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Abstract—Hierarchy Of Multi-label classifiERs (HOMER) is a multi-label learning algorithm that breaks the initial learning task to
several, easier sub-tasks by first constructing a hierarchy of labels from a given label set and secondly employing a given base
multi-label classifier (MLC) to the resulting sub-problems. The primary goal is to effectively address class imbalance and scalability
issues that often arise in real-world multi-label classification problems. In this work, we present the general setup for a HOMER model
and a simple extension of the algorithm that is suited for MLCs that output rankings. Furthermore, we provide a detailed analysis of the
properties of the algorithm, both from an aspect of effectiveness and computational complexity. A secondary contribution involves the
presentation of a balanced variant of the k means algorithm, which serves in the first step of the label hierarchy construction. We
conduct extensive experiments on six real-world datasets, studying empirically HOMER’s parameters and providing examples of
instantiations of the algorithm with different clustering approaches and MLCs, The empirical results demonstrate a significant
improvement over the given base MLC.

Index Terms—Knowledge discovery, Machine learning, Supervised learning, Text mining

✦

1 INTRODUCTION

IN multi-label learning, training examples are associated
with a vector of binary target variables, also known as

labels. The goal is to construct models that, given a new
instance, predict the values of the target variables (classi-
fication), order the target variables from the most to the
least relevant one with the given instance (ranking), do
both classification and ranking, or even output a joined
probability distribution for all target variables.

In the past decade multi-label learning has attracted a
great deal of scientific interest. One main reason behind
this is that a number of real-world applications can be
formulated as multi-label learning problems; functional ge-
nomics [1], recommending bid phrases to advertisers [2],
image [3] and music [4] classification are some example
domains. The other main reason relates to the interesting
challenges it poses, such as the identification and exploita-
tion of dependencies among the target variables, the power-
law distribution that the frequency of labels exhibits in
several real-world applications and the increased space and
time complexity involved in learning from multi-label data,
especially when the number of labels is large.

This article presents a multi-label learning algorithm
that we call HOMER1 (Hierarchy Of Multi-label learnERs).
HOMER is a divide-and-conquer algorithm, as it recursively
partitions the vector of target variables into smaller disjoint
vectors forming a hierarchy of such vectors. We employ
a novel approach to perform this partitioning by cluster-
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1. Homer was an ancient Greek epic poet, best known as the author

of Iliad and Odyssey (https://en.wikipedia.org/wiki/Homer).

ing the labels using as a similarity measure the training
examples for which they co-occur (more specifically we
represent each label as a binary vector of its occurrences in
the training set). This partitioning results in simpler learning
tasks with fewer training examples (and features in the case
of documents) and less evident class imbalance.

HOMER was first presented in [5], a technical report
that was accepted for presentation at the Mining Multidi-
mensional Data workshop of ECML PKDD 2008 in Berlin2.
Since then, HOMER has been mentioned in several scientific
papers3. It has been employed in diverse ways, such as for
the automatic classification of edit categories in Wikipedia
revisions [6], as a component of automated negotiation
agents [7], for multi-label classification of economic articles
[8] and for semantic-based recommender systems [9].

HOMER is a multi-label learning algorithm that achieves
state-of-the-art prediction accuracy. An extensive experi-
mental comparison involving 12 methods, 11 datasets and
16 evaluation measures concluded that HOMER is among
the two best performing methods overall [10]. Another
empirical comparison involving 8 methods, 11 datasets
and focusing on the empty prediction rate, found HOMER
among the two best performing methods too [11].

The contributions of this article that are inherited from
the original technical report are:

• A novel multi-label classification algorithm that au-
tomatically constructs a hierarchy of sets of labels,
learns a local multi-label classification model at ev-
ery node of the hierarchy, and applies these models

2. The web page of the workshop is no longer available,
but the papers that got accepted are listed in the workshop’s
page within the conference’s site (http://www.ecmlpkdd2008.org/
workshop-papers-mmd).

3. At the time of writing, Google Scholar reports 197 citations (https:
//scholar.google.gr/scholar?cluster=16386130204802114854).
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hierarchically, in a top-down manner, to deliver pre-
dictions for new instances (Section 4). HOMER leads
to state-of-the-art accuracy results and reduced time
complexity during prediction compared to the stan-
dard one-vs-rest (also known as binary relevance)
approach.

• An extension of the k means algorithm, called bal-
anced k means, which produces equally-sized par-
titions (Section 3). Balanced k means is used re-
cursively in the first step of HOMER in order to
construct the hierarchy of labelsets, leading to bet-
ter results compared to non-balanced clustering ap-
proaches.

Besides serving as an archival publication for HOMER,
this article contributes the following novel and significant
extensions to the original paper:

• The addition of a parameter for controlling the ex-
pansion of the label hierarchy, which generalizes
the original description of HOMER, and allows it
to perform better in domains with many rare labels
(Section 4).

• A direct extension of the algorithm, to account for
algorithms that output rankings as results, or for sce-
narios where the desired output is as well a ranking
(Section 4.2).

• A detailed complexity analysis for the algorithm
(Section 4.3).

• A short discussion on what are the aspects that
should be taken into account to construct an effective
HOMER model and an analysis of how HOMER
performs with respect to rare and frequent labels
(Section 4.4).

• Extensive empirical comparisons on six real world
corpora, to analyze and study the algorithm’s pa-
rameters behavior, propose different instantiations of
HOMER’s components and assess the improvement
over the given base MLC (Section 5).

• As a secondary contribution, we provide a review of
similar approaches and resolve a number of miscon-
ceptions around HOMER in the literature (Section 2).

2 RELATED WORK

The key idea in HOMER is the automatic construction of
a hierarchy on top of the labels of a multi-label learning
task. While this was novel at that time within the multi-
label learning literature, the same idea had already been
studied for the single-target multi-class classification task
[12], [13]. In both of these approaches, the similarity between
classes is based on their average feature vector (centroid). In
HOMER, in contrast, each label is represented as a binary
vector whose dimensions correspond to the training exam-
ples and whose values indicates whether the corresponding
training example is annotated with the label. Calculating
label similarity based on this vector space would not make
sense in the multi-class case, but it does in the multi-label
case, where labels are overlapping, and can co-occur at the
same training example. In [12], similarity was measures
on a set of discriminative features selected based on the
Fisher index, while in [13], similarity was measured in a

lower-dimensional feature space obtained through linear
discriminant projection. As far as the hierarchy construction
process is concerned, in [12], this was done top-down using
spherical 2-means, initializing the algorithm with the two
farthest classes. In [13], it was done bottom-up using ag-
glomerative hierarchical clustering. In HOMER, in contrast,
the use of balanced k means is another key difference, which
can lead to balanced trees (not necessarily binary) that offer
guarantees with respect to prediction complexity.

