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Abstract

In this paper we propose an innovative architecture, called Mo.Re.Farming,
for handling agricultural data in an integrated fashion and supporting deci-
sion making in the precision agriculture domain. This architecture is oriented
to data analysis and is inspired by Business Intelligence 2.0 approaches. It
is hybrid in that it couples traditional and big data technologies to integrate
heterogeneous data, at different levels of detail, from several owned and open
data sources; its goal is to demonstrate that such integration is feasible and
beneficial in supporting situ-specific and large-scale analyses. The proposed
architecture has been developed in the context of the Mo.Re.Farming project,
aimed at providing a Decision Support System for agricultural technicians in
the Emilia-Romagna region and to enable analyses related to the use of water
and chemical resources. The architecture is fully deployed and serves as a hub
for agricultural data in Emilia-Romagna; the integrated data are made available
in open access mode and can be accessed through web interfaces and through
a set of web services. The paper describes the architecture from the techno-
logical and functional points of view and discusses the Mo.Re.Farming project
outcomes and lessons learnt.

Keywords: BI 2.0, precision agriculture, data integration

1. Introduction

With the rise of precision agriculture, the world of agriculture has become a
major producer and consumer of data. Indeed, recent technologies allow satel-
lite images and sensor data to be generated with higher detail and frequency [1];
the set of available open data regularly increases in both quantity and quality,
and new approaches to data collection, such as crowd sensing [2], are applied
to the agriculture area as well. Properly handling such a mass of data requires
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emerging digital technologies, such as big data and IoT, to be adopted. The
interest in adopting big data approaches for precision agriculture and precision
farming is confirmed by increasing research activities in this area [3]. However,
a careful analysis of the 34 research projects surveyed in [3] shows that most
efforts are focused on applying machine learning techniques to ad hoc agricul-
tural datasets, whereas data collection and integration systems have attracted
less interest —which may give rise to the problem of information silos (i.e.,
information that can be hardly shared and reused), a phenomenon that has
already been observed in other contexts [4].

Although the definition of a comprehensive and integrated architecture for
precision agriculture has been poorly addressed in the scientific literature, both
free and commercial data services are already available to obtain high-value data
such as recommendations for irrigation and vegetation indices. While most of
these solutions are based on web applications to deliver data services, they
strongly differ in the way data are stored, processed, and made available, as
well as in the type of data provided and in the professional figures and services
they are oriented to.

In this paper we propose an innovative architecture, called Mo.Re.Farming
(MOnitoring and REmote system for a more sustainable FARMING), for han-
dling agricultural data in an integrated fashion. This architecture is oriented to
data analysis and is inspired by Business Intelligence 2.0 (BI) approaches [5];
it is hybrid in that it couples traditional and big data technologies to integrate
heterogeneous data, at different levels of detail, from several owned and open
data sources. Using the BI terminology [6], we distinguish between tactical and
strategic services provided by Mo.Re.Farming.

e Tactical services typically exploit data from a limited area and within
a restricted time-span to provide detailed information to the users. An
example is the current vegetation index of a specific field, which can be
used to modulate the quantity of fertilizer to be spread on its surface.

e Strategic services aggregate and analyze data from broader areas, span-
ning on longer time intervals. An example is the time series of the average
vegetation index for all the corn fields in the different provinces of a given
region during the whole corn farming season.

Clearly, the production of these two kind of information involves a different
quantity of raw data and a different level of detail. As agreed in the BI literature,
these differences call for separated repositories and schemata to properly store
information for the tactical and strategic levels.

A further feature of precision agriculture systems is the inherent presence
of spatial information such as georeferenced satellite images, maps of fields,
positions of sensors on the ground, and so on. To handle this feature, the
adoption of a spatially enabled technology, typically a Geographic Information
System (GIS), is required. In Mo.Re.Farming we exploit georeferencing as the
basis to carry out an integration of the different data sources.



The proposed architecture, developed in the context of the Mo.Re.Farming
project, aims at providing a Decision Support System (DSS) for agricultural
technicians in the Emilia-Romagna region (Italy) and to enable analyses related
to the use of water and chemical resources. The Mo.Re.Farming project provided
not only the requirements for the architecture but also a case study to test it;
thus, in this paper we describe the architecture from the technological and
functional points of view with specific reference to its deployment within the
project. In particular we focus on its most innovative elements: its hybrid
features, the data representation, the exploitation of open data information,
and the overall integration process. The deployed architecture serves now as a
hub for agricultural data in the Emilia-Romagna region; the integrated data are
made available in open access mode and can be accessed through web interfaces
and through a set of web services.

In a previous version of the paper [7] we gave a preliminary description of
the architecture. Here we further elaborate on it mainly by adding:

1. a more detailed and comprehensive description of the architecture and of
the technical solutions adopted;

2. a comparison of the possible alternative technological solutions;

3. an evaluation of the performance of the processes used to feed the different
levels of the architecture.

The paper outline is as follows. In Section 2 we discuss the project goals
and main features, while in Section 3 we present the underlying architecture.
Section 4 describes in detail the data models and the main processes involved.
Section 5 describes the user interface for the system, and Section 6 discusses the
performance of the ETL processes. Section 7 summarizes the related literature.
Finally, in Section 8 we discuss the main lessons learnt from the Mo.Re.Farming
project.

2. The Mo.Re.Farming Project

The main goal of the Mo.Re.Farming project is to verify the feasibility of a
data integration approach to deliver precision agriculture services to a plethora
of different stakeholders. The idea from which the project comes is that the
higher the number of effectively integrated data sources, the higher the number
of services to be delivered. In other words, putting together information useful
for single services enables and empowers further services. The data sources that
are currently ingested in Mo.Re.Farming are listed below:

e Satellite images: images are taken from Sentinel-2 satellites, designed
to deliver land remote sensing data that are central to the European Com-
mission Copernicus program [8]. The Sentinel-2 mission consists of two
satellites developed to support vegetation, land cover, and environmental
monitoring. The Sentinel-2 MultiSpectral Instrument (MSI) acquires 13
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Figure 1: On the left, the seven 100 km? granules covering the Emilia-Romagna region; the
three layers (green, red, and blue) represent the portions covered by the satellites with each
passage. On the right, the position of Emilia-Romagna in Italy

spectral bands ranging from Visible and Near-Infrared (VNIR) to Short-
wave Infrared (SWIR) wavelengths along a 290 km orbital swath. Satellite
images are provided in the L-1C format, meaning that they are affected by
the reflection of solar light against the atmosphere; they provide 12 bands
and a maximum spatial resolution of 10 meters. The spherical surface of
the Earth is subdivided into partially overlapped squares of 100 km? (i.e.,
granules) according to the USA National Grid (www.fgdc.gov/usng), and
each image corresponds to a granule. The Emilia-Romagna region is cov-
ered by a total of 7 granules: 32TNR, 32TNQ, 32TPQ, 32TPP, 32TQQ,
32TQP, 33TUJ. As shown in Figure 1, the satellites make three kinds of
passages during which they never cover the whole area, but only a specific
portion of it. The current frequency is 2-3 passages per week, where each
passage (i.e., the green, red, and blue layers in the figure) is made every 10
days. Images occupy up to 1GB and they also contain quality indicators,
auxiliary data, and metadata to enable cloud screening, georeferencing,
and atmospheric corrections.

