
This is a repository copy of Forensic Data Recovery From The Windows Search Database.

White Rose Research Online URL for this paper:
https://eprints.whiterose.ac.uk/75046/

Version: Submitted Version

Article:

Chivers, Howard Robert orcid.org/0000-0001-7057-9650 and Hargreaves, C (2011)
Forensic Data Recovery From The Windows Search Database. Digital Investigation. pp.
114-126. ISSN 1742-2876

https://doi.org/10.1016/j.diin.2011.01.001

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or

licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the

article (e.g. in Word or Tex form) to their personal website or

institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are

encouraged to visit:

http://www.elsevier.com/copyright

Author's personal copy

Forensic data recovery from the Windows Search Database

Howard Chivers*, Christopher Hargreaves

The Centre for Forensic Computing, Cranfield University, Shrivenham SN68LA, United Kingdom

a r t i c l e i n f o

Article history:

Received 7 October 2010

Received in revised form

12 December 2010

Accepted 7 January 2011

Keywords:

Digital forensics

Desktop search

Microsoft windows

Database

Carving

a b s t r a c t

Windows Search maintains a single database of the files, emails, programmes and Internet

history of all the users of a personal computer, providing a potentially valuable source of

information for a forensic investigator, especially since some information within the

database is persistent, even if the underlying data are not available to the system (e.g.

removable or encrypted drives). However, when files are deleted from the system their

record is also deleted from the database. Existing tools to extract information from

Windows Search use a programmatic interface to the underlying database, but this

approach is unable to recover deleted records that may remain in unused space within the

database or in other parts of the file system. This paper explores when unavailable files are

indexed, and therefore available to an investigator via the search database, and how this is

modified by the indexer scope and by attributes that control the indexing of encrypted

content. Obtaining data via the programmatic interface is contrasted with a record carving

approach using a new database record carver (wdsCarve); the strengths and weaknesses of

the two approaches are reviewed, and the paper identifies several different strategies that

may be productive in recovering deleted database records.

ª 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Microsoft Windows Search1 provides a database infrastructure

anduser interface toallowusers to search forfiles, programmes,

emails, and Internet history records. As files are created,

accessed ormodified, they are indexed in a single database. The

data recorded includes standard filemetadata, such as path and

date-time information, content-specific metadata, such as the

addressofanemailor theresolutionofapicture,andasummary

of file content. The content summary may also allow a signifi-

cant part of an indexedfile’s content to be recovered; in the case

of small files such as emails, often the whole text is available in

the index. The database contains records for all the users in the

system, and retains index information about files and folders

thatareunavailable, forexampleremovableorencrypteddrives.

This rich content has the potential to provide the forensic

investigator with a valuable additional source of information

about the files available to a system; however, despite the

potential value there is little prior work on obtaining infor-

mation from this database, and almost none on the possibility

of recovering records that have been deleted.

The Windows Search system stores its records using

a Microsoft database technology known as the Extensible

StorageEngine (ESE), aboutwhichmuch is documentedand for

which Microsoft provide an application programming inter-

face (API). Tools designed to manage or query this database

provide one means of obtaining data from the search index,

and this is the main option which has been available to

investigators to date (see Section 2). However, similar to file

system forensics where data can be recovered either by

* Corresponding author.
E-mail address: h.chivers@cranfield.ac.uk (H. Chivers).

1 We acknowledge Microsoft copyright in the terms used in this paper to describe Microsoft products, including: Windows, Windows 7,
Windows Vista, Windows XP, Windows Search, Extensible Storage Engine (ESE), esentutl, Shadow Copy, Encrypted File System, and
BitLocker.

ava i lab le a t www.sc iencedi rec t .com

journa l homepage : www.e lsev ie r . com/ loca te /d i in

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 1) 1 1 4e1 2 6

1742-2876/$ e see front matter ª 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.diin.2011.01.001

Author's personal copy

traversing thedirectory structure or by carving files fromadisk

image, so too could database records be carvedwithout the use

of database indexing and page structure. Both methods have

potential, but the absence of an effective carving tool has pre-

vented a study of their respective strengths and weaknesses.

This paper presents such a study, based on practical results

from a newly developed carving tool (wdsCarve2).

This paper describes the two aspects of Windows Search

that may assist forensic data recovery:

� How the behavior of the search system provides investiga-

torswith opportunities to obtain information about files and

folders that are otherwise inaccessible, for example that are

on remote, removable, or encrypted drives;

� The possibility of recovering historical search records that

have been deleted from the search database.

The paper reports representative experiments that

demonstrate the behavior of Windows Search in practice.

Experimental evaluation of such systems cannot be exhaus-

tive; however, the results presented here provide the forensic

investigator with sufficient information to be able to reason

about the effectiveness of different recovery options for indi-

vidual cases and the likely outcome in terms of forensic value.

The results described here were obtained using Windows

7, andwhile some of the detail is different forWindowsXP and

Windows Vista, the overall conclusions are the same.

This paper is organized as follows. Section 2 describes

previous work, including related tools and sources of docu-

mentation, followed by Section 3 which defines some back-

ground terms and concepts. Section 4 describes what data are

indexed, the user actions that give rise to indexing, and what

is recorded about files and folders. This is followed by Section

5 which describes the prospects for data recovery, supported

by the results of practical experiments. Section 6 provides an

overview of the database record format, and describes the

carving strategy and how this ensures the reliability of carved

records; this is followed by a practical example of the recovery

of Internet history data in Section 7. A discussion of the main

forensic issues is presented in Section 8, and the paper is

concluded in Section 9.

Three appendixes describe specific procedures used in the

development of this paper: string searching of ESE

compressed fields (Appendix A), the process for recovering

database files and extracting records using the database API

(Appendix B), and the process for extracting records by carving

(Appendix C).

2. Related studies, documentation and tools

2.1. Documentation e interfaces and data formats

Both Windows Desktop Search (Microsoft, 2008; Microsoft,

2009), and the Extensible Storage Engine (ESE) (Microsoft,

2007) are documented on-line. The material on Desktop

Search is mostly in the form of user and administrator guides;

this may be useful to a forensic investigator, since it describes

when files are indexed, which may in turn identify Registry

keys and other configuration information. In contrast, the

information on ESE includes a complete reference guide to its

Application Programming Interface (API).

Two substantial studies of Windows Search (then known

as Windows Desktop Search) were carried out by Douglas

(2009) and Gordon (2009); these are still relevant and contain

a wealth of important material, despite recent updates to both

ESE and Windows Search. Gordon’s work is focussed on doc-

umenting the data artefacts used by ESE andWindows Search,

including entries in the Windows Registry, a description of

transaction files, and an overview of the data formats used to

store database records. In contrast, Douglas’ work shows how

to extract Desktop Search data from the database program-

matically, using the Microsoft ESE API.