Another view of HOMER is that it addresses a multi-
label task by breaking down the entire label set (recursively)
into several disjoint smaller ones. A similar pattern, but
randomly and non-recursively, is followed in the disjoint
version of Random k Labelsets (RAkELd) [14]. RAkELd

was extended in [15], by introducing an algorithm that
divides the label set into several mutually exclusive subsets
by taking into account the dependencies among the labels,
instead of randomly.

HOMER is a meta-algorithm, in the sense that it em-
ploys a base MLC on each of the sub tasks it creates out
of the initial task. However, this perspective is sometimes
overlooked in the literature [15], [16], [17], where HOMER
is perceived just as its default instantiation using binary
relevance as the multi-label learner with C4.5 trees as binary
classifiers. Another misconception in the literature, is that it
is erroneously considered as a label-powerset method [18],
[19].

A variation of HOMER, where the calibrated label rank-
ing algorithm was used as MLC was proposed in [20]. Fi-
nally, three different algorithms (balanced k means, predic-
tive clustering trees (PCTs) and hierarchical agglomerative
clustering) for constructing the label hierarchy of HOMER
were studied in [21] using the random forest of PCTs as the
MLC.

3 BALANCED k MEANS

Before proceeding with the presentation of HOMER, we
describe an extension of the k means clustering algorithm,
called balanced k means, which sets an explicit constraint
on the size of each cluster. Let us denote as S the set of the
data points to be clustered and λ a given data point with
Wλ the set of relevant data vectors, k being the number of
partitions and it the number of iterations. Nλ will denote
the dimensionality of the data points. Algorithm 1 shows
the relevant pseudo-code.

The key element in the algorithm is that for each cluster
i we maintain a list of data points, Ci, sorted in ascending
order of distance to the cluster centroid ci. When the inser-
tion of a point into the appropriate position of the sorted list
of a cluster, causes its size to exceed the maximum allowed
number of points (approximately equal to the number of
items divided by the number of clusters), the last (furthest)
element in the list of this cluster is inserted to the list of the
next most proximate cluster. This may lead to a cascade of
k − 1 additional insertions in the worst case. As opposed
to k means, we limit the number of iterations using a user-
specified parameter, it, as no investigation of convergence
was attempted.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING,, VOL. 0, NO. 0, 2100 3

ALGORITHM 1: Balanced k means Algorithm

Input: number of clusters k, data S, data vectors Wλ, iterations
it

Output: k balanced clusters of S
for i← 1 to k do

// initialize clusters and cluster centers
Ci ← ∅ ;
ci ← random member of S ;

end
while it > 0 do

foreach λ ∈ S do
for i← 1 to k do

dλi ← distance(λ, ci,Wi)
end
finished← false;
ν ← λ ;
while not finished do

j ← argmin
i

dνi;

Insert sort (ν, dν) to sorted list Cj ;
if |Cj | > ⌈|S|/k⌉ then

ν ← remove last element of Cj ;
dνj ←∞ ;

end
else

finished← true;
end

end
end
recalculate centers;
it← it− 1

end
return C1, ..., Ck;

3.1 Computational Complexity

At each iteration of the balanced k means algorithm, we
loop over all points of S, calculate their distance to the k
cluster centers with an O(|Nλ|) complexity and insert them
into a sorted list of max size |S| /k, which has complexity
O(|S|). This may result into a cascade of k−1 additional in-
sertions into sorted lists in the worst case, but the complex-
ity remains O(|S|). So the total cost of the balanced k means
algorithm is O(|S| |Nλ| + |S|2). As typically |S| ≪ |Nλ|,
the algorithm can efficiently partition labels into balanced
clusters based on very large datasets.

3.2 Related Work

A sampling-based algorithm with complexity O(|S|log|S|)
has been proposed in [22]. The frequency-sensitive k means
algorithm [23] is a fast algorithm for balanced clustering
(complexity of O(|S|)). It extends k means with a mecha-
nism that penalizes the distance to clusters proportionally
to their current size, leading to fairly balance clusters in
practice. However, it does not guarantee that every cluster
will have at least a pre-specified number of elements. An-
other approach to balanced clustering extends k means by
considering the cluster assignment process at each iteration
as a minimum cost-flow problem [24]. Such an approach has
a complexity of O(|S|3), which is worse than the proposed
algorithm. Finally, according to [22], the balanced clustering
problem can also be solved with efficient min-cut graph
partitioning algorithms with the addition of soft balancing

constraints. Such approaches have a complexity of (O(|S|2),
similarly to the proposed algorithm.

4 HIERARCHY OF MULTI-LABEL CLASSIFIERS

In this section we describe HOMER, based on the initially
presented algorithm in [5], along with a number of exten-
sions to the previous work.

Before proceeding, we present the notation used
throughout the paper. Let us define as L the label set of
the multi-label task that we wish to address and l a label.
Similarly, DTrain and DTest will express the set of training
and the set of test instances respectively and d an instance.
For simplicity, when referring to D, unless otherwise noted,
we will mean DTrain. The set of non-zero features of d
will be defined as fd and the instance’s labelset as Ld. As
HOMER proceeds by constructing a hierarchy out of the
dataset, we will represent the training set at each node as
Dn and the labels that are relevant to the node as Ln. Also,
each node will have a set of meta-labels, Mn (their role will
be explained further on). Finally, we will refer to a multi-
label learning classifier as MLC and a clustering algorithm
as C .

4.1 Description
A HOMER model is essentially a generic method to bundle
any given multi-label classifier aiming to improve perfor-
mance and computational complexity. The main idea is the
transformation of a multi-label classification task with a
large set of labels L into a tree-shaped hierarchy of simpler
multi-label classification tasks, each one dealing with a small
number of labels. The algorithm consists of two parts, first
the creation of a label hierarchy out of the label set and
second the training and prediction locally at each node of
the hierarchy, with a given MLC . Below, we describe these
steps in detail.