e Field Sensors: part of the Mo.Re.Farming project is aimed at developing
field sensors to complement satellite data with on-the-ground data. In par-
ticular, two sensors have been developed and installed on a set of sample
fields. Figure 2 shows the smart pheromone trap and the waveguide-based
spectrometry at the core of the humidity sensor. Unlike traditional sen-
sors based on impedance measures, where probes should be inserted into
the terrain, the Mo.Re.Farming humidity sensor simply uses a waveguide
faced to the soil surface [9]. One humidity value per hour is collected. In



Figure 2: An in-field prototype of the smart pheromone trap (left) and the waveguide-based
spectrometry at the core of the humidity sensor (right)

the smart pheromone trap, insects are captured through an adhesive strip
with pheromones. A smart camera inside the trap captures one image
per day and analyses it to classify and count culture-specific insects (e.g.,
Grapholita molesta). All field sensors are connected through a GPRS net-
work to the Mo.Re.Farming server and data are downloaded only daily for
energy saving purposes.

Crop Register: yearly filled by farmers, it includes —for each rural
land— a 49-valued classification of crops (e.g., tomato and forage) and a
binary information about irrigation of the fields. The crop register is not
available as open data.

Administrative boundaries: a vector layer including municipal, provin-
cial, and regional boundaries. This layer is freely downloadable from the
website of the Italian institute for statistics (ISTAT, www.istat.it/it/
archivio/222527).

Rural Land Register: a vector layer including municipal, field, and
farm boundaries tagged with additional information such as field surface.
This layer is made available by the Regional agency for agricultural fund-
ing (AGREA, agrea.regione.emilia-romagna.it/) and CER regional
associations (www.consorziocer.it).

Weather data: a vector layer with daily data about minimum, max-
imum, and average temperatures and rainfall on a regional grid of 858



Table 1: A list of the services possibly enabled by the Mo.Re.Farming architecture

Service Description Stakeholder Service
level

Infestation Early detection of harmful insects Agr. technician, Tactic
alerting Farmer
Monitoring Define and apply automatic and differentiate  Agr. technician, Tactic
of the treatments (e.g., irrigation, fertilization) on  Farmer
vegetation specific fields based on the diagnosis of col-
level ture growth
Irrigation Identify the need for irrigation in the suc- Agr. technician, Tactic
forecast ceeding days for a specific field, based on veg- Farmer

etation indices, field humidity and weather

forecast
Irrigation Check the proper use of irrigation resources ~ Water Tactic
monitoring with respect to the consumption level de- procurement and

clared by farmers management

agencies

Drought Evaluation of the historical and current state ~ Councilor for Strategic
monitoring of drought during drought crisis agriculture
Optimization Planning of irrigation resources according to ~ Water Strategic
of water the crops and to the farmer irrigation dec- procurement and
resources larations, possibly compared with decisions management

made in previous years agencies
Analysis of Culture or wide-area long term analysis of  Councilor for Strategic

the the vegetation level
vegetation
level

agriculture

sensors. This layer is made available by the ARPAE regional association
(www.arpae.it).

All the data listed above are inherently spatial, thus a natural way to analyze
and visualize them is through a GIS system.

Table 1 shows a non-exhaustive list of the services possibly enabled by the
data described above, including the name and description of the services as well
as the stakeholder to whom it is directed and the level of the services.

As to quality we remark that, based on our experience, the selected sources
have all proven to be highly reliable. Specifically, the ESA provides a detailed
report about the quality standards met by satellite images (https://sentinel.
esa.int/documents/247904/685211/Sentinel-2_L1C_Data_Quality_Report).
The data collected from ISTAT, AGREA, and CER (i.e., rural land registers
and administrative boundaries) are the result of yearly census activities; the
static nature of these data allowed us to manually validate them on random
samples. Conversely, the quality of the data coming from other sources is not
certified: the ARPAE regional association warns about the possible inaccuracy
of weather data (https://dati.arpae.it/), and field sensors do not guaran-
tee the correctness of their data. A manual validation of these data is clearly
unfeasible; however, the risk of relying on inaccurate data could be mitigated
by coupling the owned field sensors with open data and mutually verifying the
consistency of each measurement. Although this strategy has not been adopted
in the Mo.Re.Farming project (where we do not have multiple sources for the
same kind of data), the underlying architecture would in principle be able to



ETL

Strategic Level

................ Loading
process
Tactical Level

processes
rrrrrrrrrrrrrrrr | Loading
processes

Enrichment

RGW leve, processes

Acquisition

processes t

Interface
Spatial Cube (PostGIS) =) e
3
ODS (PostGIS)
Data Lake (Hadoop)

Mobile
Interface

l

Web
Interface
Notebook
Interface
Web
Interface

External
sources

(4

On-the-field Satellite Rural Land Crop Administrative ~ Meteo
sensors images register register borders

Figure 3: The Mo.Re.Farming architecture

Access Zone 9
©w

o §
Process Zone 5
A N

L o
Landing Zone &

Figure 4: The multi-zone architecture of the Mo.Re.Farming data lake

support this validation approach.

