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In 1966 Gallai asked whether all longest paths in a connected graph have nonempty
intersection. This is not true in general and various counterexamples have been
found. However, the answer to Gallai’s question is positive for several well-known
classes of graphs, as for instance connected outerplanar graphs, connected split
graphs, and 2-trees. A graph is series-parallel if it does not contain K4 as a minor.
Series-parallel graphs are also known as partial 2-trees, which are arbitrary subgraphs
of 2-trees. We present a proof that every connected series-parallel graph has a vertex
that is common to all of its longest paths. Since 2-trees are maximal series-parallel
graphs, and outerplanar graphs are also series-parallel, our result captures these
two classes in one proof and strengthens them to a larger class of graphs. We also
describe how this vertex can be found in linear time.

1 Introduction

A path in a graph is a longest path if there exists no other path in the same graph that is strictly
longer. The study of intersections of longest paths has a long history and, in particular, the
question of whether every connected graph has a vertex that is common to all of its longest
paths was raised by Gallai [12] in 1966. For some years it was not clear whether the answer is
positive or negative until, finally, Walther [25] found a graph on 25 vertices that answers Gallai’s
question negatively.
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Today, the smallest known graph answering Gallai’s question negatively is a graph on 12 vertices,
found by Walther and Voss [26], and independently by Zamfirescu [28] (see Figure 1). To see
that the depicted graph does not have a vertex common to all longest paths, one can identify
the three leaves to obtain the Petersen graph, which is hypohamiltonian, meaning that it does
not have a Hamiltonian cycle but every vertex-deleted subgraph is Hamiltonian. Note that the
length of a longest path in the depicted graph can be at most 10 since at most two of its three
leaves can be contained in a longest path. But any path of length 10 in the depicted graph would
correspond to a Hamiltonian cycle in the Petersen graph. It follows first that the length of a
longest path is at most 9 (and it is exactly 9) and second that the intersection of all longest paths
is empty.
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Figure 1: The counterexample of Walther, Voss, and Zamfirescu.

These are by far not the only counterexamples. In fact, there are infinitely many (even planar)
ones since every hypotraceable graph, meaning a graph having no Hamiltonian path whose all
vertex-deleted subgraphs have a Hamiltonian path, is obviously a counterexample. Thomassen
proved in [22] that there are infinitely many such graphs.

Since the answer to Gallai’s question is negative in general, it seems natural to restrict the
problem to subsets of a fixed size of all longest paths. It is well-known [19] that any two longest
paths of a connected graph share a common vertex. However, considering the intersection of
more than two longest paths gets more intriguing. It is still unknown whether any three longest
paths of every connected graph share a common vertex. Zamfirescu asked this question several
times [24, 29] and it was mentioned at the 15th British Combinatorial Conference [8]. It is
presented as a conjecture in [14] and as an open problem in the list collected by West [27].
Progress in this direction was made by de Rezende, Martin, Wakabayashi, and the second
author [11], who proved that, if all non-trivial blocks of a connected graph are Hamiltonian,
then any three longest paths of the graph share a vertex. Skupień [21] showed that for every
p ≥ 7, there exists a connected graph such that p longest paths have no common vertex and
every p− 1 longest paths have a common vertex.

Even though it seems as if the property of having a vertex common to all longest paths is too
strong, there are some classes of connected graphs for which this property holds. A simple
example is the class of trees since in a tree all longest paths contain its center(s). Moreover,
Klavžar and Petkovšek [17] proved that the intersection of all longest paths of a (connected)
split graph is nonempty. Furthermore, they showed in [17] that, if every block of a connected
graph G is Hamilton-connected, almost Hamilton-connected, or a cycle, then there exists a vertex
common to all its longest paths. The latter result implies immediately that the answer to Gallai’s
question is positive for the class of (connected) cacti, where a graph is a cactus if and only if
every block is either a simple cycle or a vertex or a single edge.
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In 2013, de Rezende et al. proved the following two theorems.

Theorem 1 ([11])
For every connected outerplanar graph, there exists a vertex common to all its longest paths.

Theorem 2 ([11])
For every 2-tree, there exists a vertex common to all its longest paths.

Theorem 1 is a strengthening of a theorem by Axenovich [2], which states that any three longest
paths in a connected outerplanar graph share a vertex.

In this paper we treat the general case of nonempty intersection of all longest paths and prove
that the answer to Gallai’s question is positive for the class of connected series-parallel graphs
settling a question raised in [11]. Note that a joint paper presenting two different proofs for this
statement is to appear in [9]. Since not only all trees and cacti but also outerplanar graphs and
2-trees are series-parallel, our result gives a unified proof for Theorems 1 and 2 and generalizes
them to a larger class of graphs.

The rest of the paper is organized as follows. In Section 2 we give essential definitions and prove
some statements that will be useful in what follows. In Section 3 we prove the main theorem
by proceeding in three steps. First we fix a 2-tree that has the given series-parallel graph as a
spanning subgraph. The 2-tree captures the structure of the given graph and guides us in the
proof. The main obstacle is that we are not sure of which edges of this 2-tree truly exist in the
given graph, so the techniques used for 2-trees in [11] fail. Therefore, we are somehow obliged
to work with edges that exist in the 2-tree and may or may not exist in the given series-parallel
graph. Roughly, the only things that we can rely on are the facts that our graph is connected,
that two longest paths intersect, and on the special structure of the so-called components of
the series-parallel graph, inherited from the 2-tree. In Section 4 we show that finding a vertex
contained in all longest paths can be done in quadratic time for series-parallel graphs. Finally, in
Section 5 we state several open problems concerning the intersection of longest paths in specific
classes of graphs.

