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DISTRIBUTIVE AND TRIMEDIAL QUASIGROUPS OF ORDER 243

PŘEMYSL JEDLIČKA, DAVID STANOVSKÝ, AND PETR VOJTĚCHOVSKÝ

Abstract. We enumerate three classes of non-medial quasigroups of order 243 = 35 up
to isomorphism. There are 17004 non-medial trimedial quasigroups of order 243 (extending
the work of Kepka, Bénéteau and Lacaze), 92 non-medial distributive quasigroups of order
243 (extending the work of Kepka and Němec), and 6 non-medial distributive Mendelsohn
quasigroups of order 243 (extending the work of Donovan, Griggs, McCourt, Opršal and
Stanovský).

The enumeration technique is based on affine representations over commutative Moufang
loops, on properties of automorphism groups of commutative Moufang loops, and on com-
puter calculations with the LOOPS package in GAP.

1. Introduction

Enumeration of quasigroups (equivalently, latin squares) is one of the classical topics of
combinatorics. Enumerating all quasigroups of a given order n is a difficult problem already
for small values of n. Indeed, the number of latin squares is known only up to n = 11 [20], and
the number of quasigroups up to isomorphism is known only up to n = 10 [19]. Consequently,
many quasigroup enumeration projects deal with particular well-studied classes or varieties.

In this paper we focus on quasigroups that admit an affine representation over nonas-
sociative commutative Moufang loops. We enumerate non-medial trimedial quasigroups of
order 243 = 35 up to isomorphism. In particular, we enumerate non-medial distributive
quasigroups and non-medial distributive Mendelsohn quasigroups of order 243, the latter
algebraic structures being in one-to-one correspondence with non-affine distributive Mendel-
sohn triple systems of order 243.

The enumeration of quasigroups affine over nonassociative commutative Moufang loops is
interesting only for orders that are powers of 3 (see below). The previous step, n = 81 = 34,
has been completed in 1981 by Kepka and Němec for distributive quasigroups [17], and
in 1987 by Kepka, Bénéteau and Lacaze for trimedial quasigroups [16]. Our calculations
independently verify their enumeration results.

A quasigroup is a set Q with a binary operation + such that all left translations Lx : Q→
Q, y 7→ x + y and all right translations Rx : Q → Q, y 7→ y + x are bijections of Q. A
quasigroup (Q,+) is a loop if it possesses a neutral element, that is, an element 0 satisfying
0 + x = x+ 0 = x for all x ∈ Q.
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oration Grant 210176 (Vojtěchovský), and the University of Denver PROF grant (Vojtěchovský).
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A quasigroup (Q,+) is called idempotent if it satisfies the identity

x+ x = x,

medial (also entropic or abelian) if it satisfies the identity

(x+ y) + (u+ v) = (x+ u) + (y + v),

and distributive if it satisfies the two identities

x+ (y + z) = (x+ y) + (x+ z),

(x+ y) + z = (x+ z) + (y + z).

A quasigroup (Q,+) is trimedial (also terentropic or triabelian) if every three elements of
Q generate a medial subquasigroup. Belousov established the following connection between
these types of quasigroups:

Theorem 1.1 ([1]). A quasigroup is distributive if and only if it is trimedial and idempotent.

Historically, distributive and medial quasigroups were one of the first nonassociative alge-
braic structures studied [8]. Their structure theory has been developed mostly in the 1960s
and 1970s; see [3] or [28, Section 3] for an overview. Quasigroups satisfying various forms of
self-distributivity were one of the favorite topics of Belousov’s school of quasigroup theory
[2], and they have connections to other branches of mathematics as well [28, Section 1].

The classification of medial quasigroups is to a large extent a matter of understanding
conjugation in the automorphism groups of abelian groups. This is explained in detail in
[29], for instance, where one can also find the complete classification of medial quasigroups
up to order 63 (up to order 127 with a few gaps). Hou [13] has stronger results on the
enumeration of idempotent medial quasigroups.

In the present paper, we will focus on non-medial trimedial quasigroups, which will require
computational tools that are quite different from those of the medial case.

One of the fundamental tools in quasigroup theory is loop isotopy. In particular, affine rep-
resentations of quasigroups over various classes of loops are tremendously useful in the study
of quasigroups. The Kepka theorem [15] (see Theorem 2.9) represents trimedial quasigroups
over commutative Moufang loops. It is a generalization of both the Toyoda-Murdoch-Bruck
theorem [5, 23, 30] (see Theorem 2.10) that represents medial quasigroups over abelian
groups, and the Belousov-Soublin theorem [1, 27] (see Theorem 2.11) that represents dis-
tributive quasigroups over commutative Moufang loops. Theorem 2.12, proved in [16], solves
the isomorphism problem for representations of trimedial quasigroups and forms the basis
for our enumeration algorithm. A detailed account on these representation theorems can be
found in [28].

The class of commutative Moufang loops has attracted attention from the very onset of
abstract loop theory. A significant part of the fundamental text of loop theory, Bruck’s “A
survey of binary systems” [7], has been written to develop tools for dealing with commutative
Moufang loops.

Every finite commutative Moufang loop decomposes as a direct product of an abelian group
of order coprime to 3 and of a commutative Moufang loop of order a power of 3 [6, Theorem
7C]. It was known to Bruck that there are no nonassociative commutative Moufang loops of
order less than 34. Kepka and Němec [17] classified nonassociative commutative Moufang
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loops of orders 34 and 35 up to isomorphism: there are two of order 34 and six of order 35.
See [17] for explicit constructions of these commutative Moufang loops, and [4, Theorem
IV.3.44] for more results on commutative Moufang loops with a prescribed nilpotence class.

Every automorphism of a commutative Moufang loop decomposes as a direct product
of automorphisms of the two coprime components. Therefore, thanks to Kepka’s theorem,
every finite non-medial trimedial quasigroup is a direct product of a medial quasigroup of
order coprime to 3 and of a non-medial trimedial quasigroup of order a power of 3, and there
are no non-medial trimedial quasigroups of order less than 34.

The classification of non-medial distributive quasigroups of order 34 was also carried out
in [17]: there are 6 such quasigroups up to isomorphism. Non-medial trimedial quasigroups
of order 34 were enumerated by Kepka, Bénétau and Lacaze in [16]: there are 35 of them
up to isomorphism. Both [17] and [16] use affine representations and a careful analysis of
the automorphism groups of the two nonassociative commutative Moufang loops of order 34,
without using computers.

