , 0).
Extending the algorithms for inferring πa: Since the length of the private data tuples may not
be preserved, then the definition of validity in Section 4.1 must be changed:β on I is valid if
∀i, j ∈ I , ||xi − x j || = ||yβ(i) − yβ( j)||. As well, the definition ofC(I1, β1, î) (given I1 ⊆ I , β1 a valid
assignment onI1, andî ∈ (I \ I1)), must change: the set of allj ∈ ({1, . . . ,m} \ β1(I1)) such that
for all i1 ∈ I1, ||xi1 − x̂i || = ||yβ1(i1)−y j ||.With these changes, Algorithms 1, 2, and 3 work correctly
as stated.
Extending the known input attack: The basic idea is simple and relies on the fact that the
samevT is added to all tuples in the perturbation ofXq. Fix one tuple, sayx1 and y1, and
consider the following differencesx−1 = (xq − x1), . . ., x−q−1 = (xq − xq−1) andy−1 = (yq − y1), . . .,
y−q−1 = (yq − yq−1). Let X−q−1 denote the matrix with columnsx−1 , . . . , x

−
q−1 andY−q−1 denote the

matrix with columnsy−1 , . . . , y
−
q−1. Observe thatY−q−1 = MTX−q−1, hence, the attack and its analysis

from the orthogonal data perturbation case can be applied. The details are straight-forward and
are omitted for brevity. However, a caveat is in order. The attack depends on the choice of the
tuple to fix. Therefore, the attacker examines them all and chooses the highest privacy breach
probability.

5. Experiments and Discussion

The experiments are designed to assess the computational efficiency of the overall known in-
put attack and its effectiveness at breaching privacy. We performed two sets of experiments: (a)
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those involving only the known input attack, and (b) those comparing the known input attack with
the attack of Kaplanet al. [35]. In both sets of experiments, we used two datasets as theoriginal,
private data tuplesX: 1) a 100,000 tuple synthetic dataset generated from a 100-variate Gaus-
sian distribution14; 2) the Letter Recognition dataset, 20,000 tuples and 16 numeric attributes,
from UCI machine learning repository [42] – we removed tuples which were duplicated over the
numeric attributes yielding a final dataset of 18,668 tuples. The attacks were implemented in
Matlab 7 (R14) and all experiments were carried out on a Thinkpad laptop with 1.83GHz Intel
Core 2 CPU, 1.99GB RAM, and WindowsXP system. We did not compare our attack technique
against the ICA-based attack in [38] and the known sample attack in [10] because the extremely
small size of the known inputs will render these attacks ineffective. In all Figures, the error bars
show one standard deviation above and below the average.

5.1. Experiments Only Involving the Known Input Attack

The first experiment fixesX and its perturbed versionY, but changes the number of known
input tuples,a. It proceeds by carrying out ten trials as follows. Selecta linearly independent
tuples randomly fromX (these become the know inputs). Use Algorithm 1 to computeI , the
maximal uniquely valid assignment. Use steps 2-5 in Algorithm 5 to compute theρ(ǫ), the
ǫ-privacy breach probability (a closed-form was given immediately above Algorithm 5).

To measure the accuracy of the attack, we report the average of ρ(ǫ) and|I | over all ten trials.
To measure the efficiency, we report the average time taken to computeI (the rest is ignored as
the overall attack computation time is dominated by Algorithm 1). In Figures 2 and 3, results are
shown withǫ = 0.15. In Figure 4, accuracy results are shown with varyingǫ anda fixed at four.

The second experiment fixes the number of known input tuples (andǫ at 0.15) but changes
the size of the original dataX in order to assess the computational efficiency of the attack. For the
Gaussian data, it uses the firstk tuples asX wherek takes a value in{10000, 20000, . . . , 100000}.
Then, the attack proceeds by carrying out the following operations ten times. Selecta = 50 lin-
early independent tuples randomly fromX and use Algorithm 1 to compute the maximal uniquely
valid assignmentI . The average time taken to computeI is given in Figure 5 top. For the Let-
ter Recognition data,k takes a value in{2000, 4000, . . . , 18000} and the attack randomly select
a = 10 linearly independent tuples as the known inputs. The average time taken to findI is given
in Figure 5 bottom.

