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Abstract

Privacy-Preserving Record Linkage (PPRL) supports the integration of sensitive information from multiple datasets,

in particular the privacy-preserving matching of records referring to the same entity. PPRL has gained much attention

in many application areas, with the most prominent ones in the healthcare domain. PPRL techniques tackle this

problem by conducting linkage on masked (encoded) values. Employing PPRL on records from multiple (more than

two) parties/sources (multi-party PPRL, MP-PPRL) is an increasingly important but challenging problem that so far

has not been sufficiently solved. Existing MP-PPRL approaches are limited to finding only those entities that are

present in all parties thereby missing entities that match only in a subset of parties. Furthermore, previous MP-PPRL

approaches face substantial scalability limitations due to the need of a large number of comparisons between masked

records. We thus propose and evaluate new MP-PPRL approaches that find matches in any subset of parties and still

scale to many parties. Our approaches maintain all matches within clusters, where these clusters are incrementally

extended or refined by considering records from one party after the other. An empirical evaluation using multiple real

datasets ranging from 3 to 26 parties each containing up to 5 million records validates that our protocols are efficient,

and significantly outperform existing MP-PPRL approaches in terms of linkage quality and scalability.
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1. Introduction

With the widespread collection of large-scale person-

specific databases by many organizations, multiple large

databases (held by different parties) often need to be

integrated and linked to identify matching records that

correspond to the same real-world entity [1, 2, 3] for

viable data mining and analytics applications. The

absence of unique entity identifiers across different

databases requires using commonly available personal

identifying attributes, such as names and addresses, for

integrating and linking records from those databases.

The values in these quasi-identifiers (QIDs) are often

dirty, i.e. contain errors and variations, or they can

be missing, which makes the linkage task challeng-

ing [4, 5]. In addition, such attributes often contain
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sensitive personal information about the entities to be

linked, and therefore sharing or exchanging such values

among different organizations is often prohibited due to

privacy and confidentiality concerns [6, 7, 8]. Address-

ing these challenges, privacy-preserving record linkage

(PPRL) has attracted increasing interest over the last

two decades [1, 8] and been employed in several real

applications.

For example, data from hospitals and clinical reg-

istries were linked with data from central cancer reg-

istries and from the Australian Bureau of Statistics us-

ing PPRL techniques for a study on surgical treatment

received by aboriginal and non-aboriginal people with

lung cancer [9]. Data from several cantonal and national

registries were linked in Switzerland using Bloom filter-

based PPRL to investigate long-term consequences of

childhood cancer [10]. In 2016, the Interdisciplinary

Committee of the International Rare Diseases Research

Consortium launched a task team to explore approaches

to PPRL for linking several genomic and clinical data

sets [11].
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Further, the Office for National Statistics (ONS) in

the UK established the program ‘Beyond 2011’ to carry

out research to study the options for production of pop-

ulation and socio-demographics statistics for England

and Wales, by linking anonymous data to ensure that

high levels of privacy of data about people are main-

tained [12]. Another application of PPRL in the do-

main of national security is to integrate data from law

enforcement agencies, Internet service providers, busi-

nesses, as well as financial institutions, to enable identi-

fying crime and fraud, or of terrorism suspects [13].

The majority of linkage techniques and frameworks

have been developed for linking records from only two

databases [8, 14, 15]. It is not trivial to extend existing

PPRL techniques to multiple databases by sending the

encoded databases from all parties to a Linkage Unit

(LU), where a LU is an external party that has been

used in several existing PPRL approaches for conduct-

ing or facilitating the linkage of encoded records sent

to it by the database owners [8]. At the LU, it would

then become necessary to determine pair-wise similar-

ities between records and to group similar records into

clusters where one cluster is assumed to represent one

entity [16]. Only few basic grouping/clustering tech-

niques have been described for multi-database linkage,

with each of them having limitations as discussed in de-

tail in Section 6. Such clustering schemes have been

studied for general record linkage [16, 17, 18] but have

received almost no attention so far for PPRL.

Furthermore, sending all the encoded records from

multiple parties to the LU has privacy risks. For ex-

ample, with Bloom filter-based encoding [19] (to be

described in the next section), the more Bloom filters

the LU receives the more likely it will be able to attack

these Bloom filter databases using cryptanalysis attacks

because more frequency information will become avail-

able that can be exploited [20, 21].

Only few techniques have been developed that can

perform multi-party linkage in a privacy-preserving

context (i.e. MP-PPRL). The main drawbacks of these

small number of existing MP-PPRL approaches are that

they either (1) only consider the blocking step to re-

duce the matching space [22] but not how the match-

ing is done, (2) only support exact matching, which

classifies record sets as matches if their masked QIDs

are exactly the same [4], (3) are applicable to QIDs of

categorical data only (however, linkage using QIDs of

string data, such as names and addresses, is required in

many real applications [8, 23]), or (4) they do not sup-

port subset matching where records that match across

subsets of databases also need to be identified in addi-

tion to records that match across all databases. The pri-

mary challenge of MP-PPRL is the complexity of link-

age, which generally is exponential with the number of

databases to be linked and their sizes [24]. This chal-

lenge multiplies when matching records from any pos-

sible subset across databases need to be identified.

Contributions: In this paper, we propose an effi-

cient and scalable MP-PPRL protocol that allows sub-

set matching between multiple large databases using a

LU. LU-based approaches for PPRL are well suited for

efficient linking of multiple large databases for practical

applications, as the number of communication steps re-

quired among the database owners, as well as the risk of

information leakage from a sensitive database to other

database owners, are reduced when a LU is used [8].

We develop two variations of incremental cluster-

ing combined with a graph-based linkage for MP-PPRL

where clusters of encoded records are iteratively merged

and refined such that the output of clusters are the

matching sets of records (i.e. each cluster represents

a set of matching records that correspond to the same

entity). Clustering-based approaches are deemed most

suitable for holistic data integration, and have been used

in several non-PPRL approaches for scaling data inte-

gration to many sources [25, 26]. Compared to greedy

mapping [27] (as described in Section 3), our proposed

incremental clustering methods perform significantly

better in terms of linkage quality.

We use counting Bloom filter-based encoding [24]

which has lower risk of privacy leakage as the frequency

information available in counting Bloom filters is sig-

nificantly less than basic Bloom filters [24]. Addition-

ally, the risk of collusion between different parties and

the LU can be reduced in our incremental clustering ap-

proach by using different encoding parameters in differ-

ent iterations, as we discuss in Section 4.2.

We provide a comprehensive evaluation of our pro-

posed approach which shows that it has a quadratic

computation complexity in the size and the number of

the databases that are linked. This complexity is signifi-

cantly lower compared to the exponential complexity of

existing MP-PPRL approaches [23, 24, 28], as we the-

oretically and empirically validate in Sections 4 and 5

using large real voter and health datasets.

Outline: In Section 2 we provide the required pre-

liminaries and in Section 3 we describe our protocol for

MP-PPRL. We analyze our protocol in terms of com-

plexity, privacy, and linkage quality in Section 4, and

validate these analyses through an empirical evaluation

in Section 5. We discuss related work in MP-PPRL in

Section 6. Finally, we conclude the paper with an out-

look to future research directions in Section 7.
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2. Preliminaries

In this section, we define the problem of MP-PPRL

and describe the preliminaries required for our protocol.

Definition 2.1 (MP-PPRL). Assume P1, . . . , Pp are

the p owners (parties) of the deduplicated databases

D1, . . . ,Dp, respectively. MP-PPRL allows the par-

ties Pi to determine which of their records ri,x ∈ Di

match with records in other database(s) r j,y ∈ D j with

1 ≤ i, j ≤ p and j , i based on the (masked or encoded)

quasi-identifiers (QIDs) of these records. The output

of this process is a set M of match clusters, where a

match cluster c ∈M contains a maximum of one record

from each database and 1 < |c| ≤ p. Each c ∈ M is

identified as a set of matching records representing the

same real-world entity. The parties do not wish to reveal

their actual records with any other party. They however

are prepared to disclose to each other, or to an external

party (such as a researcher), the actual values of some

selected attributes of the record sets that are in M to

allow further analysis.

We assume that the individual databases do not con-

tain any duplicates (i.e. multiple records about the

same patient). Each party performs the necessary

pre-processing steps including deduplication to ensure

the quality of their own database. Many dedupli-

cation techniques have been developed in the litera-

ture [4, 29] which can be used for deduplicating individ-

ual databases before linking them across different par-

ties (such that there is only one record per entity/patient

in a database, and therefore a record in one database can

match to only one record in another database).

We also assume that a private blocking, indexing, or

filtering technique is being used by the database own-

ers [23, 30, 31, 32]. Such techniques are being used

in general linkage and PPRL to reduce the number of

comparisons by grouping records according to a certain

criteria and limiting the comparison only to the records

in the same group [4, 8], or by pruning record pairs/sets

that are potential non-matches according to some crite-

ria [32]. Note that blocking is not a focus of our paper,

and that we assume that the private blocking technique

used by the database owners is secure [1].