Detailed documentation about the internal structure of ESE

and the database schema used by Windows Search can be

found in “Windows Search: Analysis of the Windows Search

Database” and “Extensible Storage Engine (ESE) Database File

(EDB) format specification”, which are available from the

libesedb project page (Metz, 2010a). Metz has also published an

overview of this information (Metz, 2010b), which includes an

example of an indexedWindowsMailmessage demonstrating

how the original content is made available in the autosummary

field.

From a forensic perspective, this documentation provides

a wealth of information about the data artefacts created by

Windows Search; however, investigators should be cautious

about attempting a manual analysis of such data. In particular,

themore extensive use of UNICODE inWindows 7 has resulted

in many of the file names and paths being compressed to save

spacewithin thedatabase, andasa consequence it isnowmuch

harder to identify known fields with string searches. (See

Appendix A for an approach to this problem.) The Windows

Search schema changes as Windows is enhanced, and so the

schemadescribed inthesedocumentsshouldnotberegardedas

definitive for any particular case; an investigator would be well

advised to extract and refer to the actual schema for a database

under investigation, rather than rely on prior documentation.

2.2. Data extraction tools

As noted above, Douglas (2009) provides the source code for

a tool to extract search data using the ESE API, and although

this software is no longer current, it does provide a rare

worked example of how to use the API. Gordon (2009)

describes the use of a viewer tool that was made available

by the Microsoft Law Enforcement Portal; this has similar

functionality to the tool developed by Douglas: it uses the ESE

API to read schema and data entries from the database file.

Another viewer has been developed by Woan (2008), which

supports both native ESE queries, and schema for Windows

Search and Windows Mail; this tool exports data to a comma

separated text file for further analysis. A different approach

has been adopted by Metz (2010a), who has developed

a portable library for accessing ESE, providing a means of

programatically accessing ESE and Windows Search data.

2 wdsCarve is a stand-alone tool which runs on Windows XP,
Windows Vista and Windows 7; it is available to forensic investi-
gators and researchers from the first author, and is able to recover
database records via the ESE API, in addition to record carving.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 1) 1 1 4e1 2 6 115

Author's personal copy

A related tool is esentutl, which is a standard part of

Windows distributions, and provides a means for examining

and recovering ESE databases, but not extracting actual data.

In the context of a forensic workflow its primary uses are to

identify required log files and to recover an inconsistent

database file. It is necessary to use a version of esentutl which

matches that of the database, since it uses undocumented

features in the ESE API.

All these tools access an ESE database via its API, and rely

on an intact database page structure to do so. The limitations

of this approach are that there are no means of recovering

deleted records from within the database, or of recovering

data from fragmentary or badly corrupt databases. As dis-

cussed in the introduction, it is also possible to use a carving

process to extract records fromdata fragments or inconsistent

databases, which is described in this paper.

3. Background and terminology

Windows Search (formallyWindowsDesktop Search) uses the

Microsoft Extensible Storage Engine (ESE) as a database server,

which stores a search index in a single database file, Win-

dows.edb. Each file that is indexed has a separate recordwithin

the database. The database uses log files to record ongoing

changes prior to the database file being updated; this process

is described in more detail in Section 5.3 since these log files

contain useful historical evidence.

The indexer scope is the set of folders and files that

Windows Search will index. The scope is explored further in

the next Section (4.1); it typically includes all user folders,

and excludes the Windows system folders. The indexer

scope can be changed by a user explicitly using the indexer

applet via the control panel, or by other actions on files. The

indexer also has a number of attributes that control how

indexing is carried out, they include attributes for file types

and a single attribute that determines if encrypted content is

indexed.

The data stored by ESE for Windows Search is defined in

a schema (or data definition) which sets out all the data items

thatmay be stored in a single database record. In conventional

database terminology a complete single record may be

described as a ‘row’, and individual data items as a ‘column’;

here the terms record and data item or field are preferred, since

although over 300 fields are needed for the distinctive attri-

butes of all possible record types (e.g. text, image, email.),

each record contains only the few tens of data items relevant

to its type.

One important field in the schema is autosummary, which is

used to store an extract of a file’s content.

One generic mechanism for recovering deleted data is the

Windows 7 incremental backup service, known as Volume

Shadow Copy Service, Volume Snapshot Service, or VSS; this

records incremental periodic backups of in-scope volumes,

which are presented to users as Restore Points. This paper uses

the term Shadow Copy to refer to a retrievable restore point,

even though the restore point is not usually a true full copy. In

Windows 7 the main system drive is protected by shadow

copies on a weekly basis; most user and system data are

protected but the pagefile is excluded.

4. Indexed data

This section describes which files are indexed by Windows

Search, the user actions that may give rise to indexing, and

what data are recorded about each file. The scope of the

indexer is described first, followed by an explanation of how

the indexing varies with files placed in different parts of its

scope, and with different file and indexer attribute settings;

a specific experiment explores these aspects of its behavior

with respect to encrypted folders.

4.1. Indexer scope

The information in this section summarizes information in

Microsoft administration guides and other technical

resources, and has been also confirmed by experiment.

Indexing of file metadata and content in Windows 7

depends onwhich files are within the scope of the indexer, file

attributes that permit content indexing, and an index attri-

bute that enables the indexing of encrypted content. The

default scope of the indexer includes:

� The Internet Explorer history, which includes those items that

would appear in the history pane of Internet Explorer; this is

a far smaller set of records than could be obtained from

analysis of the browser history files and caches (index.dat

etc), but it does record the sites visited, and the date and

time of the last visit. Recovery of deleted search database

records may sometimes include previous record versions

with the date and times of previous visits to the same site.

More significantly for the forensic investigator, this

history also records shortcuts to any computer files that are

accessed via Windows Explorer, or via many standard file

system actions (e.g. saving from an application). As

a consequence this history provides metadata relating to

files that are not normally within the indexer scope (see

Section 7, below). This includes encrypted files, and may

include files downloaded and then explicitly stored by

browsers other than Internet Explorer (e.g. Chrome).

� User emails; because these are relatively short documents, it

is likely that the search index contains the entire contents of

users’ emails.

� The start menu shortcuts to programs on the system, which

may provide information about the system configuration

and its history.

� Offline files, which are those designated as such for

synchronization/offline management. The default behavior

of Windows Search is to not allow remote indexing of

network files, so shared network files cannot usually be

added to a library, or selected for indexing in the indexer

applet. However, a user may use the context menu (right

click) to make a remote network drive available offline, in

which case the local copy is within the indexer scope. The

indexing of shared network files may be enabled by a group

policy, although it would normally be imprudent for

a system administrator to do so because of the network

traffic that may result.

� All user files, which by default are those included in a \Users\

sub-directory, excluding application data (\Appdata\). On

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 1) 1 1 4e1 2 6116

Author's personal copy

a live system the search interface restricts search results to

the current user; however, the search database contains

records for all users. An interesting by-product of this scope

is that the user Registry hive (HKEY_CURRENT_USER, stored

in ntuser.dat) is within scope, although its record in the

search index provides little more than the last time of

update.

The experiments described in this paper do not include

applications (e.g. browsers, email) other than standard

Microsoft components; however, correctly configured appli-

cations will store user data in the user’s folders, and hence

within the indexer scope, and saving files from non-Microsoft

browsers may generate history records, as described above.