2 Preliminaries and definitions

We start with a few basic definitions which we use in the subsequent part of our paper. All graphs
in this paper are undirected and finite. We write H ⊆ G if the graph H is a subgraph of the graph
G. Also, we denote by V (G) the set of vertices of G.

Let G be a graph and s and t be two of its vertices. We say G is series-parallel with terminals s
and t if it can be turned into K2 by a sequence of the following operations: replacement of a
pair of parallel edges with a single edge that connects their common endpoints, or replacement
of a pair of edges incident to a vertex of degree 2 other than s or t with a single edge. A
graph G is 2-terminal series-parallel if there are vertices s and t in G such that G is series-parallel
with terminals s and t. A graph G is series-parallel if each of its 2-connected components is a
2-terminal series-parallel graph. (See [7, Sec. 11.2].)
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A 2-tree can be defined in the following way. A single edge is a 2-tree. If T is not a single edge,
then T is a 2-tree if and only if there exists a vertex v of degree 2 such that its neighbors are
adjacent and T − v is also a 2-tree. A graph is a partial 2-tree if it is a subgraph of a 2-tree.
(See [7, Sec. 11.1].) We say a partial 2-tree is trivial if it consists of a single vertex or a single
edge. Note that every edge in a non-trivial 2-tree is contained in a triangle.

It is well-known that a graph is a partial 2-tree if and only if it is K4-minor free. Partial 2-trees
are exactly the series-parallel graphs, and are also known for being the graphs with tree width at
most 2. (See [7, Sec. 11.1].)

Next we present some notation we use in our proofs.

The length of a path P, denoted by |P|, is the number of edges in P. Let L(G) denote the length
of a longest path in the graph G. Let L (G) denote the set of all longest paths in G, that is,
L (G) = {P | P is a path in G and |P| = L(G)}. If the graph G is clear from the context, we
simply write L for L(G) and L for L (G).

By the intersection P ∩ P ′ of two paths P and P ′, we mean the intersection of their vertex sets.
If v is a vertex of the path P, we write v ∈ P. If P and P ′ have a common endpoint x but no other
common vertex, then the union P ∪ P ′ is simply defined as the path obtained by concatenating
the path P and the path P ′ at the vertex x .

A subpath of a path P is called a tail of P if it contains an endpoint of P. Given a vertex x in P,
the path P can be split into two subpaths P ′ and P ′′ such that P ′ ∩ P ′′ = {x}; we call them tails
of P starting at x . If |P ′| ≥ |P ′′|, then P ′ is called a longer tail of P starting at x .

Given a second path Q such that Q ∩ P 6= ∅ and such that at least one endpoint x of P is not
contained in Q, we define the bridge path P↖↗xQ as the path starting at the endpoint x going
along P until the first intersection with Q.

For some subgraph H, we define P[H] to be the induced subgraph of P in H, that is, the
collection of (maximal) subpaths of P that lie in H. Note that this might be more than one
path.

In the next, we borrow some definitions and results presented by Tutte [23]. Let G be a graph
and H be a subgraph of G. A vertex of attachment of H in G is a vertex of H that is incident to
some edge of G that is not an edge of H. Let T be a 2-tree and {x , y} ∈ E(T). An {x , y}-bridge
in T is a minimal subgraph B of T containing a vertex other than x and y and whose vertices of
attachment are contained in {x , y}. For each common neighbor z of x and y , let B{x ,y},z(T ) be
the {x , y}-bridge in T containing z. There is a unique such bridge because, by Theorem I.51 [23],
the intersection of two distinct {x , y}-bridges in T lies in {x , y}. The interior of the B{x ,y},z(T ) is
the graph B◦{x ,y},z(T ) = B{x ,y},z(T )− x − y .

In what follows, for a series-parallel graph G = (V, E), we let T (G) = (V, F) denote an arbitrary
but fixed 2-tree that contains G as a spanning subgraph. We say a virtual edge/triangle of G is an
edge/triangle in T (G) independent of its existence in G.

We denote by C{x ,y},z(G) the maximal subgraph of G contained in B{x ,y},z(T (G)). Note that such
a subgraph of G may be disconnected. We call this subgraph the component of G generated
by the virtual edge {x , y} in direction z. Similarly, C◦{x ,y},z(G) = C{x ,y},z(G)− x − y is called
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the interior of the component C{x ,y},z(G). Again, if the graph is clear from the context, we
write C{x ,y},z = C{x ,y},z(G).

Also, let C{x ,y}(G) = {C{x ,y},z(G) : z is adjacent to x and y in T (G)} be the set of all components
generated by the virtual edge {x , y}. Further, define C{x ,y}|z(G) =C{x ,y}(G)\{C{x ,y},z(G)} for a
virtual triangle {x , y, z}.

A set of vertices W is called a Gallai set (for G) if W ∩ P 6=∅ for all P ∈ L (G). If W is a Gallai
set and if its vertices are pairwise connected by virtual edges, we call this set a virtual Gallai edge
and a virtual Gallai triangle, when W has size two or three, respectively.

We say a vertex v ∈ V is a Gallai vertex if {v} is a Gallai set. Note that the intersection of all
longest paths of a graph G is nonempty if and only if G has a Gallai vertex.

For a given virtual edge {u, v}, let Luv = {P ∈ L |u, v ∈ P} and Luv = {P ∈ L | u ∈ P, v /∈ P}.
Similarly, for a given virtual triangle ∆ = {u, v, w}, we define Luvw = {P ∈ L | u, v, w ∈ P},
Luvw = {P ∈ L | u, v ∈ P, w 6∈ P}, and Luvw = {P ∈ L | u ∈ P, v, w 6∈ P}. Moreover,
let L(uvw) = {P ∈ Luvw | v is between u and w in P}.

We end this section with the following auxiliary results that will be useful in Section 3. Note that
the first four results hold for general graphs, not only for series-parallel graphs.

