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Noise-tolerance feasibility for restricted-domain

Information Retrieval systems

Abstract

Information Retrieval systems normally have to work with rather het-

erogeneous sources, such as Web sites or documents from Optical Character

Recognition tools. The correct conversion of these sources into flat text files

is not a trivial task since noise may easily be introduced as a result of spelling

or typeset errors. Interestingly, this is not a great drawback when the size

of the corpus is sufficiently large, since redundancy helps to overcome noise

problems. However, noise becomes a serious problem in restricted-domain

Information Retrieval specially when the corpus is small and has little or

no redundancy. This paper devises an approach which adds noise-tolerance

to Information Retrieval systems. A set of experiments carried out in the

agricultural domain proves the effectiveness of the approach presented.

Keywords:

information retrieval, noise-tolerance, restricted domain, edit distance

1. Introduction

Human beings continuously confront noise in texts when they read or

write documents. By noise we mean “any kind of difference in the surface

form of an electronic text from the intended, correct or original text” [1].

Noise may appear as a result of writers’ spelling mistakes, typeset errors

Preprint submitted to Data & Knowledge Engineering (DKE) September 18, 2012
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or problems with special character encoding, and these errors are currently

particularly frequent in, for example, user-generated contents (wikis, blogs,

emails, etc.). Noise may also be a result of errors caused by the auto-

matic processing of documents. For example, Optical Character Recogni-

tion (OCR) tools convert handwritten, typewritten or printed documents

into machine-encoded texts for their further processing by search engines.

Common errors caused by OCR applications include the substitution of a

character (e.g. fear vs. tear), the merging of two characters into one (rna

vs. ma), the generation of two characters from one (dam vs. clam), or the

division of a word through the insertion of spaces. The majority of computa-

tional approaches attempt to deal with these noise errors by comparing noisy

terms with those stored in a lexicon. However, the main problem of these

approaches is that many noisy terms may also be correct terms stored in the

lexicon.

Noise errors are easily overcome by human beings, but cause erroneous

results in applications that process electronic texts in an automatic man-

ner [2, 3]. These applications also have to work on restricted domain texts,

in which corpora are usually small, have little or no redundancy, and are

focused on a technical and specific topic with a special vocabulary which is

normally stored in Knowledge Organization Systems1 (KOS) such as thesauri

or ontologies (e.g. the AGROVOC2 thesaurus in the agricultural domain or

1Knowledge Organization Systems include a variety of schemes that organize, manage,

and retrieve information. This term is intended to encompass all types of schemes for

promoting knowledge management [4].
2AGROVOC, http://www.fao.org/agrovoc/
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the UMLS3 in the medical domain).

Each application confronts noise problems in several ways. For exam-

ple, [5, 6] presents a study of the effects of noise on automatic summarization

from OCR documents. The authors of these approaches reach the conclu-

sion that noise seriously decreases the precision of automatic summarization,

principally as a result of incorrect sentence tokenization. They therefore pro-

pose to spell check the documents and to perform the summarization from

words rather than sentences. Likewise, [7] suggests that the solution may

be not to deal with noise, but to summarize, using document style features

rather than sentences. Another work is that of Palmer and Ostendorf [8], in

which the authors propose modeling the errors caused by a speech recognizer,

but this approach requires a profound knowledge of the kind of noise errors

that can be found in the data.

With regard to noise influence on Question Answering (QA) applications,

it is important to mention the work of Aunimo et al. [9] in which a QA system

that works with incomplete and noisy data (specifically emails and mobile

short messages) is described. This system compares the user’s question with

a set of previously stored queries, each of which has its corresponding an-

swer, thus signifying that neither answer extraction nor noise treatment is

performed.

The approach presented in this paper extends previous work of the au-

thors [10] by including a more exhaustive description and discussion of the

proposed edit distances and how they are used to add noise-tolerance facili-

3UMLS: Unified Medical Language System, http://www.nlm.nih.gov/research/umls/
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ties to Information Retrieval (IR) systems. Moreover, the experiments have

been extended in order to measure and analyze the benefits obtained. It deals

with the effects of noise in IR applications because IR is usually at the core

of most of the previously mentioned applications, since it quickly reduces the

quantity of text to which computationally expensive techniques are applied.

Many IR systems do not have inbuilt support for dealing with noise in a

given corpus. The rationale behind such a choice is because corpora usually

consist of huge amounts of redundant documents in which the expected an-

swer4 to a query is often repeated in a large numbers of documents, with and

without noise. A redundant corpus thus avoids the situation of IR systems

being affected by noise problems. Unfortunately, this is only true for redun-

dant open domain corpora, since restricted domain corpora may be small,

and with little or no redundancy [11]. Non-redundant corpora therefore lead

to a situation in which the information that the IR system is seeking may

only be available in very few documents, and if they are affected by noise,

the information may never be found. This is the scenario that we confront,

one which hampers the use of IR systems in real-world situations in which

(i) a restricted-domain and non-redundant corpus is used, and (ii) noise is

unavoidable.

IR approaches dealing with noise are detailed in the following section

(Sect. 2). Various edit distance algorithms are then studied in Sect. 3, of

which the best is selected. In Sect. 4 an extension of an edit distance al-

gorithm for considering comparisons between single words and multi-words

4Henceforth we use “answer” to mean the information required by the user’s query.

This information is in the document or passage returned by the IR system.

4
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is presented. Our approach for adding noise-tolerance to IR systems is de-

scribed in Sect. 5, while in Sect. 6 and Sect. 7 we respectively discuss the

resources used and the set of experiments carried out. Our conclusions and

future work are shown in Sect. 8.

2. Related work on dealing with noise in IR systems

IR systems are based on comparing text strings between the user’s query

and the corpus in which the answer should be found. Specifically, from a

user’s query, an IR system returns a list of relevant documents which may

contain the answer to the query [12]. Noise can therefore appear in (i) the

query, because its terms may be written incorrectly; or (ii) the corpus, since

it must be automatically processed to obtain a set of text files as input of

the IR system, such as the Web, PDF (Portable Document Format) files, or

files processed from OCR or Automatic Speech Recognition tools [13].

2.1. Dealing with noise in IR queries

Most IR systems advocate noise correction by means of spell checkers [14].

In order to detect the noisy terms, they apply different heuristics, such as

the non-inclusion in a previously defined lexicon or in a log of previous IR

queries. They subsequently select the most similar stored terms according

to distance measures (e.g. Levenshtein distance [15]). The main drawbacks

of this are that there may not be a restricted-domain lexicon containing

the required coverage in order to make this approach possible, and that they

cannot deal with noisy terms which also appear in the lexicon as correct terms

(e.g. fear vs. tear). Some approaches therefore add language models to these

lexicons [16]. For example, Cucerzan and Brill [17] logs of user queries from

5
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an internet search engine are used to obtain the language model which is used

in the spelling correction of new queries. Li et al. [16] propose a method for

the use of distributional similarity between two terms estimated from query

logs in learning improved query spelling correction models. However, this

method does not work with correct terms that are not in the lexicon or with

less frequent noise errors. Other researchers [18] propose the use of new web

searches in order to obtain alternatives for noisy terms. As was previously

stated, this kind of approach requires open-domain corpora and performs

better with high redundant corpora.

Similar approaches [19] measure the impact of noisy queries on the per-

formance of classical stemming-based approaches on Spanish corpora. The

authors adopted the noise correction scheme, in which the misspelled words

in the query are replaced by their candidate corrections, proposed by sev-

eral correction algorithms. They conclude that classic stemming-based ap-

proaches are highly sensitive to misspelled queries, particularly in the case

of short queries. Such a negative impact is appreciably reduced by the use

of contextual correction, although there is still an important decrease in pre-

cision (about -50% with an error rate of 50%). Moreover, this approach

does not deal with noisy words that are legitimate words but semantically

incorrect.

2.2. Dealing with noise in IR corpora

There are less approaches dealing with noise in IR corpora, because IR

systems usually work in a huge repository of documents [20]. Most of these

approaches carry out this task by means of spell checking, like Taghva and

Stofsky [21], in which an approach that confronts OCR errors is presented.

6
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Further similar approaches can be studied in TREC Confusion Track [22, 23].

Other approaches propose filtering the noise in the corpus by discarding

noisy terms. Some examples can be found in bilingual corpora, principally

when they are parallel (e.g. [24], [25], [26] or [27]). These kinds of approaches

are also based on the redundancy of the corpus, and are not therefore effective

in small and non-redundant restricted-domain corpora, in which the system

cannot afford to discard any piece of information owing to the small size of

the corpus.