4.1.1 Label hierarchy
To construct a label hierarchy we first need to determine
a vector representation for each label. A simple choice, is
to represent each label l as a binary vector Vl of |DTrain|
dimensions, with

Vl(d) =

{
1, if l ∈ Ld

0, otherwise
(1)

The motivation is that labels that co-occur in instances will
be more similar and thus more likely to belong to the same
cluster. Upon selection of a proper distance function for
the label vectors, we employ a clustering algorithm C and
perform an iterative clustering of labels, until each node has
only a few labels (the initial HOMER algorithm in [5] parti-
tions L until each leaf node has only one label). Specifically,
the procedure is as follows; starting from the root node of
the hierarchy, and using the clustering algorithm, we parti-
tion the initial label set into a number of children-clusters.
Each of the resulting clusters defines a new node, which is in
turn partitioned into its children - clusters. A node’s labels
are not further partitioned if |Ln| ≤ nmax, where nmax is a
user-defined threshold that specifies the maximum number
of labels in the leaf nodes of the hierarchy. The initially
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presented HOMER algorithm employed only k means and
balanced k means as clustering algorithms, from the above
description however, it becomes clear that it is possible to
employ any given clustering algorithm for this task.

Fig. 1: Training for a simple HOMER model. At each node
we depict in parentheses, the training set, the label set on
which the MLC is trained and the respective Ln

4.1.2 Training
For each node we train a local MLC with |Dn| instances.
Dn comprises all instances from D annotated with at least
one of the labels of Ln. The local classifier is trained on Mn

which will be either identical to Ln (if the node is a leaf of
the hierarchy) or a set of meta-labels, with each meta-label
µc corresponding to one of the children nodes. Formally, we
denote Mn = {µc | c ∈ children(n)} with µc having the
following semantics: a training example can be considered
annotated with µc, if it is annotated with at least one of the
labels of Lc. We would like to further clarify the difference
between Ln and Mn; the first set, is the set of the labels
that the clustering algorithm assigned to the given node n
during the clustering process. The latter set, is the label set
on which the MLC is trained. Figure 1 shows an example
of a HOMER hierarchy, with the training set, Mn and Ln at
each node. From the above description, it is easy to see that
any given MLC can be used for training each node.

4.1.3 Prediction
During prediction on new, unannotated data, each new
instance x is traversing the tree as follows: starting from
the root node, the local MLC assigns to each instance zero,
one or more meta-labels. Then, by following a recursive
process x is forwarded to those nodes that correspond to
the assigned meta-labels. In other words, an instance x is
forwarded to a child node c only if µc is among the predic-
tions of the parent MLC. Eventually, x reaches the leaves
of the hierarchy. at which point the algorithm combines
the predictions of the terminal nodes. Figure 2(a) illustrates
the aforementioned prediction process for a simple HOMER
model.

To summarize the description of HOMER, we provide
the relevant pseudocode in Algorithm 2.

4.2 Extension for ranking MLCs
The original HOMER algorithm requires that the local MLC
outputs bipartitions and proceeds by combining the termi-
nal nodes predictions into the overall predictions for a given
new instance. Nevertheless, many multi-label algorithms

ALGORITHM 2: HOMER
Input: DTrain, L, DTest, C, MLC, nmax
/* Clustering */
RecursiveClustering(L);

/* Training */
for each node n ∈ hierarchy do

Dn = {d | d ∈ D, ∃l | l ∈ Ln ∧ l ∈ Ld};
if n is a leaf node then

Mn = Ln;
end
else

Mn ={µc | c is a child of n};
end
train MLCn on training set Dn, label set Mn;

end

/* Prediction */
for each d ∈ DTest do

RecursivePrediction(ROOT, d) ;
/* ROOT is the root node of the hierarchy.

*/
Predictionsd = ∪predictionsLEAF -NODES ;

end

/* Recursive Label clustering. */
Procedure RecursiveClustering(Labels Ln)

Cluster(Ln) into k children nodes with C;
/* k does not need to be the same along

iterations and is dependent of the C in
use. */

for each child node n′ do
if |Ln′ | > nmax then

RecursiveClustering (Ln);
end

end
return;

/* Recursively predict d, on the label
hierarchy. */

Procedure RecursivePrediction(Node n, instance d)
predict with MLCn;
if n 6= leaf-node then

for each µc ∈Mn do
if µc is assigned to d then

RecursivePrediction(c, d);
end

end
end
return;

produce a ranking of labels for a new instance, requiring
the choice of a thresholding technique to obtain a bipartition
set. Furthermore, there exist scenarios where one needs to
predict a ranking instead of a bipartitions set (for instance
a search query). HOMER can be extended so as to account
for the above cases with the following modification; during
prediction, each node’s MLC, instead of predicting one or
more meta-labels for a given instance, assigns a score (or
probability) to each of them, which is the ranking score
(or probability) of the base MLC. Subsequently, the children
nodes will propagate these scores, by multiplying their own
predictions with the score they have been assigned. Figure
2 illustrates the process for both classic HOMER and the
proposed extension. In order to avoid a full expansion of
the tree, one can prune away a given node path, by applying
some heuristics. In the experiments for instance, we employ
this approach to train HOMER-LLDA models and prune
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(a) HOMER.

(b) HOMER Ranking.

Fig. 2: Prediction process for (a) the classic HOMER al-
gorithm and (b) the relevant extension to address rank-
ing outputs. Specifically for (b) a pruning scheme has
been followed, eliminating paths with a probability p ≤
parentProbability

k .

TABLE 1: Complexities for the Employed Clustering Algo-
rithms.

Clustering Algorithm Complexity
Balanced k means O(|L| |D|+ |L|2)

Fast OPTICS O(|D| |L| log2 |L|)
SLINK O(|L|2)

away nodes having a probability p ≤ parentProbability
k .

4.3 Computational Complexity
From the above description, HOMER’s training complexity
will be the combination of the clustering algorithm’s com-
plexity and the training cost of the hierarchy nodes:

fH = fCLUST (|L| , |D|) + fHTrain(|L| , |D|) (2)

The complexity of the balanced clustering process at
each node n depends on the actual algorithm being used
and can range from O(|Ln|) to O(|Ln|3) (see Section 3.2).
Ln is equal to L at the root, but subsequently decreases
exponentially with the tree’s depth. Therefore, if f(|Ln|)
is a function of the complexity of the balanced clustering
algorithm with respect to Ln, then the overall complexity
of HOMER with respect to this algorithm is O(f(|L|). In
other words HOMER retains the complexity of the balanced
clustering algorithm.