The main result of this paper is a computer enumeration of non-medial distributive quasi-
groups and non-medial trimedial quasigroups of order 35 up to isomorphism; see Table 3.
The paper is organized as follows.

In Section 2 we summarize theoretical results that we use in the enumeration. We state the
representation theorems and the isomorphism theorem, introduce the notions of J-central
automorphisms and orthomorphisms, and finish the section with notes on representations
of distributive Steiner and Mendelsohn quasigroups. Most of the contents of Section 2 are
present, implicitly or explicitly, in [9, 16, 17].

In Section 3 we describe in detail our main contribution, the classification algorithm (The-
orem 3.4).

In Section 4 we present the results of our calculations; see Tables 2 and 3. We also give a
sample of explicit constructions of non-medial distributive quasigroups of order 35, including
all those from which one can recover the non-affine distributive Mendelsohn triple systems of
order 35. At the end, we discuss the phenomenon that for many small commutative Moufang
loops all central automorphisms commute.

Basic definitions and results. Loops will be denoted additively, assuming implicitly Q =
(Q,+, 0). The center Z(Q) of a loop Q is the set of all elements of Q that commute and
associate with all elements of Q. The associator subloop A(Q) of a loop Q is the smallest
normal subloop of Q generated by all associators L−1

x+(y+z)((x+ y) + z). The automorphism

group of Q will be denoted by Aut(Q).
A loop Q is said to have two-sided inverses if for every x ∈ Q there is −x ∈ Q such that

x+ (−x) = 0 = (−x) + x. We then write x− y as a shorthand for x+ (−y), and we define
J to be the inversion mapping

J : Q→ Q, x 7→ −x.

Clearly, J is a permutation of Q that commutes with all automorphisms of Q.
A loop Q is power associative if any element of Q generates an associative subloop. A

loop Q is diassociative if any two elements of Q generate an associative subloop.
A loop Q with two-sided inverses has the automorphic inverse property if the inversion

mapping J is an automorphism, that is, if −(x + y) = −x − y holds for every x, y ∈ Q.
3



Note that if Q has the automorphic inverse property then J ∈ Z(Aut(Q)). Commutative
diassociative loops obviously satisfy the automorphic inverse property.

A loop Q is Moufang it it satisfies the identity x+ (y + (x+ z)) = ((x+ y) + x) + z. By
Moufang’s theorem [22], Moufang loops are diassociative. In a commutative Moufang loop
Q, we have x + x+ x = 3x ∈ Z(Q) for every x ∈ Q [6]. See [2, 4, 6, 7] for more results on
commutative Moufang loops.

2. Affine representation of trimedial quasigroups

2.1. Affine representation and isomorphism theorem. In group theory, an automor-
phism α of a group G = (G,+) is said to be central if it commutes with all inner automor-
phisms of G. Equivalently, α ∈ Aut(G) is central if Z(G)+α(x) = Z(G)+x for every x ∈ G.
It is well known that the set of all central automorphisms of G forms a normal subgroup of
Aut(G). We generalize these concepts and results to loops as follows:

Definition 2.1. Let Q be a loop and α : Q→ Q a mapping. Then α is said to be central if
Z(Q) +α(x) = Z(Q) + x for every x ∈ Q. The set of all central automorphisms of Q will be
denoted by AutC(Q).

Note that if Q is an abelian group then all mappings α : Q→ Q are central.

Lemma 2.2. Let Q be a loop. Then AutC(Q) is a normal subgroup of Aut(Q).

Proof. If α, β ∈ AutC(Q) then Z(Q) + αβ(x) = Z(Q) + β(x) = Z(Q) + x and Z(Q) + x =
Z(Q) + αα−1(x) = Z(Q) + α−1(x), so αβ ∈ AutC(Q) and α−1 ∈ AutC(Q). If further
γ ∈ Aut(Q), then Z(Q) + γ−1αγ(x) = γ−1(Z(Q) +αγ(x)) = γ−1(Z(Q) + γ(x)) = Z(Q) + x,
so γ−1αγ ∈ AutC(Q). �

Lemma 2.3. Let Q be a loop with two-sided inverses and α : Q→ Q a mapping. Then α is
central if and only if x− α(x) ∈ Z(Q) for every x ∈ Q.

Proof. Since the elements of Z(Q) associate with all elements of Q, the following conditions
are equivalent: Z(Q) + x = Z(Q) + α(x), Z(Q) + x− α(x) = Z(Q), x− α(x) ∈ Z(Q). �

We will now show how to represent trimedial quasigroups over commutative Moufang
loops. We start with a general definition.

Definition 2.4. Let (Q,+) be a loop, let ϕ, ψ be automorphisms of (Q,+), and let c ∈
Z(Q,+). Define a binary operation ∗ on Q by

(2.1) x ∗ y = ϕ(x) + ψ(y) + c.

The resulting quasigroup (Q, ∗) is said to be affine over the loop (Q,+), it will be denoted by
Q(Q,+, ϕ, ψ, c), and the quintuple (Q,+, ϕ, ψ, c) will be called an arithmetic form of (Q, ∗).

Remark 2.5. Definition 2.4 can be generalized in various ways, for instance by setting
x ∗ y = (ϕ(x) + c) + (ψ(y) + d) for automorphisms ϕ, ψ and arbitrary elements c, d. On
the other hand, it can be specialized by assuming that c = 0, that ϕψ = ψϕ, that the
automorphisms ϕ, ψ are central, etc. See [28, Section 2.3] for a detailed discussion.

Lemma 2.6. An affine quasigroup (Q, ∗) = Q(Q,+, ϕ, ψ, c) is idempotent if and only if
c = 0 and ϕ+ ψ = id.
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Proof. If (Q, ∗) is idempotent then x = x ∗x = ϕ(x)+ψ(x)+ c for every x ∈ Q. With x = 0
we deduce c = 0. Then ϕ(x) + ψ(x) = x for every x ∈ Q, so ϕ+ ψ = id.

Conversely, if ϕ+ ψ = id and c = 0 then x ∗ x = ϕ(x) + ψ(x) + c = x. �

Lemma 2.7. An affine quasigroup (Q, ∗) = Q(Q,+, ϕ, ψ, c) is medial if and only if (Q,+)
is an abelian group and ϕψ = ψϕ.