With regard to noise tolerance approaches, some techniques [28, 29] en-

able approximate searches by manually generating a set of modified patterns

from the original user pattern (e.g. phonetic similarities that often occur in

multilingual scientific encyclopedias, along with normal typing errors such as

omissions or the swapping of letters). The main drawback of this approach is

that it requires manual adaptation to each corpus and language. Moreover,

it also deals with the spelling noise introduced by users, but it does not work

properly with errors introduced by automatic OCR tools. Other approaches

add noise tolerance by means of query expansion with new terms obtained by

adding common corruption errors previously found in the corpus or obtained

from lists of pairs of correct and incorrect words, as can be seen in the work

of Hawking et al. [30], but this requires a previous knowledge of the kind of

errors in the corpus. Similarly, the work of Tong et al. [31] proposes query

expansion by adding query term variants found in the terms that are not in

the corpus. These are selected by using a statistical word bigram modeling

and are measured by an edit distance. Likewise, Ng et al. [32] build a set of

double-dot-5-grams for each topic statement. However, the performance of

7
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this approach is quite low.

The approach presented in this paper overcomes the aforementioned draw-

backs in that: (i) it does not require any special corpora (with redundancy

or preprocessing); (ii) it does not require a profound knowledge of the kind

of noise errors that can be found in the data; (iii) it is noise-tolerant because

it does not correct or discard the noisy words in the corpus, since we intend

to work in non-redundant restricted domains; (iv) it is based on restricted

domain resources (lexicons, thesauri or ontologies), and it can deal with noisy

terms that are also in these resources (e.g. fear vs. tear); (v) performance

is maintained even though a noisy restricted-domain corpus is used; and (vi)

it can deal with multi-words.

3. Selection of the edit distance algorithm

Various algorithms for computing string similarity currently exist. Edit

Distance or Levenshtein distance [15] determines the differences between two

words by computing the minimum number of operations required to trans-

form one string into another. An “operation” can be an insertion, dele-

tion or substitution of a character in the string. This distance is a gen-

eralization of the Hamming distance [33], which only considers the substi-

tution operation for same-length strings. Some variants of distances that

extend Edit Distance are: Damerau-Levenshtein distance [34], which consid-

ers the interchanges of two characters and a new operation called transpo-

sition; Needleman-Wunsch [35], which only adds a variable adjustment for

the cost of the failures (insertion/deletion). Furthermore, the Jaro [36] or

Jaro-Winkler [37] distance works properly when similarity is measured for

8
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short strings (e.g., people’s names). The Jaro-Winkler algorithm has a fixed

length prefix in which transformations are carried out in a special manner

by using a static scale factor.

However, these edit distance algorithms have several drawbacks, among

others: (i) Levenshtein’s distance does not take into account the position in

which the operation occurs; (ii) Needleman-Wunsch distance applies penal-

ties but without considering the kind of transformation that is carried out

(e.g. different penalties should be applied for deletion and substitution op-

erations, or for the replacement of an accented vowel with its non-accented

counterpart, in comparison to the replacement of one consonant with an-

other different one); and (iii) Jaro-Winkler distance fails in those cases that

analyzed words have a prefix that is different from the fixed length prefix

in the algorithm. These drawbacks hamper the use of these approaches in

noise detection for restricted domain IR, thus requiring a new edit distance

algorithm (described as follows).

3.1. Extended Edit Distance

In order to solve the aforementioned problems, we proposed a new algo-

rithm for computing edit distances [38]: the Extended Edit Distance (DEx:

“Distancia de Edición eXtendida”). This algorithm is an extension of Lev-

enshtein’s algorithm, with which penalties are applied by considering what

kind of operation or transformation is carried out in what position, along

with the character involved in the operation. DEx considers (i) an etymo-

logical analysis of the word, (ii) the occurrence of prosodic and orthographic

alternations in several languages, and (iii) flexibility when typos occur. In

addition to the cost matrixes used by Levenshtein, DEx also obtains the

9
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Longest Common Subsequence (LCS) [39] and other helpful attributes for

determining similarity between strings in a single iteration.

This information is used in DEx to apply certain penalties according to:

• Position of transformations: if they occur in the stem (i.e., further to

the left) of the word, the penalty will be greater than for those occurring

further to the right of the word.

• Character involved in the transformation and kind of transformation:

this allows different penalties, because we consider that a higher penalty

should be applied for a transformation between two characters with a

high frequency in the language (the frequency for each character is au-

tomatically calculated from a dictionary of the language). In this way,

we can deal with the prosodic alternations such as the replacement

of an accented vowel with its non-accented counterpart, which is not

highly penalized by assigning the same frequency to the vowel and its

accented counterpart (e.g. a and á). Therefore, it allows a flexible

adaptation to the specific language in which DEx is applied, an issue

that is not considered by other distance measures. Similarly, substitu-

tion of one character by another or transposing two adjacent characters

implies two single operations: the deletion and insertion of a character.

DEx algorithm consists of the following steps, which are defined by Fernán-

dez et al. [38]:

1. The Levenshtein matrix that contains the words to be analyzed is gen-

erated. For example, the matrix for words “afrecholk” and “afrechillo”

10
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Table 1: Example of steps 1, 2 and 3 in DEx: obtaining Levenshtein matrix, LCS and OC.

a f r e c h i l l o

0 1 2 3 4 5 6 7 8 9 10

a 1 0 1 2 3 4 5 6 7 8 9

f 2 1 0 1 2 3 4 5 6 7 8

r 3 2 1 0 1 2 3 4 5 6 7

e 4 3 2 1 0 1 2 3 4 5 6

c 5 4 3 2 1 0 1 2 3 4 5

h 6 5 4 3 2 1 0 1 2 3 4

o 7 6 5 4 3 2 1 1 2 3 3

l 8 7 6 5 4 3 2 2 1 2 3

k 9 8 7 6 5 4 3 3 2 2 3

O O O O O O S O I S

is shown in Table 1. The lowest cell on the far right of the matrix allows

us to discover the minimum cost (in this case, three transformations

should take place) of transforming the noisy word “afrecholk” into the

word “afrechillo”.

2. The path corresponding to the LCS is determined in accordance with

Hirschberg [39]. In order to obtain this path, the starting point is

the lowest right-hand cell. It is then necessary to move backwards

through the matrix towards the top left-hand cell which is of minimum

value, priority being given to the diagonal when the same value exists

in bordering (or nearby) cells. In Table 1 the LCS of the example

“afrecholk”-“afrechillo” is shown by coloring the cells in gray.

3. The Operation Chain (OC) is generated from the previously detected

LCS. To this aim, each movement within the matrix is shown as a

different kind of operation:

11
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• A vertical movement is interpreted as a Delete operation.

• A horizontal movement is interpreted as an Insertion.

• A diagonal movement is interpreted as a Substitution.

• Finally, if source and target cells have the same value, this is

interpreted as a NO operation.

The OC would have an equal or higher length than the longest word of

the compared words depending on the realized operations. According

to the previous example, the OC would be: “OOOOOOSOIS”. This is

shown at the end of Table 1.

4. Evaluating Equation 1 with the OC found and those characters involved

in each operation.

DEx =
8

√

∑l−1
i=0 V(Oi) ∗

(

P(c1j), P(c2k)

)

(2Rmax + 1)L−i

N
(1)

where:

O : Operation chain (O-No operation, I-Insertion, D-Deletion, S-Substitution).

Oi : Operation in position i.

V : this is formalized as the following vector

V =



























(0, 0) : o

(1, 0) : i

(0, 1) : d

(1, 1) : s



























12
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c1, c2 : analyzed words or strings.

c1j : character j of word c1.

c2k : character k of word c2.

P : weight assigned to each character. These weights are obtained by

calculating the frequency of each character in a general-language

dictionary and some extended characters like the punctuation

marks, etc. These characters are then ordered and a number is

assigned to them, starting at 1, until the amount of characters is

obtained in reverse order, as is shown as follows.

P =











































































a : 52 c : 44 g : 36 ı́ : 51 ú : 41

i : 51 l : 43 b : 35 j : 27 w : 20

e : 50 t : 42 y : 34 á : 52 1 : 19

o : 49 u : 41 f : 33 ) : 25 ñ : 18

s : 48 d : 40 v : 32 ( : 25 0 : 17

r : 47 p : 39 ó : 49 q : 24 2 : 16

n : 46 m : 38 x : 30 k : 23 - : 15

: 45 h : 37 z : 29 é : 50 3 : 14

P(c1j) : weight of character c1j, where,

j =







j + 1 if Oi 6= I

j if Oi = I







P(c2k) : weight of character c2k, where,

k =







k + 1 if Oi 6= D

k if Oi = D







13



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

L : length of the longest word in the selected dictionary. For example,

as the longest length of a word in AGROVOC is 23 (e.g. glicosfin-

gofosfoĺıpidos), the value of L could be 23. However, it is worth

noting that its value depends on the dictionary of words.

l : length of the edit operation chain.