Since QIDs that are generally used for linking (e.g.

names and addresses) contain personal and sensitive in-

formation about individuals, PPRL needs to be con-

ducted on the encoded or masked versions of these

QIDs. Any masking (encoding) function mask(·) can

be used in our privacy-preserving linkage protocol to

encode attribute values, as long as the same mask(·)

function is used by all database owners Pi to mask their
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Figure 1: An example similarity (Dice coefficient) calcula-

tion of two strings masked using Bloom filter (BF) encoding,

where l = 14, k = 2, and q = 2, as described in Section 2.

databases Di into DM
i

, where 1 ≤ i ≤ p. We describe

our protocol using the Bloom filter (BF) encoding tech-

nique, which is widely used in both research and practi-

cal applications of PPRL [8, 33, 34]. We also provide an

improved solution for privacy-preservation in the multi-

party context using counting Bloom filter (CBF) encod-

ing [24].

Definition 2.2 (BF encoding). A BF bi is a bit vector

of length l bits where all bits are initially set to 0. k

independent hash functions, h1, . . . , hk, each with range

1, . . . l, are used to map each of the elements s in a set

S into the BF by setting the bit positions h j(s) with 1 ≤

j ≤ k to 1.

For string matching, the q-grams (sub-strings of

length q) of QID values (that contain textual data, such

as names and addresses) of each record ri,x in the

databases to be linked Di, with 1 ≤ i ≤ p, are hash-

mapped into the BF bi,x using k independent hash func-

tions [35]. Figure 1 illustrates the encoding of bigrams

(q = 2) of two QID values ‘sarah’ and ‘sara’ into l = 14

bits long BFs using k = 2 hash functions. The set of

bigrams is first extracted from the string (e.g. {’sa’, ’ar’,

’ra’, ’ah’} for ’sarah’) and then each bigram in the set is

hashed using k = 2 hash functions to set the correspond-

ing two indices in the BF to 1 (e.g. hash-mapping bi-

gram ’sa’ results in setting the 1st and 7th bit positions to

1). For numerical data, the neighbouring values (within

a certain interval) of QID values are hash-mapped into

the BF using k hash functions [36, 37]. Collision of

hash-mapping occurs (for example, the bigrams ’sa’ and

’ra’ are mapped to the same 7th bit position in Figure 1),

which improves privacy of the encoding at the cost of

loss in utility due to false positives.

In order to allow fuzzy/approximate matching of

masked QIDs to perform record linkage in the pres-

ence of typographical errors and variations, the simi-

larity/distance between the encoded values needs to be

calculated [4, 8]. The similarity of records masked into
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BFs can be calculated either distributively across all

database owners [23, 38] or by a linkage unit [6, 35].

Any set-based similarity function (such as overlap, Jac-

card, and Dice coefficient) [4] can be used to calcu-

late the similarity of pairs or sets (multiple) of BFs. In

PPRL, the Dice coefficient has been used for matching

of BFs since it is insensitive to many matching zeros

(bit positions to which no elements are hash-mapped)

in long BFs [35].

Definition 2.3 (Dice coefficient similarity). The Dice

coefficient similarity of p (p ≥ 2) BFs (b1, · · · , bp) is:

sim(b1, · · · , bp) =
p × z∑p

i=1
xi

, (1)

where z is the number of common bit positions that are

set to 1 in all p BFs (common 1-bits), and xi is the num-

ber of bit positions set to 1 in bi (1-bits), 1 ≤ i ≤ p.

For the example Bloom filter pair shown in Figure 1,

the number of common 1-bits is 5 and the number of 1-

bits in the two Bloom filters are 7 and 5, respectively,

and therefore the Dice coefficient similarity is calcu-

lated as 2 × 5/(7 + 5) = 0.83.

Definition 2.4 (CBF encoding). A counting Bloom fil-

ter (CBF) c is an integer vector of length l bits that con-

tains the counts of values in each bit position. Multiple

BFs can be summarized into a single CBF c, such that

c[β] =
∑p

i=1
bi[β], where β, 1 ≤ β ≤ l. c[β] is the count

value in the β bit position of the CBF c and bi[β] ∈ [0, 1]

provides the value in the bit position β of BF bi. Given

p BFs (bit vectors) bi with 1 ≤ i ≤ p, the CBF c can

be generated by applying a vector addition operation

between the bit vectors such that c =
∑

i bi.

Theorem 2.1. The Dice coefficient similarity of p BFs

can be calculated given only their corresponding CBF

as:

sim(c) =
p × |{β : c[β] = p, 1 ≤ β ≤ l}|

∑l
β=1 c[β]

(2)

Proof 2.2. The Dice coefficient similarity of p BFs

(b1,b2, · · ·, bp) is determined by the sum of 1-bits

(
∑p

i=1
xi) in the denominator of Eq. (1) and the number

of common 1-bits (z) in all p BFs in the nominator of

Eq. (1). The number of 1-bits in a BF bi is xi = bi[1] +

bi[2]+ · · ·+bi[l], with 1 ≤ i ≤ p. The sum of 1-bits in all

p BFs is therefore
∑p

i=1
xi =
∑p

i=1
bi[1]+bi[2]+· · ·+bi[l].

The value in a bit position β (1 ≤ β ≤ l) of the CBF

of these p BFs is c[β] = b1[β] + b2[β] + · · · + bp[β].

b2 1 1111 0 0 0 0 0 0000

1 1101 0 0 0 1 0 1000b3

b1 1 1111 0 0 0 0 1 0 0 0 1

Dice_sim = 3 x 4
18

= 0.67c 3 3320 0 0 1 1 20003

Figure 2: An example similarity (Dice coefficient) calculation

of three BFs using their CBF, as described in Section 2.

The sum of values in all bit positions of the CBF is∑l
β=1 c[β] =

∑l
β=1 b1[β] + b2[β] + · · · + bp[β] which is

equal to
∑p

i=1
xi =

∑p

i=1
bi[1] + bi[2] + · · · + bi[l]. Fur-

ther, if a bit position β (1 ≤ β ≤ l) contains 1 in all

p BFs, i.e. ∀
p

i=1
bi[β] = 1, then c[β] =

∑p

i=1
bi[β] = p.

Therefore, the common 1-bits (z) that occur in all p BFs

can be calculated by counting the number of positions

β ∈ c where c[β] = p, while the sum of the number of

1-bits (
∑p

i=1
xi) is calculated by summing the values in

all bit positions β ∈ c,
∑l
β=1 c[β].

Figure 2 shows an example of using CBF to calculate

the similarity of p = 3 BFs (b1, b2, and b3). The CBF c

contains the aggregated counts from the three BFs. The

number of common 1-bits in all three BFs is 4 because 4

indices in c contain the count of 3, and the total number

of 1-bits in all three BFs is 18, which is the sum of the

counts in c. Hence, the Dice coefficient similarity is

calculated as 3 × 4/18 = 0.67. As will be described in

Sections 3.3 and 4.2, CBFs provide improved privacy

compared to BFs in a multi-party context [24].

3. MP-PPRL Protocol

Our protocol allows the efficient identification of

matching records from several (two or more) databases

held by different parties. We use an incremental graph-

based clustering approach to achieve efficient linking

of multiple large databases by reducing the exponential

comparison space required by traditional linkage meth-

ods [8, 22]. The explosion in the number of record pair

comparisons required with increasing number of large

databases necessitates a transition from batch to incre-

mental clustering methods, which process one database

at a time and typically store only a small subset of the

data as potential matching records [39].

Overview: Masked/encoded database records are

represented by the vertices in a graph and the similar-

ities between compared records are represented by the

edges. As we describe below, the databases are ordered

using an ordering function to determine in which order
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the databases are to be processed for incremental clus-

tering. The aim of incremental clustering is to incre-

mentally cluster/group vertices such that similar records

from different databases are grouped into one cluster.

Vertices containing similar records are identified by us-

ing a similarity function. As we describe in Sections 3.1

and 3.2, we propose two mapping functions that per-

form clustering by merging and/or splitting vertices in

the graph. The final output of our protocol is a clus-

ter graph whose vertices are clusters containing simi-

lar records, or vertices containing a single record that is

not matched with any other records. Each cluster/vertex

in the final cluster graph corresponds to one real-world

entity. Records within each cluster can be linked as

matches and used for further analysis. In the following

we describe our protocol in detail.

Definition 3.1 (Cluster graph). A cluster graph G is

a p-partite graph that contains a set S of non-empty

independent sets Vi with 1 ≤ i ≤ p containing ver-

tices/nodes, and a set E of unordered pairs of vertices

each representing an undirected edge between a pair

of vertices vx and vy such that vx ∈ Vi and vy ∈ V j

with i , j. The vertex v can be considered as a clus-

ter containing either a single masked record (singleton)

or a set of masked records after merging vertices. An

edge e ∈ E represents the similarity sim(vx, vy) between

masked records in the two vertices vx and vy.

Following Definition 3.1, the records from all

databases D1, · · · ,Dp are represented as vertices in a

cluster graph G, and they are incrementally clustered

such that at the end of our protocol each cluster con-

tains a set of matching records from different parties.