3. The Mo.Re.Farming Architecture

To meet both the tactical and strategic goals, in the Mo.Re.Farming project
we adopted a three-tier architecture (often used for BI applications), where each
tier relies on its own storage. The architecture is sketched in Figure 3 and is
composed as follows.

e The lowest tier hosts a data lake [10], i.e., a storage repository that holds
a vast amount of raw data in its native format, including structured, semi-
structured, and unstructured data. The data lake is used to store all the
data coming from the external sources in their raw format and to host
the enrichment activities required before their integration (as described
in Section 4.1). We rely on a multi-zone architecture [11] for the data
lake, so as to logically separate the subsequent processing and enrichment
activities. The architecture is shown in Figure 4. It mainly consists of a



Landing Zone (to store data in its raw format), a Process Zone (to store
intermediate data generated by the processing activities), and an Access
Zone (to store the data that is ready to be consumed); also, a Discovery
Zone is allocated to provide a safe environment for data scientists’ ad-hoc
analyses.

e The middle tier, called Operational Data Store (ODS), stores structured
data at the finest level of detail for in-depth analysis and monitoring.
Whereas in the data lake no fixed schema is defined a priori, the ODS
schema is defined at the design time. Indeed, data integration takes place
at this level and is mainly based on the spatial features of data; as de-
scribed in more detail in Section 4, the relationships between heteroge-
neous data are found thanks to geopositioning even in absence of direct
references.

e Finally, the top tier of the architecture consists of a spatial cube to en-
able SOLAP (Spatial OnLine Analytical Processing). The term SOLAP
refers to geo-business intelligence technologies allowing online analysis of
a massive volume of multidimensional data. Multidimensional data are
organized in cubes describing domain events called facts, which are char-
acterized by numerical indicators called measures (e.g., the NDVI of a
field) and dimensions to be used for analyses (e.g., space, time, crop).
Each dimension is described by a hierarchy of concepts that describes the
dimension of analysis at different granularity levels (e.g., a field belongs to
a municipality, which in turn belongs to a province). Data can be analyzed
using SOLAP operators such as spatial slice and spatial drill, which allow
for aggregating measure values along hierarchies with SQL operators.

Table 2 shows the information stored for each type of ingested data and for
each architectural level. Spatial data are first-class citizens as they are the basis
of data integration (which takes place at the tactical level). However, the storage
and manipulation of spatial data requires the adoption of software tools specif-
ically designed to handle these kind of data. The computational needs and the
quantity of data to be stored pushes towards the adoption of big data solutions,
but the maturity level of the latter is still limited. Whereas vector data (e.g.,
points and polygons) are relatively easy to manage, the same cannot be said
for raster images. In particular, current big data solutions are mainly limited
in properly handling continuous field geographic data, that is, spatial phenom-
ena that are perceived as having a value at each point in space and/or time
[12, 13, 14]. Tt is the case of satellite images, which need to be handled at the
pixel level. For instance, vegetation indices are computed through map algebra
manipulations [15], i.e., algebraic operations applied on raster layers (ranging
from arithmetical to statistical and trigonometric operations). Whereas map
algebra manipulations are a mature feature of array DBMSSs [16] such as Ras-
daman and PostGIS, few big data solutions support this feature and with several
limitations.

In light of the above, two opposite technological solutions emerge:



Table 2: Data distribution across architecture levels

Raw level Tactical level Strategic level
Satellite ESA raw images (L-1C),  GeoTIFF pyramids, Crop-level in-
Corrected ESA images  pixel-level indices dices
(L-2A), GeoTIFFs (e.g. NDVI)
Sensor Raw images Enriched images  Crop-level in-
and image-related  dices
indices
Meteo — Vector layer Crop-level in-
dices
Rural land & Crop Reg- — Vector layers Rural land di-
isters, Municipalities mension

o Traditional solution. Array DBMSs such as Rasdaman and PostGIS are
mature open-source technologies that fully support the storage and ma-
nipulation of spatial data in both vector and raster forms. The adoption
of an array DBMS would be enough to implement all the three levels of
the architecture; however, the triviality of this solution is hindered by its
lack of support to a big data environment.

e Big data solution. The big data landscape is currently characterized by a
mosaic of tools that support only some of the features required to handle
spatial data. A big data solution is technically feasible, but it requires sig-
nificant effort to properly manage and integrate the different tools across
the different levels of the architecture, depending on the features that
they provide. Table 3 shows a summary of the most common technologies
that enable the storage and manipulation of spatial data. The tools for
data storage (i.e., HDFS, Hive, HBase, Accumulo, Elasticsearch) do not
support the storage and manipulation of rasters, which must be stored as
simple files. Some software libraries have been released for the manipu-
lation of spatial data, but none of these libraries fully covers the range
of spatial data manipulations: GeoSpark and GeoWave mainly focus on
vector data; GeoTrellis and GeoMesa are able to process both vector and
raster data, but with limited support (GeoTrellis mainly focuses on raster
data, GeoMesa mainly focuses on vector data); Rasterframes is still in its
initial development. To the best of our knowledge, the only big data so-
lution (comparable to the traditional Rasdaman and PostGIS) is ArcGIS,
which is not an open-source software.

At the time of project development, the big data solution was not even an
option, as the mentioned tools for raster data manipulations where either not
available or too immature to be adopted (even at the time of writing, an open-
source big data architecture cannot be implemented without significant effort).
For this reason we relied on a hybrid architecture that combines the capability
to scale to large volumes of data and to enable all the required spatial opera-
tions without the hassle of configuring and integrating several not-yet-mature
tools. In particular, the data lake is Hadoop-based, while the upper levels rely



Table 3: Summary of the most common softwares for spatial data storage and manipulation

Software Storage Manipulation Open-source Big data
PostGIS v v v —
Rasdaman v v v —
GeoSpark — vectors v v
GeoWave — v v v
GeoTrellis — v v v
GeoMesa — v v v
Rasterframes — v v v
HDFS + GeolJinni v vectors v v
Hive + GIS tools vectors — v v
HBase vectors — v v
Accumulo vectors — v v
Elasticsearch vectors vectors v v
ArcGIS v v v

Table 4: Hardware and software features of the Mo.Re.Farming architecture

Raw level Tactical € Strategic levels
Hardware 11-node cluster 1 server

6TB disk (per node) 2TB disk

32GB RAM (per node) 64GB RAM

4-core CPU @3.4GHz (per node) 12-core CPU @2.6GHz
Software Centos 6.9 Windows Server 2012

Cloudera 5.10.0 PostgreSQL 9.5

Apache Hadoop 2.6.0 PostGIS 2.3.2

Sen2cor 2.3.1 [17]
GDAL 2.2.0 [18]

on two PostGIS DBMSs running on a centralized server. This solution enables
scalability by relying on a distributed storage and by parallelizing the acquisi-
tion and enrichment of raw data, while the PostGIS DBMSs provide a mature
environment to implement the tactical and strategic levels. The summary of the
hardware and software features of the Mo.Re.Farming architecture is reported
in Table 4.