Proof. Note that

(x ∗ u) ∗ (v ∗ y) = (ϕϕ(x) + ϕψ(u) + ϕ(c)) + (ψϕ(v) + ψψ(y) + ψ(c)) + c.

Since ϕ(c), ψ(c), c are central, we see that (Q, ∗) is medial if and only if

(2.2) (ϕϕ(x) + ϕψ(u)) + (ψϕ(v) + ψψ(y)) = (ϕϕ(x) + ϕψ(v)) + (ψϕ(u) + ψψ(y)).

If (Q,+) is an abelian group and ϕψ = ψϕ then (2.2) holds.
Conversely, suppose that (2.2) holds. With x = y = v = 0 we deduce ϕψ = ψϕ from (2.2).

Then with x = y = 0 we deduce ϕψ(u)+ϕψ(v) = ϕψ(v)+ϕψ(u), so (Q,+) is commutative.
Finally, with x = 0 we deduce the identity r + (s + t) = s + (r + t), which, combined with
commutativity, yields associativity of (Q,+). �

Let us now state the representation theorem that forms a basis for our enumeration algo-
rithm.

Definition 2.8. Let (Q,+) be a loop with two-sided inverses. We say that a quasigroup
(Q, ∗) is centrally affine over (Q,+) if it admits an arithmetic form (Q,+, ϕ, ψ, c) as in
Definition 2.4 such that −ϕ, −ψ are central mappings of (Q,+). We then call (Q,+, ϕ, ψ, c)
a central arithmetic form.

When (Q,+) is an abelian group then there is no distinction between arithmetic forms
and central arithmetic forms, and we will not use the adjective “central”.

Theorem 2.9 (Kepka [15]). A quasigroup is trimedial if and only if it admits a central
arithmetic form (Q,+, ϕ, ψ, c), where (Q,+) is a commutative Moufang loop and ϕψ = ψϕ.

Lemmas 2.6, 2.7 and Theorem 1.1 show that the Kepka theorem generalizes both the
Toyoda-Murdoch-Bruck theorem (set (Q,+) to be an abelian group) and the Belousov-
Soublin theorem (set c = 0 and ϕ+ ψ = id):

Theorem 2.10 (Toyoda-Murdoch-Bruck [5, 23, 30]). A quasigroup is medial if and only if
it admits an arithmetic form (Q,+, ϕ, ψ, c), where (Q,+) is an abelian group and ϕψ = ψϕ.

Theorem 2.11 (Belousov-Soublin [1, 27]). A quasigroup is distributive if and only if it
admits a central arithmetic form (Q,+, ϕ, ψ, 0), where (Q,+) is a commutative Moufang
loop and ϕ = id− ψ.

Note that in the Belousov-Soublin theorem, we have ϕψ = (id− ψ)ψ = ψ − ψ2 = ψ(id −
ψ) = ψϕ for free.

We now present a solution to the isomorphism problem for centrally affine quasigroups
that covers the representations in Theorems 2.9, 2.10, 2.11.

Theorem 2.12 ([16]). Let (Q1,+1), (Q2,+2) be commutative Moufang loops. Two centrally
affine quasigroups Q(Q1,+1, ϕ1, ψ1, c1), Q(Q2,+2, ϕ2, ψ2, c2) are isomorphic if and only if
there is a loop isomorphism f : (Q1,+1) → (Q2,+2) and u ∈ Im(id−1 (ϕ1 +1 ψ1)) such that

ϕ2 = fϕ1f
−1, ψ2 = fψ1f

−1 and c2 = f(c1 +1 u).
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Remark 2.13. The isomorphism test condition of Theorem 2.12 is stated differently in [16],
namely as: There is a loop isomorphism f : (Q1,+1) → (Q2,+2) and w ∈ Q2 such that

ϕ2f = fϕ1, ψ2f = fψ1, f(c1)−2 c2 = w −2 (ϕ2(w) +2 ψ2(w)).

We claim that this condition is equivalent to the condition of Theorem 2.12. First, because
“to be isomorphic” is a symmetric relation, we can replace the above condition with: There
is a loop isomorphism f : (Q2,+2) → (Q1,+1) and w ∈ Q1 such that

ϕ1f = fϕ2, ψ1f = fψ2, f(c2)−1 c1 = w −1 (ϕ1(w) +1 ψ1(w)).

Upon considering f−1, we can further replace it with the statement: There is a loop isomor-
phism f : (Q1,+1) → (Q2,+2) and w ∈ Q1 such that

ϕ1f
−1 = f−1ϕ2, ψ1f

−1 = f−1ψ2, f−1(c2)−1 c1 = w −1 (ϕ1(w) +1 ψ1(w)).

The condition on c2 is then equivalent to c2 = f(c1 +1 w −1 (ϕ1(w) + ψ1(w))), which says
that c2 = f(c1 +1 u) for some u ∈ Im(id−1 (ϕ1 +1 ψ1)).

Note that in the distributive case (c = 0 and ϕ + ψ = id), the isomorphism test of
Theorem 2.12 reduces to: There is a loop isomorphism f : (Q1,+1) → (Q2,+2) such that
ψ2 = fψ1f

−1.

2.2. J-central mappings.

Definition 2.14. Let Q be a loop, ξ a permutation of Q and α : Q → Q a mapping. We
say that α is ξ-central if ξ−1α is central.

Observe the following:

Lemma 2.15. Let Q be a loop and α, ξ automorphisms of Q. Then α is ξ-central if and
only if α belongs to the coset ξAutC(Q).

Corollary 2.16. Let Q be a loop with the automorphic inverse property and J the inversion
mapping. Then the coset JAutC(Q) is the set of all J-central mappings of Q.

Remark 2.17. J-central mappings were called 1-central in earlier papers [15, 17, 28].

We now give another useful characterization of J-central mappings.
For a loop Q and a mapping α : Q→ Q, let α̂ denote the mapping id+ α, that is,

α̂ : Q→ Q, x 7→ x+ α(x).

If Q has two-sided inverses, we have α(x) = −x+ α̂(x).

Lemma 2.18. Let Q be a loop with two-sided inverses and α : Q → Q a mapping. Then α
is J-central if and only if α̂(x) ∈ Z(Q) for every x ∈ Q.