Rmax : maximum amount of characters in the general-language dictio-

nary used for the generation of the set of weights P .

N : this is defined as follows, N =
∑L−1

i=0 (2Rmax + 1)i. This value is

calculated for the worst possible case, i.e., with a string of a length

L (23) filled with the most costly characters in the dictionary (e.g.

“a” and “i” with a cost of 52 and 51, respectively, according to P

shown above) when the most costly operator (i.e., substitution) is

applied.

In Equation 1, it can be observed that the term V(Oi)∗
(

P(c1j), P(c2k)

)

is the

Cartesian product that analyzes the importance of carrying out the operation

V(Oi) between characters c1j and c2k. Term (2Rmax + 1)L−i penalizes the

position of the operation in such a way that the further left the operation

is (i.e., near the root of the word) the greater the penalty will be. N is the

term that normalizes the distance in the [0, 1] interval. The eighth root in

Equation 1 is applied in order to avoid low results and to ensure that the

order relation is not affected.

Table 2 shows the values of every parameter for calculating DEx between

words “afrecholk” and “afrechillo”. After applying DEx in the example,

distance DEx = 0.028 is obtained between “afrecholk” and “afrechillo”, thus

14
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showing that they may be similar words.

Table 2: Example of step 4 of DEx: evaluation of Equation 1 with OC and involving

characters.
Oi V(Oi)

c1 P(c1j ) c2 P(c2k) V(Oi)
∗

(

P(c1j)
, P(c2k)

)

i L − i (2Rmax + 1)
L−i

V(Oi)
∗

(

P(c1j)
, P(c2k)

)

(2Rmax + 1)
L−

O (0, 0) a 52 a 52 0 0 24 1.87E + 49 0

O (0, 0) f 33 f 33 0 1 23 1.66E + 47 0

O (0, 0) r 47 r 47 0 2 22 1.47E + 45 0

O (0, 0) e 50 e 50 0 3 21 1.30E + 43 0

O (0, 0) c 44 c 44 0 4 20 1.15E + 41 0

O (0, 0) h 37 h 37 0 5 19 1.01E + 39 0

S (1, 1) o 49 i 51 100 6 18 9.02E + 36 9.02E + 38

O (0, 0) l 43 l 43 0 7 17 7.98E + 34 0

I (1, 0) 0 l 43 43 8 16 7.06E + 32 3, 03E + 34

S (1, 1) k 23 o 49 72 9 15 6.25E + 30 4.50E + 32

Data : CalculatingDEx :

l = 10 L = 24 Rmax = 56

l−1
∑

i=0

V(Oi)
∗

(

P(c1j)
, P(c2k)

)

(2Rmax + 1)
L−i

= 9, 02E + 38

N =

L−1
∑

i=0

(2Rmax + 1)
i
= 2.12E + 51

∑l−1
i=0 V(Oi)

∗

(

P(c1j)
, P(c2k)

)

(2Rmax + 1)L−i

N
= 4.25E − 13

DEx = 0.028

Finally, as DEx is evaluated by using the minimal operation chains, and is

generated by the application of the LCS algorithm in the dynamic program-

ming matrix for DEx, the DEx algorithm’s order being equal to the Edit

Distance algorithm in (O(m,n)), where m and n are the length of compared

strings.

Although experiments in sections 7.1.1 and 7.1.2 will show that DEx is a

good candidate for noise tolerance, it is important to highlight that it must be

extended if it is required to deal with multi-words. The rationale behind this

is that multi-words commonly appear in restricted domains (e.g. scientific

names of different kinds of fir tree within an agricultural domain: abies alba,

abies balsamea, abies sachalinensis, etc.).
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4. Extension of DEx for multi-words

A further example of the current shortcomings of the measures of distance

among character strings (e.g. Levenshtein, Jaro-Winkler, DEx, etc.) is that

they do not operate with multi-words. Other work extends these measures

by considering multi-words as a whole string, but the problem is mainly due

to word permutations (e.g. “University of Vermont” is much more similar to

“University of Virginia” than is “Virginia, University”). Another choice to

extend these measures to deal with multi-words is to pair up words by select-

ing the minimum edit distance between each pair of words, as is proposed by

French [40]. After that, all these distances are added up to calculate the final

edit distance for the multi-words. With regard to the proposal by Spasic and

Ananiadou [41], the authors propose a measure of contextual similarity for

biomedical terms. They represent the context of each term as a sequence

of syntactic elements annotated with biomedical information retrieved from

an ontology. The sequences of contextual elements may be matched ap-

proximately by edit distance, defined as the minimal cost incurred by the

changes (including insertion, deletion and replacement) needed to transform

one sequence into the other.

In this section, we describe our extension proposal of DEx to consider

comparisons between single words and multi-words in an efficient manner,

in order to make it useful in the aforementioned restricted domains. The

proposal is more elaborated than the previous one [40], and differs from

the one by Spasic and Ananiadou [41] because we do not require additional

knowledge.

The Multi-words Distance (DM: “Distancia para Multipalabras” in Equa-
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tion 2) is based on calculating DEx for each word in the multi-words stored

in the KOS. The proposed algorithm for calculating DM is described as fol-

lows. An example is also provided (comparison between words “afrecho de

trigo” and “afrechillo”) for the sake of clarity.

1. The words to be compared, whether they are multi-words or not, are

tokenized with the aim of analyzing each term as an independent entity.

2. A matrix is created and filled in with the analyzed words in accordance

with Edit Distance, as in the DEx algorithm (see Sect. 3.1), the only

difference being that the element to be compared is the value of DEx

(calculated according to the Equation 1 in Sect. 3.1) between words

rather than an exact match (see the following step in this algorithmic

sequence). Table 5 shows the matrix for the example after simultane-

ously carrying out both this and the subsequent step of the algorithm.

3. The similarity between words is determined. To do this, a dynamic

threshold is established by means of the DEx algorithm. This threshold

is dynamic because it depends on the length of the Operation Chain

(OC) of each pair of compared words. Therefore, this threshold is

calculated for each pair of compared words and it will have the same

value in those comparisons that have an OC of an equal length. The

steps to calculate this threshold are:

3.1 The Middle of the previously generated Operation Chain (Middle-

OC) of compared words is found as follows:

Middle-OC =







length(OC)
2

+ 1 if length(OC) = even number

length(OC)+1
2

if length(OC) = odd number






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Table 3: Example of obtaining the OC between “afrecho” and “afrechillo”.

a f r e c h i l l o

0 1 2 3 4 5 6 7 8 9 10

a 1 0 1 2 3 4 5 6 7 8 9

f 2 1 0 1 2 3 4 5 6 7 8

r 3 2 1 0 1 2 3 4 5 6 7

e 4 3 2 1 0 1 2 3 4 5 6

c 5 4 3 2 1 0 1 2 3 4 5

h 6 5 4 3 2 1 0 1 2 3 4

o 7 6 5 4 3 2 1 1 2 3 3

O O O O O O I I I O

For example, in the comparison between “afrecho” and “afrechillo”

the middle of the OC “OOOOOOIIIO” is the sixth position (see

the end of Table 3).

3.2 A new OC with the same length as the original OC is created.

This new OC has No-Operation (i.e. “O”) in each of its positions,

except in the middle of the OC (found in the previous step). In-

stead, the position of the middle of the OC has the Insertion

operation (“I”). According to the previous example, the new OC

is “OOOOOIOOOO”.

3.3 The dynamic threshold is established from the DEx evaluation

of the new OC (previously obtained) with the weight of the least

important character in the dictionary (calculated from the ranking

of characters in the dictionary; according to the set of weights P

previously detailed in Sect. 3.1, the character 3 with a weight of
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14 would be the least important character). For the example, the

threshold is 0.028 (see Table 4).

Bearing these issues in mind, the similarity between compared words

can then be decided. If DEx distance is not greater than the threshold,

it is assumed that tokens are similar; otherwise they are likely to be

different. For the example, this step is shown in Table 4, where it can

be observed that DEx for comparing “afrecho” and “afrechillo” (0.026

as previously calculated in Sect. 3.1) is lower than the threshold of

0.028, and both words are thus considered to be similar.

4. Another matrix is simultaneously created to store the values of DEx

between the tokens compared in the previous step.

Table 4: Example of calculating similarity between strings.

Pivot Analyzed word Threshold DEx Similarity

afrecho afrechillo 0.028 0.026 YES (DEx < Threshold)

de afrechillo 0.052 0.908 NO (DEx > Threshold)

trigo afrechillo 0.052 0.909 NO (DEx > Threshold)

Table 5: Matrix for comparing the pivot word “afrecho de trigo” and the word “afrechillo”.

afrechillo

0

afrecho 1 0

de 2 1

trigo 3 2

5. The operation chain from the previously obtained matrix is determined

(see Table 5). For the example this is “ODD”, since there is no op-
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eration (“O”) between “afrecho” and “afrechillo” and there are two

deletion operations (“DD”) of the words “de” and “trigo”.