4. Data Model and ETL Processes

In this section we provide an in-depth discussion about the data models
adopted for data representation and storage in each architectural level, as well
as the ETL (Extract, Transform, and Load) processes that drive the flow of data
between such levels. First, we focus on the acquisition of data from the external
sources and their enrichment processes (i.e., External Sources — Raw Level);
then we explain how their integration is carried out and modeled at the tactical
level (i.e., Raw Level — Tactical Level); as for the strategic level, we discuss the
conceptual model of the spatial cube. Table 2 shows the information stored for
each type of ingested data and for each architectural level. We close this section
with considerations on the performance of the different ETL processes.
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4.1. Acquisition and Enrichment

At the data lake level, data are stored in files on the Apache Hadoop dis-
tributed file system (HDFS), which ensures system robustness and enables par-
allel processing. The processes that run in parallel are those concerning the
acquisition and enrichment of satellite images, which are also the most compu-
tationally demanding ones. Parallelization is achieved on the 11-node cluster in
compliance with the bag-of-task paradigm, where 10 slave workers are coordi-
nated by 1 master process and share a set of independent tasks, each producing
an independent output. Specifically, the tasks (implemented in Python) are the
following:

e Satellite images download: the system periodically verifies through the
ESA web services if new satellite images are available for the considered
region. If this is the case, the involved granules are downloaded in parallel
and stored on HDFS.

e Atmospheric correction: since satellites orbit above the Earth atmosphere,
the captured images are affected by the reflection of solar light against the
atmosphere itself; these image are said to contain top-of-atmosphere re-
flectances and are published by ESA as Level-1C (L-1C) products. Then,
atmospheric correction is the task required to cleans images from such
reflectances. This is done by relying on the Sen2cor software, made avail-
able by ESA (step.esa.int/main/third-party-plugins-2/sen2cor),
which delivers Level-2A (L-2A) products for L-1C ones. The corrected
images (which are said to contain bottom-of-atmosphere reflectances) are
stored back on HDFS. This particular process is necessary only for the
images published before April 2017; since then, the ESA web services also
expose the pre-computed L-2A images.

o GeoTIFF creation: once the images of every granule for a given date have
been downloaded and corrected, they are merged into a single file image
and translated from the JPEG 2000 format to the GeoTIFF format, which
embeds georeferenced data. This process relies on GDAL (Geospatial Data
Abstraction Library, www.gdal.org), a translating library for raster and
vector geospatial data formats, and is carried out by first extracting the
layers of every band in every granule image, then merging the layers from
the different granule images for every band. The resulting GeoTIFF is
stored on HDFS.

e Raster pyramid creation: to enable its visualization through a web in-
terface, the GeoTIFF image is transformed into a pyramid, i.e., a multi-
resolution hierarchy of tiled levels. This means that the original image is
first split into several tiles, i.e., squares of fixed dimension (256 px). Then,
lower resolution levels are progressively built by creating tiles (of the same
pixel width) that merge four tiles of the lower level; in other words, each
pixel at a higher level consists of the average of four pixels at the lower
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level. This process relies on the GDAL library and builds a pyramid con-
sisting of 8 levels overall; the lower level is made of a maximum of 24 400
tiles at maximum resolution (10 m), while the higher level is made of 1 or
2 tiles at the lowest resolution (1.28 km). The result is a set of 8 GeoTIFF
tiled images, all stored on HDFS.

The acquisition and enrichment of data from the remaining external data
sources is less complex: the volume of data is significantly lower, while the
required enrichment (if any) is more trivial.

e On-field sensors are connected to each other through a Robust Wireless
Sensor Network [19] and transmit their data via a GPRS connection. Daily
acquired trap images and humidity streams are stored on HDFS. Enrich-
ment of images (i.e., the recognition of the captured bugs and their count-
ing) is done by running an ad-hoc image recognition software written in
Java, which proceeds in four steps: i) comparison of the new image with
the last one to identify the areas that have changed; ii) segmentation of
candidate bugs; iii) feature extraction for each bug; iv) classification of the
bugs. The classifier is a deep neural network trained on hundreds of bug
images, and it provides results with an 82% precision and a 92% recall.
The results are stored on the ODS.

e Weather data are made available as open data on a daily basis. A simple
ETL process downloads the data and stores them on the ODS, as no
enrichment is necessary.

e The rural land and crop registers and the administrative boundaries are
all published on a yearly basis. These data are manually downloaded and
stored on the ODS; no enrichment is necessary here either.

The above-mentioned sources are downloaded through calls to web services de-
pending on their update frequencies.

4.2. Integration

The ODS was created following a bottom-up approach, i.e., by integrating
the different data sources available at the time of the project. Though the
users were not directly involved in the design of the ODS, the selection of the
data sources was preliminarily done by strictly following the recommendations
given by users during a macro-analysis phase, which ensures a good coverage of
their requirements. The actual completeness of the ODS with reference to the
users specific requirements was verified a-posteriori, when they validated the
multidimensional schema of the spatial cube obtained from the ODS.

Figure 5 shows the relational schema of the ODS, where integrated data
are stored. Relations are grouped according to the corresponding data sources
(shown as grey bounding boxes); primary and foreign keys are denoted with PK
and FK, respectively. Solid links represent many-to-one relationships modeled
by foreign keys, while dashed links represent many-to-many relationships that

12
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Figure 5: Data schema of the ODS

are not materialized, i.e., they are computed on-the-fly by queries; links are
shown in blue if they are determined by spatial join operations. The central role
is clearly played by the Rural lands relation, which enables the integration of the
different data sources. Remarkably, integration is carried out by exploiting the
spatial features of the GIS DBMS. In particular:

e Rural lands & Smart traps/Humidity sensors. Both traps and sensors (iden-
tified by a spatial point in the map) are associated to the rural land (rep-
resented by a multipolygon) they are contained in, determined using the
contains spatial operator. Figure 6.a shows with a blue marker the smart
trap located in Martorano (Forli-Cesena) and the rural land it is located
in.