Proof. Note that J−1 = J . The following statements are equivalent: α is J-central, Jα is
central, x − Jα(x) ∈ Z(Q) for every x ∈ Q (by Lemma 2.3), α̂(x) = x + α(x) ∈ Z(Q) for
every x ∈ Q. �

A stronger equivalence holds for endomorphisms:
6



Lemma 2.19. Let Q be a loop with the automorphic inverse property and let α : Q→ Q be
a mapping. Then α is a J-central endomorphism if and only if α̂ is an endomorphism into
Z(Q). Moreover,

Ker(α) = {x ∈ Q : α(x) = 0} = {x ∈ Q : α̂(x) = x} = Fix(α̂).

Proof. Throughout the proof, we will use Lemma 2.18 without reference. Suppose that α is
a J-central endomorphism. Then α̂(x+ y) = (x+ y) +α(x+ y) = (x+ y) + (α(x) +α(y)) =
(x+ y) + ((−x+ α̂(x)) + (−y + α̂(y))) = (x+ y) + (−x− y) + α̂(x) + α̂(y) = (x+ y)− (x+
y) + α̂(x) + α̂(y) = α̂(x) + α̂(y), where we have used the automorphic inverse property.

Conversely, suppose that α̂ is an endomorphism into Z(Q). Then α(x+ y) = −(x+ y) +
α̂(x+ y) = (−x − y) + α̂(x) + α̂(y) = (−x+ α̂(x)) + (−y + α̂(y)) = α(x) + α(y), where we
have again used the automorphic inverse property.

To finish the proof, note that α(x) = 0 if and only if α̂(x) = x. �

In particular, if Q is a finite loop with the automorphic inverse property and α : Q → Q
is a mapping, then α is a J-central automorphism if and only if α̂ is an endomorphism into
Z(Q) with a unique fixed point.

2.3. Orthomorphisms and orthoautomorphisms. We say that a permutation α of a
loop Q with two-sided inverses is a (left) orthomorphism if the mapping id − α is also a
permutation of Q. The set of all orthomorphisms of Q will be denoted Ort(Q).

Remark 2.20. Orthomorphisms were originally defined in [14] for finite groups. Researchers
now routinely work with orthomorphisms in arbitrary groups, but usually use the dual notion
of a right orthomorphism (−id+α is a permutation). In loops with the automorphic inverse
property, id − α is a permutation if and only if −id + α is a permutation, so there is no
distinction between left and right orthomorphisms.

An orthomorphism need not be an automorphism. For brevity, we call orthomorphisms
that are also automorphisms orthoautomorphisms. Thus JAutC(Q) ∩ Ort(Q) is the set of
all J-central orthoautomorphisms in any loop with the automorphic inverse property, cf.
Corollary 2.16.

Lemma 2.21. Let Q be a commutative Moufang loop and let α : Q → Q be a mapping.
Then α ∈ JAutC(Q) ∩Ort(Q) if and only if id− α ∈ JAutC(Q) ∩Ort(Q).

Proof. Let D = JAutC(Q) ∩ Ort(Q). In any diassociative loop we have id − (id − α) = α
because x−(x−α(x)) = α(x). It therefore suffices to show that if α ∈ D then β = id−α ∈ D.
Suppose that α ∈ D. By Lemma 2.19, α̂ is an endomorphism into Z(Q).

For every x ∈ Q we have β(x) = x − α(x) = x − (−x + α̂(x)) = 2x − α̂(x). Hence
β(x)+β(y) = (2x− α̂(x))+ (2y− α̂(y)) = (2x+2y)− (α̂(x)+ α̂(y)) = 2(x+ y)− α̂(x+ y) =

β(x + y), proving that β ∈ Aut(Q). We also have β̂(x) = x + β(x) = 3x − α̂(x) ∈ Z(Q)
because 3x ∈ Z(Q), so β is J-central by Lemma 2.18. Finally, id − β = id − (id − α) = α
shows that β is an orthomorphism. �

Lemma 2.22. Let Q be a loop with two-sided inverses. Then the subsets JAutC(Q) and
JAutC(Q) ∩Ort(Q) of Aut(Q) are closed under conjugation by elements of Aut(Q).

Proof. The first claim follows from the fact that AutC(Q) is a normal subgroup of Aut(Q)
(see Lemma 2.2) and that J commutes with all automorphisms of Q.
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If α is an orthomorphism then id− α is a permutation of Q, hence id− αξ = (id− α)ξ is
a permutation of Q for any ξ ∈ Aut(Q), and αξ is an orthomorphism. �

Here is a useful variation of the Belousov-Soublin theorem which will be used in Section 4:

Proposition 2.23. A quasigroup (Q, ∗) is distributive if and only if there is a commutative
Moufang loop (Q,+) and a J-central orthoautomorphism ψ of (Q,+) such that

x ∗ y = (2x− y) + ψ̂(y − x).

Proof. By Lemma 2.21, if (Q,+) is a commutative Moufang loop and ψ ∈ JAutC(Q,+) ∩
Ort(Q,+) then id − ψ ∈ JAutC(Q,+) ∩ Ort(Q,+) ⊆ JAutC(Q,+). In view of Theorem

2.11, it remains to show that (id−ψ)(x)+ψ(y) = (2x− y)+ ψ̂(y−x). By Lemma 2.19, ψ̂ is

an endomorphism into Z(Q,+). Therefore, (x−ψ(x))+ψ(y) = (2x− ψ̂(x))+(−y+ ψ̂(y)) =

(2x− y) + ψ̂(y)− ψ̂(x) = (2x− y) + ψ̂(y − x). �

2.4. Quasigroups corresponding to triple systems. Certain distributive quasigroups
correspond to interesting combinatorial designs.

A Steiner triple system is a pair (V,B), where V is a set and B is a collection of 3-element
subsets of V such that for every distinct x, y ∈ V there is a unique z ∈ V such that
{x, y, z} ∈ B [18].

A Hall triple system is a Steiner triple system (V,B) such that for every x ∈ V there exists
an involutory automorphism of (V,B) whose only fixed point is x [12].

A Mendelsohn triple system is a pair (V,B), where V is a set and B is a collection of
cyclically ordered triples 〈x, y, z〉 = 〈y, z, x〉 = 〈z, x, y〉 of distinct elements of V such that
for any ordered tuple (x, y) of distinct elements of V there is a unique z ∈ V such that
〈x, y, z〉 ∈ B [21].