In general, the record for any file within the indexer scope

is persistent within the database; if it is unavailable to the

systemwhen a user makes a query, then results are shown as

unavailable, but the records are still retained.

Apart from adding a new location to the indexer scope by

explicit action3, or by inheriting an administration policy,

a user may permanently add items to the indexer scope in

other ways:

� By selecting ‘add to index’, when prompted to speed up a file

content search;

� By adding a folder to a Library.

� By mapping a new device to a drive letter which is already

within the index scope.

Windows 7 has a ‘Library’ construct which is essentially

a set of links or shortcuts to popular parts of the user’s file

system. Adding a folder to a library automatically adds the

folder to the indexer scope; however, removing a folder from

a library does not remove the folder from the scope. Folders

added in this waymay include external devices and encrypted

volumes, including those on encrypted disk partitions.

If a user adds a drive letter to the index scope, for example

to search a datacart assigned to that letter, then that drive

letter will remain in scope and any devices that are subse-

quently mounted to that letter will be indexed. For example, if

a user mounts a non-Microsoft encrypted partition (e.g.

TrueCrypt, BestCrypt or PGPDisk) to a drive letter within the

index scope, this mistake is likely to result in full content

indexing of the encrypted data, since the file attribute that

allows content indexing is usually set by default.

All these mechanisms may lead to users unwittingly

creating persistent records of remote, removable or encrypted

devices.

Forensic investigators should also be aware that at present

Windows Search does not index the content of files brought

into scope via a reparse point; for example, if an encrypted

TrueCrypt partition is mounted to a \Users\sub-folder, its

contents would not be indexed, despite that fact that the sub-

folder is within the indexer scope.

Detailed Registry analysis is beyond the scope of this paper,

but for completeness, the most significant Registry settings

are under HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\:

� Attribute to control indexing of encrypted content:

\Windows\Windows Search\Preferences

� Location of Windows.edb and other database files:

\Windows Search\Databases\Windows

� Scope of indexer:

\Windows Search\CrawlScopeManager\Windows\

SystemIndex

4.2. Indexer behavior

As noted above, the behavior of the indexer is controlled by

three main factors:

� If the data are within the indexer scope;

� A file attribute that permits content indexing (accessed via

file properties);

� An indexer attribute that permits the indexing of encrypted

content.

These may be modified by further attributes of the indexer

that allow indexing of file metadata and file content by file

type. The indexer is controlled by these attributes, regardless

of whether the file is in a folder on a local, removable or

encrypted drive. If such a file is indexed then the database

records are retained even when the file is temporarily

unavailable, due to the drive being disconnected, or the

encrypted folder remaining locked.

Since there is an indexer attribute that is specific to

encryption, the behavior of the indexer is more completely

explored by evaluating its performance over a range of

different encryption scenarios, as described below.

The ways in which a file or folder may be brought within

the indexer scope are described in Section 4.1, above.

The file attribute is often set by default, otherwise if

content indexing is required it must be set explicitly; the

mechanisms that may bring a folder into scope (libraries and

agreeing to indexing) do not set this attribute as a by-product.

It may be set on the properties sheet of the file4, inherited via

a parent directory, or set by an administration policy.

The indexer attribute that permits indexing of the content

of encrypted files is usually disabled by default. Attempting to

set this attribute5 results in the same warning as contained in

the Microsoft documentation: that this should be set only if

the index database is BitLocker protected, otherwise file

content may be recovered from the index.

The behavior of the indexer was explored by experiment. A

set of encrypted files was created, both in and out of indexer

scope, and using folders encrypted using Encrypted File

System (EFS) and also disk partitions encrypted using

BitLocker, together with varying the index permission attri-

butes on the folders and the indexer.

The resulting content of the index is summarized inTable 1;

if the file is in scope, then metadata will always be indexed

regardless of encryption. For EFS encryption both the file

attribute that enables content indexing and the indexer

3 The indexer scope is controlled via Control Panel0 Indexing
Options.

4 File Properties0 Advanced0 Allow this file to have contents
indexed in addition to file properties.

5 Control Panel 0 Indexing Options 0 Advanced 0 Index
Settings0 Index Encrypted Files.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 1) 1 1 4e1 2 6 117

Author's personal copy

attribute that enables indexing of encrypted content must be

set to allow the file content to be included in the index;

however, for BitLocker, if the file attribute is set then content is

indexed regardless of the indexer attribute.

The surprise here is that BitLocker content may be indexed

regardless of the indexer attribute. Even if content is

unavailable, metadata is available in a wide range of circum-

stances, and the resulting file and path names, access times,

and other attributes such as picture resolution, may provide

valuable information about the content of encrypted folders

and volumes.

More significantly, this experiment highlighted the

importance of another source of information about encrypted

files. When a file on an encrypted volume is accessed via

Windows Explorer, then an Internet history record is created

in exactly the same way as if the user had accessed a remote

Internet site; this history record is a ‘shortcut’ to the file and is

separately indexed regardless of the encryption status, file

attributes, or indexer scope of the original file. Within the

index database there are therefore two sources of file meta-

data: the record of the original file and the record of the

Internet history file which is created when the original file is

accessed. This further increases the likelihood of recovering

file information from encrypted or otherwise unavailable

folders.

Note that the date-time information for these two file

records is complementary: themetadata for a directly indexed

file reflects the metadata stored in the file system, while the

indexed history record includes the last access time, even if

this has not been updated in the file metadata. As noted

above, if an encrypted volume is not made available (e.g.

a BitLocker partition that is not unlocked) then the data

remains in the search index.

5. Recovery of deleted database records

When files are deleted from a system, the Windows Search

service is notified and deletes the corresponding record in the

search database. An important question for a forensic inves-

tigator is therefore: to what extent can records deleted from

an ESE database be recovered? This section reviews why such

data may remain available, and as a consequence where it

may be found.

The information in this section was obtained by experi-

ment, by directly writing, reading, and deleting sequences of

database records using the ESE API, allowing direct manipu-

lation of database contents. Each sequence of tests was

reviewed by:

� Analyzing snapshots of Windows.edb taken after each

action, to observe how database pages are managed;

� File Carving against the whole system image to determine

where records may be found.

These experiments identify where deleted records may be

discovered; the importance of the sources of data identified

here will, of course, vary from case to case. The results of

these experiments will follow a brief summary of the internal

structure of an ESE database.

5.1. Overview of the ESE database structure

The unit of storage allocation in an ESE database is a page.

Different versions ofWindows Search use different page sizes;

the current Windows 7 version uses a page size of 32 kbyte.

Database records are stored within pages, and with the

exception of long records (see Section 5.3) all records and

references must fit within a single page.

ESE database records are stored in a structure known as

a B-tree, the structure of which is shown in Fig. 1. The ‘B’

stands for balanced and this signifies that the path length

from the root through internal nodes to every data record is

the same; in other words finding any record via the tree

structure involves the same number of decisions. The form of

Table 1 e Data directly indexed from encrypted files. The text describes how file metadata may also be recovered from
indexed Internet history records, providing information about files that are outside the indexer scope.

