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Abstract

This work examines the concept of S-permutation matrices, namely
n? x n? permutation matrices containing a single 1 in each canonical
n X n subsquare (block). The article suggests a formula for counting
mutually disjoint pairs of n? x n? S-permutation matrices in the general
case by restricting this task to the problem of finding some numerical
characteristics of the elements of specially defined for this purpose factor-
set of the set of n x n binary matrices. The paper describe an algorithm
that solves the main problem. To do that, every n x n binary matrix is
represented uniquely as a n-tuple of integers.
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1 Introduction and notation

Let n be a positive integer. By [n] we denote the set [n] = {1,2,...,n}.

A binary (or boolean, or (0,1)-matriz) is a matrix all of whose elements
belong to the set B = {0, 1}. In this paper we will consider only square binary
matrices. With B,, we will denote the set of all n x n binary matrices. With
B8, we will denote the set of all n x n binary matrices containing exactly k
elements equal to 1.

Two n x n binary matrices A = (a;;) € B, and B = (b;;) € B, will be
called disjoint if there are not integers ¢, j € [n] such that a;; = b;; = 1, i.e. if
Qi3 = 1 then bij =0 and if bij =1 then Qi = 0.

Let n be a positive integer and let A € B,,> be a n? x n? binary matrix. With
the help of n — 1 horizontal lines and n — 1 vertical lines A has been separated
into n? of number non-intersecting n x n square sub-matrices Ay, 1 < k,1 < n,
e.d.

All A12 te Aln
A21 A22 te AQn

A= . o . (1)
Anl An2 e Ann

The sub-matrices Ag;, 1 < k,I < n will be called blocks.
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A matrix A € 8,2 is called an S-permutation if in each row, in each column,
and in each block of A there is exactly one 1. Let the set of all n? x n? S-
permutation matrices be denoted by X,,2.

The concept of S-permutation matrix was introduced by Geir Dahl [2] in
relation to the popular Sudoku puzzle. Sudoku is a very popular game. On the
other hand, it is well known that Sudoku matrices are special cases of Latin
squares in the class of gerechte designs [I].

Obviously a square n? x n? matrix M with elements of [n?] = {1,2,...,n%}
is a Sudoku matrix if and only if there are matrices A, Ao, ..., A,2 € ¥,2, each
two of them are disjoint and such that P can be given in the following way:

M=1-A+2-As+---+n A (2)

Some algorithms for obtaining random Sudoku matrices and their valuation
are described in detail in [5] and [4].

In [4] Roberto Fontana offers an algorithm which randomly gets a family of
n? x n? mutually disjoint S-permutation matrices, where n = 2,3. In n =3 he
ran the algorithm 1000 times and found 105 different families of nine mutually
disjoint S-permutation matrices. Then using (2]) he obtained 9!-105 = 38 102 400
Sudoku matrices.

But it is known [3] that the total number of 9 x 9 Sudoku matrices is

9!.722.27.27 704 267 971 = 6 670 903 752 021 072 936 960

Thus, in relation with Fontana’s algorithm, it looks useful to calculate the
probability of two randomly generated S-permutation matrices to be disjoint.
So the question of enumerating all disjoint pairs of S-permutation matrices nat-
urally arises. This work is devoted to this task.

As we have shown in [6], with hand calculations of the so assigned task with
small values of n (n = 2,3), it is convenient to use the apparatus of graph
theory. Unfortunately, when n > 4 this approach is inefficient. In this article,
we will use only the operations of matrix analysis, which are not difficult to
process with computers.

2 A representation of S-permutation matrices

Let n be a positive integer. If z; 2o ... z, is a permutation of the elements of
the set [n] = {1,2,...,n} and let us shortly denote o this permutation. Then
in this case we will denote by o(i) the i-th element of this permutation, i.e.
o(i) =2z,1=1,2,...,n.

Definition 1 Let II,, denotes the set of all n x n matrices, constructed such
that m € 11, if and only if the following three conditions are true:
i) the elements of w are ordered pairs of numbers (i, j), where 1 <i,j <n;
ii) if
[(a1,b1) (az,by) -+ (an,bn)]
is the i-th row of @ for any i € [n] = {1,2,...,n}, then a1 as ... a, in this
order is a permutation of the elements of the set [n];



iii) if
(ay,b1)
(ag, ba)

<an;bn>
is the j-th column of m for any j € [n], then by, ba, ..., b, in this order is a

permutation of the elements of the set [n].