Given a Steiner or Mendelsohn triple system (V,B), respectively, we can define a quasi-
group operation on V as follows: if x = y, let x ∗ y = x, otherwise let x ∗ y = z, where z is
the unique element of V such that {x, y, z} ∈ B, respectively 〈x, y, z〉 ∈ B. There is a one-
to-one correspondence between Hall triple systems and distributive Steiner quasigroups, and
between distributive Mendelsohn triple systems and distributive Mendelsohn quasigroups;
see [9] for details. The following simple criterion identifies the relevant quasigroups in our
classification results.

Proposition 2.24 ([9, Proposition 2.1]). Let Q = (Q,+) be a commutative Moufang loop
and let ψ ∈ JAutC(Q) ∩ Ort(Q). The corresponding distributive quasigroup Q(Q,+, id −
ψ, ψ, 0) is:

(i) Steiner if and only if Q has exponent 3 and ψ(x) = −x for every x ∈ Q;
(ii) Mendelsohn if and only if ψ2(x)− ψ(x) + x = 0 for every x ∈ Q.

Remark 2.25. In a Moufang loop we have (x+ y) + z = 0 if and only if x+ (y+ z) = 0, so
it is not necessary to specify the order of addition in the expression ψ2(x)−ψ(x) + x above.

Corollary 2.26. Let Q = (Q,+) be a commutative Moufang loop and let ψ ∈ JAutC(Q) ∩
Ort(Q). The corresponding distributive quasigroup Q(Q,+, id− ψ, ψ, 0) is:

(i) Steiner if and only if Q has exponent 3 and ψ̂ = 0;

(ii) Mendelsohn if and only if ψ̂2(x)− 3ψ̂(x) + 3x = 0 for every x ∈ Q.
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Proof. Part (i) is obvious. For (ii), we calculate ψ2−ψ+ id = (−id+ ψ̂)2− (−id+ ψ̂)+ id =

ψ̂2 − 3ψ̂ + 3id. �

In particular, if a commutative Moufang loop Q has exponent 3 then the corresponding
distributive quasigroup is Steiner if and only if ψ̂ = 0, and it is Mendelsohn if and only if
ψ̂2 = 0.

The classification of the respective quasigroups directly translates into the classification
of the corresponding triple systems. Non-medial distributive Mendelsohn quasigroups were
enumerated up to order 34 in [9], and non-medial distributive Steiner quasigroups were
enumerated up to order 36 in [3]. In the present paper, we extend the classification in the
Mendelsohn case to order 35.

3. The classification algorithm

3.1. Outline of the algorithm. Theorem 2.12 suggests the following algorithm for the
classification of centrally affine quasigroups over a given commutative Moufang loop Q =
(Q,+). We calculate the set JAutC(Q) × JAutC(Q) × Z(Q) and filter it subject to the
equivalence induced by the condition in Theorem 2.12. To obtain trimedial quasigroups, we
consider only triples (ϕ, ψ, c) satisfying ϕψ = ψϕ. To obtain distributive quasigroups, we
consider only triples (ϕ, ψ, c) satisfying c = 0 and ϕ+ ψ = id.

To complete the classification for a fixed order n, it suffices to consider the disjoint union of
the classifications obtained for each commutative Moufang loop of order n because isomorphic
centrally affine quasigroups have isomorphic underlying loops; see Theorem 2.12. To obtain
non-medial quasigroups, we consider only nonassociative loops; see Lemma 2.7.

Essentially the same idea was used in [16, 17] to classify trimedial and distributive quasi-
groups of order 34 = 81 by hand. Manual classification is out of the question for or-
der 35, and even straightforward computer calculation is insufficient since the size of the
set JAutC(Q) × JAutC(Q) × Z(Q) is of the magnitude 108 for some of the loops under
consideration.

In the rest of this section we describe how to speed up the algorithm.

3.2. Calculating automorphism groups. Recall that all six commutative Moufang loops
of order 243 were constructed by Kepka and Němec [17]. Moufang loops of order 81 were
classified by Nagy and Vojtěchovský in [25], and Moufang loops of order 243 were clas-
sified by Slattery and Zenisek in [26]. The 71 nonassociative Moufang loops of order
243 can be found in the LOOPS [24] package for GAP [11] and can be obtained by calling
MoufangLoop(243,i). The six nonassociative commutative Moufang loops correspond to
the indices i ∈ {1, 2, 5, 56, 57, 67}.

The default method in LOOPS for calculating automorphism groups of loops is powerful
enough to calculate automorphism groups of Moufang loops of order 81 and even of some
loops of order 243. We adopted the default algorithm, made a better use of global variables
and ran it with different choices of generators (to which the algorithm is highly sensitive).
We succeeded in calculating the automorphism groups for the six commutative Moufang
loops of order 243. The longest calculation, for MoufangLoop(243,5), took several hours.
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3.3. Calculating central and J-central automorphisms. We do not calculate the sets
AutC(Q), JAutC(Q) and JAutC(Q) ∩ Ort(Q) directly by filtering Aut(Q) because Aut(Q)
can be too large. Our approach is based on the following observation.

Lemma 3.1. Let Q be a loop and H a subgroup of Aut(Q) containing AutC(Q). Then
AutC(Q) is the kernel of the natural action of H on Q/Z(Q).

Proof. An automorphism α ∈ H is in the kernel of the action if and only if α(Z(Q) + x) =
Z(Q)+α(x) is equal to Z(Q)+x for every x ∈ Q, which says precisely that α ∈ AutC(Q). �

We can apply Lemma 3.1 to H = Aut(Q), which has been obtained above. However, it is
possible to calculate AutC(Q) faster using a proper subgroup H of Aut(Q) as follows.

The standard algorithm for calculating automorphisms of a given algebraic structure at-
tempts to extend a partial map defined on a fixed generating set into an automorphism, while
employing various isomorphism invariants to restrict possible images of the generators. Let
X be a set of generators of a loop Q. Whenever a choice is being made for the image of
x ∈ X , we restrict the choice to the coset Z(Q) + x. Since we enforce this condition only for
generators, the algorithm can yield a subgroup H of Aut(Q) properly containing AutC(Q).
Lemma 3.1 then allows us to calculate the actual group AutC(Q) as the kernel of the action
of H .

Having AutC(Q) at our disposal, we can easily calculate the coset JAutC(Q), and filter
its elements to obtain JAutC(Q) ∩Ort(Q).