Proposition 3 ([19])
Any two longest paths in a connected graph share a common vertex.

Lemma 4
In a graph, let P1 and P2 be two paths with tails R1 and R2, respectively (that is, subpaths
containing an endpoint of P1 or P2) such that R1 ∩ P2 = ∅ and R2 ∩ P1 = ∅. If there exists a
connecting path P such that ∅ 6= P ∩ P1 ⊆ R1 and ∅ 6= P ∩ P2 ⊆ R2, then P1 and P2 cannot both
be longest paths.

Proof. Assume for a contradiction that both P1 and P2 are longest paths. For i ∈ {1,2}, let R′i
denote the other tail of Pi so that Pi = Ri ∪ R′i and Ri and R′i intersect at only one vertex. By
assumption, both R1 and R2 intersect P. Hence, there exist vertices x and y such that x ∈ R1∩ P,
y ∈ R2 ∩ P, and the interior of the subpath of P starting at x and ending in y does not contain
vertices in P1 or P2. Let Q1 denote the path obtained from going along R′1, along R1 until x , along
P until y , and then along R2 until the endpoint that is not in R′2. Let Q2 denote the path obtained
from going along R′2, along R2 until y, along P until x , and then along R1 until the endpoint
that is not in R′1. Now, as |Q1|+ |Q2| > |P1|+ |P2|, we have that |Q1| > |P1| or |Q2| > |P2|, a
contradiction. �

Lemma 5
In a graph, let P1 and P2 be two paths that share a common vertex z and let R1 and R2 be
two subpaths of P1 and P2, respectively, both having z as an endpoint, such that R1 ∩ P2 = {z}
and R2 ∩ P1 = {z}. If there exists a connecting path P such that z /∈ P, ∅ 6= P ∩ P1 ⊆ R1,
and ∅ 6= P ∩ P2 ⊆ R2, then P1 and P2 cannot both be longest paths.
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Figure 2: Situation for Lemmas 4 and 5.

Proof. Assume for a contradiction that both P1 and P2 are longest paths. By assumption, both R1
and R2 intersect P in a vertex other than z. Hence, there exist vertices x and y distinct from z
such that x ∈ R1 ∩ P, y ∈ R2 ∩ P, and the interior of the subpath of P starting at x and ending
in y does not contain vertices in P1 or P2. Let R̃1 denote the path starting at z, going along R1,
and ending in x , and let R̃2 denote the path starting at z, going along R2, and ending in y. Let
R′1 and R′2 denote the tails of P1 and P2 starting at z not containing R1 and R2, respectively. If
|R̃1| ≥ |R̃2|, then by combining R′2, R̃1, the subpath of P starting at x and ending in y, and the
tail of P2 starting at y and not containing z, we get a path strictly longer than P2, a contradiction.
If, on the other hand, |R̃1|< |R̃2|, then by combining R′1, R̃2, the subpath of P starting at y and
ending in x , and the tail of P1 starting at x and not containing z, we get a path strictly longer
than P1, a contradiction. �

Observe that Lemma 4 is not a consequence of Lemma 5. Indeed, in the situation of Lemma 4,
starting from x and going along P1, the first common vertex with P2 might not be the same as the
first common vertex of P2 with P1, starting from y. Thus, the vertex z as required in Lemma 5
might not exist.

At some points of the proofs in the next section, we are in a situation where one of the two
lemmas above apply. The next corollary describes this situation.
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Figure 3: Situation for Corollary 6.

Corollary 6
In a graph, let P1 and P2 be two paths that share a common vertex z and let R1 be a tail of P1
starting at z. Let R2 be a union of pairwise internally vertex disjoint subpaths of P2 (that is, they
may have common endpoints) such that all paths in R2 have as one endpoint z or an endpoint
of P2. Suppose R1 ∩ P2 = {z} and R2 ∩ P1 ⊆ {z}. If there exists a connecting path P such that
z /∈ P, ∅ 6= P ∩ P1 ⊆ R1, and ∅ 6= P ∩ P2 ⊆ R2, then P1 and P2 cannot both be longest paths.

Proof. There exist vertices x ∈ P ∩ R1 and y ∈ P ∩ R2 such that the interior of the subpath P x ,y

of P starting at x and ending in y does not contain any other vertices in P1 or P2. Let R′2 be
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the path in R2 that contains y. If R′2 contains z then the statement follows from Lemma 5 for
longest paths P1 and P2 with their subpaths R1 and R′2, respectively, and connecting path P x ,y .
Otherwise, the statement follows from Lemma 4 again for longest paths P1 and P2, tails R1
and R′2, and connecting path P x ,y . �

The next two results are specific for series-parallel graphs.

Lemma 7
Let ∆ = {v1, v2, v3} be a virtual triangle in a connected series-parallel graph G. If Ri is a path
in G with vi as an endpoint and Ri ∩∆ = {vi} for each i ∈ {1,2,3}, then only one of the sets
R1 ∩R2, R1 ∩R3, and R2 ∩R3 can be nonempty. Furthermore, if Ri ∩R j 6=∅, then Ri ∪R j ⊆ C for
some component C ∈ C{vi ,v j}|vk

.

Proof. For the first statement, assume without loss of generality that R1 ∩ R2 6= ∅. Then we
have a path S from v1 to v2 consisting of R1↖↗v1

R2 and the tail of R2 containing v2. Note that
this path does not use v3 or the virtual edge {v1, v2} because Ri contains only vi in ∆ for i = 1, 2.

If additionally R1 ∩R3 6=∅ or R2 ∩R3 6=∅, then v3 is connected to S by a path S′ ∪ S′′, where S′

is the shortest tail of R3 from v3 to a vertex u in R1 ∪ R2, and S′′ is a shortest path from u to S
in the connected graph R1 ∪ R2. Let x be the endpoint of S′′ in S. Observe that x is an internal
vertex of S. So {x , v1, v2, v3} determines a K4 minor in T (G), a contradiction.