Index attributes set EFS encrypted BitLocker encrypted

In Scope Out of Scope In Scope Out of Scope

None Metadata e Metadata e

FileeIndex Content Metadata e Content e

FileeIndex Contentþ Indexere

Index Encrypted

Content e Content e

Root

Internal

Leaf

page

pointer

data record

Fig. 1 e A Balanced Tree. A balanced tree consists of a root

page, zero or more layers of internal pages, and leaf pages.

Pointers in the root and internal pages form a tree structure

allowing navigation to data records stored on leaf pages.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 1) 1 1 4e1 2 6118

Author's personal copy

B-tree used in the ESE also allows records to be navigated

sequentially, from page to page, so the order of primary keys

in leaf pages is ascending.

In order tomaintain this structure, when records are added

that overflow a page, the page may be split, resulting in an

additional pointer at the internal node, this may also be split,

and so on. If the changes involve adding a new internal layer,

the tree is adjusted to ensure that it remains balanced. The

process of rebalancing is not carried out for every record entry

or deletion, because root pages can store many records and

intermediate pages can store a large number of pointers;

however, a balanced tree is constantly re-structured, and the

resultant copying can both preserve older copies of records in

unallocated space, and also overwrite deleted records (see

Section 5.2).

The B-tree shown here allows navigation to records using

the primary data key, which in the case of Windows Search is

the record identifier (ID). Generally record IDs are incremented

every time a new record is added.

A database table may be thought of as a series of records

(rows) with a consistent schema (set of column definitions),

but actually several trees are used to implement and manage

a table; these include a space tree which records spare pages,

usually interspersed between leaf pages, and a large record tree

which stores data items that are too big to fit in a standard

record. An ESE table may also include secondary indexes.

5.2. Database page and record management results

This section reports the results of the experiments described

above: adding and deleting database records.

Fig. 2 shows the state of a database table having added 12

records, then deleting three. The root page for this table is 33,

and for the sake of experiment small database pages and

recordsareused.The record ID (e.g. R1) is given for each record,

together with the byte range occupied by the record (the

bracketed hexadecimal range). Shaded records are accessible

via the database API, in other words they remain part of the

database, while unshaded records with a bracketed record ID

remain in unallocated space, and can potentially be recovered

by carving. A small amount of space at the start of each page is

consumed by a header and short tag. Page 33 carries two short

records which point to other pages in the structure.

When the first 6 recordswere added to this table, theywere

placed in page 33. Records do not flow continuously between

pages, butmust be heldwithin a single page, so adding the 7th

record required a new page. However, the tree structure

requires that pages are either leaf nodes, which contain data

records, or internal nodes, that provide the tree structure. As

a consequence, when the 7th record was added it was

necessary to copy all the existing the records to page 34, in

order to assign page 33 to an internal node. (In this case 7

records will fit on a leaf page, but not a root page, because the

latter has a bigger header.)

At this point page 33 contained a single reference to page

34. As more records are added, references to new leaf pages

are required; these references are very short, so most of the

original records are not overwritten. It is common, even in

large systems that have been subject to change over a period,

to find that a few very early records still remain in internal

pages in this way.

When page 34 was full, page 37 was allocated as a new leaf,

and a second reference added to page 33. The pages between

34 and 37 are allocated to a space tree which allows space for

future changes within the table.6

Records 4, 8 and 12 were deleted from the database, and

although they are no longer part of the database index, they

remain in unallocated space.

If further records were added to the system starting from

the state shown in Fig. 2, then the first new record overwrites

the space occupied by the deleted record 12, and is numbered

from the current highest ID: in this case ID 12 is re-used, as

well as the space occupied by the old record 12. Microsoft

documentation is unclear about ID re-use, and some

commentators claim that IDs are not re-used; however, in

these experiments, re-use of IDs within the record set (4 and 8

in this example) was never observed, whereas IDs deleted

from the top of the set were consistently re-used.

The space occupied by deleted records 4 and 8 is not re-

used until this part of the database is re-organized, for

example to re-balance the tree.

In summary, these experiments show that mechanisms

existwhich result in complete, butunlinked, recordspersisting

Page 33 {...37}

{435 - 831} (R2)

{832 - C2E} (R3)

{C2F - 102B} (R4)

{102C - 1428} (R5)
{1429 - 1825} (R6)

Page 34 {...2b}

R1 {2c - 427}

R2 {428 - 822}

R3 {823 - C1E}

{C1F - 101A} (R4)

R5 {101B - 1416}

R6 {1417 - 1812}

R7 {1813 - 1C0E}

Page 37 {...2b}

{2c - 427} (R8)

R9 {428 - 822}

R10 {823 - C1E}

R11 {C1F - 101A}

{101B - 1416} (R12)

Fig. 2 e Adding and Deleting ESE Records. Three database pages after 12 records have been added and three (4,8,12) deleted.

Shaded records are those that can be accessed by the database API, unshaded records are those that remain in unallocated

space.

6 Recall that the leaf pages must be able to be read sequentially,
as well as via the database B-tree.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 1) 1 1 4e1 2 6 119

Author's personal copy

within the database in unallocated space: in space pages, in

unallocated space on pages dedicated to internal pages, and in

deleted records within leaf pages. Section 7 below provides

a practical example of the recovery of such records.

5.3. Transaction and cache management

The Extensible Storage Engine is designed to process high

transaction volumes and be recoverable from failures, such as

a system crash while data are being written to disk. The use of

log files to allow recovery from a crash are well known, but

both the transaction logs and updated database pages are held

in memory caches for immediate use, and written to disk in

slower time (Baher, 2008). A typical transaction sequence is

shown in Fig. 3.

An incoming transaction is first held in amemory log cache

(1), then any necessary pages are brought intomemory (2) and

the transaction applied (3), and probably the cached log record

updated to reflect the transaction7. At this stage the only

record of the transaction is in memory, and other database

transactions will make use of any cached database pages that

have been updated in this way. The writing of cached log

records to the log (4), and ‘dirty’ (i.e. modified) database pages

back to the database (5) are not time critical, so these updates

take place some time after the transaction. Writing to the log

files has a higher priority, since if writing to the database file

fails the database file can be recovered to a consistent state by

replaying the transactions in the log files from a known

checkpoint. The log cache is flushed to file on normal shut-

down, whereas the database file (Windows.edb) may not

necessarily be updated and may be left in a ‘dirty’ state. Both

log and database records use the same format, so records from

either can be recovered by carving.

The record carver was used to directly process a series of

system images to identify other potential sources of search

record data. Database records are found in:

� The database file: Windows.edb;

� Associated log files: MSS.log and MSSnnnnnn.log;

� Shadow copies: \System Volume Information\;

� Unallocated space within the file system;

� System memory, if a memory image is available;

� Other memory records. e.g. pagefile.sys, crash dumps and

hibernation files.