Regarding the known input attack accuracy, the linking phase of the attack (Algorithm 1),
exhibits excellent performance. For synthetic data, its performance is perfect in that all known
input tuples have their corresponding perturbed tuple inferred (see Figure 2 top). For real data,
its performance is nearly perfect – see Figure 3 top. As expected, ρ(ǫ) approaches one asa
increases see Figures 2 and 3 bottom. Interestingly on the synthetic dataset, the transition from
ρ(ǫ) = 0→ 1 occurs very sharply arounda = 60. Moreover, on the real dataset,ρ(ǫ) = 1 with
a as small as 4 (and we also observe in Figure 4 that the probability remains fairly high forǫ as
small as 0.07).

Regarding computational efficiency, the algorithm appears to require quite reasonable time in
all cases observed,e.g.less that 450 seconds on the synthetic dataset with 100 knowntuples (see
Figure 2 middle) and less than 45 seconds on the real dataset with 16 known inputs (see Figure 3

14The mean vector is specified by independently generating 100numbers from a univariate Gaussian with mean
zero and variance one. The covariance matrix is specified by (i) independently generating 100 data tuples each with
100 independently generated entries a from a univariate Gaussian with mean zero and variance one, (ii) computing the
empirical covariance of this 100 tuple dataset.
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Figure 2: Known input attack on Gaussian data with different number of known inputs andǫ = 0.15.
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Figure 3: Known input attack on Letter Recognition data withdifferent number of known inputs andǫ = 0.15.
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middle). With respect to known input set size (a), the average computation time exhibits a linear
(synthetic data) or slower (real data) trend (see Figure 2 and Figure 3 middle). With respect to
dataset size (number of private data tuples), the average computation time exhibits a clear linear
trend for both synthetic and real data (see Figure 5). These results demonstrate that, despite the
high worst-case computational complexity, the computation times on both real and synthetic data
are quite reasonable.

The experimental results support the conclusion that the attack can breach privacy in plausible
situations. For example, on the 16-dimensional, 18688 tuple real dataset, the known input attack
achieves a privacy breach with probability one using four known inputs and less than 30 seconds
of run-time.

5.2. Experiments Comparing the Known Input-Output Attack with Kaplan’s Attack

We compare the accuracy of the attacks with respect to an attacker’s goal of producing a
single perturbed tuple and an estimate of its unperturbed counterpart. Since Kaplan’s attack does
not provide the attacker with any means to know how good the estimate is, the attacker has no
reason to choose one perturbed tuple over another, hence, weassume the attacker picks randomly.
On the other hand, our attack provides the attacker with breech proababilities, so, the attacker
chooses the perturbed tuple to maximize the breech probability (as done in Algorithm 5).

The experiments proceed as follows.X andY are fixed anda, the number of known input
tuples, is varied. 100 trials are carried out as follows. Select a linearly independent tuples
randomly fromX (these become the know inputs) and do both of the following. (i) Choose a
tuple yℓ randomly fromY whose unperturbed counterpartxℓ̂ in X is not among thea known
inputs. Use Kaplan’s attack15 to produce an estimate, ˆx, of xℓ̂. Record the Euclidean relative
error of the estimate,||xℓ̂− x̂||/||xℓ̂||. (ii) Use our Algorithm 516 to choose the tupley j from Y with

15With a learning rate of 0.05 and 500 iterations, values observed empirically to produce the best results
16With ǫ = 0.15 and 0.1 for the Gaussian and Letter data, respectively.
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Figure 5: Known input attack on Gaussian (left) and Letter Recognition data (right) with varying size, but fixed number
of known inputsa = 50, 10 (respectively) and fixedǫ = 0.15.

maximumǫ−privacy breech probability and whose unperturbed counterpart x ĵ does not appear
among thea known inputs, then produce an estimate ˆx of x ĵ . Record the Euclidean relative error
of the estimate:||x ĵ − x̂||/||x ĵ ||.

Figure 6 shows the average relative error of the attacks on both datasets. From the Figure it
is clear that our approach allows the attacker to produce a significantly more accurate estimate.
We do not provide a figure comparing the run-times of the attacks because Kaplan’s computes
an estimate from only one perturbed tuple while ours, in effect, computes an estimate from all
perturbed tuples. However, the time required by our algorithm to produce an estimate from a
single, randomly chosen, perturbed tuple is 100 to 1000 times faster than Kaplan’s.