To finish the classification of distributive quasigroups, various subgroups U of Aut(Q)
can be used to filter JAutC(Q) ∩ Ort(Q) up to conjugacy in U (which makes sense thanks
to Lemma 2.22). This is not necessarily as powerful as the conjugacy in the entire group
Aut(Q), but it reduces the number of elements of JAutC(Q) ∩ Ort(Q) to be considered
in the final stage, where we employ the entire Aut(Q) to finish the classification. In our
implementation, we used for U the pointwise stabilizer of Z(Q) in Aut(Q).

3.4. Handling the action on JAutC(Q)× JAutC(Q)×Z(Q). For trimedial quasigroups,
we must find a way to handle the equivalence on JAutC(Q) × JAutC(Q) and the relation
between c1 and c2 in the isomorphism test of Theorem 2.12.

Consider any group G and a subset X ⊆ G closed under conjugation in G. (Later we
will take G = Aut(Q) and X = JAutC(Q), cf. Lemma 2.22.) Then G acts on X × X by
simultaneous conjugation in both coordinates, i.e., (α, β)γ = (αγ, βγ). To calculate orbits on
X ×X , we take advantage of the following well-known result.

Lemma 3.2. Let G be a group acting on a set X. Let O be a complete set of orbit represen-
tatives of the action, and for every x ∈ O let Ox be a complete set of orbit representatives of
the action of the stabilizer Gx on X. Then

{(a, b) : a ∈ O, b ∈ Oa}

is a complete set of orbit representatives of the action of G on X × X given by (x, y)g =
(xg, yg).

Proof. For every (x, y) ∈ X × X there is a unique a ∈ O and some z ∈ X such that (x, y)
and (a, z) are in the same orbit. For a fixed a ∈ O and some u, v ∈ X , we have (a, u) in the
same orbit as (a, v) if and only if u, v belong to the same orbit of Ga. �
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Lemma 3.3. Let Q be a commutative Moufang loop, let A = Aut(Q), and let α, β ∈
JAutC(Q). Then CA(α) ∩ CA(β) acts naturally on Z(Q)/Im(id− (α + β)).

Proof. Let I = Im(id− (α+ β)). First, we note that I ≤ Z(Q). Indeed, for every x ∈ Q, we
have

x− (α(x) + β(x)) = x− ((−x+ α̂(x)) + (−x+ β̂(x))) = 3x− (α̂(x) + β̂(x)) ∈ Z(Q),

because 3x ∈ Z(Q) and α, β are J-central.
It remains to show that for every γ ∈ CA(α)∩CA(β) the mapping u+I 7→ γ(u)+I is well-

defined. Suppose that u+ I = v+ I for some u, v ∈ Z(Q). Then u = v+(x− (α(x)+β(x)))
for some x ∈ Q, and we have

γ(u) = γ(v) + (γ(x)− (γα(x) + γβ(x)))

= γ(v) + (γ(x)− (αγ(x) + βγ(x)))

= γ(v) + (id− (α + β))(γ(x)) ∈ γ(v) + I,

finishing the proof. �

We can now reformulate Theorem 2.12 so that it can be used directly in the enumeration
of centrally affine quasigroups over a given commutative Moufang loop. (A similar theorem
for abelian groups was obtained by Drápal [10, Theorem 3.2] and used as an enumeration
tool in [29].)

Theorem 3.4. Let Q be a commutative Moufang loop and let A = Aut(Q). The isomorphism
classes of centrally affine quasigroups over Q (resp. trimedial quasigroups over Q) are in
one-to-one correspondence with the elements of the set

{(ϕ, ψ, c) : ϕ ∈ X, ψ ∈ Yϕ, c ∈ Zϕ,ψ},

where

• X is a complete set of orbit representatives of the conjugation action of A on JAutC(Q);
• Yϕ is a complete set of orbit representatives of the conjugation action of CA(ϕ) on
JAutC(Q) (resp. on JAutC(Q) ∩ CA(ϕ)), for every ϕ ∈ X;

• Zϕ,ψ is a complete set of orbit representatives of the natural action of CA(ϕ)∩CA(ψ)
on Z(Q)/Im(id− (ϕ+ ψ)).

Proof. Consider the equivalence relation of JAutC(Q)×JAutC(Q)×Z(Q) implicitly defined
by Theorem 2.12. By Lemma 3.2, it remains to describe when two triples (ϕ, ψ, c1) and
(ϕ, ψ, c2) are equivalent, where ϕ ∈ X , ψ ∈ Yϕ and c1, c2 ∈ Z(Q).

Let I = Im(id − (ϕ+ ψ)). Using Lemma 3.3, for any γ ∈ Aut(Q) we have c2 = γ(c1 + u)
for some u ∈ I if and only if c2 ∈ γ(c1 + I) = γ(c1) + I, which is equivalent to c2 + I =
γ(c1) + I = γ(c1 + I). �

4. Results

4.1. Detailed results for order 243. The sizes of the various sets of automorphisms en-
countered during the enumeration can be found in Table 1. Here X/G denotes the number
of orbits of the action of a group G on a set X (where the action is as described above). The
loop notation n/k refers to MoufangLoop(n,k).
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Q 243/1 243/2 243/5 243/56 243/57 243/67
exponent of Q 9 27 9 3 9 9

Z(Q) C2
3 C9 C2

3 C2
3 C2

3 C9

size of A = Aut(Q) 629856 34992 78732 49128768 1889568 909792
|AutC(Q)| = |JAutC(Q)| 729 81 729 4374 4374 81

|JAutC(Q)/A| 16 12 38 8 18 6
|JAutC(Q)

2/A| 1827 207 11061 283 2146 54
|(JAutC(Q)

2 × Z(Q))/A| 2310 288 13056 375 2537 114
|JAutC(Q) ∩Ort(Q)| 729 81 729 2187 2187 81

|(JAutC(Q) ∩Ort(Q))/A| 16 12 38 6 14 6

Table 1. Sizes of various subsets of automorphisms that appear in the classification.

4.2. Enumeration. Let c(Q) denote the number of centrally affine quasigroups, t(Q) the
number of trimedial quasigroups, d(Q) the number of distributive quasigroups, dM(Q)
the number of distributive Mendelsohn quasigroups, and dS(Q) the number of distributive
Steiner quasigroups over a loop Q, up to isomorphism.

Table 2 displays these numbers for every nonassociative commutative Moufang loop of
order 81 and 243. The entries for order 81 can be found already in [9, 16, 17] and have
been independently verified by our calculations. The entries in the last row can be found in
[3] and have also been independently verified. The remaining entries for order 243 are new.
Since all the commutative Moufang loops in the table are nonassociative, the corresponding
quasigroups are non-medial by Lemma 2.7.