Consider for example that f(|Ln|) = |Ln|2. Then at the
root we have a cost of |L|2 while at the second level we
have k additional costs of (|L|/k)2, i.e. an additional cost
of |L|2/k. At the next level we have k2 additional costs of(
|L|/k2

)2
, i.e. an additional cost of |L|2/k2. This is a sum of

a geometric series leading to a total cost of 2|L|2 when the
depth of the tree approaches infinity.

In the experiments, we employ three different clustering
algorithms, balanced k means, FastOPTICS and SLINK.

Table 1 shows the relevant complexities for these three
algorithms.

Concerning the second part of Equation 2, we will sim-
plify our analysis by assuming that we employ a balanced
clustering algorithm, with each node being partitioned to
k children. Let us denote the hierarchy depth with ν. We
further assume that kν = |L|

nmax and the complexity of the
multi-label classifier that we employ is linear w.r.t |D|.

In this case, the hierarchy will have
|L|

nmax−1

k−1 nodes (the
sum of a geometric sequence). As described in the previous
section, each of the terminal nodes of the hierarchy will
have at most nmax labels to train and predict, whereas any
non-terminal node will have k meta-labels respectively (the
number of its children nodes). Therefore, we have

fHTrain = kν−1−1
k−1 × f(k, |Dnon−leaf |) + kν−1 × f(nmax, |Dleaf |)

(3)
or

fHTrain =
|L|

nmax×k−1

k−1 × f(k)× |Dnon−leaf |+ |L|
nmax×k × f(nmax)× |Dleaf | 4

(4)
This is equivalent to

fHTrain = (|L| 1
k(k−1)×nmax − 1

k−1 )× f(k)× |Dnon−leaf |+ |L|
nmax×k × f(nmax)× |Dleaf |

(5)
Therefore, the training complexity of a HOMER model

with balanced hierarchy will be

fHTrain ∈ O(|L| (|Dnon−leaf |+ |Dleaf |)) (6)

From the above we observe that HOMER’s training
complexity is linear with respect to |L| regardless of the
baseline classifier’s complexity (here we have assumed
that k ≪ |L| and nmax ≪ |L|, a valid assumption for
most real-world applications). With respect to |D|, HOMER
also brings an improvement compared to the baseline al-
gorithm’s complexity. This improvement is difficult to be
quantified though, as each node’s training corpus is the
union of it’s labels occurrences in D and thus it depends
on a variety of factors, including the label frequencies, the
overlap of labels in training instances and, most importantly,
the quality of the label clustering.

Assuming again a balanced hierarchy, during prediction
the complexity of the algorithm depends on the number of
different paths that each new instance will take in the label
hierarchy (for instance in Figure 2(a) the instance follows
two different paths from a total of nine possible ones).
Assuming that the MLC has a prediction complexity of
O(f(|L|)), then, in the ideal case where only one such path
is followed, HOMER’s prediction complexity will be

fHPrediction = logk(|L|)× f(k) + f(nmax)

or
fHPrediction ∈ O(logk(|L|)) (7)

In the worst case, if all paths would be followed we
would have

fHPrediction =

|L|
nmax×k − 1

k − 1
×f(k)+

|L|
nmax× k

×f(nmax)

therefore
fHPrediction ∈ O(|L|) (8)

4. We have used the assumption that fMLC is linearly dependent on
D to average over Dn.
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4.4 Discussion

As explained in the introductory section of this paper, the
motivation behind HOMER is to tackle a problem that
would be difficult to solve globally, by breaking it to several
local sub-problems which are expected to be more easily
and effectively addressed. In this section, we focus on the
factors that play an important role in building an effective
HOMER model.

The most important part of the algorithm is the con-
struction of a good label hierarchy. By ’good’, we imply that
the clusters should have as much as possible similar labels
within them. A good hierarchy can engender the following
benefits. First, similar labels will be expected to co-occur
frequently. As a result, a cluster containing labels that are
related, will tend to have a smaller training corpus than one
containing dissimilar ones. As explained in the previous sec-
tion, this leads in a shorter training time. A second benefit
involves prediction; if the clusters of the hierarchy contain
very similar labels, then, during prediction a new instance
will follow only few (or ideally one) paths in the label
hierarchy and therefore achieve a logarithmic complexity. A
third benefit involves performance; a hierarchy with similar
clusters will cause the MLC at each node to be more effective
in predicting correctly the meta-labels for an unannotated
instance.

Another substantial aspect in HOMER’s configuration
relates to the nmax parameter. The initially presented
HOMER model was expanding totally the label hierarchy
tree, with terminal nodes having only a single label. In real
world applications though, most labels tend to have very
few positive examples and therefore very low frequencies.
Full expansion of the tree in this case, would lead to
very small training sets for each label and therefore poor
performance. The model that we propose in this work, is
using the nmax parameter to address the above issues and
stop the hierarchy expansion. As nmax approaches |L|, the
hierarchy will be shallower and the gain in performance
smaller. On the other hand, as nmax approaches to 1 the
training sets of the nodes will be smaller and performance
can even be worse than the baseline MLC . As a rule of
thumb, we propose, depending on |L| size, |nmax| values
in the order of 10 to 102.

In order to better understand the role of nmax, and
generally the differences among hierarchies with many or
few nodes, let us inspect more closely how HOMER pro-
ceeds; as mentioned earlier, after creating a hierarchy of the
label space, the algorithm trains each node with a subset
of the training instances. More specifically, at each node the
training set consists of the union of positive examples of
each label. Hence, as we proceed to the nodes further down
the hierarchy, we expect that this kind of sub-sampling will
lead to learning problems that will have fewer and fewer
negative examples for each label of the node (by definition,
the number of positive examples will remain steady for each
label). The same trend will be observed among HOMER
models, as we increase the total number of nodes.

This is no random sub-sampling though; through the
iterative clustering process (during the construction of the
label hierarchy) we have put similar labels in the same
cluster. Therefore, for each label, the negative examples will

consist of the union of positive examples of the other similar
labels, excluding of course the instances for which the labels
co-occur. Through this process, we expect that the negative
examples will provide a greater discriminative power to the
MLC, in learning more accurately the task by distinguishing
more effectively between similar labels.

This sub-sampling process will be expected to have a
different effect on rare and frequent labels. Specifically, if
we increase the total number of nodes in the hierarchy, rare
labels will most probably benefit from reducing the imbal-
ance between positive and negative examples. On the other
hand, for frequent labels we expect at some point that there
will be an ’inverse’ imbalance with many positive examples
and too few negative ones, in which case performance will
likely drop.