6. Conclusion

We examined the vulnerability of Euclidean distance-preserving data perturbation when a
small set of original data tuples are known to the attacker. We developed a stochastic technique
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Figure 6: A comparison of Kaplan’s attack and our Algorithm 5) in terms of average relative error over 100 trials. The
top and bottom charts show the average error on the Gaussian and Letter recognition datasets, respectively.
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allowing the attacker to estimate, for each perturbed tuple, the original unknown data tuple and
calculate the probability that the estimation results in a privacy breach. For perturbations which
fix the origin, this probability is dependent on the length ofthe original tuple relative to its
distance from the column space of the known inputs. Therefore, the probability increases as the
number of known original tuples does, reaching one when the number of linearly independent
known original tuples reaches the number of data dimensions. The assumption of fixing the
origin can be dropped, resulting in a slightly more complicated breach probability calculation.
Our experiments on real and synthetic data showed that even with the number of known original
tuples significantly smaller than the number of data dimensions, privacy is breached with high
probability. For example, on a real 16-dimensional dataset, 4 known original tuples is enough
for the attacker to estimate an unknown original tuple with less than 7% error with probability
exceeding 0.8.

We conclude the paper by pointing to an interesting direction for future work, extending
techniques in this paper to apply to random projection data perturbation:Y= ℓ−1/2R̂XwhereR̂ is
anℓ× n matrix with each entry generated independently and from a standard normal distribution
(this type of data perturbation forℓ ≤ n was discussed in [37]). It can be shown that matrixR is
orthogonal on expectation and the probability of orthogonality approaches one exponentially fast
with ℓ. By increasingℓ, the data owner can guarantee that distances are preserved with arbitrarily
high probability. However, such an increase intuitively would seem to increase the vulnerability
with respect to a known input attack. Some preliminary results along these lines can be found in
[43].
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Appendix A. Supplementary Material

Appendix A.1. Known Input Attack: Proof of Theorem 4.1
Theorem4.1: LetL be the mappingP ∈ On−k 7→ MTUkU′k + Vn−kPU′n−k. Then,L is an affine

bijection fromOn−k toM(Xq,Yq). And, L−1 is the mappingM ∈M(Xq,Yq) 7→ V′n−kMUn−k.
To prove this theorem we rely upon the following key technical result.

Lemma Appendix A.1. Let P denote the set{MTUkU′k + Vn−kPU′n−k : P ∈ On−k}. Then
M(Xq,Yq) = P.

Proof: Let M(Uk,MTUk) denote the set of allM ∈ On such thatMUk = MTUk. First we show
thatM(Xq,Yq) =M(Uk,MTUk). SinceCol(Xq) = Col(Uk), then there existsk× p matrix A such
thatUkA = Xq. SinceA hask columns, thenrank(A) ≤ k. Furthermore, [40, pg. 201] implies
thatk = rank(UkA) ≤ min{k, rank(A)}, thus,rank(A) = k. Therefore, from [40, pg. 90],A has a
right inverse.

For anyM ∈ On, we have

M ∈M(Xq,Yq) ⇔ MUkA = MTUkA

⇔ MUk = MTUk.

The last⇔ follows from the fact thatA has a right inverse. We conclude thatM(Xq,Yq) =
M(Uk,MTUk). Now we complete the proof by showing thatM(Uk,MTUk) = P.

(1) For anyM ∈ P, there existsP ∈ On−k such thatM = {MTUkU′k + Vn−kPU′n−k}. We have
then

MUk = MTUkU
′
kUk + Vn−kPU′n−kUk

= MTUk.

If we can show thatM is orthogonal, thenM ∈M(Uk,MTUk), so,P ⊆M(Uk,MTUk), as desired.
Let U denote [Uk|Un−k] (clearlyU ∈ On). Observe

M′M = UkU
′
kM′T MTUkU

′
k + UkU

′
kM′TVn−kPU′n−k

+ Un−kP′V′n−kMTUkU
′
k + Un−kP′V′n−kMTUn−kPU′n−k

= UkU
′
k + 0+ 0+ Un−kU

′
n−k

= UU′ = In.

where the first zero in the second equality is due to the fact that Col(MTUk) = Col(Yq), so,
V′n−kMTUk = 0.

(2) Now considerM ∈M(Uk,MTUk). It can be shown thatCol(Vn−k) =Col(MUn−k).17 Thus,
there exists (n− k) × (n− k) matrix P with Vn−kP= MUn−k. Observe that

P′P = P′(V′n−kVn−k)P

= (Vn−kP)′(Vn−kP)

= (MUn−k)′(MUn−k) = In−k.