If access to the database via an ESE API is required, then

because the Windows.edb file is likely to be in a dirty state, it is

usually necessary to update the file to a consistent state before

it can be accessed; this requires the relevant log files, and also

a checkpoint file, as described in Appendix B.

Practical experiments confirm thatwriting to log filesmay be

significantly delayed: a small number of transactions added to

a small index (1000 s of records) produced no change in the

associated log files, and daily images taken for a week after the

transaction still showed no change, although the records could

be carved from memory. Controlled shutdown of the system

flushed the records toa logfile, but ‘pulling theplug’ didnot. This

behavioroccursbecause therearenumberof internal log caches,

and they are flushed onlywhen a cache is full. If it is critical that

all current transactions are gathered, then a memory image, or

a controlled shutdown is required. If neither of these is possible,

then recent records may be found in the pagefile.

Shadow copies, and records in file system unallocated

space are discussed further below.

5.4. Long data items

ESE supports two long data types, binary and text, which are

used to store data items between 256 and 2GByte long. These

are stored in a separate B-tree and referenced by IDs in normal

records; the general arrangement is shown in Fig. 4.

� Long data items have little structure, other than that

provided by the ESE page; as a consequence, in the absence

of the database B-tree and page structure, it is difficult to

reliably carve such items.

� The ID used to reference a long data item is simply a 4-byte

incrementing number; given the established re-use of

record IDs it is possible that long data IDs are treated simi-

larly. If long item IDs are re-used then there is no reliable

way to link a long data item with a deleted record.

It is possible for several long items to be stored on a single

page, and also possible that a long data item may require

several pages; because of this the long item tree indexes long

data items by both ID and byte offset.

Long data items are important from the forensic perspec-

tive, since the long binary is used by Windows Search to store

autosummary data, from which file content may be recovered.

Unfortunately this storagemechanism poses some difficulties

for data recovery, in particular:

Log Cache

Page Cache

Transaction

xxxxxx
.log

Windows
.edb

(1)

(2)

(3)

(4)

(5)

Memory Disk

Fig. 3 e The Propagation of Transaction Data into Disk

Files. Transactions and updated database pages are cached

in memory, then written to disk later.

7 This is not certain from documentation, but it is evident that
there are two data schema used in the log files, one of which is
written immediately, and the second of which is identical to the
database record.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 1) 1 1 4e1 2 6120

Author's personal copy

These factors suggest that it is likely to be unreliable, and

hence inadvisable, to carve long data types, or to link any such

types with deleted records for forensic purposes. As a conse-

quence, the best strategy for the forensic investigator is to use

a combination of approaches: to maximize the extraction of

file content via the database API, then search for metadata

that indicates the presence of other files, deleted records, and

timeline events, using a record carver.

5.5. Shadow or backup copies of the database

The default shadow volume protection provided by Windows

7 includes the Windows Database Search folder in its scope;

shadow copies therefore provide a potentially important

source of historical search records. As noted above, carving

from a disk image recovers some database records directly

from shadow copies; however, if possible, recovering the

related files then processing these (via API or carving) is likely

to produce more complete results than simply carving from

\System Volume Information\:

� Recovery of the database file, Windows.edb, may also allow

the recovery of file content; and

� Since the shadow volume is an incremental backup, it may

fragment some records, and hence not all the records

available from shadow copies may be carved directly from

\System Volume Information\.

The required files (Windows.edb, *.log and MSS.chk) can be

obtained by forensic recovery tools, or by building a clone or

virtual copy of the machine under investigation, then recov-

ering the earlier system state, for example by using the prop-

erties applet for the folder containing the search files to copy

out previous versions. (See Titheridge, 2008; Hargreaves et al.,

2008 and Crabtree and Evans, 2010 for methods in detail.)

5.6. Records in unallocated space in the file system

It is rare to find database records in unallocated space in the

file system because of the way the Windows.edb file is

managed; records were only discovered in unallocated space

after experiments in which the search index was manually

forced to re-build.8

Normally, as the database grows, more space is obtained

from the file system, which is then managed by ESE as data-

base pages, and is not normally released if the number of

records in the database is reduced. Rebuilding the index

releases some or all of the old file allocation for Windows.edb,

and allocates a new default sized file, which is zeroed by ESE

as part of its initialization. No old records are therefore found

in a rebuilt database, but some may be recovered from unal-

located space in the file system.

5.7. Other data management issues

ESE has a number of data management features that may

restrict the data available to a forensic examiner, including

page scrubbing and log file deletion.

The page-scrubbing feature is intended to overwrite

records that have been deleted; however, there is no docu-

mentation or practical evidence to suggest that it is used by

Windows Search. Microsoft Exchange uses scrubbing as part

of the backup process: data are first written to backup, then

pages in the live database are scrubbed.

There are a number of options for log file management. In

practice the log files in Windows Search are deleted after they

have been incorporated into the database; usually the only log

files found in the Windows Search directory are those neces-

sary to update the current Windows.edb.

A discussion of the forensic significance of the sources of

data describedhere is given in Section 8, following a description

of the carving strategy and apractical example of data recovery.

6. Carving strategy and reliability

The purpose of record carving is to extract database records

from data which are not necessarily structured by ESE B-trees

or pages. From the forensic perspective it is important that

carved records can be relied on to be to be genuine database

records, rather than randomartefacts. This section introduces

the database record structure, then describes how this facili-

tates reliable record carving.

6.1. Record structure

The structure of ESE records is flexible, allowing for fixed data

items, which are normally present and fixed size, variable

Record
Tree

Long Data Item
Tree

Items longer than 1
page are indexed by
offset and ID

Records contain data IDs that
reference individual long data items

Fig. 4 e Long Data Items. A separate tree is used to store long data items, which are referenced by an ID in the parent record.

8 Control Panel0 Indexing Options0 Advanced0 Rebuild.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 1) 1 1 4e1 2 6 121

Author's personal copy

data items, which are normally present but of variable size,

and tagged items, which vary depending upon the record. In

the Windows Search application, tagged items allow a large

number of data items to be defined, only a few of which are

used for any particular record; for example, a record of an

image file may have a data item which records resolution,

whereas one relating to an address book contact may record

a telephone number. ESE allocates space to store tagged data

items only if they are required for a particular record.

An overview of the record structure is given in Fig. 5. The

header ends with three fields that define the number of fixed

data items, the number of variable data items, and an offset to

the first field in the variable record space. Given the number of

fixed items and their order, the offset to the variable item

space can be calculated from the database schema; however

this is also included in the header, presumably to improve

record navigation speed.

The variable item space is not described in detail here,

since it is not used in the current Windows Search schema,

although it appears in earlier versions. It includes a series of

offsets that define the lengths of individual data items, fol-

lowed by the data items themselves.

The tagged item area is divided into two parts, the tags

themselves, and the corresponding data items. Tagged items

are present only if they are required for the specific record;

however, most Windows Search records have in excess of 20

tagged data items since the tagged fields include generic items

such as path, folder and file names. Each tag specifies the ID of

the data type, which determines how the data should be

interpreted, and the offset at which the data item begins.