During incremental clustering we have to assign records

of a newly considered party to the already determined

clusters of previously matched parties. In general, new

records might be similar to several such clusters so that

there is a many-to-many match relationship between

the set X of already existing clusters and the set Y of

new records as shown in Figure 3 (left-hand side). Our

goal, however, is to identify the best one-to-one map-

ping for such matches (Figure 3 (right-hand side)) since

the databases are assumed to be deduplicated, and there-

fore only one-to-one true mapping can exist between

records from different databases.

Such one-to-one mappings between the vertices in G

can be determined by either (1) a greedy approach or

(2) an optimal mapping approach that ensures that each

record (vertex) is matched with only the best match-

ing record/records from other parties. Given two lists

of (unassigned) vertices X and Y, the greedy approach

y1

y3

y2

x1

x3

x2

y1

y3

y2

x1

x3

x2

X Y

0.9
0.8

0.9

0.7

0.9
0.7

0.8
0.9

0.9

O

Figure 3: An example of optimal one-to-one mapping (defined

in Section 3) using the Hungarian algorithm [40].

scans through the vertices in X and assigns them to the

best matching vertex in Y that is not yet assigned to any

other vertex according to their similarity. The greedy

approach is not optimal, because when assigning a ver-

tex x ∈ X to a vertex in Y only the similarities between

x and unassigned vertices in Y are considered while ne-

glecting the similarities of the other vertices in X with

vertices in Y. Moreover, similar to the best link group-

ing method proposed by Kendrick [27] (as described in

Section 6), greedy mapping depends on the ordering of

the vertices/nodes as they are processed.

In our protocol, we therefore use the optimal mapping

approach using the Hungarian algorithm [40], which is

a combinatorial algorithm for solving the optimal as-

signment problem in polynomial time. Given two sets

of vertices, X and Y, the algorithm determines the opti-

mal one-to-one mapping by assigning a vertex in X to a

maximum of one vertex in Y such that the overall simi-

larity between all assigned vertices is maximized:

Definition 3.2 (Optimal mapping). Given two sets of

vertices, X and Y, along with a similarity function

sim(xi ∈ X, y j ∈ Y). Identify a bijection O : X → Y

such that
∑

xi,y j∈O

sim(xi, y j) (3)

is maximized.

An illustrative example of optimal one-to-one map-

ping is shown in Figure 3. For example, x1 has the high-

est similarity with y1 of sim(x1, y1) = 0.9 while with y2

the similarity is sim(x1, y2) = 0.8. With greedy mapping

(assuming the order of processing as x1 first and then x2

followed by x3), x1 is mapped to y1 and therefore x2

needs to be mapped to y2, and x3 with y3. This gives a

total summed similarity of 2.5 (Eq. 3). However, with

the optimal one-to-one mapping, x1 is mapped with y2

and x2 with y1 while x3 is still mapped to y3, resulting

in a total similarity value of 2.6 (which is better than the

greedy mapping). If |X| , |Y |, abs(|X| − |Y |) vertices re-

5



main not mapped to any vertices after one-to-one map-

ping is applied.

The proof of Kuhn-Munkres theorem states that for

any matching O and any feasible labelling O′ (such as

greedy mapping), it holds [40]

w(O) =
∑

e∈O

w(e) >=
∑

e′∈O′

w(e′), (4)

where w(·) denotes the weight function of an edge.

Therefore, O is the optimal mapping in terms of max-

imizing edge weights (similarities in our context). We

will experimentally evaluate the greedy as well as the

optimal mapping approaches in Section 5.

We three initial steps of our MP-PPRL protocol are:

(1) All database owners mask (encode) their database

records using the same masking function mask(·).

This can, for example, be BF encoding, as described

in Section 2.

(2) To reduce the comparison space, a blocking func-

tion block(·) is applied on the database records (in-

dividually by the database owners) to group similar

records into the same block according to some cri-

teria (known as blocking key) [4, 30]. All records

that have the same (or a similar) blocking key value

(BKV) are grouped into the same block. For exam-

ple, phonetic-based or multi-bit tree-based blocking

can be used as the block(·) function [4, 30, 35].

(3) The masked records (DM
i

) along with their blocks

(Bi) are sent to a linkage unit (LU) to conduct the

linkage of these masked records using the graph-

based incremental clustering approach. At the LU,

the records are processed block by block (i.e. each

block B ∈ B is considered as one graph GB, where

B contains the union of all Bi, with 1 ≤ i ≤ p).

We propose two different methods for incremental

clustering in the graphs GB: (1) early mapping and (2)

late mapping. We first present the steps involved in the

incremental clustering approach with early mapping in

Section 3.1 and then the late mapping-based approach

in Section 3.2. While both approaches incrementally

merge records from different parties, they differ in when

they apply the one-to-one mapping restriction. With

early mapping this restriction is continually observed

such that every record is only assigned to a single cluster

and the number of records per cluster never exceeds the

number of parties. By contrast, late mapping assigns

records to all clusters for which a minimum similarity

is exceeded so that there may temporarily be overlap-

ping clusters and clusters with several records from the

same party. The one-to-one restriction is then enforced

at the end of the algorithm in a separate mapping phase.

Both approaches have a trade-off between complexity

and linkage quality, as we will discuss in Section 4.

As will be detailed in the following two sections, the

inputs to the incremental clustering algorithm are: p

masked databases DM
i

(with 1 ≤ i ≤ p), the union of

blocks from all parties B = ∪iBi, a similarity func-

tion sim(·) for calculating similarities between vertices

in GB, an ordering function ord(·) for ordering the

databases to be processed, a mapping function map(·)

for one-to-one mapping between vertices in GB (early

mapping, late mapping, or the naı̈ve greedy mapping), a

minimum similarity threshold st to connect two vertices

in GB by an edge (if their similarity is at least st), and

the minimum subset size sm (sm ≤ p), i.e. the minimum

number of records that each final cluster must contain.

The databases need to be ordered using the ord(·)

function for incremental clustering. The ordering can

be either (a) random, (b) according to their sizes in de-

scending order so that a smaller number of merging will

be required, or (c) depending on their data quality of the

respective databases in descending order so that the ini-

tial clusters will be of higher quality leading to higher

linkage quality [41].

3.1. Early mapping-based clustering

The early mapping-based clustering incrementally

adds records in each database to the corresponding ver-

tices in the graph by identifying the one-to-one mapping

between vertices and records and then merging them.

To achieve the one-to-one mapping we apply the Hun-

garian algorithm [40] according to Definition 3.2 en-

suring that a record from one database is matched to a

maximum of one cluster of previously matched records

and that clusters in the graph are non-overlapping (i.e.

∀(vi, v j) ∈ GB : vi ∩ v j = ∅).

Selecting the optimal cluster to which a record should

be added is based on the similarities between two ver-

tices of the cluster graph and a minimum similarity

threshold st. In other words, two vertices vi, v j ∈ GB

are only merged into one if sim(vi, v j) ≥ st. The sim-

ilarity between two singletons can easily be calculated

using a similarity function, for example the Dice coef-

ficient similarity, to compare the singletons containing

records masked into BFs (as described in Section 2).

The similarity between a cluster c that contains more

than one record and a singleton v consisting of a sin-

gle masked record can be calculated in several ways, in-

cluding maximum similarity (single linkage), minimum

similarity (complete linkage), or average similarity. We

use the average similarity function in this work in order
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Figure 4: An example of early mapping-based incremental clustering, as described in Section 3.1. Edges represent a similarity value

between vertices of at least the similarity threshold st (st = 0.75 in this example). The similarity values shown here are made-up

example values. Different colors represent different final clusters and how they are iteratively mapped and merged.

to consider data errors and variations, as well as possible

variations of the masking function (such as Bloom filter

collisions [19]) while not compromising computational

efficiency. We leave studying other similarity functions

for our incremental clustering as a future work.

Definition 3.3 (Average similarity). The average sim-
ilarity between a cluster c and a (masked) record ri,x (in
a singleton) is

simavg(c, ri,x) =

∑
r j,y∈c

sim(r j,y, ri,x)

|c|
, (5)

with 1 ≤ i, j ≤ p, i , j, and |c| ≥ 1.

The early mapping-based approach involves p − 1 it-

erations to perform one-to-one mapping and merging

between records from p parties. An overview of our

clustering approach with early one-to-one mapping is

illustrated for linking p = 4 databases (p − 1 = 3 itera-

tions) in Figure 4 and outlined in Algorithm 1. The steps

of our protocol with early mapping-based clustering are

(continuing after the initial steps (1) to (3)):

(4) The LU conducts linkage of masked records in

databases DM
1
, · · · ,DM

p from p parties. These

databases are ordered (using the ord(·) function in

line 2 in Algorithm 1) for incremental clustering.