17Since (MUn−k)′MUk = 0, thenCol(MUn−k) =Col⊥(MUk). SinceMUk = MT Uk andCol(MT Uk) =Col(Yq), then it
follows thatCol⊥(MUk) =Col⊥(MTUk) = Col⊥(Yq) = Col(Vn−k).
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Thus,P ∈ On−k. Moreover,

MU = M[Uk|Un−k]

= [MTUk|MUn−k]

= [MTUk|Vn−kP].

Thus,

M = [MTUk|Vn−kP]

[
U′k

U′n−k

]

= MTUkU
′
k + Vn−kPU′n−k.

Therefore,M ∈ P, so,M(Uk,MTUk) ⊆ P, as desired. �

Now we prove Theorem 4.1.
Proof: Clearly L is an affine map. Moreover, Lemma Appendix A.1 directly implies thatL
mapsOn−k ontoM(Xq,Yq). To see thatL is one-to-one, considerP1,P2 ∈ On−k such thatL(P1) =
L(P2). By definition, MTUkU′k + Vn−kP1U′n−k = MTUkU′k + Vn−kP2U′n−k, thus,Vn−kP1U′n−k =

Vn−kP2U′n−k. ThereforeP1 = V′n−kVn−kP1U′n−kUn−k = V′n−kVn−kP2U′n−kUn−k = P2.
To complete the proof, considerP ∈ On−k. We have,V′n−kL(P)Un−k = V′n−kMTUkU′kUn−k +

V′n−kVn−kPU′n−kUn−k = 0 + P. Moreover, considerM ∈ M(Xq,Yq). By Lemma Appendix A.1,
there existsPM ∈ On−k such thatM = MTUkU′k+Vn−kPMU′n−k. We haveL(V′n−kMUn−k) = L(PM)
= M. Therefore, the inverse ofL is M ∈M(Xq,Yq) 7→ V′n−kMUn−k. �

Appendix A.2. Known Input Attack: A Rigorous Development ofthe Closed-Form Expression
for ρ(x ĵ , ǫ)

Up to (1), we had derived the following result (forP chosen uniformly fromOn−k):

ρ(x ĵ , ǫ) = Pr(||P′B′(U′n−kx ĵ) − (U′n−kx ĵ)|| ≤ ||x ĵ ||ǫ), (A.1)

whereB ∈ On−k and satisfiesMTUn−kB = Vn−k. Now we provide a rigorous proof of (2),i.e. the
r.h.s. above equalsPr(||P′(U′n−kx ĵ) − (U′n−kx ĵ)|| ≤ ||x ĵ ||ǫ). To do so, we need some material from
measure theory.

BecauseOn−k is a locally compact topological group [39, pg. 293], it has aHaar probability
measure, denoted byµ, overB, the Borel algebra onOn−k. This is commonly regarded as the
standard uniform probability measure overOn−k. Its key property isleft-invariance: for allB ∈ B
and allM ∈ On−k, µ(B) = µ(MB), i.e.,shiftingB by a rigid motion does not change its probability
assignment.

Let On−k(U′n−kx ĵ , ||x ĵ ||ǫ) denote the set of allP ∈ On−k such that||P′(U′n−kx ĵ) − (U′n−kx ĵ)|| ≤
||x ĵ ||ǫ). LetOB′

n−k(U
′
n−kx ĵ , ||x ĵ ||ǫ) denote the set of allP ∈ On−k such that||P′B′(U′n−kx ĵ)−(U′n−kx ĵ)|| ≤

||x ĵ ||ǫ.18 By definition ofµ we have,

µ(On−k(U′n−kx ĵ , ||x ĵ ||ǫ)) = Pr(P uniformly chosen fromOn−k lies inOn−k(U′n−kx ĵ , ||x ĵ ||ǫ))
= Pr(||P′(U′n−kx ĵ) − (U′n−kx ĵ)|| ≤ ||x ĵ ||ǫ),

18SinceOn−k(U′n−kx ĵ , ||x ĵ ||ǫ) andOB′
n−k(U

′
n−kx ĵ , ||x ĵ ||ǫ) are topologically closed sets, then they are Borel subsetsof

On−k, therefore,µ is defined on each of these.
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and,

µ(OB′
n−k(U

′
n−kx ĵ , ||x ĵ ||ǫ)) = Pr(P uniformly chosen fromOn−k lies inOB′

n−k(U
′
n−kx ĵ , ||x ĵ ||ǫ))