For the second statement, suppose that Ri and R j intersect. Obviously, H = (Ri ∪ R j)− vi − v j
must lie in the interior of a {vi , v j}-bridge B of T (G). Also, the edge {vi , v j} is a cut set in T (G),
separating vk from H. Otherwise we would have three paths as above, namely Ri, R j, and the
path from vk to H avoiding vi and v j , and at least two of the pairs within these three paths would
intersect. Therefore B ∈ C{vi ,v j}|vk

(T (G)) and thus Ri ∪ R j ⊆ C = G[V (B)] ∈ C{vi ,v j}|vk
(G). �

Lemma 8
Let ∆= {v1, v2, v3} be a virtual triangle in a connected series-parallel graph G, and R be a path
in G with vi as endpoint and R ∩∆ = {vi}, for some i in {1,2,3}. Let j and k be such that
{i, j, k}= {1, 2, 3}. If S1 is a path with endpoints vi and v j such that S1 ∩∆= {vi , v j}, and S2 is
a path with endpoints v j and vk such that S2 ∩∆= {v j , vk}, then R∩ S2 =∅ and S1 ∩ S2 = {v j}.

Proof. Assume for a contradiction that there is some vertex x ∈ R∩ S2. Split the path S2 at x
and look at the two tails S j

2 and Sk
2 starting at x and ending at v j and vk, respectively. Now R, S j

2,
and Sk

2 are three paths as in Lemma 7 and they all intersect at x , a contradiction.

Similarly, if y ∈ (S1 ∩ S2)\{v j}, split S2 analogously at y obtaining S j
2 and Sk

2 . Then S1− v j, S j
2,

and Sk
2 are three paths as in Lemma 7 and they all intersect at y , again a contradiction. �

3 Intersection of longest paths in series-parallel graphs

As we have already mentioned in Section 1, de Rezende at el. [11] proved that the intersection
of all longest paths of a 2-tree is nonempty. In this section, we extend this result proving that
all connected subgraphs of 2-trees, that is, all series-parallel graphs, have also this property.
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We proceed in four steps. First, we prove in Lemma 9 that there exists a virtual Gallai triangle.
Then, we show in Lemma 10 that actually one virtual edge of this triangle is a virtual Gallai edge
and there exists a component generated by this virtual edge that satisfies certain properties. In
Lemma 12 we prove that either one of the endpoints of this virtual edge is a Gallai vertex or we
can find an adjacent virtual Gallai edge and a strictly smaller component satisfying the same
properties. By iterating, we end up with a Gallai vertex since we only consider finite graphs.

Lemma 9
In every non-trivial connected series-parallel graph G, there exists a virtual Gallai triangle.

Proof. Take any virtual triangle ∆0 of a non-trivial connected series-parallel graph G. Note that,
in every connected series-parallel graph, every virtual edge is either a cut set of G or is contained
in exactly one virtual triangle. Assume that there exists a longest path P0 in G containing no
vertex of ∆0. Then there exists a virtual edge e0 ⊆∆0, which is a cut set, and a vertex z0 /∈∆0
such that z0 is adjacent to both endpoints of e0 in T (G) and P0 lies in the component generated
by e0 in direction z0, that is, P0 ⊆ C◦e0,z0

. By Proposition 3, all longest paths must intersect P0
and so they have at least one vertex in C◦e0,z0

. Note that ∆1 = e0 ∪ {z0} is a triangle in T(G)
and thus a virtual triangle in Ce0,z0

. Now either all longest paths contain a vertex of ∆1 and
we are done, or there exist a longest path P1, a virtual edge e1 ⊆ ∆1, where e1 6= e0 and e1 is
a cut set, and a vertex z1 /∈ ∆1 such that z1 is adjacent to both endpoints of e1 in T(G) and
P1 ⊆ Ce1,z1

. Note that Ce1,z1
( Ce0,z0

, as P1 must intersect P0 in C◦e0,z0
again by Proposition 3.

Iteratively, obtain ∆2 and Ce2,z2
and eventually a strictly decreasing sequence of components

Ce0,z0
) Ce1,z1

) Ce2,z2
) · · · ) Cek ,zk

. Since G is finite, this process ends with some triangle
∆=∆k such that all longest paths contain one vertex of ∆. �

Next we prove that one of the virtual edges of a Gallai triangle is a virtual Gallai edge and there
exists a component generated by this virtual edge that satisfies certain properties.

Lemma 10
For every connected series-parallel graph G = (V, E), there exists a Gallai vertex, or a virtual
Gallai edge {u, v} and a component C ∈ C{u,v} such that, for every pair

(P, P ′) ∈ (Luv ×Lvu)∪ (Luv ×Luv)∪ (Lvu×Luv),

there exists a vertex in C◦ ∩ P ∩ P ′.

Before presenting the proof of Lemma 10, we prove an intermediate result stated in the next
lemma. Throughout the next proofs, we keep Lemmas 7 and 8 in mind and use them implicitly
whenever we claim that certain constructions are indeed paths and whenever we claim that a
path lies in a certain component.

For the proof of Lemmas 11 and 12, we use the following notation. Every path P ∈ Luvw can
be split at u and v, resulting in three subpaths. Let P(u) and P(v) be the tails of P starting at
vertex u and vertex v, respectively. The remaining subpath, joining u and v, is denoted by P(u,v).
Analogously, a path P ∈ L(uvw) is split into P(u), P(u,v), P(v,w), and P(w) (see Figure 4).
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Figure 4: Splitting P ∈ Luvw at vertices u and v, and P ∈ L(uvw) at vertices u, v, and w.