Q 81/1 81/2 243/1 243/2 243/5 243/56 243/57 243/67
c(Q) 8 27 2310 288 13056 375 2537 114
t(Q) 8 27 2310 288 13056 165 1071 114
d(Q) 2 4 16 12 38 6 14 6

dM(Q) 2 0 0 0 0 5 1 0
dS(Q) 1 0 0 0 0 1 0 0

Table 2. Enumeration of various classes of centrally affine quasigroups over
a given commutative Moufang loop.

Note that the entries c(Q) for loops of order 243 in Table 2 are precisely the entries in the
8th row of Table 1, as explained by Theorem 3.4.

In Table 3 we summarize the results of Table 2 by order, and we use a notation analogous to
that of Table 2. For instance, t(n) denotes the number of non-medial trimedial quasigroups
of order n up to isomorphism. Note that we have not enumerated non-medial centrally affine
quasigroups of order 243, since this would require also the enumeration of all quasigroups
Q(Q,+, ϕ, ψ, c), where (Q,+) is an abelian group of order 243 and ϕ, ψ are non-commuting
automorphisms of (Q,+); a difficult task (see [29]).

4.3. Explicit constructions. Detailed results of the enumeration, including arithmetic
forms for all the quasigroups, can be obtained from the third author upon request.
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n 33 34 35 36

t(n) 0 35 17004 ?
d(n) 0 6 92 ?

dM(n) 0 2 6 ?
dS(n) 0 1 1 3

Table 3. Enumeration of various classes of non-medial quasigroups for a given order.

To present a sample of the detailed results, we now give explicit formulas for all elements of
JAutC(Q)∩Ort(Q) up to conjugacy in Aut(Q), where Q is MoufangLoop(243,i) with i = 56
or i = 57 (these are the two directly decomposable non-associative commutative Moufang
loops of order 243). The corresponding distributive quasigroups can be obtained readily
using Proposition 2.23. In particular, we obtain an explicit description of all non-affine
distributive Mendelsohn triple systems of order 243.

Example 4.1. Consider Q = MoufangLoop(243,56) = MoufangLoop(81,1) × Z3. Accord-
ing to [17], the loop MoufangLoop(81,1) is isomorphic to (Z4

3,+), where

(a1, b1, c1, d1) + (a2, b2, c2, d2) = (a1 + a2 + (d1 − d2)(b1c2 − c1b2), b1 + b2, c1 + c2, d1 + d2).

The associator subloop is A(Q) = Z3×0×0×0×0 and the center is Z(Q) = Z3×0×0×0×Z3.
The elements of JAutC(Q)∩Ort(Q) up to conjugacy by Aut(Q) are given by the following

six endomorphisms into the center:

ψ̂1 : (a, b, c, d, e) 7→ (0, 0, 0, 0, 0), ψ̂2 : (a, b, c, d, e) 7→ (b, 0, 0, 0, 0),

ψ̂3 : (a, b, c, d, e) 7→ (e, 0, 0, 0, 0), ψ̂4 : (a, b, c, d, e) 7→ (0, 0, 0, 0, b),

ψ̂5 : (a, b, c, d, e) 7→ (b, 0, 0, 0, c), ψ̂6 : (a, b, c, d, e) 7→ (e, 0, 0, 0, b).

It is straightforward to check that each of these mappings is an endomorphism into the center
with a unique fixed point, and that all id−ψi = 2id− ψ̂i are permutations. By Lemma 2.19,
ψi ∈ JAutC(Q) ∩Ort(Q) for every i.

To check that the six mappings are pairwise non-conjugate, we use the following criterion:
Let α ∈ End(Q) and ξ ∈ Aut(Q). If H is a characteristic subloop of Q, we have αξ(H) =
ξα(H). If both H and α(H) are characteristic subloops of Q then α(H) = αξ(H). Now
observe that:

• Im(ψ̂1) = 0,

• Im(ψ̂2) = A(Q) and ψ̂2(Z(Q)) = 0,

• Im(ψ̂3) = A(Q) and ψ̂3(Z(Q)) 6= 0,

• Im(ψ̂4) is neither A(Q), nor Z(Q),

• Im(ψ̂5) = Z(Q) and ψ̂5(Z(Q)) = 0,

• Im(ψ̂6) = Z(Q) and ψ̂6(Z(Q)) 6= 0.

Example 4.2. Consider Q = MoufangLoop(243,57) = MoufangLoop(81,2) × Z3. Accord-
ing to [17], the loop MoufangLoop(81,2) is isomorphic to (Z2

3 × Z9,+), where

(a1, b1, c1) + (a2, b2, c2) = (a1 + a2, b1 + b2, c1 + c2 + 3(c1 − c2)(a1b2 − b1a2)).

The associator subloop is A(Q) = 0×0×3Z9×0 and the center is Z(Q) = 0×0×3Z9×Z3.
13



The elements of JAutC(Q)∩Ort(Q) up to conjugacy by Aut(Q) are given by the following
endomorphisms into the center:

ψ̂1 : (a, b, c, d) 7→ (0, 0, 0, 0), ψ̂2 : (a, b, c, d) 7→ (0, 0, 3c, 0),

ψ̂3 : (a, b, c, d) 7→ (0, 0, 6c, 0), ψ̂4 : (a, b, c, d) 7→ (0, 0, 3d, 0),

ψ̂5 : (a, b, c, d) 7→ (0, 0, 3a, 0), ψ̂6 : (a, b, c, d) 7→ (0, 0, 0, a),

ψ̂7 : (a, b, c, d) 7→ (0, 0, 0, c mod 3), ψ̂8 : (a, b, c, d) 7→ (0, 0, 3a, b),

ψ̂9 : (a, b, c, d) 7→ (0, 0, 3c, a), ψ̂10 : (a, b, c, d) 7→ (0, 0, 6c, a),

ψ̂11 : (a, b, c, d) 7→ (0, 0, 3a, c mod 3), ψ̂12 : (a, b, c, d) 7→ (0, 0, 3d, a),

ψ̂13 : (a, b, c, d) 7→ (0, 0, 3d, c mod 3), ψ̂14 : (a, b, c, d) 7→ (0, 0, 3d, 2c mod 3).