= Pr(||P′B′(U′n−kx ĵ) − (U′n−kx ĵ)|| ≤ ||x ĵ ||ǫ),

Therefore,

Pr(||P′B′(U′n−kx ĵ) − (U′n−kx ĵ)|| ≤ ||x ĵ ||ǫ) = µ(OB′
n−k(U

′
n−kx ĵ , ||x ĵ ||ǫ))

= µ(BOB′
n−k(U

′
n−kx ĵ , ||x ĵ ||ǫ))

= µ(On−k(U
′
n−kx ĵ , ||x ĵ ||ǫ)) (A.2)

= Pr(||P′(U′n−kx ĵ) − (U′n−kx ĵ)|| ≤ ||x ĵ ||ǫ)

where the second equality is due to the left-invariance ofµ and the third equality is due to the
fact thatBOB′

n−k(U
′
n−kx ĵ , ||x ĵ ||ǫ) can be shown to equalOn−k(U′n−kx ĵ , ||x ĵ ||ǫ).

Since the last equality above was for intuitive purposes only, we will ignore it in completing
the derivation of a closed form expression. (A.1) and (A.2) imply

ρ(x ĵ , ǫ) = µ(On−k(U′n−kx ĵ , ||x ĵ ||ǫ)).

Recall thatSn−k(||U′n−kx ĵ ||) denotes the hyper-sphere inℜn−k with radius||U′n−kx ĵ || and centered at
the origin andSn−k(U′n−kx ĵ , ||x ĵ ||ǫ) denotes the points contained bySn−k(||U′n−kx ĵ ||) whose distance
fromU′n−kx ĵ is no greater than||x ĵ ||ǫ. Using basic principles from measure theory, it can be shown
that19

µ(On−k(U′n−kx ĵ , ||x ĵ ||ǫ)) =
S A(Sn−k(U′n−kx ĵ , ||x ĵ ||ǫ))

S A(Sn−k(||U′n−kx ĵ ||))
We have arrived at Equation (4) from Section 4.4. Next, we derive the desired closed-form
expression (5). To simplify exposition, we prove the following result form ≥ 0, z ∈ ℜm, and
c ≥ 0 (by plugging inm= n− k, z= U′n−kx ĵ , andc= ||x ĵ ||ǫ, (5) follows).

S A(Sm(z, c))
S A(Sm(||z||)) =



1 if m= 0;
1 if c ≥ ||z||2 andm≥ 1;
0.5 if c < ||z||2 andm= 1;
1− (1/π)arccos([c/(||z||

√
2)]2 − 1) if ||z||

√
2 < c < ||z||2 andm= 2;

1− (m−1)Γ([m+2]/2)
m
√
πΓ([m+1]/2)

∫ arccos([c/(||z||
√

2)]2−1)
θ1=0 sinm−1(θ1) dθ1 if ||z||

√
2 < c < ||z||2 andm≥ 3;

(1/π)arccos(1− [c/(||z||
√

2)]2) if c ≤ ||z||
√

2 andm= 2;
(m−1)Γ([m+2]/2)
m
√
πΓ([m+1]/2)

∫ arccos(1−[c/(||z||
√

2)]2)
θ1=0 sinm−1(θ1) dθ1 if c ≤ ||z||

√
2 andm≥ 3.

(A.3)

Before proving (A.3) we establish:

19S1(||U′1x ĵ ||) consists of two points. Recall that we define
S A(S1(U′1x ĵ ,||x ĵ ||ǫ))

S A(S1(||U′1x ĵ ||))
as 0.5 ifS1(U′1x ĵ , ||x ĵ ||ǫ) is one point, and

as 1 otherwise. Moreover, we define
S A(S0(U′0x ĵ ,||x ĵ ||ǫ))

S A(S0(||U′0x ĵ ||))
as 1.
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r(h1)

h

Figure A.7: The hyper-sphereSm(||z||) and two “north pole”
caps (c ≤ ||z||

√
2).

theta

pi − theta

c’

−z

c

h’

Figure A.8: The hyper-sphereSm(||z||) and one “south
pole” cap (||z||

√
2 < c < ||z||2).