In Section 5 we study empirically how the sub-sampling
process influences performance of frequent and rare labels,
validating our observations and remarks.

5 EXPERIMENTS

We performed five sets of experiments. The first experiment
studies how frequent and rare labels are influenced by the
total number of nodes in a HOMER model. In the second
and third series of experiments, we investigated the role of
parameters k (number of cluster-children nodes) and nmax
(maximum number of labels in every leaf node) with respect
to performance. In the above cases, we employed balanced
k means as the clustering algorithm and Binary Relevance
with Linear SVMs as the baseline method.

In the fourth series of experiments we employed three
different clustering algorithms using two different multi-
label algorithms as base classifiers, Binary Relevance with
Linear SVMs and Labeled LDA. Finally, we employed
HOMER-BR on two large-scale corpora and compared the
algorithm against the respective baseline (BR-SVM).

The code of the implementation and experiments is
available at http://users.auth.gr/∼ypapanik/.

5.1 Implementations and parameter setup

We used the ELKI library [25] for the clustering algorithms
as well as for the Jaccard distance measure. The LibLinear
package was employed for the Linear SVMs [26] in the
Binary Relevance approach, keeping default parameters
(C = 1, e = 0.01 and L1R-L2LOSS-SVC as a solver). La-
beled LDA was implemented with the Prior-LDA variation
[27]. For the latter, we used the Collapsed Gibbs Sampling
method, with only one Markov Chain for simplicity and 100
iterations during training and prediction (with 50 iterations
of burn-in period and a sampling interval of 5 iterations).
Parameter β was set to 0.1 while α was set to 50.0

|L| during

training and 50.0∗ frequency(l)
sumOfFrequencies+

30.0
|L| during prediction

(following the Prior-LDA approach). Specifically for Labeled
LDA, as the Collapsed Gibbs Sampler follows a stochastic
process, we repeated each experiment five times and we
report the average performance. Also, as Labeled LDA pro-
duces a ranking of labels for each instance, we applied the
Metalabeler approach [28] as a thresholding technique, in
order to obtain the necessary bipartitions. The same model,
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a linear regression model, was used for both LLDA and
HOMER-LLDA in the experiments.

Finally, all experiments were run on a machine with 50
Intel Xeon processors at 2.27GHz each and on 1Tb of RAM
memory.

5.2 Data sets
For the first experiment, we used a small subset of the
BioASQ dataset [29]. The BioASQ challenge deals with
the semantic annotation of scientific articles from the bio-
medical domain. For each article, the abstract, the title, the
journal and the year of publication are given, along with
a list of MeSH tags, provided by the National Library of
Medicine. For this experiment, we used the last 12,000 doc-
uments of the corpus, keeping the first 10,000 for training
and the rest for testing. Stop-words and features with less
than 5 occurrences were filtered out.

For the next three series of experiments, we employed
Bibtex [30], Bookmarks [30], EUR-Lex [31] and Y elp.
The first three data sets have been extensively used in a
number of papers, therefore we will not further describe
them. For the Y elp data set, we retrieved the data available
from the Yelp Dataset Challenge website5 and formulated a
multi-label learning problem where the goal is to predict
the attributes for each business by using text from the
relevant reviews. More specifically, we obtained 1,569,265
reviews for a total of 61,185 businesses and after filtering
out businesses with less than two reviews, we concatenated
reviews for each of the remaining businesses resulting in
a corpus of 56,797 instances. The label set of the problem
consists of the set of attributes (only those with one value,
Boolean, numerical or text) and the categories of each busi-
ness (e.g. an instance’s label set could consist of the fol-
lowing labels: ”By Appointment Only”,”Price Range 2”,”Nail
Salons”,”Accepts Credit Cards”,”Beauty & Spas”). Stop-words
and words with less than 10 occurrences in the corpus were
removed, yielding a set of 70,180 features in total.

For the fifth set of experiments, we used two large-scale
data sets, BioASQ and DMOZ [32]. For BioASQ we used
a subset of the entire corpus (the last 250,000 documents)
following the same preprocessing procedure as for the first
experiment. In case of DMOZ we did not perform any
further processing, keeping 80% of the data for training and
the rest for testing.

Table 2 shows the relevant statistics for all of the afore-
mentioned datasets.

5.3 Evaluation measures
We employ two widely-used evaluation measures to assess
performance: the micro-averaged and macro-averaged F1
measures (Micro-F and Macro-F, for short) [33]. These mea-
sures are a weighted function of precision and recall, and
emphasize the need for a model to perform well in terms of
both of these underlying measures. The Macro-F score is the
average of the F1-scores that are achieved across all labels,
and the Micro-F score is the average F1 score weighted
by each label’s frequency. Equations 9 and 10 provide the
definitions of the two measures in terms of the true positives

5. http://www.yelp.com/dataset challenge

(tpl), false positives (fpl) and false negatives (fnl) of each
label l.

Micro− F1score =

2×
|L|∑
l=1

tpl

2×
|L|∑
l=1

tpl +
|L|∑
l=1

fpl +
|L|∑
l=1

fnl

(9)

Macro− F1score =
1

|L|

|L|∑

l=1

2× tpl
2× tpl + fpl + fnl

(10)

5.4 Effect on frequent and rare labels when increasing
total number of nodes

(a) Macro-F (b) Micro-F

Fig. 3: Performance for rare and frequent labels of a subset
of the BioASQ dataset against the number of total nodes
(in log scale) for seven different HOMER models.

In this experiment, we want to study how well frequent
and rare labels are learned from a HOMER model when we
increase the total number of nodes in the hierarchy. We used
a subset of the BioASQ dataset, as this dataset has very
few frequent labels and a great number of extremely rare
ones and is therefore particularly suited for this empirical
study. For the purpose of this experiment we considered as
frequent, the labels having a frequency greater than 700 and
as rare the labels with a frequency lower than 70. Figure
3 depicts the performance for rare and frequent labels for
seven different HOMER models in terms of Micro-F and
Macro-F. The configuration for this models was as follows:
BR SVMs were employed as the baseline MLC and for
constructing the label hierarchy we used balanced k means
with k = 3 and nmax = 3, 20, 100, 300, 1000, 10000, 20000
for each of the models. This led to seven different models
with 9841, 1093, 364 121, 40, 4 and 1 total nodes accordingly.