e Rural lands & Municipalities. Each rural land is associated to the munic-
ipality (represented by a multipolygon) it is contained in. Determining
this association is less simple, as the precision of municipal boundaries
is lower than the one of rural lands; this results in rural lands being of-
ten intersected by different municipalities. For instance, Figure 6.b shows
how the boundaries of the municipality of Podenzano (Piacenza) (in blue)
do not match exactly the boundaries of rural lands (in red); noticeably,
the administrative boundaries of OpenStreetMap (dotted purple lines) are
even more distant. To integrate these data, i.e., to determine the munic-
ipality of each rural land, the multipolygon of a rural land is spatially
intersected with the multipolygons of municipalities using the intersect
spatial operator; then, the rural land is assigned to the municipality whose
area intersects the highest percentage of the rural land area.

e Rural lands & Weather stations. Weather stations are uniformly distributed
across the national territory, but their density is (obviously) lower than
the one of rural lands; thus, assessing the weather conditions for a given
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Figure 6: Spatial integration between rural lands and (a) smart traps, (b) weather stations,
(¢) administrative borders, and (d) tiles; in the latter, the tile at the highest resolution is
overlapped by the boundaries of a rural land and then clipped

rural land on a given date requires to locate the closest weather stations
by means of the distance spatial operator; then weather conditions at
rural land granularity can be computed as a weighted triangulation from
the closest stations. To efficiently compute it, as shown in Figure 6.c, rela-
tion Closest weather stations stores, for each rural land, the three weather
stations with the lowest spatial distance —unless a rural land contains a
weather station, in which case only that station is stored.

e Rural lands & Tiles. Unlike the previous cases, where only vector data
are involved, tiles are represented by raster images. Thus, integrating
them with rural lands requires to trim (using the clip spatial operator)
the portion of the rasters based on the shape of the multipolygons; an
example of this operation is shown in Figure 6.d. This overlap is not
materialized into a relation for space reasons, but it is computed on-the-
fly when answering queries at the tactic level (e.g., to compute vegetation
indices on a specific date and rural land) and when loading data to the
spatial cube.
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Figure 7: Multidimensional schema of the spatial cube

The ODS is updated daily for data from on-field sensors, satellite data, and
weather data, while it is updated yearly for registers.

Finally, it is worth mentioning that different data sources adopt different
coordinate reference systems (EPSG) to encode spatial information. Since the
amount of data obtained from ESA is the most significant, we chose to keep the
ESA reference EPSG (i.e., 32632) and to convert spatial data from the other
sources to the same EPSG (ISTAT and AGREA adopt EPSG 23032, while
ARPAE adopts EPSG 4326).

4.3. Loading

The functions offered at the strategic level are centered on a spatial cube,
whose multidimensional schema is shown in Figure 7 using the DFM notation
[20]. The schema was obtained with a data-driven approach, i.e., by choosing
a table in the ODS (namely, Crops) as the fact of interest, then following the
functional dependencies coded within the ODS schema, and finally validating
the result during a meeting with users with expertise in the field of agriculture.
Data-driven approaches to multidimensional modeling are widely recognized
to achieve an excellent coverage to the users’ requirements while keeping the
design effort and the probability of errors/misunderstandings to a minimum
[20]. Noticeably, the validation of the cube schema by the users also allows
to indirectly certify the completeness of the ODS. Although two other tables
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in the ODS could have been chosen as facts (Bug inspections and Humidity
values), the users declared to be not interested in a fine-grained analysis of
bugs and humidity measurements at this stage; conversely, they suggested to
compute some statistical metrics, such as the average number of infesting insects,
which were added to the multidimensional schema as measures (see below for a
description of these metrics).

The Farming snapshot cube features four dimensions: Rural land, Date, Crop,
and Watering regime. The Date dimension develops into a temporal hierarchy
and contains the date of every satellite image downloaded. The Rural land
dimension develops into a spatial hierarchy and provides the geometries of rural
lands and administrative divisions. The Crop and Watering regime dimensions
contain the list of crops and irrigation regimes (either watered or non-watered),
respectively. The events represented in this cube consist of snapshots, one for
each satellite image downloaded, providing statistics for the crop of a given rural
land in a given date. The available statistics, represented as measures in the
cube, are:

e NDVI [21], NDRE [22], MTCI [23], NDWI [24]: a set of vegetation indices,
computed by analyzing —for each given date— the portion of satellite
image that falls within the spatial boundaries of the rural land. Vegetation
indices are used to measure the status of vegetation on the ground; the
rationale is to compare the reflectance values on different spectral bands,
as the chlorophyll in plants’ leaves reflects light in different ways under
different conditions. As mentioned in Section 2, satellite images contain
13 spectral bands that range from the visible range (i.e., red, green, and
blue bands) to the shortwave infrared (SWIR). Each index is calculated
by applying a map algebra operation on selected bands provided in the
image. In particular:

— NDVI (Normalized Difference Vegetation Index) ranges from -1 to
1 and is calculated as %, where NIR € [0,1] is the ratio of
the reflected over the incoming radiation in near-infrared light, and
Red € [0,1] is the ratio of the reflected over the incoming radiation in
the visual red light. It is one of the most common vegetation indices
and its goal is to verify whether the observed region contains living

green vegetation.

— NDRE (Normalized Difference Red Edge index) ranges from -1 to 1
and is calculated as %, where RE is a frequency band that
sits on the transition region between Red and NIR. It is a slight
variation of NDVI and gives better insight on some kind of crops
(e.g., cereals) and growth stages (i.e., later stages of growth), where
plants are more rich of leaves and it is more difficult to observe the
state of their lowest levels.

— MTCI (Meris Terrestrial Chlorophyll Index) ranges from 0 to +o0
and is calculated as %. It is used to observe the chlorophyll

content in vegetation.
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Figure 8: Average execution times of ETL processes involving single granules by granules’
approximate size

— NDWI (Normalized Difference Water Index) ranges from -1 to 1 and
is calculated as %, where SWIR € [0,1] is the shortwave
infrared band. It is used to measure the hydration of plants, as
SW IR reflects changes in both the vegetation water content and the

mesophyll structure in vegetation canopies.

e Avg/Max/Min temperature, Tot precipitations: weather information com-
puted by weighing the temperatures measured at the three stations closest
to the rural land. Since satellite images are not available for every date, the
snapshots for some dates are missing from the cube; thus, measure values
are actually representative of the whole time range between the previously
available snapshot and the current one. For instance, if no snapshots were
downloaded from January 5 to 9, 2016, measure Max temperature for Jan-
uary 10, 2016 is computed as the maximum of the maximum temperatures
registered since January 5, 2016.

e Avg/Max/Min humidity, Avg/Max/Min infesting insects: depending on the
density of the sensor network, these measures could be given a value either
only for the specific field the sensor is installed in (low density), or for
all the fields following a weighing approach similar to the one adopted for
weather information. Due to the low number of sensors currently available,
in Mo.Re.Farming we adopt the first solution.

e Crop surface, Rural land surface: the extent of the land for the given crop in
the given rural land, and the overall extent of the rural land. Since these
measures are time-independent, they cannot be aggregated along the time
dimension.