From Definition [Tl it follows that we can represent each row and each column
of a matrix M € II,, with the help of a permutation of elements of the set [n].
Conversely for every (2n)-tuple

<<p17p25 s apn>7 <017 02, Jn>>a
where
pi =pi(1) pi(2) ... pi(n), 1<i<n
oj=0j(1)0j(2) ... j(n), 1<j<n
are 2n permutations of elements of [n] (not necessarily different), then the matrix

(p1(1),01(1))
(p2(1),01(2))  (p2(2),02(2)) -+ {pa(n),on(2))

{(pn(1),01(n))  (pn(2),02(n)) -+ (pn(n),on(n))
is matrix of II,,. Hence
2n
| = (n}) (3)
Definition 2 We say that matrices ' = [p/ij]nx

, €p and " = "]
I1,, are disjoint, if p’;; # p";; for everyi,j € [n].

nxn

Definition 3 Let «', 7" € II,, ' = [p/ij]nxn’ 7w = [p”ij}nxn and let the
integers i,j € [n] are such that p';; = p”;;. In this case we will say that p';; and

p";; are component-wise equal elements.

Obviously two II,-matrices are disjoint if and only if they do not have
component-wise equal elements.

Example 1 We consider the following II3-matrices:

(3,1) (2,1) (1,2)
7T/ = [pgj] = <233> <352> <151>
(3,2) (L,3) (2,1)
" = [pi]] (3,3) (1L,L) (2,2)
(2,1) (1,2) (3,3)
(3,1) (1,3) (2,2)
™ =p] =1 (22 (&1 (1,1)
(2,3) (1,2) (3,3)



Matrices ' and 7’ are disjoint, because they do not have component-wise
equal elements.

Matrices 7’ and 7"/ are not disjoint, because they have two component-wise
equal elements: pj; = p{] = (3,1) and phs = pi = (1, 1).

Matrices 7"/ and 7"’ are not disjoint, because they have three component-
wise equal elements: pf, = pi5 = (1,3), p§y = p3s = (1,2), and ph3 = p33 =
(3,3).

The relationship between S-permutation matrices and the matrices from the
set II,, are given by the following theorem:

Theorem 1 Let n be an integer, n > 2. Then there is one to one correspon-
dence between the sets 3,2 and I1,,.

Proof. Let A € ¥,2. Then A is constructed with the help of formula (I
and for every 4,j € [n] in the block A;; there is only one 1 and let this 1
has coordinates (a;, b;). For every 4, j € [n] we obtain ordered pairs of numbers
(a;, b;) corresponding to these coordinates. As in every row and every column of
A there is only one 1, then the matrix [av;], ., where ai; = (a;,b;), 1 < i,j <n,
which is obtained by the ordered pairs of numbers is matrix of II,, i.e. matrix
for which the conditions i), ii) and iii) are true.

Conversely, let [a;], ., € I, where oy = (as,b5), 1,5 € [n], a;,b; € [n].
Then for every i,j € [n] we construct a binary n x n matrices A;; with only one
1 with coordinates (a;,b;). Then we obtain the matrix of type (). According
to the properties i), ii) and iii), it is obvious that the obtained matrix is S-
permutation matrix. (I

Corollary 1 The number of all pairs of disjoint matrices from ¥,2 is equal to
the number of all pairs of disjoint matrices from I, .

Proof. It is easy to see that with respect of the described in Theorem [I] one
to one correspondence, every pair of disjoint matrices of X2 will correspond to
a pair of disjoint matrices of II,, and conversely every pair of disjoint matrices
of IT,, will correspond to a pair of disjoint matrices of 3,,2. (Il

Corollary 2 [2] The number of all n> x n? S-permutation matrices is equal to
[Sp2| = (n)™" (4)

Proof. It follows immediately from Theorem [I] and formula (3]). O

3 A formula for counting all disjoint pairs of n?x
n? S-permutation matrices

Let A = [aijlnxn € Brn. We define the following numerical characteristics of the
binary matrix A:

ri(A) — the number of rows in A having exactly k units, k =0,1,2,...,n;
¢k (A) — the number of columns in A having exactly k units, k =0,1,2,...,n;

Vp(A) = r(A) + c(4), k=0,1,2,...,n;



g(A) — the number of units in A.