For each block B ∈ B, the masked records in B of

the first party P1 are added into a graph GB as sepa-

rate vertices (lines 3 to 9 in Algorithm 1). Then the

second party P2’s masked records are inserted into

GB as separate vertices and the similarities between

vertices of the first party and the second party are

calculated (lines 10 to 13). If the similarity between

two vertices is at least a minimum threshold st an

edge is created between the corresponding vertices

(as shown in Figure 4 for st = 0.75 and described in

lines 14 and 15 in Algorithm 1).

(5) The optimal one-to-one mapping (as defined in Sec-

tion 2) is applied in every iteration i (with 1 ≤ i ≤

p − 1) after edges between the records from party

Pi+1 (singletons) and clusters of records from par-

ties P1 to Pi have been added. This optimal map-

ping connects only two highly matching vertices,

complying with the assumption of deduplication.

All the edges e ∈ GB.E that are not matching after

the optimal mapping are removed from GB (lines 16

to 19).

(6) The vertices that are connected by an edge are then

merged into one (lines 20 and 21), while the vertices

that do not have any connecting edge (those that are

not matching to any vertices in the other databases)

are kept as unclustered vertices.

In our running example shown in Figure 4, the opti-

mal mapping (according to the objective function 3)

between records of parties P1 and P2 (based on the

similarity values) in the first iteration leads to their

respective records r1,1 and r2,2 to be merged into a

single cluster, while r1,2 from P1 is not clustered

with any vertices from P2. Similarly, r1,3 and r2,3,

and r1,4 and r2,1 are merged into clusters.

(7) The LU then proceeds with the masked records in

B of the next (third) party which are first inserted

into GB as separate vertices (singletons). Then the

similarities between these vertices and the clustered
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Algorithm 1: Early mapping-based incremental clustering (Section 3.1)

Input:

- DM
i

: Party Pi’s BFs along with their BKVs, 1 ≤ i ≤ p

- B : Blocks containing the union of blocks from all parties

- sim : Similarity function

- ord : Ordering function for incremental processing of databases

- map : One-to-one mapping function

- st : Minimum similarity threshold to classify record sets

- sm : Minimum subset size, with 2 ≤ sm ≤ p

Output:

- M : Matching record sets (clusters)

1: clus ID = 0; G = {}; M = {} // Initialization

2: DBs = ord([DM
1
,DM

2
, · · · ,DM

p ]) // Order databases

3: for B ∈ B do: // Iterate blocks

4: GB = {} // Graph for block B

5: for i ∈ [1, 2, · · · p] do: // Iterate parties

6: if i == 1 do: // First party

7: for rec ∈ DBs[i] do: // Iterate records

8: clus ID+ = 1

9: GB[clus ID] = [DBs[i][rec]] // Add vertices

10: if i > 1 do: // Other parties

11: for rec ∈ DBs[i] do: // Iterate records

12: for c ∈ GB do: // Iterate vertices

13: sim val = sim(rec, c) // Calculate similarity

14: if sim val ≥ st then:

15: GB.add edge(c, rec) // Add edges

16: opt E = map(GB .E) // 1-to-1 mapping

17: for e ∈ GB .E do: // Iterate edges

18: if e < opt E then:

19: GB .remove(e) // Prune edges

20: for e ∈ GB .E do: // Remaining edges

21: GB .merge(get vertices(e)) //Merge cluster vertices

22: G.add(GB) // Add B’s clusters to G

23: for c ∈ G do: // Iterate final clusters

24: if |c| ≥ sm then: // Size at least sm

25: M.add(c) // Add to M

26: return M // Output M

vertices and singletons from the previous parties’

masked records are calculated and an edge is cre-

ated connecting those vertices that have a similar-

ity above the minimum threshold st (lines 10 to 15

in Algorithm 1). An optimal one-to-one mapping

is then applied again between the vertices from all

previous parties and the new singleton vertices of

the current party in lines 16 to 19. For example

in Figure 4, in iteration 2 the singleton vertex with

record r3,3 of the current party P3 and the clustered

vertex containing records (r1,3, r2,3) of previous par-

ties P1 and P2, respectively, are merged. Similarly,

r3,1 is merged with the cluster containing r1,1 and

r2,2 from previous parties, while r3,2 is merged with

r1,2, as this gives the optimal mapping (according to

Equation 3).

(8) The vertices connected by an edge after one-to-

one mapping (highly matching vertices) at an iter-

ation are merged into one, while the vertices (both

clustered and singletons) that are not matching to

any other vertices remain as unclustered vertices

(lines 20 and 21). For example, the vertex with

record r3,4 of party P3 and the clustered vertex con-

taining records (r1,4, r2,1) of parties P1 and P2, re-

Algorithm 2: Late mapping-based incremental clustering (Section 3.2)

Input:

- DM
i

: Party Pi’s BFs along with their BKVs, 1 ≤ i ≤ p

- B : Blocks containing the union of blocks from all parties

- sim : Similarity function

- ord : Ordering function for incremental processing of databases

- map : One-to-one mapping function

- st : Minimum similarity threshold to classify record sets

- sm : Minimum subset size, with 2 ≤ sm ≤ p

Output:

- M : Matching record sets (clusters)

1: clus ID = 0; G = {}; M = {} // Initialization

2: for B ∈ B do: // Iterate blocks

3: GB = {} // Graph for block B

4: for i ∈ [1, 2, · · · p] do: // Iterate parties

5: if i == 1 do: // First party

6: for rec ∈ DM
i

do: // Iterate records

7: clus ID+ = 1

8: GB[clus ID] = [DM
i

[rec]] // Add vertices

9: if i > 1 do: // Other parties

10: for rec ∈ DM
i

do: // Iterate records

11: for c ∈ GB do: // Iterate vertices

12: sim val = sim(rec, c) // Calculate similarity

13: if sim val ≥ st then:

14: GB .add edge(c, rec) // Add edges

15: for e ∈ GB.E do: // Iterate edges

16: GB .merge(get vertices(e)) //Merge cluster vertices

17: DBs = ord([DM
1
,DM

2
, · · · ,DM

p ]) // Order databases

18: for i ∈ [1, 2, · · · p] do: // Iterate parties

19: GB .split(DBs[i].recs) // Split this party’s records

20: opt E = map(GB .E) // 1-to-1 mapping

21: for e ∈ opt E do:

22: GB .merge(get vertices(e)) //Merge cluster vertices

23: G.add(GB) // Add B’s clusters to G

24: for c ∈ G do: // Iterate final clusters

25: if |c| ≥ sm then: // Size at least sm

26: M.add(c) // Add to M

27: return M // Output M

spectively, are not merged with any other vertices

in iteration 2, as shown in Figure 4.

(9) This process of mapping and merging of vertices is

repeated until the masked records of all parties are

processed (i.e. p − 1 iterations for each block). The

output will be clusters (final vertices in graph GB)

that either have records from all p parties, or a sub-

set of p parties, or only one record from a single

party. The final clusters of block B (i.e. vertices in

graph GB) are added to G (line 22). Based on the

minimum subset size sm required by the MP-PPRL

protocol, all the vertices that have a size of at least

sm (i.e. vertices containing matching records from

at least sm parties) are added to the final match-

ing set of records M (lines 23 to 26). For exam-

ple, if sm = 3 in our running example, then M will

contain only three clusters which are (r1,1, r2,2, r3,1),

(r1,2, r3,2, r4,3), and (r1,3, r2,3, r3,3, r4,1).

3.2. Late mapping-based clustering

The early mapping-based approach (described in the

previous section) is efficient in terms of the number of
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Figure 5: An example of the splitting and one-to-one mapping phases of late mapping-based incremental clustering, as described

in Section 3.2. The similarity values shown here are made-up example values (with the similarity threshold st = 0.75). Different

colors represent different final clusters and how they are iteratively split from merged clusters and mapped.

comparisons required, as we will discuss in Section 4.

However, since the optimal mapping is conducted be-

tween the records of a database and only the records

from the previously processed databases, early mapping

can potentially lead to a reduction of the quality of the

final linkage results. In this section, we propose a late

mapping-based approach to improve linkage quality at

the cost of more comparisons.

In addition to one-to-one mapping and merging ver-

tices (as described for the early mapping approach in the

previous section), the late mapping approach involves a

third phase, which is splitting vertices.

Splitting vertices: Records ri,x that belong to a

database Di in a cluster c are split into singletons con-

taining the records ri,x, while the remaining records

from other databases r j,y ∈ D j are kept in c (with

1 ≤ i, j ≤ p and i , j).

We next describe the steps of late mapping-based

clustering (continuing after the initial steps (1) to (3)).

It requires p − 1 iterations first to merge records from

p parties, and then p iterations for splitting and apply-

ing one-to-one mapping, as illustrated in Figure 5 and

outlined in Algorithm 2.

(4) For each block B, the masked records in B of the

first party Pi (1 ≤ i ≤ p) (in any order) are added

into a graph GB as separate vertices (lines 2 to 8 in

Algorithm 2). Then the second party P2’s masked

records are inserted into the graph GB as separate

vertices and the similarities between these single-

ton vertices of P1 and P2 are calculated (lines 9 to

12). If the similarity between two vertices is at least

st, then an edge is created between them (as shown

in Figure 5 and described in lines 13 and 14 in Al-

gorithm 2).