5. User Interface for Data Access

In Mo.Re.Farming we devised two approaches for users to access the data
collected and produced. The first one is a web interface that guides the user
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Figure 9: Average execution times of ETL processes involving whole images (colors refer to
Figure 1)

experience through a set of dashboards, depending on the chosen architectural
level. The second one is a set of public web services that expose the available
data by means of standard RESTful APIs. Such connectivity is particularly
relevant to make the Mo.Re.Farming repository a node of a wider network of
open data and open services for precision agriculture.

5.1. Web Interface

The web interface provides different experiences to users depending on the
architectural level.

The data lake is mainly used for back-end computations, nonetheless it can
be queried through notebook technology, which is a perfect tool for data scien-
tists since it allows to couple advanced visualizations, data retrieval, program-
ming, and documenting of research procedures. In Mo.Re.Farming we adopted
Apache Zeppelin (zeppelin.apache.org/).

The main access to the ODS level is through an ad-hoc dashboard, im-
plemented in PHP and Javascript; specifically, a map component is delivered
by relying on the open-source OpenLayers3 Javascript library. The interface
(available at semantic.csr.unibo.it/morefarming and shown in Figure 10)
is intended for both agricultural technicians and farmers, and allows several
different information to be visualized. The option panel on the left allows to
select: (i) the kind of image to be displayed (either the raw satellite image or
its translation to one of the vegetation indices), possibly coupled with Open-
StreetMap in the background; (ii) the reference date for the image; and (iii) one
or more vector layers, including the rural land borders, administrative borders,
and markers that highlight the location of smart traps, humidity sensors and
weather stations. The user can obtain statistics about any point or field by
simply clicking on the map: the right panel will show the ID of the selected
rural land (if any), geographical information (exact coordinates, province, mu-
nicipality), the values for the vegetation indices on the selected date (for both
the single point and the whole rural land), and the overall trend of vegetation
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Figure 10: Tactical-level web application showing statistics on a field in the municipality of
Podenzano on September 9, 2016; the colors of the map are representative of the NDVI

indices for a single point'. The “P” icon on the map allows to draw a custom
polygon on the map and to obtain statistics on this polygon instead of a sin-
gle point or rural land. Finally, the blue markers that locate smart traps can
be clicked to visualize the photos in inverse chronological order, indicating the
number and kinds of bugs recognized. All the information available on the web
interface are also available on a mobile app for Android, whose goal is to exploit
the smartphones geolocalization capabilities to allow in-field visualization of the
relevant information.

Finally, a SOLAP solution is implemented on the top layer through the
Saiku software (meteorite.bi/products/saiku), which enables the execution
of SOLAP queries on the spatial cube. The spatial features can be exploited by
first drawing a polygon on the map through the tactical-level interface; then, as
shown in Figure 11, the polygon can be used as a spatial filter in the SOLAP
query to select only the rural lands that intersect that polygon.

5.2. Web Services

Fach level of the Mo.Re.Farming architecture is exposed by a set of public
web services, i.e., APIs that are based on the well-known Representational State
Transfer (REST) software architecture.

The first layer of APIs exposes most of the contents of the data lake: satel-
lite images in every available format (i.e., the raw L-1C image with top-of-
atmosphere reflectances, the corrected L-2A image with bottom-of-atmosphere

1This information is actually more strategic than tactical; providing this view at the tactical
level is possible only because the scope is limited to a tiny portion of the map.

19



Cubi 2 (=] & b » E @ Q LI N A S [w] @

You are using Saku Community Edion, please consider upgrading to Saiku Enferprise.or enfering 2 sponsorship aqreement with us to support development. info@meteorie bi

Incici
Export v

Misure Add Misure
— POMODORO ~ NDVI (avg) — FORAGGIO ~ NOVI (svg) — CEREALE INVERNALE ~ NDVI (s1g)

OV avg) Ik

v Wisure
NDwI

Date (by month)

Rurallang

20801
20160
01604

Figure 11: Strategic-level web application, showing average monthly trends for NDVI on the
crops available in a set of fields in the municipality of Podenzano. The fields have been selected
by spatially intersecting the polygon manually drawn in the tactical-level interface with the
rural land geometries. The red line represents tomato crops, the orange one forage, the green
one winter cereal.

reflectances, and the final GeoTIFF image that covers the whole region after
being tiled and turned into a pyramid of multi-resolution levels), raw data and
results of elaborations from on-the-field sensors, the adopted georeferenced ad-
ministrative borders obtained from ISTAT, and the meteo data obtained from
ARPAE. Unfortunately, due to license regulation, rural land and crop data are
not available for open access at the time of writing. The entry point for these
APIs is semantic.csr.unibo.it/morefarming/api/data-lake; the web ser-
vice is built in a browsable way, i.e., data can be downloaded by simply following
the links from the entry point.

The second layer of APIs exposes the contents of the ODS. In particular,
it allows to obtain punctual information about vegetation indices for a given
point on the map on a given date (i.e., the same information shown in the main
dashboard by clicking on the map) in a RESTful way. Users can access these
data by connecting to semantic.csr.unibo.it/morefarming/api/ods.

The third layer of APIs exposes the contents of the spatial cube. Since the
Saiku software (which has been deployed in the web interface) already comes
with its own web services, we reuse them in order to enable the execution of
OLAP (On Line Analytical Processing) queries on the cube. In particular, these
APIs allow users to understand the multidimensional structure of the cube and
to issue custom queries formulated in the MDX? language.

Documentation and examples on how to use the APIs are provided in the
web interface at semantic.csr.unibo.it/morefarming/opendata.php.