Let A,B € 9,. We will say that A ~ B, if B is obtained from A after
dislocation of some of the rows of A. Obviously, the relation defined like that is
an equivalence relation. The factor-set %B,,,_, i.e. the set of equivalence classes
on the above defined relation we denote with B,,. If A € 9B,,, then with A we
will denote the set A = {B € B,, | B~ A}. Thus |[A| = |{B € B, | B~ A}|is
the cardinality of the set A. By definition %n,k = %"ak/N

Obviously if A,B € B,, and A ~ B, then ri(A) = ri(B), cx(A) = ck(B),
Yi(A) = Yr(B), ex(A) = ex(B), k =0,1,2,...,n. So in a natural way we can
define the functions 74, cx, ¥, and € in the factor-set B, = B, as rk(Z),
cx(A), i (A) and £(A) will mean respectively rx(A), cx(A), ¥ (A) e(A), where
A'is an arbitrary representative of the set A= {B € B,, | B ~ A}.

Lemma 2 Let 7 € II,. Then the number q(n,k) of all matrices ©’ € 11,
(including 7 ), having at least k, k = 0,1,...,n% component-wise equal elements

to the matrixz w is equal to

(k)= 3 [AT] - i@ (5)
1=0

ZG%n,,k

Proof. Let m = [py], ., .7 = [pgj]nxn € I, and let m and 7’ have exactly
k component-wise equal elements. Then we uniquely obtain the binary n x n
matrix A = [a;;], ., such that a;; = 1 if and only if p;; = p};, 4,5 € [n].

Inversely, let A = [aj]nxn € By and let m = [p;;],, ., be an arbitrary matrix
from II,,.We search for the number h(7, A) of all matrices n’ = [p;j]nxn e 11,
such that p;; = pij, if a;; = 1. (It is assumed that there exist s,t € [n] such
that ass = 0 and pl, = pst.)

Let us denote with v, the number of 1 in s-th row of A and let the s-th row of
7 correspond to the permutation ps of the elements of [n], s =1,2,...,n. Then
there exist (n —7,)! permutations p’ of the elements of [n], such that if a5 = 1,
then ps(t) = p/(t), t € [n]. Likewise we also prove the respective statement for
the columns of 7. Therefore

n n n

hm, A) = [[ (=P [ = 9= = [T (n = iy

i=0 i=0 i=0
From everything said so far it follows that for each = € II,, there exist
am k)= > Tl =0 = 37 [AT] (- iy
A€B,, 1 i=0 Ac®,,  i=0

matrices from II,,, which have at least k elements that are component-wise equal
to the respective elements of 7.

And since (n —n)! =0 =1 and [n — (n — 1)]! = 1! = 1, then we finally
obtain formula (&]). O

Lemma 3 For every integer n > 2

q(n,0) = q(n, 1) = (n)*" = || = |2 .



Proof. Let k = 0. Then B, contains only the matrix, all elements of
which are equal to 0. So |B,0| =1 and if A € B, o then |A| =1, ¥o(A4) = 2n
n—2 _
and 1);(A) = 0 when i > 1. Therefore q(n,0) = >[4 [] [(n — )" ™ =
Zegn,,o i

1:[ [(n—)1]” = (n!)?"

When k =1, there are n? matrices A € B, 1. It is easy to see that |B| =n
and for every A € B, 1, |A| = n, 1¥(A) = 2(n—1), ¢1(A) = 2 and ¢;(A) = 0 for
i > 1. Therefore ¢(n,1) = n2[(n —0)2"72[(n — )12 = (n))?2(n!)? = (n!)*
(]

Theorem 4 Let A € 3,,2. Then the number &, of all matrices B € ¥,,2 which
are disjoint with A does not depend on A and is equal to

D> E(“"!A!H TR ©)

Ac®,, s(Z)>2

Proof. Let n > 2 be an integer. Then applying Theorem[I], Lemma[2] Lemma
Bl and the principle of inclusion and exclusion we obtain that the number &, of
all matrices B € ¥,,2 which are disjoint with A is equal to

3 L]+ 3 (1) g(n, )

k=1
= ()" — )™ + (- 1)g(n, k)
k=2
- S (=1)g(n, k),
k=2

where the function ¢(n, k) is calculated with the help of formula (&). Thus we
obtain the proof to formula (). O

Corollary 3 The cardinality n, of the set of all disjoint non-ordered pairs of

n? x n? S-permutation matrices is equal to

(n!)2n
2

where &, 1s described using formula [6.