(5) This leads to several many-to-many matched ver-

tices between the two parties, P1 and P2, since no

early optimal mapping is applied. The vertices that

are connected by an edge are then merged into one

cluster (lines 15 and 16), while the vertices that do

not have any connecting edge (those that are not

matching to any vertices in the other database) are

kept as unclustered vertices.

(6) The LU then proceeds with the masked records of

the remaining parties, where the records are first

added in GB as singleton vertices, and then the sim-

ilarities between these singletons and the clusters

from all previous parties’ masked records are cal-

culated and an edge is created connecting those ver-

tices that have a similarity of at least the minimum

threshold st (lines 9 to 14). The vertices connected

9



by an edge are merged into one (lines 15 and 16),

while the vertices that are not matching to any other

vertices remain as unclustered vertices.

(7) This process of merging vertices is repeated un-

til the masked records of all parties are processed

(i.e. p − 1 iterations for each block). The output

will be clusters that are overlapping, which means

a record from one party might be in several clus-

ters (i.e. matching with several sets of records from

other parties). In the example shown in Figure 5,

the merged clusters are overlapping. For example,

r1,1 is in two clusters and r3,4 in 3 clusters. Since the

databases are deduplicated, a record must be match-

ing only to one set of records from other databases.

Therefore a late one-to-one mapping needs to be ap-

plied on all clusters.

(8) In order to conduct late one-to-one mapping, the

parties are ordered using the ord(·) function (sim-

ilar to the early mapping approach), and the records

of the first party in the ordered list are split from

the clusters into singleton vertices (one vertex for

each unique record) using the split(·) function in

lines 17 to 19. In the example in Figure 5, records

from party P1 are split from the merged clusters

into singletons in iteration 1. The optimal one-to-

one mapping is then applied between the singletons

and the clusters containing unique sets of records

from other parties (lines 20 to 22). The number of

edges generated for mapping in each iteration corre-

sponds to the number of clusters that appear before

splitting in that iteration. In the running example

shown in Figure 5, the number of clusters before it-

eration 1 is 8 (initial merged clusters) and therefore

iteration 1 generates 8 edges between P1’s single-

tons and other parties’ clusters. This results in the

first party’s records being clustered with the highly

matching set of records from other parties. For ex-

ample, r1,1 is mapped and merged with the cluster

containing (r2,2, r3,1), while r1,2 is merged with the

cluster of records (r2,1, r3,2).

The process is repeated for all parties (p iterations)

in the ordered list until the set of non-overlapping

clusters is obtained. As shown in Figure 5, the set

of non-overlapping clusters are generated after 3 it-

erations of splitting and merging of clusters (with

one party’s records at an iteration) for linking p = 3

databases.

It is important to note that late mapping requires

more cluster comparisons than early mapping, as

it does not prune edges at an early stage poten-

tially leading to many merged clusters. However,

it potentially results in better linkage quality since

the late one-to-one mapping considers all parties’

records, unlike in early one-to-one mapping where

only the previous parties’ records are considered.

(9) The final (non-overlapping) clusters of block B (i.e.

vertices in graph GB) are added to G (line 23). The

final clusters c ∈ G with |c| ≥ sm (i.e. vertices con-

taining matching records from at least sm parties)

are added to the final matching set of records M

(lines 24 to 27).

3.3. Improving Privacy

Our clustering-based MP-PPRL protocol can be used

with any encoding/masking technique, such as BF en-

coding [19] as used in the example described in Fig-

ure 1. BF encoding is one of the widely used meth-

ods in PPRL due to its efficiency compared to cryp-

tographic methods and controllable/tunable privacy-

accuracy trade-off [8, 19, 34].

However, BFs are susceptible to inference attacks

by adversaries as has been shown in several stud-

ies [20, 21, 42, 43]. Counting Bloom filter (CBF), a

variation of BF (as described in Section 2), provides

improved privacy guarantees compared to BF for multi-

party PPRL [24]. We therefore adapt the CBF-based ap-

proach for our protocol to improve privacy against infer-

ence attacks. Instead of all parties sending their records’

BFs to a LU, they can generate CBFs from the BFs us-

ing a secure summation protocol, as shown in Figure 6.

For example, in the first iteration the first two parties

participate in a secure summation protocol [2] with a

LU and generate CBFs for every pair of BFs.

In the basic secure summation protocol [2], the LU

provides a random vector R to the first party, which adds

its BF b1 to R and sends the summed vector b1 + R to

the second party. The second party then adds its BF b2

to the received sum and sends back the final summed

vector b1 + b2 + R to the LU. The LU subtracts the

random vector R from the received sum to generate the

CBF c = b1 + b2. Using the generated CBFs, the LU

calculates the similarities of pairs of BFs from the two

parties (Equation 2).

In the second iteration the LU already has the possi-

ble matches (clusters) from the first two parties. A se-

cure summation protocol is then used by the first three

parties and the LU to generate CBFs from all matches

identified in the first iteration along with every BF from

the third party. Note that every iteration requires differ-

ent BF encoding by the corresponding parties to avoid

the LU learning the new party’s BFs. This is repeated

until all parties’ records are compared by the LU.

As discussed in Section 4.2 in detail, CBFs are less

vulnerable to inference attacks. However, they incur
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Figure 6: An example of using CBFs generated from two BFs b1 and b2 from two respective parties P1 and P2 using a secure

summation protocol for similarity calculation, as described in Section 3.3.

memory cost (l×⌈log2(p)⌉ for p BFs of l bits) as well as

communication costs. Every ith iteration requires i + 1

communication steps in the secure summation protocol

(for example, when p = 2, the number of communica-

tion steps required for secure summation is 3, as illus-

trated in Figure 6) to generate the CBFs.

4. Analysis of the Protocol

In this section we analyze our MP-PPRL protocol

with regard to complexity, privacy, and linkage quality.

4.1. Complexity Analysis

Assume p parties participate in the linkage of their

respective databases, each containing n records, and

b blocks are generated by the blocking function, each

block containing n/b records. In step (1) of our proto-

col (as described in Section 3), masking records (with g

average q-grams per record) into BFs of length l using k

hash functions for n records is O(n · g · k) for each party.

Blocking the databases in step (2) has O(n) computation

and O(p·b) communication complexity (assuming b ≤ n

blocks) at each party. In step (3), n masked records from

p parties need to be sent to the LU for conducting the

linkage, which is of O(p ·n) communication complexity.

The early mapping-based approach for incremental

clustering has guaranteed quadratic worst case compu-

tation complexity in both p and n. The worst case

(in terms of the number of comparisons required) oc-

curs with early one-to-one mapping in two ways: when

merging vertices from a database Di with the vertices

in the graph G, (a) no vertices (records) in Di match

with vertices in G resulting in n additional singleton

vertices in every iteration, or (b) every vertex/record

in Di matches with a vertex in G resulting in n ver-

tices with one additional record in every iteration lead-

ing to n final vertices containing p records. The pro-

tocol requires p − 1 iterations for mapping and merg-

ing records from p databases in each of the b blocks.

Generally, comparing n records from DM
i

with vertices

in G in the worst case is of O((i − 1)n2/b), with 1 ≤

i ≤ p. Therefore, the total worst case complexity is

O(n2/b + 2n2/b + 3n2/b + · · · + (p − 1)n2/b), which is

O(n2/b · p2).

The late mapping-based approach has an exponen-

tial computation complexity in the worst case scenario

assuming each record from a database is matched to

all records in all other databases (due to the many-to-

many matching), leading to O(b · (n/b)p) overlapping

final clusters each containing p records. However, as-

suming the databases are individually deduplicated (as

discussed in Section 2) and an appropriate similarity

threshold is used for merging clusters, only a small

number of additional clusters (o with o ≪ n2) are gener-

ally generated in each iteration (n+o merged clusters in

total). This leads to an average computation complexity

of O(n(n)/b+n(n+o)/b+2n(n+o)/b+ · · ·+(p−1)n(n+

o)/b) = p(p−1)·n·(n+o)/b, which is O(p2 ·(n2+no)/b).

Therefore, the computation complexity of late mapping

in the average case is quadratic in both p and n.

Overall, our MP-PPRL protocol has a worst-case

quadratic computation complexity and a linear com-

munication complexity in the number of records n and

databases p, which are both significantly lower than

the exponential complexities of earlier MP-PPRL pro-

tocols [23, 24, 28]. Please note that extending ex-

isting PPRL techniques (that can link two databases

with quadratic complexity) to multi-database linkage re-

quires the additional step of clustering once the pair-

wise similarities have been calculated. Investigating
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other clustering algorithms that have been developed for

record linkage [16, 17, 18] in the context of MP-PPRL

is subject to future research.

4.2. Privacy Analysis

As with most existing PPRL approaches, we assume

that all parties follow the honest-but-curious adversary

model [44], where the parties follow the protocol while

being curious to find out as much as possible about

the other parties’ data by means of inference attacks on

masked records or by colluding with other parties [45].

