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Abstract

For even n we prove that the genus of the complete tripartite graph
Kn,n,1 is d(n−1)(n−2)/4e. This is the least number of bridges needed
to build a complete n-way road interchange where changing lanes is
not allowed. Both the theoretical result, and the surprising link to
modelling road intersections are new.

1 Introduction

We start with some basics of topological graph theory, for details and defini-
tions that are not given here, see [9,14]. Let V (G) denote the set of vertices
and E(G) the set of edges of a graph G. The genus of G, denoted g(G),
is the minimum number g such that G can be embedded on the orientable
surface Sg, the sphere with g handles. If G has genus g, there is a 2-cell
(cellular) embedding of G into Sg, that is, an embedding where the interior
of each region (face) is homeomorphic to an open disk. A rotation system
of G is a set {πv : v ∈ V (G)} where πv is a cyclic permutation of edges
incident to v, called a rotation at v. There is a well-known correspondence
between orientable 2-cell embeddings and rotation systems: the rotation
πv corresponds to the clockwise ordering of edges emanating from v in the
embedding.

Ringel [15] showed that for any positive integers n and m the genus of the

complete bipartite graph Kn,m is L(n,m), where L(n,m) =
⌈
(n−2)(m−2)

4

⌉
.
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An alternative proof was given by Bouchet [1]. The inequality g(Kn,m) ≥
L(n,m) follows easily by Euler’s formula 2 − 2g = v + f − e, which holds
for any 2-cell embedding of a graph with v vertices, e edges and f faces into
Sg [9].

White [17] conjectured in 1965 that the genus of a complete tripartite
graph Kn,r,s with n ≥ r ≥ s, satisfies

g(Kn,r,s) = L(n, r + s) =

⌈
(n− 2)(r + s− 2)

4

⌉
. (1)

Since Kn,r+s is a subgraph of Kn,r,s, we know that g(Kn,r,s) must be at least
L(n, r+ s), see, for example, [16]. The challenge is to construct embeddings
of such genus.

White’s conjecture has been confirmed for complete tripartite graphs
with even part sizes [10], the graphs Kn,r,r, n ≥ r ≥ 2 and several other
classes, see [2,12,16]. However, it remains open in general. A corresponding
conjecture for non-orientable embeddings has been settled for all complete
tripartite graphs by Ellingham, Stephens and Zha [7].

We prove

Theorem 1.1 For any even positive integer n there is a 2-cell embedding of
Kn,n into Sd(n−1)(n−2)/4e which has a face bounded by a Hamiltonian cycle.

This confirms (1) for even n and r with n = r and s = 1. Let L(n) =
d(n − 1)(n − 2)/4e. For n ≥ r and r even we can use the diamond sum
operation [1, 12] to see that g(Kn,r,1) ≤ L(n, r + 1) + 1 and (1) holds if
either r mod 4 = 2 or both r mod 4 = 0 and n mod 4 ∈ {0, 1}. The same
technique easily yields g(Kn,n,1) ≤ L(n) + 1 for any odd n.

To our knowledge, prior to this work, g(Kn,n,1) = L(n) and, implicitly,
Theorem 1.1, has been proved only for an infinite sequence of n of the form
3q(2p + 1

2) + 1
2 where q ≥ 0 and p ≥ 3 are integers. This follows from the

embeddings of Kn+1 where all faces are bounded by Hamiltonian cycles,
constructed by Ellingham and his co-authors [5, 6].

The authors in [7] claimed a proof of (1) for a very general family of
graphs Kn,r,s, including the cases studied in this paper. However, no proofs
have appeared since the publication of [7] in 2006. Our idea is simple,
original and does not involve the traditional voltage graph [5,9] or transition
graph constructions [6, 7].

We conjecture that Theorem 1.1 also holds for any odd integer n ≥ 3.
The main result and the application described below leads to a more general
question: when, among all minimum genus embeddings of a graph G there
is one with a Hamiltonian cycle bounding a face?

2



(a) (b)

(c) (d)

Figure 1: Some junction types: (a) trumpet, (b) cloverleaf (an exam-
ple of traffic weaving in the magnified rectangle), (c) double trumpet, (d)
Pinavia [11]. Images (a)-(c) from Davies and Jokiniemi [3] used with authors’
permission; image (d) from www.pinavia.com used with authors’ permission.

2 Road interchanges

Our work is motivated by a beautiful road junction optimisation problem,
which, to our knowledge, is being described here for the first time.

Many types of road interchanges are known by engineers and built in
practice, see, for example, Chapter 7 of [8]. A popular design is the 4-
way cloverleaf interchange. A 3-way example is the trumpet interchange,
see Figure 1. To drive through certain junctions, some vehicles must cross
each other’s path and change their lanes. For example, drivers approaching
a cloverleaf from the south and going west, need a maneuver similar to
the one depicted in a corner of Figure 1b (assuming right-hand traffic). In

3
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Figure 2: (a) Representation of the trumpet interchange by a multigraph em-
bedded into a genus 1 surface; H = (0, 1, 2, 3, 4, 5). (b) A different complete
interchange, an embedding of K3,3, shown in solid lines. Lanes connecting
every pair of motorways are obtained by duplicating appropriate edges of H
(dashed lines).

engineering, a situation when a “vehicle first merges into a stream of traffic,
obliquely crosses that stream, and then merges into a second stream moving
in the same direction” is called traffic weaving [8].