The results seem to validate our analysis in Section 4.4.
Rare labels tend to benefit as the hierarchy becomes deeper
and fewer labels per terminal node are observed. This is
expected, as the sub-sampling process that HOMER follows
is smoothing out the class imbalance problem for rare labels.
On the contrary, frequent labels exhibit an inverse behavior;
as the number of total nodes increases, the initial increase
in performance is followed by a significant deterioration,
for both measures. Again, this behavior is explained by
considering the fact that frequent labels will have fewer and
fewer negative examples as we create deeper hierarchies
and, at some point, this will lead to an inverse imbalance
effect, where the label will have many positive and very
few negative examples.
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TABLE 2: Data Sets Statistics.

Documents Labels
Data set Training Test Average

Length
Set Cardinality Average Fre-

quency
Word Types

Bibtex 4,880 2,515 68.46 159 2.38 73.05 1,479
Bookmarks 70,000 17,855 125.49 208 2.03 682.90 2,100

EUR-Lex 15,314 4,000 1274.19 3,826 5.29 21.17 26,575
Yelp 45,000 11,797 3531.23 814 9.76 539.75 70,180

BioASQ(1st exp) 10,000 2,000 211.52 13,283 13.12 107.89 19,145
BioASQ 200,000 50,000 221.68 24,094 13.53 112.36 92,293
DMOZ 322,465 72,288 358.34 27,689 1.03 11.97 108,230

The above experiments could serve as a generic guide
to properly configure a HOMER model; when dealing with
problems with many rare labels, we should aim at creating
hierarchies with small nmax values and therefore more total
nodes. On the contrary, problems dominated by frequent
labels, would lead us in choosing larger nmax values.

As a final note for future extensions, we could consider
the case of a model that would use a heuristic criterion to
stop the partitioning of a given node, if the node has many
frequent labels (or in the general case, if performance is
expected to drop by further partitioning the node).

5.5 Empirical study on the number of clusters

In this set of experiments, we investigate how the number
of clusters into which the labels of each node are partitioned
affects the algorithm’s performance. We select balanced k
means as the clustering algorithm (this is convenient, as
this algorithm allows us to set explicitly the number of
clusters), BR-SVM as the MLC and set the nmax parameter
accordingly for each of the used datasets. Specifically, we set
nmax to 20 for Bibtex, 10 for Bookmarks, 200 for EUR-
Lex and to 20 for Y elp. In Figure 4 and Figure 5 we report
the results for different choices of the parameter, in terms
of Macro-F and Micro-F respectively . The performance of
the baseline method (BR-SVM) is also depicted to facilitate
comparisons.

First, HOMER-BR has a steady advantage over BR across
the different datasets and the various k configurations. Only
in one case out of the eight plots, for Y elp in terms of Macro-
F, we can observe BR being steadily better. Also, we can
notice HOMER-BR getting worse than BR for k = 10, in one
case for Macro-F and two for Micro-F, which suggests that
for this configuration the constructed label hierarchy is of
inferior quality.

Secondly, for both measures, we observe a similar ten-
dency in three out of four datasets. As the number of clusters
increases, performance has a declining trend, dropping even
below the baseline for larger values. The fourth dataset,
Y elp, has a different behavior being relatively steady in
terms of Macro-F and improving Micro-F as the number of
clusters increases. We note here that the number of clusters
is essentially the primary factor of how the labels will be
arranged in the hierarchy. For instance a large number of
clusters will lead to a very ”open” and shallow tree, while
a smaller one will lead to deeper and more ”closed” ones.
Therefore, this is the main parameter that will affect the clus-
tering ’s quality and subsequently performance and should
be the first element to be considered for experimentation

when seeking to construct an optimal clustering of the
labels.

Moreover, even if these empirical results tend to favor
a small number of clusters (two or three) as a safe default
choice for configuring a HOMER model (the results in [5],
Section 5.1 suggest as well a similar option) we advise
against choosing a default option for this parameter as it
is crucial for the quality of the resulting label hierarchy.

A number of clustering algorithms, e.g. density-based
algorithms such as DBSCAN [34] or OPTICS [35] do not
allow explicit setting of the number of clusters. The relevant
parameters of each algorithm however, control indirectly as
well the number of clusters and eventually the structure of
the tree and should therefore be chosen carefully for optimal
results.

(a) Bibtex (b) Bookmarks

(c) EUR-Lex (d) Yelp

Fig. 4: HOMER-BR results for five different choices of
parameter k for the four data sets, in terms of the Macro-
F measure. The respective performance of BR is also shown
to visualize the improvement.

5.6 Empirical study of the nmax parameter
In this experiment, we investigate the role of parameter
nmax in HOMER’s performance. The above parameter
controls the maximum allowed number of labels in a leaf
node. This parameter essentially determines if a node will
be further partitioned in a set of children nodes. In the initial
algorithm presentation [5] all leaf nodes consisted of one
label, the equivalent of setting nmax = 1. We ran HOMER
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(a) Bibtex (b) Bookmarks

(c) EUR-Lex (d) Yelp

Fig. 5: HOMER-BR results for different choices of parameter
k, for the four data sets, in terms of the Micro-F measure.

on four data sets (Bibtex, Bookmarks, Y elp, EUR-Lex) for
multiple nmax values. We set the clustering algorithm to
balanced k means and the MLC to Binary Relevance with
Linear SVMs. The parameter k was fixed to 3 across all
datasets. We present the results of this experiments in Figure
6 and 7. The performance of the baseline method (BR-SVM)
is also depicted to facilitate comparisons.

First, compared to the base MLC, HOMER-BR has once
more the upper hand in the seven out of eight figures (apart
from Y elp in terms of Macro-F). Furthermore, for small
values of nmax in one case for Macro-F and in one case
for Micro-F, HOMER’s performance is worse than that of
BR.

Secondly, there is a common trend in seven out of the
eight figures (apart from the case of EUR-Lex for Macro-F)
with performance increasing initially with nmax, reaching
a maximum value and then dropping again. As we have
explained in Section 4.4, this is an expected behavior since,
as nmax → 1 the training sets of terminal nodes will be
rather small, leading to a drop in performance. On the other
hand, as nmax → |L|, performance will tend to approach
that of the base MLC with the hierarchy degenerating to
a single cluster for nmax = |L|. These results validate
the observations made in Section 4.4 about the fact that
we should expect an optimal value to exist for the nmax
parameter.