Lemma 11
Let ∆ be a virtual Gallai triangle in a non-trivial connected series-parallel graph G. If Lx yz 6=∅
for every x , y , z such that {x , y, z}=∆, then, for some u, v, w such that {u, v, w}=∆, there is
a component C ∈ C{u,w}|v such that, for every pair

(P, P ′) ∈







⋃

{x ,y,z}=∆

Lx yz ×Lxz y






∪ (Luvw ×Luvw)∪ (Lvwu×Luvw),

there exists a vertex in C◦ ∩ P ∩ P ′.

Proof (Lemma 11) Let P ∈ Luvw∪Luwv∪Lvwu, where {u, v, w} =∆, and x ∈∆ be such that x
is in P and P(x) is as long as possible. Without loss of generality, we may assume P ∈ Luvw and
x = u. In what follows, we use Pz to refer to an arbitrary path in Lx yz where {x , y, z}=∆.

First note that P(u) intersects every P(w)u , otherwise P(u) ∪ P(u,v) ∪ P(v,w)
u ∪ P(w)u is a path of length

strictly greater than L by the choice of P. Thus, P(u) must lie in a component C ∈ C{u,w}|v. We
will prove that C has the property stated in the lemma.

We start by proving that each path in Luvw intersects in C◦ every path in Lvwu, that is, we show
that each P(u)w intersects every P(w)u . Observe that |P(u)w | = |P

(u)|, otherwise P(u) ∪ P(u,v)
w ∪ P(v)w

would be a path of length strictly greater than L. So the argument previously applied to P, now
with Pw instead, implies that each P(u)w intersects every P(w)u .

Now we prove that each path in Luvw ∪Lvwu intersects in C◦ every path in Luwv ∪Luvw . First
note that each P(u)w intersects Q(u,w) in C◦ for every Q ∈ Luwv ∪ L(uwv) ∪ L(vuw), otherwise
P(u)w ∪Q(u,w) ∪ P(w,v)

u ∪ P(v)u is a path of length strictly greater than L by the choice of P. As
both Luwv and Lvwu are nonempty, there exist at least one such Q and one such Pu. So Q
and P(w)u must intersect in C◦, otherwise we derive a contradiction from Lemma 5 for subpaths
P(w)u and Q(u,w), z = w, and a connecting path contained in P(u)w . Second, we prove that each
P(u)w and P(w)u intersect every Q ∈ L(uvw) in C◦. Observe that |Q(u)| ≤ |P(u)|, otherwise either
Q(u) ∪ P(u,v) ∪ P(v) or Q(u) ∪ P(u,w)

v ∪ P(w)v is a path of length strictly greater than L by the choice
of P. If |Q(u)| < |P(u)| = |P(u)w |, then P(u)w intersects Q(w), otherwise P(u)w ∪Q(u,v) ∪Q(v,w) ∪Q(w)

is a path of length strictly greater than L. So P(w)u and Q must intersect in C◦, otherwise
we derive a contradiction from Corollary 6 for longest paths Pu and Q with z = w, tail P(w)u ,
subpaths Q[C], and connecting path P(u)w . If |Q(u)|= |P(u)|, then Q(u) intersects P(w)u , otherwise
Q(u) ∪Q(u,v) ∪ P(v,w)

u ∪ P(w)u is a path of length strictly greater than L by the choice of P. So P(u)w
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and Q must intersect in C◦, otherwise we derive a contradiction from Corollary 6 for longest
paths Pw and Q with z = u, tail P(u)w , subpaths Q[C], and connecting path P(w)u . �

Proof (Lemma 10) If G is trivial, there exists a Gallai vertex. Otherwise, let ∆= {u, v, w} be a
virtual Gallai triangle, which exists by Lemma 9.

First, we show that at least one of the edges of ∆ is a virtual Gallai edge. Assume for a
contradiction that no edge of ∆ is a virtual Gallai edge, which means that there are three longest
paths Pu ∈ Luvw, Pv ∈ Lvuw, and Pw ∈ Lwuv. Thus, there exist three distinct components Cuv,
Cuw , and Cvw generated by the virtual edges of ∆ such that, for every x , y in ∆, all intersection
points of Px and Py lie in the component Cx y . Without loss of generality, let |Pu[Cuv]| ≥ L/2.
Then, by combining the paths Pu[Cuv], Pu[Cuw]↖↗uPw , and a longer tail of Pw , we obtain a path
of length strictly greater than L, a contradiction. So, there exists a virtual Gallai edge in ∆.

If all edges of∆ are virtual Gallai edges, thenLuvw =Lvuw =Lwuv =∅. If moreover at least one
among Luvw, Luwv, Lvwu is empty, then one of the vertices in ∆ is a Gallai vertex. Otherwise,
we are in the situation of Lemma 11 and the statement of the lemma follows immediately.

Without loss of generality, we may assume {u, v} is a virtual Gallai edge. Hence, Lwuv =∅. Let
Pu ∈ Luvw ∪Lvuw and x ∈ {u, v} be such that Pu has a tail starting at x that is as long as possible.
Without loss of generality, we may assume x = u and thus Pu ∈ Luvw. Let P ′u be such a longer
tail. (If both tails of Pu starting at u have same length, choose P ′u to be any one of them.) Let
P ′′u be the other tail of Pu. As Luvw is nonempty, {v, w} is not a virtual Gallai edge. If all longest
paths contain u, then we are done since u is a Gallai vertex. Otherwise, Lvu is nonempty.