We assume the private blocking technique used (as a

black box) does not reveal any sensitive information

to any parties, and the blocks generated meet the re-

quired privacy guarantees, such that each block contains

at least a minimum number (k) of records [45] or are dif-

ferentially private [46], to overcome frequency attacks.

In the matching step the parties send their masked

records (BFs) to the LU to conduct the linkage. In

order to overcome inference attacks by the LU on the

BFs, the counting Bloom filter (CBF)-based approach

(described in Section 3.3) can be applied where the LU

sequentially gets a CBF from the relevant set of parties

for each cluster of records. Using the CBF the LU can

calculate cluster similarity as equivalent to calculating

cluster similarity using individual BFs [24]. CBFs sig-

nificantly reduce the risk of inference attack compared

to BFs [24]. An inference attack allows an adversary to

map a list of known values from a global dataset (e.g. q-

grams or attribute values from a public telephone direc-

tory) to the encoded values (BFs or CBF) using back-

ground information (such as frequency) [42, 45]. The

only information that can be learned from such an infer-

ence attack using a CBF c of a set of x BFs (summed

over x parties) is if a bit position in c is either 0 or x

which means it is set to 0 or 1, respectively, in the BFs

of all x parties.

Proposition 4.1. The probability of identifying the un-

encoded (original) values of x (x > 1) individual

records Ri (with 1 ≤ i ≤ x) given a single CBF c

is smaller than the probability of identifying the unen-

coded values of Ri given x individual BFs bi, 1 ≤ i ≤ x.

∀x
i=1Pr(Ri|c) < Pr(Ri|bi)

Proof: Assume the number of original (unencoded)

values that can be mapped to a masked BF pattern bi

from an inference attack is ng. ng = 1 in the worst

case, where a one-to-one mapping exists between the

masked BF bi and the original unencoded value of Ri.

The probability of identifying the original value given

a BF in the worst case scenario is therefore Pr(Ri|bi) =

1/ng = 1.0 [45]. However, a CBF represents x BFs and

thus at least (in the worst case) x original (unencoded)

values, which leads to a maximum of Pr(Ri|c) = 1/x

with x > 1 (when x = 1, then c ≡ bi). Hence,

∀x
i=1

Pr(Ri|c) < Pr(Ri|bi).

Further, the collusion-resistant secure summation

protocols described in [24, 47] can be used to over-

come the risk of collusion among the parties in order to

learn about another party’s data. We also use the cryp-

tographic long term key (CLK) encoding [35] as a BF

hardening method, where QID values of a record are

hash-mapped into a record-level BF. This approach im-

proves privacy against inference attacks by decreasing

the probability of suspicion [45].

4.3. Linkage Quality Analysis

Our MP-PPRL protocol allows approximate match-

ing of QID values, in that data errors and variations are

taken into account depending upon the minimum sim-

ilarity threshold st used. Further, our protocol allows

subset matching by identifying matching records across

any subset of databases. This improves the linkage qual-

ity of MP-PPRL where records of a single entity can be

either in all databases or in a subset of databases only

(which is often a realistic scenario in practical applica-

tions). To the best of our knowledge, this is the first

approach that addresses subset matching for MP-PPRL.

The two proposed methods of early and late one-

to-one mapping in the incremental clustering approach

have a trade-off between complexity and linkage accu-

racy. As analyzed in Section 4.1, the early mapping

approach has lower computational complexity than the

late mapping approach. In the following, we analyze the

linkage quality of these two mappings.

Conducting early one-to-one mapping in every iter-

ation before merging clusters significantly reduces the

computation complexity (as discussed in Section 4.1).

However, this approach might reduce linkage quality,

because when conducting optimal one-to-one mapping

with Pi’s records then only the records from the previ-

ous parties (P1 to Pi−1, with 1 < i ≤ p) are considered.

In contrast, the late one-to-one mapping is conducted

for each party Pi’s records considering records from all

other parties P j, with 1 ≤ i, j ≤ p and i , j. Therefore,

late mapping can improve linkage quality at the cost of

more comparisons.

In addition, the linkage quality of our protocol de-

pends on the blocking and the deduplication techniques

applied on each database. The higher the quality of

deduplication results the better the one-to-one mapping
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achieved in our approach will be, leading to higher link-

age quality. The parties can also be ordered using dif-

ferent ordering functions considering the known quality

of their databases or the quality of deduplication results,

such that the best quality database is processed first, as

the initial clusters will then be of higher quality leading

to higher quality clustering in the later iterations [41].

Similarly, the average similarity function we use adds

a masked record to a cluster if its similarity on aver-

age is high with all masked records in the cluster. Dif-

ferent similarity functions, such as minimum similarity

(known as complete linkage), where a masked record

needs to have a high similarity with all masked records

in the cluster, or maximum similarity (single linkage),

where a masked record needs to have a high similarity

with at least one masked record in the cluster, would

have different impacts on the linkage quality. We leave

investigating the impact of different ordering and simi-

larity functions on the linkage quality and efficiency as

a future work.

5. Experimental Evaluation

We empirically evaluate the performance of our MP-

PPRL protocol (named as AM-Clus) with the two pro-

posed variations, early mapping (EMap) and late map-

ping (LMap), as well as the baseline greedy mapping

(GMap), in terms of scalability, linkage quality, and

privacy. In the following sub-section we first describe

the datasets we use in our evaluation. In Section 5.2 we

discuss the baseline methods to which we compare our

proposed clustering approaches, and in Section 5.3 the

evaluation measures we employ in our experiments. In

Section 5.4 we then describe our experimental setting,

and in Section 5.5 we provide an extensive discussion

of the results we obtained in these experiments.

5.1. Datasets

One problem with regard to datasets for evaluating

MP-PPRL approaches is that there are no datasets avail-

able that are generated from multiple parties. Therefore,

the general approach to conduct experiments is using

multiple datasets sampled with overlap from a single

large dataset. We conducted our experiments on three

collections of datasets (including a health dataset):

(1) NCVR: A set of datasets generated based on

the North Carolina Voter Registration (NCVR) database

(available from https://dl.ncsbe.gov/). We ex-

tracted 5,000 to 1,000,000 records for 3, 5, 7, and 10

parties with 25% of matching records across all parties

and 25% of matching records across subsets of parties.

Note that these datasets are different than the NCVR

datasets used for the experimental evaluation conducted

in [23, 24] for the MP-PPRL approaches that allow full-

set matching only (not subset matching). The difference

is that these datasets contain 25% of matching records

across any subset (of different sizes) of parties and 25%

of matching records across all parties, whereas in the

datasets used by [23, 24] 50% of matching records ap-

pear across all parties.

We also sampled 10 datasets each containing 10,000

records such that 50% of records are non-matches and

5% of records are true matches across each different

subset size of 1 to 10 (1, 2, 3, · · · , 9, 10), i.e. 45% of

records are matching in any 2 datasets while only 5%

of records are matching in any 9 out of all 10 datasets.

Ground truth is available based on the voter registration

identifiers to allow linkage quality evaluation.

We generated another series of datasets for each of

the datasets generated above, where we included 20%

and 40% synthetically corrupted records into the sets

of overlapping/matching records (labelled as ’Corr-20’

and ’Corr-40’ in the plots, respectively) using the GeCo

tool [48]. For example, if p = 10 datasets containing

10,000 records each are linked where 5,000 records are

matching across at least 2 of these datasets (minimum

subset size is 2 in this example), then 1,000 and 2,000

records from these set of true matches are corrupted,

respectively. We applied various corruption functions

from the GeCo tool on randomly selected attribute

values, including character edit operations (insertions,

deletions, substitutions, and transpositions), and optical

character recognition and phonetic modifications based

on look-up tables and corruption rules [48]. Since the

matching records (either one or many in the set chosen

randomly) are corrupted, the linkage quality will drop

which allows us to evaluate how real data errors impact

the linkage quality.

(2) NCVRT: We have downloaded the NCVR

database every second month since October 2011 and

built a combined temporal database of 26 such datasets

(i.e. 26 snapshots) each containing over 5 million

records of voters [49]. Voter registration identifiers are

unique which provides ground truth for evaluation. This

real temporal dataset allows conducting large-scale ex-

periments for MP-PPRL assuming each snapshot corre-

sponds to the dataset from one party (p = 26 parties).

(3) NSWE: The third dataset is a real New South

Wales (NSW) emergency presentations dataset from

Australia. A previous study that evaluated our proposed

method on this sensitive data by the Centre for Data

Linkage at Curtin University provided the presented

results [50]. In this study, subsets of NSWE dataset
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were extracted for 5 parties each containing more than

700,000 records with no duplicates. These datasets

were linked by the Centre for Health Record Linkage

in Sydney providing ground truth for the linkage [33].

5.2. Baseline Methods

As reviewed in Section 6, only two MP-PPRL tech-

niques are available for approximate matching of string

data using probabilistic data structures [23, 24]. We

use these two as the baseline approaches to compare

our proposed approach as they are closely related to our

work. We name these approaches as AM-BF and AM-

CBF for the approximate matching approaches based

on BF [23] and CBF [24], respectively.