Depending on the ESE version and page size, tags may also

include flags, as may the first byte of the data item; generally

these flags specify the format in which the item is held, for

example if the data item is replaced by a reference to an item

stored in the long page tree.

6.2. Carving strategy

The navigation information built into the record structure

(offsets, etc) can be checked against the data specification for

the application, in this case the Windows Search schema. For

example, given the number of fixed records specified in the

header, their total length can be calculated from the schema

and checked against the offset which is also in the record

header. Similarly, the IDs of tagged data itemsmust be present

in the schema, and their lengths must be consistent with the

range of lengths defined for those items.

The carving process is divided into two parts: a primary

check and a secondary check. The primary check is for

consistency between the schema and the three values at the

end of the header; specifically that:

� The fixed record index is valid.

� The variable record index is valid.

� The offset is consistent with the fixed records.

Given the currentWindowsSearch schema, if the data to be

carvedwere random, then the expected false alarm ratewould

be the product of the likelihood of selecting each of the three

fields at random. There are 8 choices for the number of fixed

records, 1 possible value for variable records, and 1 for the

offset given knowledge of the fixed records. The primary error

likelihood is therefore9 8=256 � 1=256 � 1=65536 ¼ 1:86 � 10�9.

The reliability of the forensic analysis does not depend on

this figure, because of the additional checks described below;

however, its efficiency does, and although practical (i.e. non-

random) data patterns produce much higher primary false

alarm rates, the carving process remains sufficiently efficient.

The secondary process is to ensure consistency between the

schema and the tagged fields while extracting the data. In

Windows Search there are currently 389 possible tag data types,

and the maximum uncertainty in data length is between 1 and

255bytes. Themaximumpossibility of anerror froma single tag

field is therefore: 389=65536 � 255=65536 ¼ 2:3 � 10�5.

The total likelihood of carving a record in error is this figure

to the power of the number of tags in the record, which nor-

mally exceeds 20. Even allowing that practicalmachine data is

far from random, and that these figures are slightly simplified

because of the presence of flags within tags in earlier versions

of Windows Search, it is clear that any carved record with

even a small number of tagged data items is very unlikely to be

carved by chance.

These calculations relate to the correct carving of ESE

records; wdsCarve is also able to carry out further consistency

checks against the Windows Desktop schema.

7. A practical example

Toprovideaconcrete exampleofwhatdata recovery ispossible,

this sectiondescribes a simple experimentwherea collectionof

files are indexed, deleted, and a range of record recovery strat-

egies attempted. The files were generated by browsing the

Internet using Internet Explorer, in a system which had previ-

ously indexed approximately 18,000 user files. The browsing

was carried out over three days, after which the index database

was allowed to stabilize until ‘Indexing Complete’ was reported

Header

...

ID Last Fixed Item

ID Last Variable Item

Offset to Variable

1 byte

1 byte

2 bytes

Fixed Data Items

Variable Data Items

Data Type ID

Offset to Next Item

2 byte

2 bytes
Tags

etc

Data TypeTagged
Data
Items

etc

Fig. 5 e Record Structure Overview. Three data areas (fixed,

variable, and tagged) are framed with content and

navigational information.

9 The divisors of 256 and 65536 are the number of possibilities
for a byte and word respectively.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 1) 1 1 4e1 2 6122

Author's personal copy

by the indexer applet. The files associated with the index were

copied out, recovered using esentutl and 281 ‘iehistory’ records

were extracted as the reference set.10

The Internet History was then deleted via the browser tool

menu, and the indexer quickly reported a corresponding

decrease in the total number of items indexed. The system

was then shutdown normally, and the database files recov-

ered. In this case a normal shutdown was chosen since the

cache is flushed to the logs on shutdown and this ensured the

availability of log files, allowing evaluation of the extent that

bringing the database to a consistent state removed previ-

ously deleted data.

Two sets of files were recovered: those that could be

obtained directly from the image, and those that could be

recovered via a shadow copy, the restore point for which was

taken close to the end of the browsing session tomaximize the

possibility of recovery via this mechanism.

The results for record recovery are given in Table 2. Carving

data from the Windows.edb file as recovered allowed recovery

of all the index records relating to the deleted Internet history;

it is clear that this file had not been updated since the Internet

history was deleted. When the file was manually recovered

using esentutl then access via the database API resulted in only

a single remaining history record: essentially the whole

Internet history had been deleted from the database.

However, it was still possible to carve a high percentage of the

original records from this file, so in this case, re-organizing the

database tree had resulted in the loss of only 7% of the deleted

records.

Since the shadow copy had been taken immediately before

the Internet history was deleted, recovering files from the

shadow, recovering the database, and then accessing via the

API recovered 100% of the deleted records, as was expected.

Another approach to recovering lost records is to simply

carve fromlogfiles, rather thanthedatabase; these results show

that this is relatively successful. Carving from logfiles recovered

via shadow produced 76% of the original records, whereas

carving fromthose left after deletion recoveredonly 25%. This is

because log files are produced in sequence, and deleted after

they are no longer needed; the first two logs in sequence had

been deleted by the time that the history was deleted, but could

be recovered via the shadow copymechanism.

These results should not be taken as an expectation of the

level of recovery that could be expected in practice, since the

timing of events of interest, seizure, and shadow copies, will

significantly change the likelihood of record recovery.

However, it does demonstrate three relatively independent

strategies for the recovery of deleted search records:

� Using the database API to read files from a recovered Window-

s.edb file which is obtained by restoring a shadow copy.

Assuming the availability of a well-timed shadow copy,

using the API has the benefit of providing content summa-

ries (autosummary) as well as metadata.

� Carving data directly from a recovered Windows.edb file. Even

files that have been updated, either recovered manually or

updated by the system, retain records that may be obtained

by carving.

� Carving from a collection of log files. This may be particularly

effective in obtaining a system history if a full set of log files

can be recovered via Shadow copies.

8. Discussion

The results presented in this paper are indicative of the likely

behavior of Windows Search and ESE. The search index

provides a source of information about parts of the system

that may otherwise be unavailable to an investigator, and

about the history of the system and the user’s behavior. This

section will review some important issues from the perspec-

tive of a forensic investigator.

8.1. Unavailable files

Files may be unavailable to an investigator because they are

encrypted, or because they are on a device which is unob-

tainable, such as a remote network drive or a removable hard

disk. Windows Search may retain an index of these data

sources even when they are not available to the system,

potentially providing a unique source of evidence.

Windows protects the content of files (as opposed to the file

metadata) from inadvertent indexing by requiring a file attri-

bute to be set to permit content indexing; in the case of

encrypted files an indexer attributemust also be set. However,

there are many situations in which file content or metadata

will become available to an investigator. Importantly, users

may not be aware of the consequences of improving their

search performance or making shared network folders avail-

able offline, or that deleting folders from libraries does not

remove them from the indexer scope. Users may also re-use

drive letters in such a way as to make encrypted content

available within the search index (see Section 4.1).