Each Pv ∈ Lvu intersects P ′u because otherwise, by combining P ′u, P ′′u ↖↗uPv, and a longer tail
of Pv, we get a path of length strictly greater than L by the choice of Pu. If {u, v} is the only
virtual Gallai edge in ∆, then Lvuw 6=∅ and P ′u has to lie in a component C ∈ C{u,v}|w, so that
it intersects every Pv ∈ Lvuw. Otherwise, {u, w} is also a virtual Gallai edge and P ′u lies in a
component C either in C{u,v}|w or in C{u,w}|v . (Note that in this case Lvwu 6=∅.) Without loss of
generality, we assume C ∈ C{u,v}|w . We claim that C has the desired properties.

First, we prove that each path in Lvu intersects in C◦ every path in Luv ∪Luv. Let Pv ∈ Lvu.
Suppose that there exists a path Q ∈ Luv ∪Luv such that Pv does not intersect Q in C◦. Either Q
intersects P ′u in C◦, or P ′u and both tails of Q starting at u have length L/2 (see Figure 5). In the
former case, since P ′u intersects both Pv and Q in C◦, we can apply Lemma 4 if Q ∈ Luv (with
paths Pv and Q and connecting path P ′u) or Corollary 6 if Q ∈ Luv (with paths Pv and Q, z = v, a
suitable tail of Pv starting at v, subpaths Q[C], and a connecting path contained in P ′u) deriving
a contradiction. So, suppose now that P ′u and both tails of Q starting at u have equal length.
The path Pv intersects both tails of Q starting at u because otherwise such a tail of Q, P ′u↖↗uPv,
and a longer tail of Pv would be a path of length strictly greater than L. Therefore and since
the combination of P ′u with one tail of Q starting at u and the combination of P ′u with the other
tail of Q starting at u are both longest paths, we can apply Lemma 5 with a connecting path
contained in Pv and z = u, deriving again a contradiction. Hence, each path in Lvu intersects in
C◦ every path in Luv ∪Luv .

Next, we prove that each path in Luv intersects in C◦ every path in Luv. If Luv 6= ∅, let P
be a path in Luv and Qu in Luv. Assume that P does not intersect Qu in C◦. Let Pv ∈ Lvu
and note that such a longest path must exist. Since Pv intersects Qu in C◦ and P in C◦, we
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Figure 5: Left: Pv and Q do not intersect in C (apply either Lemma 4 or Corollary 6);
Right: Pv intersects both tails of Q outside of C (apply Lemma 5).

derive a contradiction longest paths Qu and P with z = u, a suitable tail of Qu starting at u,
subpaths P[C], and a connecting path contained in Pv[C]. �

Lemma 12
In a non-trivial connected series-parallel graph G, let e = {u, v} be a virtual Gallai edge and
C ∈ Ce be a component such that all pairs of longest paths mutually intersect in at least one
vertex of C and all pairs of longest paths in Luv ×Lvu, Luv ×Luv, and Lvu ×Luv mutually
intersect in C◦ (as in Lemma 10). Let w be the unique vertex in C adjacent in T(G) to both u
and v. Then u, v, or w is a Gallai vertex, or there is a virtual edge f incident to u or v and a
component C1 ∈ C f , C1 ( C , with the properties of Lemma 10.

Proof. Let ∆= {u, v, w}. Assume neither u nor v are Gallai vertices (otherwise there is nothing
more to prove). Thus, both Luv and Lvu are nonempty. All pairs of paths in Luv ×Lvu intersect
in C◦ by the assumptions of the lemma. By Lemma 7, all paths in Luv or all paths in Lvu must
contain w since C /∈ C{u,v}|w. Without loss of generality we may assume that all paths in Luv
contain w. Therefore, Luvw =∅ and {v, w} is a virtual Gallai edge.

We distinguish two cases. First, we consider the case in which there exists a path in Lvu that
does not contain w (that is, a path in Lvuw) and then the case in which all paths in Lvu contain
w (that is, Lvuw =∅). In both cases we show that either there exists a Gallai vertex, or a virtual
Gallai edge and a component strictly smaller than C that fulfill the requirements of Lemma 12.

Case 1. The set Lvuw is nonemtpy.

For every path Pu ∈ Luv =Luwv , the tail P(w)u must intersect every path in Lvuw by assumption.
Let C1 ( C , C1 ∈ C{v,w}|u be the unique component where they mutually intersect.

We claim that the virtual edge {v, w} together with the component C1 fulfills the requirements of
Lemma 12.

If Luvw 6= ∅, let P ∈ Luvw and Pv ∈ Lvuw. Assume for a contradiction that there exists a path
Pu ∈ Luv such that P does not intersect Pu in C◦1 . Note that Pv and P must intersect in C◦ by

11



w

v
u

P3
(u)

P(u,v)

P3
(v)

w

v
u

P(u)

P(u,v)

P(v,w)

P(w)

C

C1

𝑃u
𝑃v

C

C1

𝑃u
𝑃v

w

v
u

w

v
u

𝑃

Figure 6: The scenario of the proof of Lemma 12: Case 1 (left) and Case 2 (right).

assumption and hence Pu and P(v) are disjoint. Since Pv intersects Pu in C◦1 and P in Cu (at least
in vertex v), we can apply Lemma 4 (with paths Pu and P, tails P(w)u and P(v), and a connecting
path contained in Pv[C1]) to derive a contradiction.

Next, we prove that every path in Lvwu∪Luvw intersects every path in Lvuw ∪Luv ∪Luvw in C◦1 .