5.3. Evaluation Measures

We evaluate the complexity (scalability) of linkage

using runtime and memory size required for the link-

age. The quality of the achieved linkage is measured us-

ing the precision, recall, and F-measure, calculated on

classified matches and non-matches, that have widely

been used in record linkage, information retrieval and

data mining [4]. The ground truth is available for all

datasets with known labels of true matches/clusters (ei-

ther from all p databases for full set matching or subset

(< p) of databases for subset matching). For example,

the NCVR-10000 datasets for p = 10 parties contain

25%, i.e. 2,500, record sets (clusters) as true matches

from all p = 10 parties and 25%, i.e. 2,500, record sets

as true matches from any subset (< 10) of parties.

Based on the classification of the number of true

matching record pairs, TM, from each resulting clus-

ters (either from all p or subsets of databases), false

matches, FM, and false non-matches, FN, the linkage

quality measures are defined as below [4]:

1. Precision: the fraction of record pairs in all clusters

classified as matches by the PPRL classifier that

are true matches: T M/(T M + FM)

2. Recall: the fraction of true matches in clusters that

are correctly classified as matches by the classifier:

T M/(T M + FN)

3. F-measure: harmonic mean of Precision and Re-

call: 2× (Precision×Recall)/(Precision+Recall)

We use the F-measure in our evaluation to allow com-

parison with related earlier publications. We however

note that recent research [51] has identified some prob-

lematic issues when the F-measure is used to compare

record linkage classifiers at different similarity thresh-

olds. This work is ongoing and there is currently no

accepted appropriate new measure that combines preci-

sion and recall into one single meaningful value.

In line with other work in PPRL [24, 30, 35], we

evaluate privacy using disclosure risk (DR) measures

based on the probability of suspicion Ps, i.e. the like-

lihood a masked (encoded) database record in DM can

be matched with one or several known values in a pub-

licly available global database DG. The probability of

suspicion for a masked record rM , Ps(r
M), is calculated

as 1/ng where ng is the number of possible matches in

DM
G

to the masked record rM . We conducted a linkage

attack [45] assuming the worst case scenario of DG ≡ D,

and the BF hash functions are known to the adversary.

Based on such a linkage attack, we calculate

1. mean disclosure risk (DRMean): the average risk

(
∑|DM |

i
Ps(r

M
i

)/|DM|) of any sensitive value in DM

being re-identified [45]

2. marketer disclosure risk (DRMark): the proportion

of masked records in DM that match to exactly one

masked record in DG (|{rM
i
∈ DM : Ps(r

M
i

) =

1.0}|/|DM|)

5.4. Experimental Setting

Following earlier BF work in PPRL [6, 23, 35], we

set the parameters as BF length l = 1, 000, the num-

ber of hash functions k = 30, and the length of grams

(substrings of QIDs) is q = 2. Soundex-based pho-

netic encoding [4] is used as the blocking function. The

last name is used as the blocking key for the scalability

experiments for the different sizes of NCVR datasets,

while a combination of first and last name attributes

are used as the blocking key attributes for other ex-

periments on the NCVR and NCVRT datasets due to

the large runtime requirement. Using last name as the

blocking key results in larger blocks and thus requires

longer runtime. However, larger blocks improve privacy

against frequency attacks on blocks, which is preferred

in privacy-preserving applications [8].

We also used an existing multi-party private block-

ing function using bit-trees [30] on the surname and

date of birth attributes for linking the NSWE datasets.

Soundex-based phonetic blocking on first and last

names provides an average pairs completeness (simi-

lar to recall it calculates the percentage of true matches

found in the candidate record sets generated by a block-

ing method [4]) of 0.98 and the bit-trees-based block-

ing on surname and date of birth values provides 0.96

pairs completeness. We used the first name, last name,

city, and zipcode attributes as QIDs for the linkage

of the NCVR and NCVRT datasets, while first name,

surname, date of birth, sex, address, and postcode are

used as QIDs for linking records in the NSWE datasets.
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Figure 7: Comparison of (a) runtime and (b) F-measure for the early mapping (EMap), late mapping (LMap), and baseline greedy

mapping (GMap) approaches of incremental clustering on NCVR datasets.

These attributes are commonly used personal identify-

ing attributes for linking records across databases [4].

We implemented both our proposed approaches and

the competing baseline approaches in Python 2.7.3, and

ran all experiments on a server with four 6-core 64-bit

Intel Xeon 2.4 GHz CPUs, 128 GBytes of memory and

running Ubuntu 14.04. The programs and test datasets

(except NSWE) are available from the authors.

5.5. Discussion

In this section we discuss the results of our experi-

mental study.

i. Comparison of different mapping: In Figure 7 (a)

we compare the runtime for our approach based on

greedy (baseline), early and late mappings (labelled as

GMap, EMap and LMap, respectively), while in Fig-

ure 7 (b) we compare their F-measure results on the

NCVR datasets. The proposed early and late map-

pings require similar or lower runtime than the base-

line greedy mapping, and as expected the F-measure

achieved with early and late mappings are significantly

higher than greedy mapping. Early mapping requires

comparatively lower runtime than late mapping at the

cost of a small loss in linkage quality. Since the loss

in F-measure is not very significant, we use the early

mapping-based approach as a default mapping in the

rest of our experiments.

ii. Similarity threshold vs. linkage quality: The F-

measure achieved with different similarity thresholds

on the NCVR datasets for p = 10 is shown in Fig-

ure 8 (a). The F-measure increases with the threshold

up to 0.8 on all datasets and then drops due to the loss

in recall. As can be seen, the F-measure increases with

larger thresholds on non-corrupted datasets (which re-

quire only exact matching) while it starts to decrease at

a certain point on the corrupted datasets (which require

approximate matching due to errors and variations). We

therefore set the default threshold value to 0.8 in our ex-

periments. When the datasets are corrupted, the linkage

quality becomes very low with increasing dataset sizes.

These results indicate that more advanced classification

techniques instead of a simple threshold-based classifi-

cation are required to improve the linkage quality in the

presence of real-world data errors [4].

iii. Minimum subset size vs. linkage quality: The

F-measure of linkage achieved with different minimum

subset sizes on the NCVR datasets for the early, late,

and greedy mappings are shown in Figure 8 (b). Linking

with smaller minimum subset size is more challenging

than larger minimum subset size, as identifying matches

across 2 or more datasets is more difficult than all 10

datasets, for example, due to the large number of combi-

nations of datasets to be checked for matches. Our pro-

posed mapping approaches outperform the greedy map-

ping significantly for smaller minimum subset sizes.

As expected, the linkage becomes more challenging

with corrupted data using any mapping methods, when

identifying records that match across larger number of

databases compared to smaller subsets of databases.

With increasing number of databases, more corrupted

records are included in the matches, resulting in signif-

icant loss of linkage quality. While data errors in real

data are possible, the degree of corruption would be

probably relatively low. According to the real NSWE

and NCVRT datasets, the quality of data is very high

with less than 1% linkage errors when a probabilis-

tic two-database matching technique is applied on the

unencoded NSWE dataset [52] and around 10% er-

ror in the NCVRT dataset. We have tested relatively

pessimistic scenarios by synthetically including 20%
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Figure 8: F-measure of linkage for (a) different similarity thresholds on NCVR-10K, 100K, and 1M datasets and (b) different

minimum subset size on NCVR-10K subset datasets (as described earlier) for p = 10.
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Figure 9: Scalability results on different sizes of NCVR datasets in terms of (a) runtime and (b) memory size required for the

linkage.

        NCVRT-1M      NCVRT-5M       NSWE

Large real datasets
101

102

103

104

105

106

107

S
ca

la
b

ili
ty

(a) Scalability of large-scale 
 linkage on real datasets

Runtime (seconds)

Memory (MB)

        NCVRT-1M      NCVRT-5M       NSWE

Large real datasets
0.70

0.75

0.80

0.85

0.90

0.95

1.00

Li
n

ka
g

e
 q

u
a

lit
y

(b) Linkage quality of large-scale 
 linkage on real datasets

Precision Recall Fscore

Figure 10: Linkage results on real large-scale datasets (NCVRT-1M (p = 26), NCVRT-5M (p = 26) and NSWE (p = 5)) in terms

of (a) scalability and (b) linkage quality.

and 40% corruption to the matching records in NCVR

datasets. The results on the corrupted datasets indi-

cate that achieving high linkage quality in the pres-

ence of large amount of data errors is a big challenge,

which needs to be mitigated through appropriate pre-

processing techniques as well as clerical review possi-

bly using active learning techniques [1].
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iv. Scalability: We next evaluate the scalability of

our protocol for different dataset sizes on the NCVR

datasets in Figure 9. When a combination of first and

last name (labelled as FName and LName, respectively

in the figure) attributes are used as blocking keys (BK),

the resulting block sizes become small, making our pro-

tocol highly scalable in terms of runtime and memory

size to large datasets from multiple parties. However,

when only the last name attribute is used as the BK our

protocol shows a quadratic trend with the size and num-

ber of the datasets. The experiments on larger datasets

of 500K and 1M with one attribute as BK required very

large runtime due to the larger block sizes, and therefore

we did not conduct this set of experiments due to time

limitation. Advanced blocking and filtering techniques

are therefore required to further reduce the computa-

tional complexity of large-scale multi-party linkage.