It is notable that for encrypted partitions using BitLocker,

and for non-Microsoft encryption products that are inadver-

tently brought within the indexer scope, the indexer encryp-

tion attribute fails to protect the content from indexing.

A further important source of metadata about unavailable

files is the Internet history, which records files as they are

accessed. It is important to note that it is the history that is

indexed, not the original files or folders, so the time date infor-

mation has a different significance, but nevertheless this

provides a further source of information about otherwise

unavailablefiles, andtheuser’sbehavior inaccessingthosefiles.

Table 2 e Recovery of deleted records.

Process Records % of Total

Files remaining after deletion

Windows.edb via carving 281 100%

Recovered Windows.edb via API 1 0.3%

Recovered Windows.edb via carving 261 93%

*.log files via carving 70 25%

Files recovered from shadow copy

Recovered Windows.edb via API 281 100%

*.log files via carving 214 76%

10 The process for file preparation and recovery is given in
Appendix B.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 1) 1 1 4e1 2 6 123

Author's personal copy

8.2. Deleted files or folders

Records relating to deleted files will quickly be removed from

the index that is available to a user, and eventually removed

from the database itself. The rate at which these records are

actually destroyed by re-organization of the database obvi-

ously depends upon the rate of change in the system; in the

experiment reported in Section 7 approximately 7% of the

carveable deleted records were lost when the database was

recovered; the likelihood therefore is that recently deleted

files can be recovered, but deep histories are unlikely to persist

in any volume within the database.

8.3. Data recovery strategy

The best strategy for recovering database records relating to

deleted files will be case-dependent; however, the example in

Section 7 demonstrates that under favorable circumstances it

is possible to extract a high percentage of deleted records by

threedifferent strategies: using the databaseAPI to obtain data

from files retrieved from shadow or backup records; carving

deleted records from an existing database; or carving from

recovered logfiles.The relativevalueof these threeapproaches

will vary from case to case, depending upon the availability of

previous database copies and the time period of interest.

For most investigations, extracting records via the data-

base API will be the method of first choice, since it allows the

possibility of recovering file content as well as metadata. The

source database can be the current system, or old versions

retrieved via shadow or backup recovery mechanisms. Note

that accessing data via a recovered database can occasionally

reveal records that are not available by carving, since the

recovery process is able to read records in the log files that are

not in the database record format.

Record carving may be the priority if the investigator is

concerned to probe very recent activity e perhaps in the

30 min prior to seizure, where the only records may be in

memory or pagefiles, or where there is suspicion that signifi-

cant file deletions, perhaps including forensic overwriting,

have taken place. Another situationwhere record carvingmay

be indispensable is if the Windows Search index has recently

been rebuilt, in which case carving from the disk image may

retrieve records from unallocated file system space.

8.4. Seizure considerations

Delayedwriting to loganddatabasefiles (seeSection5.3),means

that the database file is never guaranteed to be in a clean state;

however, cache data are flushed frommemory into the log files

by executing a normal system shutdown. ESE is designed to

survive system crashes, so if the seizure method is to ‘pull the

plug’ then there is a small risk thatWindows.edb will be impos-

sible to recover, but more likely that recent data will be lost.

One other seizure opportunity is to obtain a memory

image; given such an image it is possible to carve current

database records from the in-memory copy of ESE, thus

preserving what would otherwise be lost.

Almost every aspect of the search systemcan be configured

by the user or extended by a programmer, including file types,

locations, and indexer scope; in a non-standard installation an

investigator may need to review the Registry settings to

determine the location of the index database and its log files.

8.5. Future work

Further work is needed to understand data formats used in log

files, since it is clear from compressed field searches that

index data are first written to these files in a format which is

different from a standard database record, and is hence not

recovered by the current carver.

It may also be possible to revisit the feasibility of carving

content; the conclusion here, that such carving could not be

reliably linked to file metadata, is likely to be true in general,

but a full understanding of how and when log data IDs are re-

used may allow the recovery of some data that remains in

place within the database after a recent deletion.

Finally, ESE is used for other important applications,

including Microsoft Exchange; wdsCarve can accommodate

different schema, so extending this work to other applications

is a potentially worthwhile avenue of research.

9. Conclusion

This paper has reviewed the recovery of data from Windows

Search from the perspective of a forensic investigator.

Obtaining records from the search database, either via carving

or via the Extensible Storage Engine API, provides a potentially

valuable source of evidence about files or folders that are

inaccessible because they are encrypted, or on unavailable

removable storage.

Important new results concern the feasibility and value of

record carving: finding database records in unstructured data.

Carving allows the discovery of records from a range of new

sources, including corrupt database files, log files and

memory. Importantly, carving is shown to provide new

strategies for the recovery of deleted database records,

providing three relatively independent strategies to the

forensic investigator for the practical reconstruction of

historical information about files and folders in a system.

Appendix A. String searching

Most of the strings stored in ESE records in Windows 7 are

compressed; however, short strings use a simple form of

compression which allow investigator to carry out string

searches, provided that the required text occurs at the start of

the string. All that is needed is to search for the compressed

text. This attachment gives a simple example to make the

compression process explicit.

For example, if the required text is ‘/2010’, then the process

is as shown in Table 3. The ASCII characters are regarded as 7-

bit values by truncating their most significant bit, then packed

into an 8 bit stream as shown. To find the string ‘/2010’ the

investigator would search for the hex values ‘2F 19 2C 06’.

In Windows 7, most of the paths are represented in UNI-

CODE, and there are two options for compressing this text; if

the upper byte of the 16 bit UNICODE representation is zero

throughout the string, then the stringmaybe regardedasASCII

and 7-bit ASCII characters compressed, as described above.

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 1) 1 1 4e1 2 6124

Author's personal copy

Otherwise the 16 bit UNICODE character is converted into two

7-bit characters by truncating the most significant bit of each

byte, then the compression above applied. For example, ‘Def-

con’ would be compressed into ‘44 40 19 60 06 8C 01.’.

This is not an exhaustive account of compression in ESE,

and does not apply to long text, it does however allow

a forensic investigator to map many of the database fields

manually, if that is necessary.

Appendix B. Processing via the database API

This section describes in detail how processing via the data-

base API was carried out.

In most practical cases the database file (Windows.edb) will

be in a ‘dirty shutdown’ state; in other words not all the

current pages from memory will have been flushed to disk,

and it will first need to be brought to a consistent state before

it can be interrogated via the database API.

Appendix B.1.

Required files

The normal location for theWindows Search Database files is:

%SystemDrive

%\ProgramData\Microsoft\Search\Data\Applications\Windows

This location can be re-assigned by policy or by the user

(see the Registry keys identified in Section 4.1).

The files that must be retrieved from the image are:

� The database file (Windows.edb).

� Any log files (MSS.log and MSSnnnnn.log - where nnnnn is

a hexadecimal sequence number).

� The checkpoint file (MSS.chk).