Again, it is straightforward to check that the corresponding mappings ψi belong to JAutC(Q)∩

Ort(Q). To show that they are pairwise non-conjugate, first notice that ψ̂1 = 0, ψ̂2 = 3id

and ψ̂3 = 6id, so they commute with any automorphism. To distinguish the remaining map-
pings, consider also the characteristic subloop B = {x ∈ Q : x3 = 1} = Z3 × Z3 × 3Z9 × Z3

and observe that

• Im(ψ̂i) = A(Q) iff i = 4, 5; here ψ̂5(Z(Q)) = 0 but ψ̂4(Z(Q)) 6= 0;

• Im(ψ̂i) is of order 3 but not A(Q) iff i = 6, 7; here ψ̂7(B) = 0 but ψ̂6(B) 6= 0,

• Im(ψ̂i) = Z(Q) for i = 8, . . . , 14;

– ψ̂i(Z(Q)) = 0 for i = 8, 9, 10, 11, but

∗ ψ̂8(B) = Z(Q),

∗ ψ̂11(B) = A(Q),

∗ both ψ̂9(B), ψ̂10(B) have order 3, 6= A(Q); we have ψ̂9 = ψ̂2 + ψ̂6 and if

there existed ξ such that ψ̂ξ9 = ψ̂10 then ψ̂ξ6 = ψ̂10 − ψ̂2 = ψ̂9 which is
impossible;

– ψ̂i(Z(Q)) = A(Q) for i = 12, 13, 14, but

∗ ψ̂12(B) = Z(Q),

∗ ψ̂13(B) = ψ̂14(B) = A(Q); they cannot be conjugate, because their squares,

ψ̂2
13 = ψ̂2 and ψ̂2

14 = ψ̂3, are not.

Which of these quasigroups transform into distributive Mendelsohn triple systems? Ac-
cording to Corollary 2.26:

• for Q = MoufangLoop(243,56) whose exponent is 3, these are precisely the mappings

ψ̂i with ψ̂
2
i = 0, which is the case for i = 1, 2, 3, 4, 5.

• for Q = MoufangLoop(243,57), since 3Z(Q) = 0, the equation is equivalent to

ψ̂2
i = −3id, which is satisfied only for i = 14.

Using Proposition 2.23, the triple system (V,B) corresponding to the pair (Q, ψ̂) is defined
by

V = Q and B = {(x, y, 2x− y + ψ̂(y − x)) : x, y ∈ Q}.

4.4. Commuting central automorphisms. Upon inspection of Table 2, we see that in
many small nonassociative commutative Moufang loops Q, any two J-central automorphisms
of Q commute. This is partly explained by Proposition 4.4.
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Lemma 4.3. Let Q be a commutative Moufang loop and let ϕ, ψ be J-central automorphisms
of Q. Then ϕψ = ψϕ if and only if ϕ̂ψ̂ = ψ̂ϕ̂.

Proof. We must proceed carefully since the addition of mappings on Q is not necessarily
an associative operation. However, for any α ∈ AutC(Q) and β, γ ∈ Aut(Q) we have
α̂ + (β + γ) = (α̂+ β) + γ because Im(α̂) ⊆ Z(Q) by Lemma 2.18. In particular, we have

(4.1) ψ̂ + ϕ = ψ̂ + ϕ̂− id = ϕ̂+ ψ̂ − id = ϕ̂+ ψ.

Now, ϕ̂ψ̂ = (id+ϕ)ψ̂ = ψ̂+ϕψ̂ = ψ̂+ϕ+ϕψ and, by symmetry, ψ̂ϕ̂ = ϕ̂+ψ+ψϕ. Thanks

to (4.1), we see that ϕ and ψ commute if and only if ϕ̂ and ψ̂ commute. �

Proposition 4.4. Let Q be a nonassociative commutative Moufang loop of order a power of 3
such that Z(Q) is cyclic and Q/Z(Q) is associative. Then any two J-central automorphisms
of Q commute.

Proof. Let ϕ, ψ be J-central automorphisms of Q. By Lemma 4.3, it suffices to show that
ϕ̂ψ̂ = ψ̂ϕ̂.

By Lemma 2.19, ϕ̂ and ψ̂ are endomorphism into Z(Q). Any endomorphism into Z(Q)
has all associators (x+(y+z))−((x+y)+z) in its kernel, and thus vanishes on the associator

subloop A(Q). Since Z(Q) is cyclic, there are integers a, b such that ϕ̂(z) = az, ψ̂(z) = bz
for every z ∈ Z(Q).

By our assumption, Q/Z(Q) is associative and 0 < A(Q). Thus 0 < A(Q) ≤ Z(Q) and

the restriction of each of ϕ̂, ψ̂ onto Z(Q) has nontrivial kernel. Since |Z(Q)| is a power of 3,
it follows that 3 divides a and b. Then ax, bx ∈ Z(Q) for every x ∈ Q, and we calculate

ϕ̂ψ̂(x) = aψ̂(x) = ψ̂(ax) = bax = abx = ϕ̂(bx) = bϕ̂(x) = ψ̂ϕ̂(x)

for every x ∈ Q. �

Every commutative Moufang loop of order ≤ 35 is centrally nilpotent of class at most
two [17, Lemma 1.6]. Both of the nonassociative commutative Moufang loops of order 34

have cyclic centers, and so do two of the six nonassociative Moufang loops of order 35 (see
Table 1). Proposition 4.4 therefore applies to these loops. However, Proposition 4.4 does
not tell the whole story, as there are commutative Moufang loops of order 35 that have a
non-cyclic center, yet any two of its J-central automorphisms commute.
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(Stanovský) Department of Algebra, Faculty of Mathematics and Physics, Charles Uni-

versity, Prague, Czech Republic
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17


	1. Introduction
	Basic definitions and results

	2. Affine representation of trimedial quasigroups
	2.1. Affine representation and isomorphism theorem
	2.2. J-central mappings
	2.3. Orthomorphisms and orthoautomorphisms
	2.4. Quasigroups corresponding to triple systems

	3. The classification algorithm
	3.1. Outline of the algorithm
	3.2. Calculating automorphism groups
	3.3. Calculating central and J-central automorphisms
	3.4. Handling the action on JAutC(Q)JAutC(Q)Z(Q)

	4. Results
	4.1. Detailed results for order 243
	4.2. Enumeration
	4.3. Explicit constructions
	4.4. Commuting central automorphisms

	Acknowledgement
	References