6. The operation chain in the Equation DM is evaluated, which is defined

according to Equation 2

DM =

L
∑

i=1

(V (Oi) · CP + CD ·DExi
)

where :

V (Oi) =







0 if Oi = o

1 if Oi 6= o
(2)

Parameters and constants are described as follows:

Oi: Operation chain in the position i (O-No operation, I-Insertion, D-

Deletion, S-Substitution).

V (Oi): vector of operations. This has values of 0 if the operation chain

in i is “no operation”, and otherwise, 1.

L: Length of operation chain (Oi).

FP = 2−1(i+1): this is a penalty factor used to give a weight to the posi-

tion in which the transformation between compared words occurs.

Thanks to the exponential behavior of this factor, it is possible to

impose a more rigorous penalization on those transformations that

occur further to the left in the multi-word. Besides, as FP aims

at establishing values without overlap, the CP and CD depend

on FP (as shown next).
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CP : Penalty factor for the position of the word within the string or

multi-word (CP =0.95 of FP ). This value was empirically ob-

tained from several experiments.

CD: Penalty factor for DEx between compared words (CD =0.05 of

FP ). This value was empirically obtained from several experi-

ments. CD is used to establish an order between comparisons

that are similar.

DExi
: DEx, according to Equation 1, between words in position i

within multi-words.

The evaluation for the example is shown in Table 6. Also, accord-

ing to DM , the value of the distance between “afrecho de trigo” and

“afrechillo” is 0.37; and both words are thus considered to be similar.

Table 6: Example of step 7 of DM: evaluating Equation 2.

i V(Oi)
FP CP CD V (Oi) · CP DExi

CD · DExi
(V (Oi) · CP + CD · DExi

)

0 0 0.5 0.475 0.025 0 0.026 0.00065 0.00065

1 1 0.25 0.2375 0.0125 0.2375 0.908 0.01135 0.24885

2 1 0.125 0.11875 0.00625 0.11875 0.909 0.00568 0.12443

DM =
L
∑

i=1

(V (Oi) · CP + CD · DExi
) = 0.3739

Finally, it is worth pointing out that the higher the value of DM is, the

greater the distance between words is, and they are thus less similar.

In the following section we describe our proposal to obtain noisy-tolerance

IR systems in restricted domains in which we have used the DM algorithm.

Some comparisons of this and other distance measures have been made in

Sect. 7.1.
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5. Adding noise-tolerance to an IR system

In restricted-domain IR systems, the most important terms are those re-

lated to the domain. Therefore, if noise affects these terms then the precision

of the restricted-domain IR systems decreases. These systems must conse-

quently be especially aware of noise in restricted-domain terms appearing

in the corpus. To this aim, our approach compares terms in a KOS with

corpus and query terms by means of the DM algorithm. An overview of the

approach is depicted in Fig. 1.

The approach has three main stages: one at indexing time (in the offline

phase) and the other two at query time (in online phase). In the first stage

(see Sect. 5.1 for more details) the DM distances between each indexed and

KOS terms are calculated. In the second stage (see Sect. 5.2), DM distance

between each query and KOS terms are calculated in order to obtain the

terminology vectors of those terms. Next, in the last stage (see Sect. 5.3), the

correspondence between query and indexed terms are defined. Finally, the

methodology for applying query expansion to IR systems, using the relations

obtained by the DM algorithm, is explained in Sect. 5.4 and Sect. 5.5.

5.1. Obtaining terminological vector for each indexed term

A terminology vector can be defined as follows: let T be the set of n

terms from the KOS mapped with the DM algorithm. tr ∈ T denotes the

term r in the set of terms. The terminology vector that represents the term

ts is then defined as the vector Vts = [(t1, w1), (t2, w2), ..., (tn, wn)] where wr

denotes the distance between ts and tr.

In order to obtain the terminology vector for each indexed term, we first
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(…) La Basella alba o espinaca china, perteneciente a
la familia Basellaceae, es muy usada en la cocina
asiática(…)

(…) La Basela al6a o espinaca china, perteneciente a
la familia Basellaceae, es muy usada en la cocina
asiática (…)

pdftotxt

CORPUS (PDF)

CORPUS (TXT)

Indexed
Noisy & Non-noisy

Terms
KOS

Mapping
DM algorithm

INDEXING PHASE (OFFLINE)

¿Dónde se utiliza la basella alba?

Query Terms

Terminology Vector
( Q )

Mapping
DM algorithm

Terminology Vector
( C )

KOS

Correspondence
Words

(Query Expansion
Process)

Relevant Passages
Retrieved

(IR Process)

IR
System

0.68 RCCA1978_T12N01A045
(…) en la cocina asiática  (…)

List of Passages

SEARCHING PHASE (ONLINE)

INPUT

OUTPUT

1st Passage

Query

1 2

3

Figure 1: Overview of the authors’ approach for adding noise-tolerance to an IR system.

convert the corpus into flat files and we tokenize the corpus terms. We

next index these terms using an IR system without considering whether

these terms are noisy. Every indexed term is then mapped to the terms

in the domain-specific KOS by using the DM algorithm previously detailed

in Sect. 4. For each indexed term, its mapped terms and their corresponding

distances are kept in terminology vectors (C).

To illustrate our proposal, we take the text fragment with noise shown

in Fig. 1: “La Basela al6a o espinaca china, perteneciente a la familia Basel-
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laceae, es muy usada en la cocina asiática”; whose version without noise

would be: “La Basella alba o espinaca china, perteneciente a la familia

Basellaceae, es muy usada en la cocina asiática”. In this example, we can

appreciate the OCR errors in: “basela” with the omission of “l” character

and “al6a” with the substitution of “b” for “6” character, where the dif-

ficulties to fix this kind of noise are due to the multi-word situation with

both words affected by noise, and the fact that the first word, “Basela” is

also a correct word in the language. By applying the method we will obtain

the vector C represented as Cbasela al6a = [(basella alba, 0.241), (baselaceas,

0.248), (basella, 0.249), (basella rubra, 0.249), ...].

5.2. Obtaining terminological vectors of each relevant query term

In the second stage, we obtain the terminology vector for each query term.

In order to do this, we follow steps similar to those of the previous stage:

(i) the query terms are tokenized, (ii) relevant query terms are selected, (iii)

these terms are mapped with related KOS terms by using DM algorithm,

and (iv) their corresponding terminology vectors (Q) are obtained.

For example, if we consider the query “¿Dónde se utiliza la basella alba?”

(Where is the basella alba used? ), the system will take the multi-word “basella

alba” and the word “basella” as relevant terms for the IR system and our

approach will return the terminology vectors Q represented as Qbasella alba =

[(basella alba, 0), (basella, 0.247), (basellaceae, 0.248), (baselaceas, 0.249),

(basella rubra, 0.249), ...] andQbasella = [(basella, 0), (basellaceae, 0), (baselaceas, 0),

(basella alba, 0.247), (basella rubra, 0.247), ...].
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5.3. Obtaining the mapping between terms

In the last stage, and using the vectors Q and C obtained in previous

stages, we attempt to match the word correspondences between both vectors.

The criterion used to determine these correspondences is:

Whether the term i represented by the terminology vector Qi ∈ Q and the

term j represented by the vector Cj ∈ C fulfill the following conditions:

• i 6= j, and

• more than a number NT of terms exist in Qi which are also contained

in Cj and whose distances are lower than a given maximum threshold,

or

• at least a number NT of terms exist in Qi which are also contained in

Cj and whose distances are all equal to 0.

These threshold and NT values depend on the application domain and

must be defined empirically. In our case study, the values of the threshold

and NT are 0.37 and 3, respectively. This maximum threshold for the DM

algorithm optimizes the precision and recall in the comparison of simple

words and multi-words (as shown at Sect. 7.1.3).

Once we have detected terminology vectors with corresponding terms that

fulfill the previous rules, we expand the query by using the terms related to

the vector Cj because terms related to the vector Qi are the query terms

themselves. Therefore, if the vector Qi related to the query term i matches

several C1, C2, ..., Cj corpus vectors related to the corpus terms 1, 2, ..., j, the

query term i will be expanded by the corpus terms 1, 2, ..., j.
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By following the examples shown in Sect. 5.1 and Sect. 5.2 we can ob-

serve that the terms “basella alba”, “basella”,“basellaceae”, “baselaceas”

and “basella rubra” appear in both vectors Qbasella alba and Cbasela al6a. As

basela al6a 6= basella alba and both vectors contain more than three equal

terms (i.e. the DM distance between each of them is lower than a given max-

imum threshold 0.37), the first and second rules are fulfilled and the word

“basela al6a” is therefore used to expand the query term “basella alba”. In

the same way the corpus noisy term “basela al6a can be used to expand the

query term “basella”.