v. Large-scale linkage: We conducted large-scale ex-

periments of our approach on the NCVRT and NSWE

datasets. As can be seen in Figures 10 (a) and (b), we

are able to link multiple large datasets and achieve high

linkage quality, which shows the viability of our ap-

proach for large-scale MP-PPRL applications. Since

multi-database linkage requires an additional step of

clustering (or mapping) after pair-wise matching, in-

vestigating other better clustering techniques that can

achieve improved linkage quality is subject to further

research. However, as shown in Figure 10 (a), the run-

time required for linking such large multiple datasets is

higher (even though it is significantly better compared

to the baseline methods, as will be discussed below) and

therefore more advanced computational methods, such

as distributed computing and parallel processing, need

to be investigated to further improve the efficiency of

MP-PPRL.

vi. Comparison with baseline: We next compare our

approach with the baseline approaches in Figure 11 in

terms of scalability and linkage quality. As can be seen

in Figure 11 (a), our approaches (EMap and LMap)

require lower runtime for linking a large number of

databases, where the runtime does not increase signif-

icantly with p compared to AM-BF. The AM-BF ap-

proach requires lower runtime for linking smaller num-

ber of databases, however it increases exponentially

with larger p. We were unable to conduct experiments

for this approach on the NCVR-100K datasets due to

excessive memory consumption with the exponential

number of comparisons required by this approach. The

AM-CBF approach is more scalable than AM-BF for

linking a larger number of databases. This is because

the improved communication patterns with CBF reduce

the exponential growth with p down to the ring size r,

where r < p [24]. However, our proposed methods re-

quire even lower runtime than AM-CBF and is more

scalable with increasing p.

As shown in Figure 11 (b), our approaches (EMap

and LMap) achieve substantially higher F-measure re-

sults compared to all baseline methods on both non-

corrupted and corrupted datasets by identifying match-

ing records not only across all databases but also across

subsets of databases. We also compared the F-measure

of all these approximate matching approaches with an

exact matching MP-PPRL protocol [28], and as ex-

pected the approximate matching approaches outper-

form it on corrupted datasets.

vii. Disclosure risk results: As shown in Figure 12,

the CBF-based masking consistently has lower mean

and marketer disclosure risk than BF-based masking

(as we discussed in Section 4.2). Therefore, CBF-

based masking provides improved privacy than BF-

based masking. This means that the same privacy re-

sults can be achieved by our protocol in terms of mean

and marketer disclosure risks as with other CBF-based

approaches [24] in the worst case.

This comparative evaluation shows that our AM-Clus

approach outperforms existing approaches in terms of

scalability and linkage quality, while providing bet-

ter/similar privacy results.

6. Related Work

Various techniques have been proposed in the lit-

erature tackling the problem of PPRL, as surveyed

in [1, 8, 35, 53]. However, most of these approaches

are limited to linking only two databases, and only few

approaches have considered linking data from multiple

databases (MP-PPRL). Neither of these techniques al-

low subset matching for MP-PPRL where records that

match across subsets of databases are also identified in

addition to records that match across all databases.

A secure multi-party computation approach using an

oblivious transfer protocol was proposed by O’Keefe et

al. [54] for PPRL on multiple databases. While prov-

ably secure, the approach can only perform exact match-

ing (i.e. variations and errors in the QIDs are not con-

sidered). Kantarcioglu et al. [55] introduced a MP-

PPRL approach for categorical data to perform secure

equi-joins (exact matching) on k-anonymous databases,

where the QIDs of a record are similar to at least k other

records in the database [56]. An exact matching ap-

proach for categorical data was recently proposed by

Karapiperis et al. [7] using a Count-Min sketch data
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Figure 11: Comparison of (a) runtime and (b) F-measure of our methods with baseline methods on NCVR corrupted (Corr) and

non-corrupted (No-corr) datasets.

3 5 7 10

Number of parties (p)

0.0

0.2

0.4

0.6

0.8

1.0

M
e
a
n
 r
is
k 
(D
R
M
ea
n
)

(a) Comparison of mean disclosure risk

No-corr, CBF

No-corr, BF

Corr, CBF

Corr, BF

3 5 7 10

Number of parties (p)

0.0

0.2

0.4

0.6

0.8

1.0

M
a
rk
e
te
r 
ri
sk
 (
D
R
M
a
rk
)

(b) Comparison of marketer disclosure risk

No-corr, CBF

No-corr, BF

Corr, CBF

Corr, BF

Figure 12: Comparison of (a) mean and (b) marketer disclosure risk measures for BF and CBF encoding methods on NCVR

corrupted (Corr) and non-corrupted (No-corr) datasets.

structure. Sketches are used to summarize the local

set of elements which are then intersected to provide

a global synopsis using homomorphic operations and

symmetric noise addition techniques [2, 44]. Another

exact matching approach for MP-PPRL using Bloom

filter (BF) encoding was introduced by Lai et al. [28],

where a conjuncted BF is jointly constructed by all par-

ties to identify matching records.

All the MP-PPRL techniques described above are

not practical in real applications as they allow only ex-

act matching or matching of categorical data. Vatsalan

and Christen extended Lai et al.’s exact matching ap-

proach [28] to develop an approximate matching so-

lution for MP-PPRL [23] by using BFs and a secure

summation protocol [2, 44] to distributively calculate

the similarity of a set of BFs from different parties.

A recent approach for approximate matching in MP-

PPRL based on Counting Bloom filter (CBF) was pro-

posed by Vatsalan et al. [24]. BFs from p different

databases were summarized into a single CBF by ap-

plying a secure summation protocol. Neither of these

MP-PPRL approaches, however, supports identifying

matching records in subset of parties.

Only limited grouping techniques have been devel-

oped to identify a set of matching records from multiple

databases in the literature. Merge-based grouping sim-

ply groups or merges into one set all the records that

have a similarity above the threshold [57]. The greedy

best link approach proposed by Kendrick [27] links each

incoming record to the group that has the highest sim-

ilarity with the incoming record. An improved version

of the best link approach was later proposed by Ran-

dall et al. [26], which is referred to as weighted best

link. In this approach all the records in the incoming

file are first linked with the matching group of records,

and then they are amalgamated according to the order

of their weights. The advantage of the weighted best

link approach is that it does not depend on the order of

incoming records. However, the results depend on how

the weights are calculated. Our proposed incremental

clustering approaches are not only independent of the

ordering of records but also the weights of links.
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Scalability of PPRL has been addressed through the

development of private blocking functions [22, 58, 59],

and the more recently proposed summarization algo-

rithms [60]. However, the number of comparisons re-

quired for multi-party linkage remains very large even

with such existing private blocking and filtering ap-

proaches employed [23, 30]. Recent work by Vat-

salan et al. [24] proposed improved communication pat-

terns for reducing the number of comparisons for CBF-

based MP-PPRL. The naı̈ve computation complexity of

MP-PPRL techniques is exponential in the number of

records per database (np, assuming n records in each of

the p databases). The improved communication patterns

developed by Vatsalan et al. [24] reduce this exponen-

tial growth with p down to the ring size r (with r < p).

In contrast, our proposed approach efficiently performs

subset matching with a quadratic computation complex-

ity in the size and number of databases (O(n2 · p2)),

which allows large-scale MP-PPRL.

7. Conclusion

We have presented a scalable MP-PPRL protocol that

is highly efficient for practical applications, such as

health data linkage, and it improves the linkage quality

compared to existing MP-PPRL approaches that only

allow identifying matching records across all databases

and do not support subset matching. Our protocol uses

graph-based incremental clustering to achieve efficient

identification of matching records across all and subsets

of large databases.

An experimental evaluation conducted on large real

datasets (including 26 voter registration databases each

containing over 5 million records and 5 real emergency

admissions datasets each containing around 700,000

records) shows that our approach is practical for real

large-scale MP-PPRL applications. Our approach out-

performs existing MP-PPRL approaches in terms of

linkage quality and scalability.

In future work, we aim to investigate how existing

clustering algorithms for record linkage [16, 17, 18,

61, 62] can be adapted for MP-PPRL. One important

direction of this work is to study incremental cluster-

ing for dynamic data matching in MP-PPRL [63]. We

also plan to evaluate the impact of pre-processing tech-

niques, especially dealing with missing values [64], on

the performance of privacy-preserving clustering. An-

other direction is to study how incremental clustering

can be parallelized to improve scalability of large-scale

MP-PPRL. Investigating other advanced mapping, en-

coding, similarity, and classification functions (includ-

ing relational clustering and collective classification [4])

for clustering-based MP-PPRL would also be interest-

ing directions for future work.
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