Let P ∈ Lvwu ∪Luvw and Pv ∈ Lvuw . Note that Pv intersects P in C◦ by assumption if P ∈ Luvw .
Otherwise, P ∈ Lvwu, and they also intersect in C◦, or not both Pv and P could be longest paths
by Lemma 5 for z = v, a suitable tail of Pv[C1], tail P(v,w) ∪ P(w), and connecting path P(w)u
for some Pu ∈ Luv. Furthermore, P must intersect Pv in C◦1 . Otherwise, Pv would have a tail
starting at v completely in a component C ′ ∈ C{v,w}|u, C ′ 6= C1. Then |Pv[C ′]|< L/2 since Pv[C ′]
is disjoint from Pu and so Pv[C ′] ∪ Pv[C1]↖↗v Pu, and a longer tail of Pu would be a path of
length strictly greater than L. But now, by combining Pv[C1] and a longer tail of P starting
at v, we get a path of length strictly greater than L, a contradiction. For every Pu ∈ Luv, by
applying Corollary 6 (with paths Pu and P, z = w, tail P(w)u , subpaths P[C1], and connecting
path Pv[C1]), we can deduce that P intersects Pu in C◦1 . Every Pw ∈ Luvw must intersect P
in C◦1 , otherwise we get a contradiction by applying Corollary 6 (with paths P and Pw, z = v,
tail Pw[C1], subpaths P[C1], and connecting path P(w)u ).

Case 2. The set Lvuw is empty.

If the set Luvw is empty, then all longest paths contain w, therefore w is a Gallai vertex and
the requirements of Lemma 12 are fulfilled. So, from now on, we assume that the set Luvw is
nonempty.

First, we prove that, for each P ∈ Luvw, either P(v) intersects P(w)u for every Pu ∈ Luv =Luwv,
or P(u) intersects P(w)v for every Pv ∈ Lvu = Lvwu. Assume for a contradiction that there exist
P ∈ Luvw, Pu ∈ Luv, and Pv ∈ Lvu such that P(u) does not intersect P(w)v and P(v) does not
intersect P(w)u . By the assumptions of the lemma, P has to intersect both Pu and Pv in C◦.
Therefore, P intersects Pu in the interior of some component of C{u,w}|v and Pv in the interior of
some component of C{v,w}|u. (See Figure 7.) First, suppose that P(u)u and P(v)v do not intersect.
By combining P(v), P(v,u)↖↗v Pu, and a longer tail of Pu, we get a path that cannot be of length
strictly greater than L, hence |P(v)|< L/2. Combining P(u)∪P(u,v)∪P(v,w)

v ∪P(w)v would be a path
of length strictly greater than L if |P(v)v | ≤ L/2. However, by combining P(v)v , P(v,w)

v ↖↗v Pu, and a
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longer tail of Pu, we get a path of length strictly greater than L, a contradiction. If, on the other
hand, P(u)u and P(v)v intersect, then P(u) and P(u)u are disjoint except for the vertex u. Note that
|P(u)| = |P(u,w)

u ∪ P(w)u | since otherwise P and Pu would not be longest paths. The combination
of P(u)u and P(u) is therefore a longest path in Luvw, which is a contradiction. Therefore, P(u)

intersects P(w)v , or P(v) intersects P(w)u .

C

𝑃u𝑃v

𝑃

C

𝑃u𝑃v

𝑃

>  𝐿 2

<  𝐿 2

w

v
u

w

v
u

Figure 7: Left: P(u)u and P(v)v do not intersect; Right: P(u)u and P(v)v intersect.

We claim that if R(u), for some longest path R in Luvw, does not intersect P(w)v for some path
Pv ∈ Lvu, then for every longest path P ∈ Luvw, the tail P(v) intersects P(w)u for every path
Pu ∈ Luv. Indeed, let P be a path in Luvw. Assume for a contradiction that there exists a
path Pu ∈ Luv such that P(v) does not intersect P(w)u . Note that by the latter paragraph P(w)u
must intersect R(v) and P(w)v must intersect P(u). If P(v) lies in some component of C{v,w}|u,
then by Lemma 7 P(v) cannot intersect R(u) and R(u,v) − v, and R(v) cannot intersect P(u) and
P(u,v) − v since R(v) also lies in a component of C{v,w}|u. Hence, we have |P(v)| = |R(v)| and
Q = R(u) ∪ R(u,v) ∪ P(v) is a path in Luvw such that Q(u) does not intersect P(w)v , and Q(v) does
not intersect P(w)u , a contradiction. Analogously, if R(u) lies in a component of C{u,w}|v , the path
R(u) ∪ P(u,v) ∪ P(v) yields a contradiction. Thus, we may assume that both R(u) and P(u) lie in a
component of C{u,v}|w and are therefore disjoint from P(u) except for u, and from R(v) except
for v, respectively. Now, we get a contradiction from Lemma 4 for longest paths R and P, tails R(v)

and P(u), and a connecting path contained in (P(w)u ↖↗wR)∪ (P(w)v ↖↗w P).

Without loss of generality, we may assume that, for each P ∈ Luvw , the tail P(v) intersects P(w)u
for every Pu ∈ Luv. Let C1 ∈ C{v,w}|u be the unique component where they mutually intersect.
Note that the virtual edge {v, w} is indeed a virtual Gallai edge since the set Luvw is empty.
Let P ∈ Luvw and Pu ∈ Luv be arbitrary but fixed. Note that Pu intersects P in C◦1 . Assume for
a contradiction that there exists a longest path Pv ∈ Lvwu ∪Luvw such that P and Pv do not
intersect each other in C◦1 . Then not both P and Pv can be longest paths by Corollary 6 for z = v,
tail P(v), subpaths Pv[C1], and connecting path P(w)u , a contradiction. Therefore, the virtual edge
{v, w} together with the component C1 fulfills the requirements of Lemma 12. �

Theorem 13
For every connected series-parallel graph G, there exists a vertex v such that all longest paths in
G contain v.

Proof. This follows from Lemma 10 and by iteratively applying Lemma 12 since G is finite. �
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4 Algorithmic remarks

For any hereditary class of graphs for which there is a polynomial-time algorithm that computes
(the length of) a longest path, it is easy to derive a polynomial-time algorithm that finds all Gallai
vertices. Indeed, one just has to compute the length L of a longest path in the given (connected)
graph G, and then to check, for each vertex v, whether the length of a longest path in G − v
remains the same. If not, v is a Gallai vertex.