Forb ≥ 2 andr > 0, S A(Sb(r)) =
brb−1πb/2

Γ((b+ 2)/2)
. (A.4)

Indeed, withVol(.) denoting volume, it can be shown thatS A(Sb(r))= dVol(Sb(r))
dr = Vol(Sb(1)) drb

dr

= πb/2brb−1

Γ((b+2)/2) . The last equality follows from [44]. Now we return to proving (A.3).
If m = 0, then the surface area ratio equals 1 by definition. Ifc ≥ ||z||2 andm ≥ 1, then

the ratio equals 1 sinceSm(z, c) = Sm(||z||). If c < ||z||2 andm = 1, then, the ratio equals 0.5
sinceS1(z, c) = {z} andS1(||z||) = {z,−z}. For the remainder of the derivation, we assume that
m ≥ 2 and, without loss of generality,z is at the “north pole” of the hyper-sphereSm(||z||), i.e. z
= (1, 0, 0, · · · , 0).

Casec ≤ ||z||
√

2: The set of points onSm(||z||) whose distance fromz equalsc is the inter-
section ofSm(||z||) with the hyper-plane whose perpendicular toz is of lengthh as seen in Figure
A.7. Thus,Sm(z, c) are all those points onSm(||z||) not below that hyper-plane.

Sub-casem= 2: SinceS2(||z||) is an ordinary circle, then the angleθ in Figure A.7 determines
the surface area ratio as follows(2θ/2π)S A(S2(||z||))

S A(S2(||z||)) = θ/π. Moreover, sinceθ is the top angle of an
isosceles triangle with sides of length||z|| and base of lengthc, thensin(θ/2) = c/(2||z||). The
half-angle formula implies thatθ = arccos(1− [c/(||z||

√
2)]2). Therefore, as desired,

S A(S2(z, c))
S A(S2(||z||))

= (1/π)arccos(1− [c/(||z||
√

2)]2). (A.5)

Sub-casem ≥ 3: Here, computing the surface area ratio is more complicated and requires
an appeal to the integral definition of the cap surface area. Consider the intersection ofSm(||z||)
with the hyper-plane whose perpendicular toz is of length 0≤ h1 ≤ h as seen in Figure A.7. The
surface area of this intersection equals the surface area ofSm−1(r(h1)). Thus, (A.4) implies
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S A(Sm(z, c)) =

∫ h

h1=0
S A(Sm−1(r(h1))) dh1

=

(
(m− 1)π(m−1)/2

Γ((m+ 1)/2)

) ∫ h

h1=0
(r(h1))m−2 dh1.

To evaluate the integral, we change coordinates withh1 = ||z||(1− cos(θ1)). So,h1 = 0, h implies
thatθ1 = 0, arccos(1− h/||z||). And, r(||z||(1− cos(θ1)) = ||z||sin(θ1) =

dh1
dθ1

. Therefore,

∫ h

h1=0
(r(h1))

m−2 dh1 =

∫ arccos(1−h/||z||)

θ1=0
r(||z||(1− cos(θ1))m−2 dh1

dθ1
dθ1

=

∫ arccos(1−h/||z||)

θ1=0
||z||m−2sinm−2(θ1)||z||sin(θ1) dθ1

= ||z||m−1
∫ arccos(1−h/||z||)

θ1=0
sinm−1(θ1) dθ1.

Plugging this into the previous equations forS A(Sm(z, c)) and using (A.4), we get

S A(Sm(z, c))
S A(Sm(||z||)) =

(
(m− 1)π(m−1)/2||z||m−1Γ((m+ 2)/2)
Γ((m+ 1)/2)m||z||m−1πm/2

) ∫ arccos(1−h/||z||)

θ1=0
sinm−1(θ1) dθ1

=

(
(m− 1)Γ((m+ 2)/2)

Γ((m+ 1)/2)m
√
π

) ∫ arccos(1−h/||z||)

θ1=0
sinm−1(θ1) dθ1.

Sinceh= c2

2||z|| , then, as desired, we get

S A(Sm(z, c))
S A(Sm(||z||)) =

(
(m− 1)Γ((m+ 2)/2)

Γ((m+ 1)/2)m
√
π

) ∫ arccos(1−[c/||z||
√

2]2)

θ1=0
sinm−1(θ1) dθ1. (A.6)

Case||z||
√

2 < c < ||z||2: As depicted in Figure A.8,Sm(z, c) contains the entire northern
hemisphere ofSm(||z||). LetSn(−z, c) denote the “south pole” cap defined byh′ (andc′) in Figure
A.8 (clearlyc′ ≤ ||z||

√
2). We have

S A(Sm(z, c))
S A(Sm(||z||)) = 1− S A(Sm(−z, c′)

S A(Sm(||z||)) . (A.7)

By replacing “c” with “ c′” in (A.5) and (A.6) then plugging the resulting expression into (A.7)
we get,

S A(Sm(z, c))
S A(Sm(||z||)) =


1− (1/π)arccos(1 − [c′/(||z||

√
2)]2) if m= 2;

1− (m−1)Γ([m+2]/2)
m
√
πΓ([m+1]/2)

∫ arccos(1−[c′/(||z||
√

2)]2)
θ1=0 sinm−1(θ1) dθ1 if m≥ 3.