Proof. It follows directly from formula (@) and having in mind that the
”disjoint” relation is symmetric and antireflexive. (I

Corollary 4 The probability p, of two randomly generated n®>xn? S-permutation
matrices to be disjoint is equal to

Pn = (nl)giz_l, (8)

where &, is described using formula (0).



Proof. Applying Corollary Bl and formula (@), we obtain:

e
T (e e e
(|E;2|> ()" ((Z!)Q” —1) @) -1

4 An algorithm for counting

There is one to one correspondence between the representation of the integers
in decimal and in binary notations. So a square binary n X n matrix can be
represented using ordered n-tuple of nonnegative integers, which belong to the
closed interval [0, 2" —1]. Let the integer a € [0, 2" —1]. Then a is represented

uniquely in the form:
n—1
a= Z by(a)2¥,
u=0

where b,(a) € B = {0,1}, v = 0,1,...,n — 1. We assume that we have
implemented an algorithm for calculating the functions b, (a) for every u =
0,1,...,n — 1 and for every a € [0, 2™ — 1]. For example, in the programming
languages C ++ and Java, b,(a) can be calculated using the expression

bu = (a & (1<<u))==0 7 0 : 1
Let A € B,,. With p(A) we will denote the ordered n-tuple
p(A) = <ZL'1, T2, ... 7'rn>7

where 0 < x; < 2" — 1,47 = 1,2,...n and x; is the integer written in binary
notation with the help of the i-th row of A.
We consider the set:

R, = {(x1,29,...,2,) |0<z; <2" =1, i=1,2,...n}
{p(A)] A€ B}

Thus we define the mapping p : B,, — R,,, which is bijective and therefore
B, ZR,.

If A e 9B, and p(A) = a € R, then by analogy we define the numerical
characteristics of the element a € Ry,: 74 () = ri(A), cx(a) = cx(A), Yr(a) =
re(a) tex(a) = Yr(A), k=0,1,2,...,nand e(a) = e(A). We assume |a| = |A],
where A = {B €B,, | B ~ A}.

Let o = (x1,x9,...,2,) € Ry, and let s be the number of different elements
in @ = (x1,22,...,2,). Then the set X = {x1,22,...,2,} can be divide into
parts

X=X1UXoU---UX;

such that for every k € [s] and every i,j € [n], ¢ # j the condition z;,z; € Xj
is satisfied if and only if x; = ;. We assume

Zz:|Xz|; i:1,2,...8.



It is easily seen that
n!

|Oé|: s :

1=
=1

Let
Ry = {(r1,22,...,2,) [ 0< 2y <22 <o <1, <27 — 1} C Ry,

It is easily seen that 9B, =2 which gives the basis to construct the

R,
following algorithm for calculating &,:

Algorithm 5 Calculation of &,.
begin
gn =0 ;
For every a = (1129, ...,2,) € R, do
{
s:=1;
g(a) :=0;
Fori=1,2,...,n do
{
zs i =2zs+1;
t=0;
Foru=0,1,...,.n—1 do
{
t:=t+ bu(aci);

ri(a) = r(a) + 1;

g(a) :=¢e(a) +t;

Ifi <n and x; < xiy1 then s :=s+1;
}
Ife(a) =0 or e(a) =1 then go to next «;
Foru=20,1,....n—1 do
{

t:=0;

Fori=1,2,...,n do

{

t=1t+ bu(l'l),

n!
|Oé| = E} )
HZZ'!
T(a) == (~1)@Ja] [ [(n — )1*;
1=0



§n =& + T ();
}

end.

5 Conclusion

On the basis of algorithm Bl with programming language Java, we made a com-
puter program for calculating &, , n,, and p,, and we received the following results:

=7
€5 = 17 972
&, =41685 061 617
& =232 152 032 603 580 176 504
&6 = 7236 273 578 711 450 275 537 707 547 657 855

12 = 56
n3 = 419 250 816
N4 = 2 294 248 126 968 596 791 296
ns = 71 871 209 790 288 983 974 921 874 964 480 000 000 000

ne = 7 022 228 210 556 132 949 916 635 069 726 824 032 981 704 989 720 182 784 -

p2 = 0.4666666666666667
p3 = 0.38521058836137606
pg = 0.3786958223051558
ps = 0.37493849344703684
pe = 0.3728421644517476

For n = 2 and n = 3, the results that we get here coincide with the calcula-
tions made by hand in [6], where we used a graph theory approach.
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