2Multidimensional expressions; mondrian.pentaho.com/documentation/mdx . php
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6. Performance

As discussed in Section 4, a series of ETL processes controls the flow of
data, from their acquisition into the data lake to their loading into the Farming
snapshot cube. The average execution times of these processes are shown in
Figures 8 and 9; the first one is focused on the ETL processes involving single
granules, the other one those involving the whole images. The size of images
varies depending on the kind of satellite passage (take Figure 1 as a reference):
the red passage is the one covering the greatest area (including all 7 granules,
although some only partially), while the blue and green passages cover similar
areas. We can comment the figures as follows:

e The performances of the ETL processes scale linearly with the size of the
data. This is observable in both Figures 8 and 9. In the former, the size
of granules depends on the portion covered by the satellite and on the
atmospheric conditions (i.e., cloudy or clear); in the latter, the size of the
whole images mostly depends on the area covered by the satellite passage.

e Overall, the most expensive process is the loading of the spatial cube,
even though it is incremental (i.e., the cube is updated with the changes
in the ODS since latest iteration). This is due to the spatial integration
of rural land vectors and tile rasters required to compute the vegetation
indices. In particular, the single operation of clipping the raster image on
the rural land boundaries takes about 80% of the execution time of this
process; another 10% is due to the calculation of weather data for every
rural land in a specific time range (usually 2-3 days); the remaining time
is taken by other join and insertion operations.

e The amount of time spent doing atmospheric correction on a whole image
is also significant. However, since this task can be carried out indepen-
dently on the single granules (which can be up to 7 per image), its overall
impact can be considerably reduced by parallelizing its execution.

e Execution times for the acquisition of granules are subject to variation
depending on the quality of the internet connection and the speed of ESA
servers.

The hardware features listed in Table 4 determine adequate performance for the
area of interest of the project. Obviously, scaling to a nation-wide (or greater)
level makes it necessary to either scale-up or scale-out. Conversely, moving to
a coarser data resolution would make some of the services proposed in Table 1
unfeasible (e.g., the monitoring of the vegetation level).

7. Related Literature

The literature on big data approaches to precision farming and precision
agriculture is growing quickly. Most efforts are focused on applying machine
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learning techniques to ad hoc agricultural datasets [3]. Another relevant part of
the literature is devoted to sensors [1] and remote sensing [25]. All these works
only marginally focus on the data management architecture and on the features
of the platform in charge of providing an integrated and univocal view of farming
data. The only work going in this direction is [26], which proposes an open and
integrated cyber-physical infrastructure, i.e., a coordinated environment that
includes several hardware components, software, and interactions. This infras-
tructure builds on open standards to define an integrated middleware between
heterogeneous monitoring sensors and different precision agriculture applica-
tions. The focus of this work is mainly on the data collection problem, which
is addressed through a service-oriented architecture. However, the applications
proposed are exclusively at the tactical level; validation on a real case study in-
volving a large quantity of data is limited, and no OLAP-like functionalities are
discussed or implemented. In [27] the authors stress the advantages of making
available to farmers heterogeneous but integrated data in near-real time. To this
end they propose the PRIDE (Progressive Rural Integrated Digital Enterprise)
business model, but no technical details on the architecture and data model are
provided.

Although the scientific community has paid little attention to the issues
related to architectures, integration, and data handling, some free and commer-
cial data services are already available. While most solutions are based on web
applications to deliver data services, they strongly differ in the way data are
stored, processed, and made available, as well as in the type of data provided
and in the professional figures and services they are oriented to. Such services
are briefly surveyed below to emphasize differences and similarities with refer-
ence to Mo.Re.Farming (see Table 5). We did not restrict ourselves to services
strictly related to precision agriculture, but we also considered some general
purpose services for distributing remotely-sensed satellite data.

e Global Land Cover [28] relies on an architecture similar to Mo.Re.Farming,
though it is implemented on a relational engine coupled with an image-
publishing DBMS. The system integrates LandSat satellite images with a
large set of ancillary data (e.g., ecological zones, digital elevation models)
and in-situ data (e.g., local photos). The goal is to deliver world-wide
information of land-use data production. Besides traditional visualization
and navigation of the information, the system includes a collaborative
management module that supports project participants, possibly around
the world, to collaboratively work on the data. For example, it can design
the workflow of data verification, assign them different roles and tasks, and
further maintain the execution of the workflow. It does not implement any
OLAP-like functionality.

e CropScape [29] is a DSS for agriculture in the USA. Similarly to Mo.Re.Farming
it provides information about historical data and crops, even though the
granularity is coarser (30-56 m). It does not implement any OLAP-like
functionality and relies on a traditional three-tier architecture (Applica-
tion/Service/Data) where the data layer is directly implemented on a file
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system.

o Mundialis [30, 31] is a commercial system providing a large set of land-
related services based on satellite and radar images. Services span from
precision agriculture (e.g., plant health and growth, spatial pattern of
productivity, fields history using archive satellite data) to insurance (e.g.,
monitoring crop health and productivity for index insurance, post-event
damage assessment) and developmental work (e.g., project region target-
ing, assessment of land suitability). Mundialis leverages on open source
software coupled with specialized user interfaces. The main open source
packages involved in the back-end are GDAL, PROJ4, GRASS GIS, and
GeoServer. The front-end is based on the JavaScript libraries GeoExt and
OpenlLayers. To ensure an adequate computation power, the system runs
on an HPC (High Performance Computing) infrastructure. No OLAP-like
functionality is implemented.

e Moses [32] is mainly devoted to developing machine learning and statis-
tical techniques for the optimization and monitoring of the irrigation re-
sources. It integrates satellite images with macro-crop types and weather
data. In particular, the main functionalities in the scope of the projects
are: early crop mapping from space, seasonal prediction of irrigation water
demand, in season evapotranspiration and crop water status monitoring
from space, and mid-term irrigation numerical forecasting. The Moses
system is the outcome of an ongoing EU-H2020 project and is mainly de-
voted to developing machine learning techniques. Although the project
goals are very ambitious in terms of functionalities to provide, the set of
available features is still limited and the current implementation is at a
beta-testing stage. No OLAP-like functionality is implemented.

e FEarth Observation Data Services [33] is based on the Rasdaman data
manager [34] and provides worldwide coverage for different families of
satellites. It enables data navigation and downloading and it pre-calculates
some features derived from the the images, such as the NDVI and a cloud
mask.