(A.8)

From Figure A.8, it can be seen thatθ is the top angle on an isosceles triangle with sides of
length ||z|| and base of lengthc′. So, sin(θ/2) = c′

2||z|| . The half-angle formula impliescos(θ) =

1− [c′/(||z||
√

2)]2. Similar reasoning showscos(π − θ) = 1− [c/(||z||
√

2)]2. Since 0≤ θ ≤ π/2,
thencos(π − θ) = −cos(θ). Thus, [c/(||z||

√
2)]2 − 1= 1− [c′/(||z||

√
2)]2. Plugging 2− [ c

||z||
√

2
]2 in

for [ c′

||z||
√

2
]2 in (A.8) yields the desired results.
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Appendix A.3. Known Input Attack: Computing the Closed-Form Expression forρ(x ĵ, ǫ)

Next we develop recursive procedures for computing (6). This amounts to computing the
following two functions: (i)GR(m) = Γ([m + 2]/2)/Γ([m+ 1]/2) for m ≥ 1; (ii) S I(z,m) =∫ arccos(z)

θ1=0
sinm−1(θ1) dθ1 for 1 ≥ z≥ 0 andm≥ 1. Indeed, (6) is equivalent to

ρ(x ĵ , ǫ) =



1 if n− k = 0;
1 if ||yj ||ǫ ≥ ||V′n−kyj ||2 andn− k ≥ 1;
0.5 if ||yj ||ǫ < ||V′n−kyj ||2 andn− k = 1;

1− (1/π)arccos


[

||y j ||ǫ
||V′n−ky j ||

√
2

]2

− 1

 if ||V′n−kyj ||
√

2 < ||yj ||ǫ < ||V′n−kyj ||2 andn− k = 2;

1− (n−k−1)GR(n−k)
(n−k)

√
π

S I


[

||y j ||ǫ
||V′n−ky j ||

√
2

]2

− 1, n− k

 if ||V′n−kyj ||
√

2 < ||yj ||ǫ < ||V′n−kyj ||2 andn− k ≥ 3;

(1/π)arccos

1−
[

||y j ||ǫ
||V′n−ky j ||

√
2

]2 if ||yj ||ǫ ≤ ||V′n−kyj ||
√

2 andn− k = 2;

(n−k−1)GR(n−k)
(n−k)

√
π

S I

1−
[

||y j ||ǫ
||V′n−ky j ||

√
2

]2

, n− k

 if ||yj ||ǫ ≤ ||V′n−kyj ||
√

2 andn− k ≥ 3.

(A.9)

To computeGR(m) for m ≥ 1, we use the following facts:Γ(z+ 1) = zΓ(z) for z> 0, Γ(1/2)
=
√
π, andΓ(1)= 1. Thus, we get a recursive procedure for computingGR(m).

GR(m) =



√
π

2 if m= 1;
2√
π

if m= 2;(
m

m−1

)
GR(m− 2) if m≥ 3.

(A.10)

To computeS I(z,m) for 1 ≥ z ≥ 0 andm ≥ 1, we use the following facts.sinm−2(arccos(z)) =
[1 − z2](m−2)/2 if m ≥ 3. And,S I(z,m) =

[∫
sinm−1(θ1) dθ1

]
(arccos(z)) −

[∫
sinm−1(θ1) dθ1

]
(0).

And,

[∫
sinm−1(θ1) dθ1

]
(w) =



w if m− 1 = 0;
−cos(w) if m− 1 = 1;
m−2
m−1

[∫
sinm−3(θ1) dθ1

]
(w) − sinm−2(w)cos(w)

m−1 if m− 1 ≥ 2;
(A.11)

Therefore,

S I(z,m) =



arccos(z) if m= 1;
1− z if m= 2;
m−2
m−1S I(z,m− 2)− z[1−z2](m−2)/2

m−1 if m≥ 3;
(A.12)
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