5.7 Configuration paradigms; Different Clustering Al-
gorithms and Classifiers

The goal of this series of experiments is to illustrate the
ability of the described HOMER algorithm to accommodate
various clustering algorithms and multi-label classifiers.
Here, we describe six different instantiations of HOMER
to serve as such example configurations, by employing
three different clustering algorithms (balanced k means
described in Section 3, FastOPTICS [36] and SLINK [37]) and
two different multi-label classifiers (BR-SVMs and Labeled

(a) Bibtex (b) Bookmarks

(c) EUR-Lex (d) Yelp

Fig. 6: HOMER-BR results for different choices of parameter
nmax, for the four data sets, in terms of the Macro-F
measure.

(a) Bibtex (b) Bookmarks

(c) EUR-Lex (d) Yelp

Fig. 7: HOMER-BR results for different choices of param-
eter nmax, for the four data sets, in terms of the Micro-F
measure.

LDA). For this experiment, we used four data sets, Bibtex,
Bookmarks, EUR-Lex and Y elp. For Labeled LDA, we
employed the algorithm’s extension described in Section 4.2.
Also, the k parameter described earlier is not valid in case
of SLINK and FastOPTICS, as these two algorithms take
different parameters. Specifically, for SLINK we kept default
parameters and for FastOPTICS we set ǫ = 0.001 and
minPts = nmax. For these two clustering algorithms we
followed again the approach that if a resulting cluster would
have more than nmax labels, then the algorithm would
be run again on that cluster (in this case the ǫ parameter
of FastOptics was doubled in order to allow for smaller
clusters). We note that for the algorithm-specific parameters
as well as for the nmax parameter we did not perform an
exhaustive search for the optimal parameters.

Table 3 shows the results for this round of experiments,
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the run time for each experiment and, specifically for the
HOMER models, the average training set size and number
of total nodes.

First, let us examine the respective results for BR and
HOMER-BR. All HOMER models demonstrate, overall, an
improved performance over BR, with the exception of the
Macro-F measure in Y elp dataset. Balanced k means is
somewhat more consistent in outperforming the base MLC,
while results for FastOPTICS and SLINK seem more mixed.
When comparing LLDA and HOMER-LLDA, we observe
more mixed results with LLDA having the upper hand in
terms of Macro-F in three out of four datasets. In terms of
Micro-F however, HOMER with balanced k means is outper-
forming LLDA in all cases, while results for the other two
clustering configurations appear again more diversified.

Even if comparisons among HOMER models should be
taken with a grain of salt, given that we did not choose
optimal parameters for each of the clustering algorithms
and that each algorithm creates a hierarchy with a different
structure and a different total number of nodes, we can
remark that balanced k means is performing consistently
better than FastOPTICS and SLINK. Apart from the afore-
mentioned factors, a possible reason for this behavior could
be the fact that balanced k means produces a balanced
hierarchy. Similar results from the experiments in [5] may
suggest that imposing such an explicit constraint of even
distribution of labels among the nodes of the hierarchy, can
perhaps affect significantly performance.

In Table 3 we additionally provide the running times
for each model. To facilitate our analysis of the results,
we also provide the average training corpus size for non-
leaf nodes (depicted as |DNL|) and leaf nodes (depicted
as |DL|) and the total number of nodes for each of the
algorithms. If we examine the training times for the HOMER
models that employ balanced k means, we can observe
that results are aligned with Equation 6 and the relevant
conclusions of Section 4.3, with roughly similar times to BR-
SVMs (apart from the Y elp dataset for HOMER-BR) . We
note that HOMER includes also a filtering step of training
instances from parent to child node and this step was not
optimized in our code. Therefore, the differences we observe
may also be due to that step. In case of the HOMER models
using the rest of the clustering algorithms, conclusions from
Section 4.3 do not apply as the latter perform unbalanced
clustering. Nevertheless, we can observe in general a similar
behavior with approximately equivalent training times of
the HOMER models to the respective MLCs.

In case of the Y elp dataset the training times are signif-
icantly longer than those observed for the given MLC. A
possible reason for this could be the fact that the average
label frequency is higher compared to the other datasets
and subsequently this leads in bigger |Dn| compared to
|D| and therefore longer training times. The number of total
nodes also seems to play a role for unbalanced algorithms;
SLINK tends to produce far bigger hierarchies than the other
algorithms paying the price in terms of training duration.

Concerning prediction times, as we explained in Section
4.3, the computational complexity of a HOMER model in
the case of a balanced clustering algorithm can vary from
logarithmic in the best case, to linear in the worst case (if
all paths of the label hierarchy are followed). Therefore, we

see generally significantly shorter times for the HOMER
models compared to the base MLC, a tendency not being
limited to those models that employ balanced k means. In
two cases however (for Bibtex and EUR-Lex) , SLINK has
significantly longer times than the base MLC. A possible
explanation could relate with the quality of the clustering;
it seems that in this case the instances to be predicted are
forwarded in large portions of the tree, causing the longer
prediction times.

Overall, the results suggest that it is totally valid to
employ any given clustering algorithm to construct the label
hierarchy in the HOMER framework. In some cases (for in-
stance in Bibtex and Y elp in terms of Micro-F), alternatives
to balanced k means can perform even better, therefore one
should not rely on a default HOMER setup for a specific
multi-label task. Another remark we could make 6, is that
HOMER’s performance, both in terms of running time and
quality of prediction, seems to be largely dependent on the
quality of the label clustering. In other words, the Achilles’
heel of the algorithm described in this paper seems to be the
choice of the given clustering algorithm’s parameters.

5.8 Large-scale tasks
In the last round of experiments, we study two large-scale
multi-label classification tasks, BioASQ and DMOZ . We
choose balanced k means as a clustering algorithm to create
the label hierarchy and BR-Linear SVMs as the multi-label
classifier. Apart from performance, in this experiment we
are also interested on training and prediction duration. Table
4 shows the relevant results. We also show the respective
running times for the algorithms and

∣∣Dn

∣∣ compared to
|D|, as a means to illustrate the improvement in training
complexity. The total number of nodes per model is also
depicted.

These two multi-label tasks provide a characteristic ex-
ample case where HOMER can bring a significant improve-
ment both in performance and running times. First, in terms
of both measures and for both tasks we observe a statisti-
cally significant gain in performance. Second, in terms of
training times we also notice a significant improvement.
Especially for DMOZ , training with HOMER-BR is almost
sixteen times faster than with BR. This difference is partly
due to the nature of the dataset; as DMOZ has |Ld| ≃ 1,
the resulting |Dn| will be a lot smaller than |D| allowing for
faster training. Prediction is also conducted much faster, at
half time for BioASQ and one third of the time for DMOZ .