We have thus succeeded in relating the query terms “basella alba” or

“basella” with the noisy term “basela al6a” stored in the corpus and the IR

system has been able to find the passage with the correct answer shown in

Fig. 1 as system output.

5.4. IR systems

In order to observe the independence of our method with regard to the

IR system, for the experiments we have used two IR engines: JIRS5 and

Lucene6.

5.4.1. JIRS

JAVA Information Retrieval System (JIRS) is a Passage Retrieval engine

which is particularly suited to QA tasks, and was developed by Gómez [42].

Its purpose is to find pieces of text (passages) in each document which are

organized according to the probability of containing the question structures

5http://sourceforge.net/projects/jirs/
6http://lucene.apache.org/
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rather than just returning a set of relevant documents. To that end, JIRS

uses the query structure itself, and attempts to find an equal or similar

expression in the documents. The greater the similarity of the structure

between the query and the passage is, the higher the passage relevance will

be. For example, if the query is “What is searched for by using an intravaginal

sponge system made of polyurethane?”, JIRS will try to find a passage with

the expression “To set a farm-level, a suitable method is searched for by using

an intravaginal sponge system made of polyurethane”. In this ideal example,

both query and passage contain the same structures and, in these cases, the

answer is frequently extremely similar.

JIRS is able to find query structures in a large document collection quickly

and efficiently by using different n-gram models [43]. In that paper, several

of these n-grams models were compared. However, in the work presented

herein, we have only used the Distance Density n-gram model since Gómez

et al. [43] proved to be the best during the experiments. The Distance Density

n-gram model is based on searching for the heaviest n-grams (i.e., those with

the greatest term weight) but taking into account the distance between them.

As was mentioned above, JIRS is an IR system which returns passages

rather than documents. The size of these passages is defined by a number of

sentences. This passage division method was discovered by Llopis [44], who

demonstrated that this kind of passage extraction gives a better performance

than those based on window or paragraph algorithms. Gómez et al. [43]

carried out several experiments to determine the best size and overlap of the

passages for QA tasks, and they concluded that an overlapped passage of 3

sentences has a good relation between answers found and passage size. An
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overlapped passage of 3 sentences signifies that the first passage is composed

of the first, the second and the third sentences of the document, whereas the

second passage is formed of the second, the third and the fourth sentence,

and so on. We have used JIRS because almost all the QA systems which

took part in the Cross Language Evaluation Forum (CLEF) in 20057 and

used this IR system as a search engine, obtained the first positions in the

ranking [45].

5.4.2. Lucene

Lucene [46] is a high-performance, scalable, open source search engine

written completely in JAVA8. It is available as part of the Apache Jakarta

project9. This system measures the similarity between the query and the doc-

ument using the dot product and the tf-idf [47] for the weight term. However,

we adapt Lucene in order to convert it into a passage retrieval system instead

of into a document retrieval engine, because this kind of application works

better in QA tasks [44]. In order to obtain passages from documents, we

split the documents in small pieces of text with a given number of sentences

as we explain in Sect. 5.4.1.

Lucene combines two IR techniques: Boolean model [48] and vector space

model [47]. For the second, the cosine similarity [47] is used, but with some

modifications which are explained in their documentation.

We used Lucene because it is the most frequently used IR system in QA

systems. Nevertheless, this system is based on document retrieval and it

7http://clef-qa.fbk.eu/2005/
8http://www.oracle.com/technetwork/java/index.html
9http://jakarta.apache.org
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was therefore necessary to adapt it to obtain passages. This was done by

building small overlapped documents of 3 sentences with the same criterion

as explained above.

5.5. Applying query expansion to IR systems

After obtaining the mapping between query and corpus terms we ex-

panded the queries in order to add noise-tolerance to IR systems (see Fig. 1).

In this section we explain the process of query expansion in the IR systems

(i.e. JIRS and Lucene) that are described above (at the Sect. 5.4) and will

be used in our experiments.

JIRS has the advantage that it permits an input query composed of rela-

tions of query terms and expanded terms. This means that we can associate

each query term with its expanded terms obtained with the DM algorithm,

and JIRS takes this information into account in order to assign term weights.

Nonetheless, it is necessary to adapt the expanded query to Lucene. Since

Lucene does not accept this kind of query with related terms, we used two

different approaches, the first of which involved using the OR boolean oper-

ator, and the second of which involved defining a query with a combination

of OR and AND boolean operations. In the latter approach, we forced at

least each query term or its expanded terms to appear in the passage. For

example, if the query is ¿Cuáles son los metabolitos principales que vienen

del tracto digestivo? (What are the main metabolites which appear in the

gastrointestinal tract? ), the DM algorithm returns the terms which appear

in Table 7.

With the set of original terms and its expanded terms, a new query for

Lucene is formed with the following syntax: (term1 OR expanded1,1 OR
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Table 7: Example of query expansion using DM algorithm

Query terms

D
M

ex
p
a
n
si
o
n

metabolitos principales vienen tracto digestivo

metabolic tract digest

metabolica digesta

metabolicas digestibilidad

metabolico digestibilidades

... ...

expanded1,2 OR ... OR expanded1,m1) AND (term2 OR expanded2,1 OR

expanded2,2 OR ... OR expanded2,m2) AND ... AND (termn OR expandedn,1

OR expandedn,2 OR ... OR expandedn,mn
), where termi is the i-esim term

of the query and expandedi,j is the j-esim expanded term from the original

term i. This signifies that it is obligatory for each query term or an expanded

term to appear in the passage. Following the previous example, the query

for Lucene should be: (metabolites OR metabolic OR ...) AND principales

AND vienen AND (tracto OR tract) AND (digestivo OR digest OR ...).

5.6. Performance of our noise-tolerance approach

As our system is a prototype developed with the unique purpose of car-

rying out research and evaluation, the algorithm’s implementation could be

greatly improved. In the indexing phase, the prototype is based on the com-

parison of each term in the document collection with each KOS term. If we

consider that when comparing the strings X and Y , the temporal cost of

DM , DEx and Levenshtein algorithms can be approximated as O(|X| · |Y |)

where |X| and |Y | represent the lengths of such strings, then for a corpus of

NC words and a KOS of NK terms, this cost is O(NC ·NK) multiplied by the

edit distance cost: O(LC · LK), where LC and LK are the average length of
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corpus and KOS terms, respectively. Moreover, since the average length of

corpus and the KOS terms do not depend on their sizes, the complexity of

the algorithm based on our approach is O(NC ·NK).

Although the prototype implies a high temporal cost, this type of ap-

proach are thought to be used for small restricted-domain corpora, which

do not contain redundancy, and are processed at indexing phase (offline).

Therefore, the temporal cost is not decisive in our approach. Fortunately,

there are approximation search algorithms, based on the Levenshtein dis-

tance, which can be adapted to DM and DEx, thus considerably reducing

the cost of these operations. This adaptation could be applied in order to

obtain higher performance and scalable systems. Some of these algorithms

are analyzed and compared by Mihov and Schulz [49] using different and

bigger KOS than Agrovoc KOS, and it is shown that it is feasible to search

any word in real time, providing a response time of a few milliseconds within

an acceptable memory cost using a 1.6 GHz Pentium IV machine.

6. Experimental resources

This section describes the resources used in order to perform the experi-

ments shown in the following section.

6.1. RCCA corpus

The corpus used in the experiments is the Cuban Journal of Agricultural

Science (RCCA: “Revista Cubana de Ciencia Agŕıcola”)10. This was created

10http://www.ica.inf.cu/productos/rcca/
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in both English and Spanish in 1966. To date the RCCA Journal has pub-

lished 43 volumes, each with an average of three or four numbers, making a

total of 140 numbers and 2000 articles (28.65 MB as PDF files). This journal

comprises topics related to agricultural science, such as Pastures and Forages

or Animal Science. In this paper, we use the Spanish part of this journal as

corpus because this is the open-access part.

RCCA journal accomplishes the three conditions stated by Minock [11] for

being a restricted domain corpus: (i) it is circumscribed because user queries

are only related to agricultural science, (ii) it is complex since it contains

a plethora of agricultural-specific terms, and (iii) it is practical because all

agricultural researchers should be interested in it.

Importantly, as the RCCA has been publishing papers since 1966, many

of the papers have been digitalized, which may imply even more noise in the

corpus when they are converted to flat files: 1479 papers published between

1967-2000 were scanned and stored as PDF files which require OCR tools to

extract the text documents, which represents a significant percentage (73.95%

of total). We can therefore claim that the experiments have been carried

out with real noisy data rather than us having to introduce simulated data

corruption. This makes our case study highly representative in order to

evaluate our approach.