MSS.log is the current log file, in other words the file that is

currentlybeingwrittenwith log records.The esentutlutility (see

below) may reference this file by the next number in the

ascending series of log numbers. This is the number it will be

assignedwhen full, atwhich timeanewMSS.logwill be started.

Appendix B.2.

Recovering the database file

This requires the Microsoft esentutl utility, which is a standard

component of Windows 7, and is run from the command line.

The first stage is to check if the database file needs to be

updated, and if so that the required log files are present:

esentutl -mh <path to database file>

This provides a metadata dump from the database, of

which two lines are of particular significance:

State: Dirty Shutdown

Log Required: 192e195 (0xc1e0xc3)

If the state is given as ‘Clean Shutdown’ no pre-processing

is required; usually it is ‘Dirty Shutdown’, meaning that the

Windows.edb filemust be brought to a consistent state before it

can be read via an API.

The hexadecimal numbers of the required logs specify the

names of the required log files: MSS000C1.log, MSS000C2.log,

together with MSS.log in this example. (Note the comment

above: MSS.log is the latest log, in this case 000C3.)

The esentutl recovery process is then used to bring the

database to a consistent state. Assuming that esentutl is run

from a directory containing Windows.edb, the necessary log

files, and the checksum, then the command line is:

esentutl -r MSS -d

Assuming that esentutl reports success, theWindows.edb file

may now be accessed via the database API.

Appendix B.3.

Obtaining database records

Given a clean Windows.edb, then any of the programs

described in Section 2 may be used to obtain records. The

authors used wdsCarve as follows:

wdsCarve -d -m -c -a -y < format options > <Windows.edb path >

This outputs record into comma separated formatted files

for further analysis; four files are output:

� CurrentData.csv (-d) The current database contents,

including autosummary content, that can be retrieved via the

database API.

� CarvedData.csv Data carved from anywhere in the Window-

s.edb file (-a) which is not an exact duplicate of a record

retrieved via the API (-y).

� Metadata.csv (-m) The data schema for this database.

� wdsCarve.log A processing record, which includes an MD5

hash for the input and output files (-c).

Appendix C. Processing by file carving

File carving may be used to obtain very new records (e.g. from

a pagefile), and records that have been removed from the

database because the associated files have been deleted.

However, as noted in the main text, carving is unable to re-

link the autosummary field with the record, so it will provide

file metadata, but not content.

Table 3 e Simple String Compression used for short
strings in ESE.

Letter Hex 7-bit binary,
and split

Reassembled
into bytes

Compressed
Hex

/ 2F 010 1111 0010 1111 2F

2 32 011 001j0 0001 1001 19

0 30 011 00j00 0010 1100 2C

1 31 011 0j001 0000 0110 06

0 30 011 j0000

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 1) 1 1 4e1 2 6 125

Author's personal copy

The file carver adds a final field to the output record which

provides the source byte offset of the first fixed data item in

the carved record, to allow manual analysis if required.

Appendix C.1.

Recommended files

Carving can be carried out against any formof image; themost

effective approach is to use standard forensics tools to first

recover from the image any current or deleted files that are

likely to contain Windows Search records. These are:

� The database file: Windows.edb;

� Database Log files: MSS*.log;

� The system pagefile: pagefile.sys;

� A memory image, if available.

It may be worth carving from a whole disk image if the

Search index has recently been rebuilt; the gatherer time in

the database record is the time that the database entry was

made, so it is possible to identify a recent rebuild from the

earliest time in the current database.

Appendix B described carving from Windows.edb after its

recovery to a clean state; this has the benefit of allowing the

carver to identify and reject duplicate records that have already

beenextractedvia theAPI;however, carving fromthisfilebefore

it is recovered maximizes the possibility of obtaining deleted

records; the database update associated with recovery will

reduce the number of deleted records available (see Section 7).

As noted in the text, the set of logs associated with

Windows Search are named MSS.log (the current log) and

a historical set named MSSnnnnn.log, where nnnnn is a hexa-

decimal sequence number. Log files are deleted when the

Windows.edb file has been updated beyond their individual

scope, so there is benefit in attempting to recover as much of

the log sequence as possible, by using forensic tools to recover

deleted files, and recovering shadow copies where possible.

The most recent database records may exist only in

memory, so if very recent activity is to be investigated, it is

worth carving from a memory image, and/or the pagefile.

Appendix C.2.

File carving

The options available inwdsCarve are beyond the scope of this

paper, but a typical command used for carving is:

wdsCarve -r -c<format options><working directory><sourcefile>

The -r option is ‘recovery’ mode, which assumes that the

source file does not support the database API or even neces-

sarily a page structure: it is either a dirty database file or some

other form of file such as a log file, memory, or disk image.

However, the carver needs to obtain a correct schema in order

to carve records, since there are several generations of schema

between Windows XP, Vista, and Windows 7, all of which can

be carved. This mode therefore requires a clean Windows.edb

file from the sameWindows build to be present in theworking

directory, named Reference.edb; the data content of this file is

irrelevant, the carver simply needs to read the data definition

to configure the record carving program.

The output file (CarvedData.csv) will be placed in the

working directory, together with a log file (wdsCarve.log) which

may include anMD5 hash for input and output files (-c option).

r e f e r e n c e s

Baher M. Who said that transaction goes from logs to db, http://
blogs.technet.com/b/mbaher/archive/2008/01/22/who-said-
that-transaction-goes-from-logs-to-db.aspx; 2008 (accessed
August 2010).

Crabtree J, Evans G. Reliably recovering evidential data from
volume shadow copies in windows vista and windows 7. Tech.
rep. QCC Information Security; 2010.

Douglas J. 2009. Forensic artefacts present in microsoft windows
desktop search. Master’s Thesis, Cranfield University.

Gordon JM. 2009. A forensic examination of windows desktop
search (version 3). Master’s Thesis, Cranfield University.

Hargreaves C, Chivers H, Titheridge D. Windows vista and digital
investigations. Digital Investigation 2008;5(1e2):34e48.

Metz J. libesedb, http://sourceforge.net/projects/libesedb/files/;
2010a (accessed August 2010).

Metz J. Windows search forensics, http://www.forensicfocus.
com/windows-search-forensics; 2010b (accessed August
2010).

Microsoft. Extensible storage engine reference, http://msdn.
microsoft.com/en-us/library/ms683072(v¼EXCHG.10).aspx;
June 2007 (accessed August 2010).

Microsoft. Windows search it guides, http://technet.microsoft.
com/en-us/library/cc771203(WS.10).aspx; June 2008 (accessed
August 2010).

Microsoft. Windows search, browse, and organize administrator’s
guide, http://technet.microsoft.com/en-us/library/dd744681
(WS.10).aspx; September 2009 (accessed August 2010).

Titheridge D. 2008. Microsoft windows vista registry. Master’s
Thesis, Cranfield University.

Woan M. Esedbviewer, http://www.woany.co.uk/esedbviewer/;
2008 (accessed August 2010).

d i g i t a l i n v e s t i g a t i o n 7 (2 0 1 1) 1 1 4e1 2 6126