It is a well-known result that one can use dynamic programming to solve many combinatorial
problems on graphs of bounded treewidth in polynomial or even linear time [1, 4]. In particular,
Bodlaender [5, Thm. 2.2] claims a linear-time algorithm following these lines to find a longest
path in a graph with bounded treewidth. (See also [6] on how to obtain in linear time a tree
decomposition for graphs with bounded treewidth.) Therefore, using the idea described in the
previous paragraph, one can find all Gallai vertices in time quadratic on the number of vertices
of the given connected series-parallel graph.

In fact, one can do better by applying the same strategy used to compute the length of a longest
path in a partial k-tree, but carrying more information during the process. Given a connected
graph G of treewidth k, compute in linear time a (nice) tree decomposition for G (as done in [10]
for instance). Then run a dynamic programming algorithm on top of this tree decomposition, to
compute the length L of a longest path in G. Roughly speaking, this algorithm computes the
length of longest parts of paths within the subgraph induced by the vertices in clusters already
traversed of the tree decomposition, and puts together this information while going through the
tree decomposition. Specifically, when visiting a node u of the tree decomposition, if Hu is the
subgraph of G induced by the vertices in the cluster Xu or clusters of nodes below u, for each
different way that a path can behave in the cluster Xu and in Hu, we have a configuration as the
ones described in Figure 8 for the case in which Xu has three vertices.

10 0 1 1 0 1 1 0 1 1 1 2 1 0 2 1 1 2 1 1 2 21

Figure 8: A sample of the configurations for a cluster with three vertices. The whole set of
configurations has to consider the labels of the vertices in the cluster.

The number of such configurations depends only on the treewidth. For each such configuration,
the algorithm computes the length of a longest part of a path in Hu that “agrees” with that
configuration. It does this using dynamic programming, that is, it computes such length for a
node u and one of the configurations using the information that it already computed for the
children of u in the tree. Some of the configurations of the children, together with new edges
within Xu, combine into each configuration for u. The combinations that give raise to the longest
parts are the ones of interest, and give the length of a longest part for that configuration for u.

In a first traversal of the tree decomposition, the value of L is computed. Now, as it is usual in
dynamic programming, in a reverse traversal of the tree, retracing backwards what was done
to find out L, one can mark, for each node and each configuration, if that configuration at that
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node gives raise to a path of length L in G. Once this is done for a node, the algorithm checks
whether the configurations for that node that give raise to a longest path all contain one of the
vertices in the cluster of that node. If so, this is a Gallai vertex. Otherwise the algorithm proceeds
to the next node in the reverse traversal.

This process finishes with a Gallai vertex as long as the graph has one such vertex. In particular,
for partial 2-trees, this process will find a Gallai vertex in the reverse traversal as soon as it
reaches the first cluster of the tree that contains a Gallai vertex. By proceeding with the reverse
traversal in this way, one can find all Gallai vertices. For bounded k, the running time of this
algorithm is linear on the number of vertices of the graph. (Note that the number of edges in
a partial k-tree is at most kn, where n is the number of vertices in the partial k-tree.) Indeed,
first computing a (nice) tree decomposition can be done in linear time. Second, the number of
configurations depends only on k, and the processing of each node of the tree decomposition
depends only on the number of configurations (and on the size of the cluster, which is bounded
by k+ 1 and thus also by the number of configurations). Therefore, for series-parallel graphs,
this algorithm finds a Gallai vertex in time that is linear on the number of vertices of the graph.

5 Related results and open questions

There are several questions related to Gallai’s original question that remain open. For instance,
it was asked [16, 29] whether there is a vertex common to all longest paths in all 4-connected
graphs. This problem is open so far, and even the more general question for k-connected graphs
with larger k has not been answered. There are 3-connected examples known for which Gallai’s
question has a negative answer [13].

In [11], where a proof that all 2-trees have nonempty intersection of all longest paths was
presented, it was asked whether the same holds for k-trees with larger values of k. As far as
we know, this also has not yet been answered. In the present paper, we have proven that all
connected subgraphs of 2-trees have nonempty intersection of all longest paths. We observe that
the same does not hold for all subgraphs of 3-trees. Indeed, the counterexample by Walther,
Voss, and Zamfirescu in [26, 28] is a connected spanning subgraph of a 3-tree (see Figure 9).

1

1

1 2

3

4

5
6

7

8

9 10

Figure 9: The counterexample of Walther, Voss, and Zamfirescu as a subgraph of a 3-tree.
Missing edges are dotted. The number next to each vertex indicates the sequence in
which they are added to the 3-tree.

In other words, Gallai’s question has a positive answer for connected graphs with treewidth
at most 2 (series-parallel graphs), but a negative answer for connected graphs with treewidth
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at most 3. As series-parallel graphs are the class of K4 minor free graphs, one might also ask
whether the answer is positive for all (connected) K5 minor free graphs, but there are planar
counterexamples known [22].

As split graphs and 2-trees are chordal, a natural question raised by Balister et al. [3] is whether
all longest paths share a vertex in all chordal graphs. Recently, Michel Habib (personal commu-
nication) suggested that the answer to Gallai’s question might be positive in co-comparability
graphs. For this class of graphs, as well as for series-parallel graphs, there is a polynomial-time
algorithm to compute a longest path [15]. (For chordal graphs, computing a longest path is
NP-hard [18].)

As already stated in Section 1, instead of looking at the intersection of all longest paths,
Zamfirescu asked whether any p longest paths in an arbitrary connected graph contain a
common vertex. This is certainly true for p = 2, proven to be false [20, 21] for p ≥ 7, but still
open for p in {3,4, 5,6}.
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