6.1.1. Removing noise from a small piece of the corpus

In order to determine the upper bound of performance of the baseline IR

system, noise has been manually removed from the 150 files of the corpus

that contain the answers to test queries.
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6.2. Test queries

A total of 329 queries were used in the experiments. They were formu-

lated in natural language rather than as a list of keywords because they will

be used in QA systems in future work (see Sect. 8). These queries are in

Spanish to permit interaction with the Spanish corpus of the RCCA journal.

Some sample queries are: ¿Qué es la necrosis cerebrocortical? (What is the

cerebrocortical necrosis? ) or ¿Qué produce la cytophaga? (What is produced

by the cytophaga? ). These queries were elicited by interviewing agricultural

domain experts from the RCCA journal. From a total of the 329 test queries,

the number of queries not affected by noise is representative (231), which al-

lows us to conclude that our noisy-tolerance approach does not decrease the

performance of the IR system.

6.2.1. Inserting noise to the queries

In order to test our approach with noise queries, noise was introduced

into the collection of queries. The steps taken to accomplish this were: (i)

the collection of 329 queries was printed; (ii) the printed documents were

scanned with 100 dpi to obtain PDF files that contained the queries; and

finally (iii) the OCR tools which were necessary to obtain the queries in flat

text were applied. Upon carrying out this process, 134 queries appeared to

be affected (representing 41% of the collection of queries). Of these affected

queries, around 25% of their relevant terms had been damaged by the noise

which had entered when applying the OCR tool.
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6.3. AGROVOC thesaurus

In our case study of the agricultural domain, we used the AGROVOC

thesaurus as the KOS. The AGROVOC thesaurus has a total number of

16700 descriptors, and 10758 non-descriptors, which are specific descriptors

and terminological terms used in agricultural science. AGROVOC is a mul-

tilingual structured controlled vocabulary used for indexing and retrieving

data in agricultural information systems.

7. Experiments

This section provides a detailed description of the experiments carried

out. It is worth noting that, in spite of the fact that the experiments were

executed in the Spanish language, our approach is equally feasible for other

languages because both DM algorithm and our noise-tolerance scheme (see

Fig. 1) are flexible enough to allow adaptation to different languages.

Firstly some preliminary experiments to check the effectiveness of DEx

and DM algorithms were conducted. Therefore, the experiments that mea-

sure the benefits of DEx are presented in Sect. 7.1.1 and Sect. 7.1.2, whereas

those of DM are presented in Sect. 7.1.3. Afterwards, other experiments

were carried out as follows:

1. The corpus with and without noise were used with the aim of obtaining

the lower and upper bound of performance of the baseline IR systems,

respectively (whose results are presented in Sect. 7.2.1).

2. Our approach (see Fig. 1) was applied with the noisy corpus to add

noise-tolerance to JIRS and Lucene IR systems (see Sect. 7.2.2).
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3. It (see Fig. 1) was applied with the noisy queries previously created at

Sect. 6.2.1 to test the noise-tolerance proposal (see Sect. 7.2.3).

The experiments in Sect. 7.2.1, 7.2.2 and 7.2.3 are designed with the goal

to measure the benefits of the application of our proposal. Therefore, the

experiment in Sect. 7.2.1 is carried out with the queries without the expansion

proposed in this paper. However, for the experiments in Sect. 7.2.2 and

Sect. 7.2.3, we expanded the queries using our approach.

7.1. Preliminary experiments with edit distance algorithms

In this section we describe preliminary experiments that compare several

algorithms with regard to their performance when calculating edit distances

among word inflexions and when they are applied to multi-words. With the

first two experiments (see Sect. 7.1.1 and Sect. 7.1.2), we aim to demonstrate

the general idea that DEx, unlike other algorithms, does not penalize those

words with the same stem but different inflectional endings.

In scanned texts, words frequently appear together (without any separa-

tion) as a result of scan errors, and the edit distances are not usually able

to deal with this. This kind of error leads to the creation of words which

we have called multi-words because they are composed of two or more words

that do not normally appear together. The third preliminary experiments

(see Sect. 7.1.3) analyze the suitability of the adaptation of DEx (the DM

algorithm), in order to work with these multi-words by means of a simple

example.

35



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

7.1.1. Experiments with verb conjugations

Spanish, like other Romance languages, is characterized by a high number

of word inflections, especially the verbs that are highly inflected terms. We

have therefore selected a set of infinitive verbs and their conjugations in order

to evaluate different edit distance algorithms in the most difficult scenario

for an edit distance. The experiments were focused on proving that DEx can

assign the shorter distance to word inflexions (e.g. between the lemma and

the various tenses of a verb).

In order to carry out these experiments, three random verbs were taken:

“enseñar” (to learn), “fabricar” (to manufacture) and “cabalgar” (to ride -a

horse-), together with their respective 64, 66 and 55 conjugations. We have

measured edit distances between these verbs and their corresponding conju-

gations by applying different algorithms: Jaro, Jaro-Winkler, Levenshtein,

Needleman-Wunsch and DEx (which our approach is based on). Edit dis-

tances were calculated by using SimMetrics11, an open source library written

in JAVA and supported by the University of Sheffield12. Fig. 2 shows the

results obtained for the verb “enseñar”, but the same behavior was observed

in the rest of the verbs (see previous work [38]).

As Fig. 2 shows, all distance algorithms penalize verb inflections, but

DEx is the one that penalizes less. Although the Jaro based algorithms show

satisfactory results for many conjugations, they fail when certain edit op-

erations are involved. Upon analyzing Levenshtein and Needleman-Wunsch

algorithms we can conclude that they have similar behavior and their dis-

11http://staffwww.dcs.shef.ac.uk/people/S.Chapman/stringmetrics.html
12http://www.dcs.shef.ac.uk/~sam/stringmetrics.html
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Figure 2: Edit distances between the verb “enseñar” and some of its conjugations

tances depend solely on the length of word endings, of which the longest are

penalized to a greater extent. However, DEx algorithm does not overly pe-

nalize any of the tense conjugations because it considers word stems rather

than word endings.

7.1.2. Experiments with noisy and non-noisy words

The objective of the second experiment was to analyze performance varia-

tion of DEx in comparison to different edit distance methods when the terms

are affected by noise. By noise we mean both typographic (e.g. bacteriasvi-

ablcs) and orthographic (e.g. bacteriaz ) errors and language switch (in our

case from Spanish into English)13. For this aim, we used the RCCA corpus

13For the second experiment we considered the words in English as noisy words, because

the pivot word and the corpus used are in Spanish.
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described in Sect. 6.1, as well as a pivot word “bacterias” and 130 words

related to it, which were selected by a human expert. Words which in some

way contained the stem of the pivot word were considered to be related (e.g.

“actobacter”, “bactericida” and “bacteroidaceae). Table 8 shows more

examples of terms related to “bacteria”. In order to model noisy data we

introduced some noise into 49 of the 130 related words (some examples are

shown in the terms in italics in Table 8).

Table 8: Example of rightly related words for “bacterias” (noisy words shown in italics)

acetobacter bacteriascapacesde bacterizados eubacterium

acetobacterium bacteriasviablcs bacterjas fibrobacter

achromobacter bacteriaz bacteroidacea flavobacterium

acinelobacter bactericida bacteroidaceae forbacteria

acinetobacter bacterina bacteroidacese fosfobacterias

It is worth mentioning that all the distance algorithms used in the exper-

iments are also part of the SimMetrics library mentioned above.

In order to evaluate this experiment, the terms in the RCCA corpus

were sorted by each edit distance method. Next, precision and recall were

calculated for each edit distance. On the one hand, precision was calculated

by the number of rightly related words retrieved divided by the number of

retrieved words. On the other hand, recall was calculated by dividing the

rightly related words retrieved by the total number of rightly related words,

i.e., the 130 words. In Fig. 3(a) we can observe that DEx precision is better

than the other algorithms, mainly when the number of words retrieved words

is lower than 80. DEx also obtains a perfect precision, 20 points above that

of another system when the number of words is 50 or less. QGramsDistance

starts with a precision of 80%, like that of Jaro, Jaro-Winkler and Needleman-
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(b) Recall.

Figure 3: Edit distances between noisy and non-noisy words.

Wunsch, but it improves DEx when the number of terms retrieved exceeds

80. The worst systems are SmithWaterman’s algorithms, which start with

a precision of between 50% and 60%. All the distance measures evaluated

(with the exception of DEx) obtained an average of 27 incorrect words.

If we now observe the recall in Fig. 3(b), we can see that DEx is also

better with the first retrieved words, and achieve a recall of about 43%.