These results may provide a hint on when HOMER is
more appropriate to be employed on a multi-label task.
Applications with large |L| and |D| appear to be more
suitable, rendering the application of a given MLC more
beneficial at the same time improving the relevant running
times.

6 CONCLUSION

In this work we have presented the HOMER framework, an
approach that can wrap any given multi-label classifier, with
the aim to improve on performance and running time. The

6. initial experimentation on the datasets used throughout the paper
validated these observations.
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TABLE 3: Results on Bibtex and Bookmarks

Perorfmance Duration
Data set Classifier Clusterer Micro-F Macro-F Training Test |DNL|+ |DL| nodes
Bibtex

BR 0.41783 0.24953 0.5 0.1 4,880
H-BR k means (3, 40) 0.43068 0.28247△ 0.6(0) 0 3,206.2+1,140.8 13
H-BR FastOPTICS (40) 0.42346 0.26977△ 1.1(0.8) 0 4,880+2,044.2 5
H-BR SLINK (40) 0.42202 0.27034△ 0.5(0.1) 0 4,880+212.6 43
LLDA 0.37517 0.24802 0.4 0.6 4,880

H-LLDA k means (3, 40) 0.37668 0.239723 0.4(0) 0.3 3,206.2+1,140.8 13
H-LLDA FastOPTICS (40) 0.39018 0.24820 1.1(0.8) 0.3 4,880+2,044.2 5
H-LLDA SLINK (40) 0.36628 0.20726△ 0.5(0.1) 3.0 4,880+212.6 43

Bookmarks
BR 0.28875 0.14408 16.1. 1.2 70,000

H-BR k means (3, 10) 0.33339△ 0.22248△ 18.4(4.3) 0.1 23,075.3+5,048.9 40
H-BR FastOPTICS (10) 0.31856△ 0.16697△ 45.6(26.2) 0.8 51,057.5+9,749 14
H-BR SLINK (10) 0.30639△ 0.16530△ 20.5(4.8) 0.3 33,289.3+2,304.5 54
LLDA 0.20144 0.11251 17.5 20.2 70,000

H-LLDA k means (2, 55) 0.20460 0.09594△ 19.2(3.1) 8.2 53,804.3+27,779.5 7
H-LLDA FastOPTICS (55) 0.16744△ 0.06793△ 27.5(17.2) 8.6 70,000+18,345 7
H-LLDA SLINK (55) 0.19774 0.07784△ 14.0(3.5) 5.6 70,000+4,868.4 24

EUR-Lex
BR 0.26793 0.51146 36.8 1.1 15,314

H-BR k means(3, 200) 0.32908△ 0.51947 23.4(5.3) 0.9 9,062.5+2,764.7 40
H-BR FastOPTICS(200) 0.29712△ 0.51134 82.4(49.3) 2.1 15,314+3,199.5 20
H-BR SLINK(200) 0.27052 0.50964 144.1(49.1) 4.0 15,314+63.5 966
LLDA 0.10917 0.44309 61.8 169.3 15,314

H-LLDA k means(3, 500) 0.11657 0.43355 67.9(4.4) 66,4 13,682+7,009.4 13
H-LLDA FastOPTICS(500) 0.08705△ 0.38074△ 80.6(41,1) 50.4 15,314+3673.2 14
H-LLDA SLINK(500) 0.08344△ 0.43538 100.5(46.4) 42.0 15,314+79.4 976

Yelp
BR 0.77480 0.50605 60.4 7.3 45,000

H-BR k means (3, 20) 0.78371△ 0.47463△ 228.4(28.4) 6.1 19,155.3+5,201.4 121
H-BR FastOPTICS (20) 0.78690△ 0.46959△ 188.3(77.2) 8.0 32,361+10,985.5 17
H-BR SLINK (20) 0.78693△ 0.46878△ 119.7(10.3) 7.1 15,900+913.9 180
LLDA 0.59825 0.32851 135.4 169.4 45,000

H-LLDA k means (3, 100) 0.61840△ 0.32642 131.3(11.1) 38.0 41,946.2+26,304.3 13
H-LLDA FastOPTICS (40) 0.29194△ 0.29757△ 327.3(75.1) 81.1 45,000+9,623.1 18
H-LLDA SLINK (100) 0.28436△ 0.27729△ 381.7(14.5) 42.3 45,000+963.3 172

1HOMER models are denoted with H-MLC. For each different clustering technique, we show the exact parameterization in parentheses, the first
number denoting k and the second nmax. The △ symbol represents a statistically significant difference between the base MLC and the

respective HOMER model at p = 0.05 (we use the symbol either if the HOMER model is significantly better or significantly worse than the MLC
of choice). In the ’Duration’ column, figures are given in minutes, a 0 noting a duration of less than 6 seconds. In the ’Training’ column, the first

number concerns the total training time while the number in parentheses the clustering time.

TABLE 4: Results on BioASQ and DMOZ

Performance Duration
Data set Classifier Micro-F Macro-F Training Test

∣∣Dn

∣∣ nodes
BioASQ

BR 0.54282 0.40644 784 33 200,000
HOMER-BR (k = 3, nmax = 800) 0.55061△ 0.41646△ 452.4(59) 15 49,906.3+15,432.3 121

DMOZ
BR 0.20512 0.24413 3,688 24 322,465

HOMER-BR(k = 3, nmax = 500) 0.24146△ 0.26288△ 232(66) 8 32707.2+4078.1 121

algorithm breaks down the global multi-label task to several
smaller subtasks, by first employing recursively a cluster-
ing algorithm on the label set, creating a label hierarchy.
Training and prediction is subsequently carried out locally
at each node of the hierarchy. The algorithm has a linear
training complexity and a logarithmic testing complexity,
irrespective of the employed MLC.

The empirical results from the experiments carried out in
this paper, demonstrate that HOMER can significantly im-
prove performance when applied on a given MLC method.
Special care should be given however, to adjust optimally
the clustering algorithm’s parameters, as this is the part that
affects most the algorithm’s behavior.

Specifically for the last part of the experiments, the
positive results may indicate that HOMER is especially apt
in addressing large-scale multi-label tasks.

Finally, as a future extension of this work, we would like
to consider possible extensions of HOMER, to address Ex-
treme Classification tasks, multi-label tasks with hundreds
of thousands of labels or more.
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