Mo.Re.Farming presents several distinguishing features with reference to the
other projects in Table 5. In particular it integrates a high number of different
layers while delivering detailed information in terms of both spatial and tem-
poral dimensions (i.e., satellite images are captured daily at 10 m resolution).
Furthermore, it provides support for both tactical and strategic precision agri-
culture by including a SOLAP interface. The comprehensive survey proposed in
[36] describes the relevant projects in SOLAP for Agri-Environmental Analysis
and classifies them according to different coordinates such as design method-
ology, spatio-temporal model, analysis type, and architecture implementation.
The Mo.Re.Farming SOLAP module would be classified as simple on all the
coordinates except for architecture, since it allows drill-through analyses that
cross the border between the tactical and strategic levels to get an insight about
a specific component of an OLAP report.
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Table 5: Main features of agriculture and terrain-health related projects

Mo.Re. Global CropScape  Mundialis Moses [35]  Earth
Farming Land [29] [30] Obs. Data
Cover [28] Service
(33]
Technologies hybrid: relational file system file ESRI GIS array
relational & web- system® & & Postgres DBMS
and big services web-
data services
Main crop ecological crops vegetation crop vegetation
layers boundaries, zones, indices bound- indices
beyond crops, digital aries,
sat. weather, elevation, crops,
images vegetation in-situ weather
indices data
Number of 50 - > 100 - 16 -
crops
Satellite Sentinel-2 LandSat Landsat5/7/8,Sentinel-2 Landsat8, Sentine2,
Sentinel-2 Sentinel-2 Landsat8
& Modis
Sat. 10 m 30 m 30/56 m 10 m 10 m 10 m
images
definition
Historical 2 years 2 years 20 years 30 years 1 year 17 years
depth (2000,
2010)
Sat. 2-3 per once per once per once per once per
revisit week year year day day
time
Goal tactical and  general tactical general water general
strategic purpose precision purpose resource purpose
precision agriculture optimiza-
agriculture tion
OLAP yes no no no no no

8. Conclusion and Discussion

In this paper we described the architecture supporting the Mo.Re.Farming
project. In particular, we showed how the integration of data related to weather,
crops, and fields, enabled by the adoption of a hybrid architecture, boosts pre-
cision agriculture both at the strategic and tactical levels.

The Mo.Re.Farming experience elicited several interesting aspects related to
the development of precision agriculture systems.

e Although the computational needs and the quantity of data to be stored
pushes towards the adoption of big data solutions (e.g., Apache Hadoop),
the level of development of spatio-temporal features on those platforms
is still limited. In particular, no support to continuous field data is
given in general-purpose big data solutions. At the time of writing, some
open-source libraries for spatial big data operations (i.e., GeoSpark and
GeoTrellis) have matured, and their combined functionalities cover the set
of operations required for the management of satellite images. This makes
it possible to migrate the project to a full big data solution, although some
effort would be necessary to properly integrate the available libraries.
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The precision agriculture landscape is currently characterized by several
solutions, models, and services, each working on a subset of the avail-
able data and providing complementary but non-integrated information
and services. Creating integrated hubs of information is mandatory to
overcome these limitations and to deliver more effective information and
services [37].

As emphasized in Section 4, integration tasks are computationally de-
manding and can hardly be carried out on-the-fly. Specifically, while on-
the-fly integration could still be feasible at the tactical level thanks to the
low quantity of information involved, it can hardly be done at the strategic
level where a huge amount of data and processing is needed.

The Mo.Re.Farming architecture represents an example of a data hub,
conceived as a starting point for delivering integrated information and
services. The advantages of carrying out integration at the physical level,
i.e., by materializing the integrated data in the ODS, are (i) the possibility
of late data reworking, (ii) a 360-degrees exploitation of data with no lim-
itations due to different data owners, and (iii) the possibility of efficiently
running complex analytics on heterogeneous data [37].

Physical integration and materialization also comes with a few drawbacks,
namely higher costs for storing and handling data and the risks related to
data replication.

Precision agriculture architectures should be as open as possible to enable
complementary data exchange and fruition. From this point of view we
perceived the need for a standard and machine-readable terminology. The
issue of standard terminology has been addressed by some research papers
[38, 39, 40], but no complete and accepted solution is available yet. As
to machine-readability, [41] proposes a framework for SOLAP analyses
on the semantic web and presents a case study in the environmental and
agriculture domain.

The number of potential data sources and data collection approaches will
further increase in the coming future. Interesting insights come from ap-
plying the crowdsourcing approach to agriculture (farmsourcing [2]). This
model opens to the possibility of collecting new types of data that comple-
ments big data. For example, satellite remote sensing data can be better
exploited in areas with large, homogeneous, and flat agricultural parcels,
and may work not properly in presence of small-scale parcels and mixed
crop cover. A step forward is the adoption of a technological farmsourcing
approach, that is, an IoT of farm machinery and sensors that send data to
a hub. We are also working to build an intelligent and flexible data lake
system, where new data in different formats can be ingested and processed
based on the automatic recognition of the content.
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e The farmers involved in the project have reported a decreasing interest to-
wards historical data due to the ongoing climate change, which decreases
the accuracy of forecasting based on such data. This is further amplified
by the absence of detailed data (due to the high cost of sensor technologies,
that hinders their dissemination in a poor and often underdeveloped sec-
tor). Conversely, farmers would be more interested into a telemetry-like
system, that continuously monitors large areas and promptly identifies
patterns of unexpected situations, so that a fast and timely action can be
adopted.

e Stakeholders in the agriculture field are characterized by completely dif-
ferent skills, culture, and mindset as to digitization and data analysis.
While technicians and managers (e.g., councilors for agriculture and agri-
culture technicians) are already willing to move towards a data-driven
agriculture, most farmers are not; a way to overcome such reluctance is
to deliver easy-to-use analytics and identify a small set of “killer applica-
tions”, i.e., applications that deliver an immediate and relevant advantage
to the user. In this direction, the Mo.Re.Farming mobile interface has
been strongly appreciated by in-field users since it delivers geolocalized
information. As emphasized in [2], the main recipients are new farmers or
early-adopters of cutting-edge technologies who are more sensible to the
added value that these solutions can offer and can appreciate a win-win
exchange of data, information, and services.

The Mo.Re.Farming project is still ongoing. Our future work goes in two
directions: on the one hand, we plan to integrate further data sources (e.g.,
the soil map); on the other, we plan to develop analytics that can exploit the
information power of integrated data. In particular, our users are interested in
water resource optimization, which requires both historical and current data.
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