QGramsDistance again improves DEx algorithms, but when 80 words are

retrieved its recall reaches about 58%. The next algorithm with most recall

is Smith-Waterman with 45%, but its recall in the first retrieved words is

worse than the DEx and QGramsDistance methods.

The differences between DEx and these algorithms lie in the fact that

the former hardly penalizes those words which contains stem changes, for

example, in “propionibacterias” and other examples with long prefixes. Of

the 130 words selected by the human expert, 50% of them had prefixes; this,

logically, is detrimental to the precision and recall of DEx but, as is shown

in the figures, only after the 50th word. DEx is able to retrieve the words
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with suffixes perfectly, but not those with prefixes.

Fig. 4 shows the strong ability of DEx to retrieve words with noise com-

pared with other algorithms.

 !"#$% %!
%"%#%$! !!!"!#
!$& &!&"&#&$

% ! & " ' # ( $ ) %  %% %! %& 
*+,-./01*023450/63

789:;8<8=>?:=@ABC DEFGDEFGHIJKLMNF ONPNKQRSNJKTNNUMNVEKHIWKQXR YGZNBMLEK[\FEVQAJQSEKXN ]VJSRIESNFVEK]VJSRIESNFVEK\GSGR ]VJSRIESNFVEK\GSGRIJKUG^NU_``JKN
Figure 4: Number of retrieved noisy words using different edit distance algorithms

In general, when we introduce a noisy word as input to the edit distance

algorithms, their performance decreases. But once again, DEx demonstrates

that it is the best algorithm if the number of retrieved words is not very high.

DEx is only exceeded by QGramsDistance when more than 100 words are

retrieved.

With these preliminary experiments we have shown some examples of

DEx’s performance with regard to other edit distance algorithms. It is, of

course, necessary to carry out more experiments in order to be certain of our

hypothesis regarding the suitable use of DEx algorithm in noisy-tolerance IR

systems, but the small-scale tests shown here may give us a slight insight

into the final results.
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(b) Recall.

Figure 5: Edit distances between simple words and multi-words.

7.1.3. Experiments to measure the effectiveness of DM distance

The objective of this experiment is to compare the DM algorithm with

the edit distance methods evaluated in the previous sections in order to show

the effectiveness of our method when multi-words are involved. The evalu-

ation corpus consisted of 66 words related to “bacteria”, 47 of which were

multi-words (e.g. “bacteria coliforme”, “bacterias nitrificantes”, “bacteria

gram positiva”, etc.).

Fig. 5(a) shows the precision of the various methods evaluated. In order

to consider a word as being similar, for this experiment, a maximum edit

distance of 0.37 and a number NT of terms of 3 were used for the DM algo-

rithm (as is explained in Sect. 5.3). These values were obtained empirically

in the previous work [10]. In this figure we can appreciate that DM improves

the performance considerably, achieving a precision of 100% in the first 50

retrieved words. However, the other systems are unable to deal with multi-

words properly, and their precision is very poor in comparison with previous

experiments.
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With regard to recall, as Fig. 5(b) shows, the behavior is very similar.

DM increases the recall linearly until the 50th retrieved word. If we compare

both figures, we can observe that DM retrieves the first 51 words perfectly,

but is unable to find the remaining 15 words in the corpus. This is be-

cause DM , like DEx, is unable to retrieve words with different prefixes. The

problem with other edit distance algorithms is that they do not consider the

position of the edit operations. Therefore, when one word appears together

with another, without any separation space, the systems define the entire

extra word as being noisy, thus leading to a considerable increase in edit

distance. These systems work well only when small changes occur at the end

of the word or when shortened words are included.

The experiment carried out in this section provides us with an approach

concerning the effectiveness of DM algorithms in dealing with simple words

and multi-words. In the following sections we focus on DM in order to

demonstrate with complete experiments the performance of this algorithm

in noisy-tolerance IR systems.

7.2. Experiments for evaluating our noise-tolerance approach

The aim of these experiments is to evaluate the effectiveness of the ap-

proach for adding noise-tolerance to an IR system (see Sect. 5).

7.2.1. Experiments for determining bound values to evaluate our noise-tolerance

approach

This experiment aims to obtain the maximum and the minimum values

of several performance measures when JIRS or Lucene (i.e. the baseline IR

systems) are used without using our approach. These values will later be
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used to show the suitability of our proposal.

In the indexing phase of both IR systems on the entire RCCA corpus,

432,997 passages and 180,460 domain terms were obtained. With regard to

the 150 documents that are going to be preprocessed to remove the noise,

6,795 passages and 10,437 domain terms were obtained (1894 of them con-

taining noise, therefore, around 18% of the terms contained noise).

The experiment was conducted by using the 231 queries that were not

affected by noise and the 98 queries affected by noise. The total amount of

retrieved passages was 6,580 and the number of relevant retrieved passages

was only 329. It is worth noting that we decided to return 20 passages per

query in order to properly analyze the results and the position of the correct

answer.

The first part of the experiment consisted of obtaining the best perfor-

mance for the IR system (i.e. JIRS or Lucene) by using the 150 documents

that had been preprocessed to partially remove noise (henceforth PCB: Pre-

processed Corpus and Baseline system). Secondly, the worst performance

was obtained by using the noisy corpus (NCB: Noisy Corpus and Baseline

system). Both experiments were carried out without our proposal of noise-

tolerance. We can conclude that, in order to consider our proposal suitable,

the upper and lower bound of relevant retrieved passages for all queries should

be between 230 and 309 with JIRS, or between 217 and 291 with Lucene (see

Fig. 7(b) when 20 passages per query are returned).

Other results obtained in this experiment for each corpus are shown in

Figures 6 and 7. We calculated the following measures: precision, recall,

F1 [50], and Mean Reciprocal Rank [51] (MRR). The values in these figures
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Figure 6: Precision results.

show that the noise greatly affects the results returned by the IR system (e.g.

MRR(PCB) = 0.90 vs. MRR(NCB) = 0.55 with JIRS or MRR(PCB) =

0.84 vs. MRR(NCB) = 0.52 with Lucene).

7.2.2. Experiments for evaluating our noise-tolerance approach with noisy

corpus

The aim of this experiment is to evaluate the effectiveness of our noise-

tolerance approach (see Sect. 5) by comparing the results with the best and

worst performance of both IR systems. The expected results must be found

between both values, and therefore, the nearer the results are to the best

performance, the better our approach will work.

Once terms in the noisy corpus have been indexed with the JIRS and

Lucene systems in the previous experiment (as shown in Sect. 7.2.1) and

mapped with the Agrovoc KOS by means of our approach (see Sect. 5.3),

three executions of our approach were realized in this experiment: (i) using

JIRS and the query expansion, (ii) employing the OR Boolean operator in

Lucene, and (iii) combining the OR and AND Boolean operations in Lucene
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Figure 7: Other results.

(previously explained in Sect. 5.5). The results of this experiment are shown

in NCA (Noisy Corpus and our noisy-tolerance Approach) in Figures 6 and 7.

These results considerably improve the baseline values obtained in the pre-

vious experiment by using the noisy corpus, while they are near the optimal

results returned by the IR system when a non-noisy corpus is used. For ex-

ample, the precision obtained by using both IR systems and our proposal has

close values to the results obtained with the non-noisy corpus (see Fig. 6).

It is worth highlighting that the values of F1 in Fig. 7(a) are similar

for our approach and for the baseline IR (i.e. both IR systems JIRS and

Lucene) with the non-noisy corpus, while the difference in the overall recall

is only 0.06 for JIRS and 0.07 for Lucene with OR operator. Moreover, the

difference in MRR is 0.03 for JIRS and 0.05 for Lucene with OR operator. An

in-depth analysis of all the evaluated measures shows that, in our approach

(“NCA”), recall is affected since 19 less relevant passages are retrieved. The

main reason is that some noisy terms have no counterparts in AGROVOC

owing to the fact that they were too deformed, or that they are not in the

thesaurus. However, the weighted harmonic mean (F1) of precision and recall
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obtain a similar result in both experiments.

Another important conclusion obtained from analyzing the results of this

experiment is that only 3% of the answers became worse by using our ap-

proach with regard to baseline results over a non-noisy corpus. Specifically,

the correct answers to 10 queries were retrieved in more ’away’ positions than

in the baseline experiment. We were thus able to measure that our noisy-

tolerance approach does not decrease the performance of the IR system (when

the noise does not affect the query or the answer to the query).

7.2.3. Experiments for evaluating our noise-tolerance approach with noisy

queries

This experiment aims to further evaluate our approach when the noise

is found directly in the query that the user asks the IR system. To carry

out this experiment, noise was introduced into the collection of queries in an

artificial manner (as previously described in Sect 6.2.1). As with the previous

experiment, we can now also determine the maximum and minimum values

between which the results should range to consider our approach as a valid

one.

Fig. 8 shows the results of precision (with regard to the first three passages

retrieved), overall recall and MRR for the experiments carried out. Several

experiments were carried out with the aim of: (i) defining the minimum

value to be obtained with our approach for it to be considered valid, using

queries with introduced noise (NQB: Noisy Queries and Baseline system); (ii)

defining the maximum value which our approach should be near to, for it to

be considered valid, by using original queries without noise (CQB: Non-noisy

Queries and Baseline system, the results being equal to those from PCB of
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the previous experiment); (iii) measuring the effectiveness of our approach by

using noisy queries (NQA: Noisy Queries and our noisy-tolerance Approach).

From the analysis of Fig. 8, it can be observed that the results of our approach

(NQA) are very near to optimal values (CQB) for all measures. We can

therefore conclude that our approach is also valid for adding fault-tolerance

to an IR system when noise appears in the query.

  !" !# !$ !% !& !' !(
 !) !*" +,-./00 1-2/003.-245467/8 $911

Figure 8: Different Measures over noisy queries.

8. Conclusions and Future Work

Real-world data are inherently noisy, thus signifying that techniques to

process noise are crucial in IR systems if useful and actionable results are to

be obtained [1]. Owing to the huge amount of redundancy inherent in vast

open-domain corpora, they are insensitive to noise. Nevertheless, corpora in

restricted domains are usually rather smaller, and therefore have little or no

redundancy. IR systems using small and non-redundant restricted-domain

corpora are consequently likely to fail. In order to overcome this problem,
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in this paper, we show how noise tolerance can be added to the retrieval

process.

Our approach contributes to the state-of-the-art in the following issues:

(i) It is based on the hypothesis that the most important terms are those

related to the domain, which we obtain from the KOS and the corpora.

These KOS terms and the terms in the corpora are compared in order to

detect noisy terms. (ii) The comparisons between terms are carried out with

the use of DM , a new algorithm that adapts DEx edit distance (which was

also proposed by the authors) to consider multi-words. Both DEx and DM

outperforms previous distance algorithms (see experiments in section 7.1).

(iii) Our approach deals with all kinds of noise, even that which occurs with

noisy terms that also appear in the lexicon as correct terms (e.g. tear vs.

fear). (iv) The performance of an IR system is maintained although noisy

restricted-domain corpora are used, as shown in experiments in section 7.2.

Future work is focused on extending the authors’ proposals: (i) to prove

that our noise-tolerance approach is valid for different languages other than

Spanish, (ii) to improve the DM algorithm to be used in other Natural

Language Processing tasks such as Question Answering.
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Pivot: bacteria 

Retrieved Words Precision Recall DM

Bacteria 1 0.015151515 0 

Bactericidas 1 0.03030303 0.000355509

Bacterinas 1 0.045454545 0.000357035

Bacteriosis 1 0.060606061 0.000360254

Bacteremia 1 0.075757576 0.000651976

Bacteria butírica 1 0.090909091 0.24379391 

Bacteria acetic 1 0.106060606 0.248296519

Bacteria anaerobia 1 0.121212121 0.248296792

Bacteria aerobia 1 0.136363636 0.248296804

Bacteria metanógena 1 0.151515152 0.248424087

Bacterias acidopropiónicas 1 0.166666667 0.248495304

Bacterias antagonistas 1 0.181818182 0.248495574

Bacterias nitrificantes 1 0.196969697 0.248528667

Bacterias metanotróficas 1 0.212121212 0.248622871

Bacteria coliforme 1 0.227272727 0.248633338

Bacterium coli 1 0.242424242 0.248666942

Bacterias diazotróficas 1 0.257575758 0.24870292 

Bacteria inmovilizada 1 0.272727273 0.2488367 

Bacterias entomopatógenas 1 0.287878788 0.248999091

Bacterias entomógenas 1 0.303030303 0.248999092

Bacterias acidolácticas 1 0.318181818 0.249053723

Bacteria maloláctica 1 0.333333333 0.249335677

Bacteria mesófila 1 0.348484848 0.249353949

Bacteria termófila 1 0.363636364 0.249432302

Bacterias patógenas 1 0.378787879 0.249554605

Bacterias del rumen 1 0.393939394 0.372678173

Bacteria gram positive 1 0.409090909 0.373001145

Bacteria gram negative 1 0.424242424 0.373067892

Bacterias modificadas genéticamente 1 0.439393939 0.373728191

Bacterias logradas genéticamente 1 0.454545455 0.373825589

Bacteria generadora de hielo 1 0.46969697 0.434562287

Bacteria estimul crecimiento planta 1 0.484848485 0.434764505

Bacteria fijadora del nitrógeno 1 0.5 0.435581631

Conteo bacteriano 1 0.515151515 0.475098981

Fuego bacteriano 1 0.53030303 0.475098981

Insecticidas bacterianos 1 0.545454545 0.475098982

Antigenos bacterianos 1 0.560606061 0.475098982

Plaguicidas bacterianos 1 0.575757576 0.475098982

Flora bacteriana 1 0.590909091 0.475098988

Quema bacteriana 1 0.606060606 0.475098988

Proteínas bacterianas 1 0.621212121 0.475098989

Toxinas bacterianas 1 0.636363636 0.475098989

Enfermedades bacterianas 1 0.651515152 0.475098989

Esporas bacterianas 1 0.666666667 0.475098989

Antagonistas bacterianas 1 0.681818182 0.475098989

Bacteriófagos 1 0.696969697 0.475360129

Bacteriólogos 1 0.712121212 0.475360214

Bacteriología 1 0.727272727 0.475360214

Bacteriocinas 1 0.742424242 0.475360222

Bacteriostático 1 0.757575758 0.475360254

Bacteroidaceae 1 0.772727273 0.475649792

Bacteroides 1 0.787878788 0.475649792

Bactrocera 0.981132075 0.787878788 0.477109992

Bactofugación 0.962962963 0.787878788 0.47712015 

Bactris 0.945454545 0.787878788 0.477123916

Bactra 0.928571429 0.787878788 0.477123937

Backusella 0.912280702 0.787878788 0.478487248

Baculoviridae 0.896551724 0.787878788 0.478745462

Baculovirus 0.881355932 0.787878788 0.478745462

Bacua 0.866666667 0.787878788 0.478757341

Bacón 0.852459016 0.787878788 0.478757342

Báculo 0.838709677 0.787878788 0.478757377

Bacota 0.825396825 0.787878788 0.478757384

Bacona 0.8125 0.787878788 0.478757384

Bacará 0.8 0.787878788 0.478762369

Bacalao 0.787878788 0.787878788 0.478762446

# Relevant words

1 antagonistas bacterianas 

2 Antibacterianos 

3 antigenos bacterianos 

4 Azotobacteriaceae 

5 Bacteremia 

6 Bacteria 

7 bacteria acetic 

8 bacteria aerobia 

9 bacteria anaerobia 

10 bacteria butírica 

11 bacteria coliforme 

12 bacteria estimul crecimiento planta 

13 bacteria fijadora del nitrógeno 

14 bacteria generadora de hielo 

15 bacteria gram negativa 

16 bacteria gram positiva 

17 bacteria inmovilizada 

18 bacteria maloláctica 

19 bacteria mesófila 

20 bacteria metanógena 

21 bacteria termófila 

22 bacterias acidolácticas 

23 bacterias acidopropiónicas 

24 bacterias antagonistas 

25 bacterias del rumen 

26 bacterias diazotróficas 

27 bacterias entomógenas 

28 bacterias entomopatógenas 

29 bacterias logradas genéticamente 

30 bacterias metanotróficas 

31 bacterias modificadas genéticamente

32 bacterias nitrificantes 

33 bacterias patógenas 

34 Bactericidas 

35 Bacterinas 

36 Bacteriocinas 

37 Bacteriófagos 

38 Bacteriología 

39 Bacteriólogos 

40 Bacteriosis 

41 Bacteriostático 

42 bacterium coli 

43 Bacteroides 

44 conteo bacteriano 

45 control de bacterias (almacenamien) 

46 control de bacterias (desinfección) 

47 control de bacterias (enfermedad) 

48 Cyanobacteria 

49 enfermedades bacterianas 

50 enterobacteriaceae 

51 esporas bacterianas 

52 flora bacteriana 

53 fuego bacteriano 

54 infecciones por micobacterias 

55 insecticidas bacterianos 

56 lawsonia (bacteria) 

57 Bacteroidaceae 

58 Micobacterias 

59 plaguicidas bacterianos 

60 propiedades antibacterianas 

61 proteínas bacterianas 

62 proteínas bacterianas (producto) 

63 quema bacteriana 

64 rhodococcus (bacteria) 

65 Rizobacterias 

66 toxinas bacterianas 