Traffic weaving, which is generally undesirable, can be avoided in the
trumpet, the all-directional four leg [8], also called four-level stack, and,
for example, recently invented Pinavia interchanges (Figure 1d). In these
interchanges the lanes can be completely separated so that the exit motorway
and lane of a vehicle are determined by the lane it enters the junction (lane
changes inside the junction are not necessary or not allowed). We call such
interchanges weaving-free.

Let n ≥ 2 be an integer. Based on an idea by Rimvydas Krasauskas
(personal communication) and Mikhail Skopenkov, see also [13], we propose
to model a weaving-free n-way interchange by a quadruple (G,H,M,S).
Here G is a bipartite multigraph with n white and n black vertices as its
parts, H is a directed Hamiltonian cycle on which the vertex colours alter-
nate, S is a closed connected orientable surface and M is an embedding of
G into S such that H bounds a face (a region homeomorphic to an open
disc). The i-th motorway is represented by one white vertex ai (the incom-
ing direction) and one black vertex bi (the outgoing direction). The cycle
H corresponds to the order the motorways enter and leave the junction. In
particular, if traffic is right-hand and the clockwise order in which the mo-
torways join the junction is (1, . . . , n), then H = (a1, b1, . . . , an, bn). Finally,
the connections between the ingoing and outgoing lanes are represented by
the remaining edges uv ∈ E(G) such that uv 6∈ E(H). For example, the
trumpet interchange corresponds to the embedding shown in Figure 2a.
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The number of bridges in an interchange I = (G,H,M,S) is defined
to be the genus of S. We call I complete if for each white vertex u and
each black vertex v there is an edge uv ∈ E(G). If I is complete we can
iteratively remove repeated edges from G which do not lie on H to obtain
a complete interchange I ′ = (G′, H,M,S) on the same surface with G′ a
complete bipartite graph Kn,n, see Figure 2b. Similarly we can insert new
lanes connecting arbitrary pairs of motorways, for example, by duplicating
edges of G without changing S. Therefore we focus on complete interchanges
with G isomorphic to Kn,n below.

Krasauskas was interested in the minimum number of bridges of a com-
plete n-way weaving-free interchange, for a given n ≥ 2. We call the in-
terchanges that achieve this minimum optimal for n. By the next lemma,
Theorem 1.1 provides a solution for all even n.

Lemma 2.1 Let G be a complete bipartite graph Kn,n. An interchange
(G,H,M,S) is optimal for n if and only if M minimizes the genus over
2-cell embeddings of G which have a face bounded by a Hamiltonian cycle.

Proof Suppose I is an optimal interchange for n. Let I = (G,H,M,S). It
suffices to prove that M is 2-cell. Suppose the contrary.

Youngs, see paragraph 3.5 of [18], showed, that in this case the surface
S can be transformed into a surface S′, such that M is a 2-cell embedding,
when viewed as an embedding from G to S′, all 2-cell faces of M are pre-
served (in particular, the face bounded by H) and the genus of S′ is smaller
than the genus of S. This is a contradiction to the optimality of I. 2

3 Solutions for small n

Given a graph G with a rotation system {πv : v ∈ V (G)}, the boundary
circuit of each face in the corresponding 2-cell embedding can be obtained
by a simple face-tracing algorithm [9]. This algorithm repeats the following
procedure until all edges are traversed (once in both directions). Start with
an arbitrary unvisited edge e0 = (v0, v1). Then for i ≥ 1 if ei = (vi−1, vi)
define ei+1 = πvi(ei) = (vi, vi+1), that is, at each vertex make a clockwise
turn. Repeat this until et+1 = e0 for some t > 0, which closes a directed
walk (v0, v1, . . . , vt).

Once we know the number of faces, Euler’s formula, yields the genus of
the surface. Thus, we can find optimal interchanges for small n by running
the above algorithm for all rotation systems of Kn,n with a face bounded by
a fixed Hamiltonian cycle. The number of such rotation systems, (n− 2)!2n,

5



(a) (b) (c)

Figure 3: The unique (up to isomorphism) optimal interchanges for n = 4
and n = 5 expanded to Hamiltonian cubic graphs. To get the rotation
system for Kn,n, contract same colour paths on the outer circle.

grows with n fast, the embeddings with minimal genus are very rare and
exhaustive search is feasible only for n ≤ 5. Using two different methods
we verified Theorem 1.1 for all n ∈ {2, . . . , 11}. The first method was a
randomized version of [1], see also [12,14]. The second one was restricting the
exhaustive search to certain symmetry patterns; this yielded more symmetric
solutions, especially for even n. One of the two solutions for n = 4, see
Figure 3a, is known to engineers as the double trumpet interchange. It has
been built in practice and has L(4) = 2 bridges (Figure 1c). The other
solution, see Figure 3b, has the same rotation system as the four-level stack
interchange. However, the construction used in practice see, for example, [8],
corresponds to a non-cellular embedding M and a surface S of genus larger
than two.

4 Proofs

In the proof we work only with 2-cell embeddings of simple graphs. There-
fore we use terms embedding and rotation system synonymously and we
use face to refer to boundary circuit. The genus of an embedding is the
genus of the corresponding surface. Also, we represent a rotation πv as a
cyclic permutation of vertices (rather than edges) incident to v and use the
notation v : πv. For example, the rotation v : xyz or πv = (x, y, z) rep-
resents 3 directed edges (arcs) emanating from v in this clockwise order:
((v, x), (v, y), (v, z)).

We will need the next simple result.

Lemma 4.1 (Ringel [15]) Let n and m be even. The following rotation
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u0u1um-2um-1 u2u3u4um-3
v2k

v2k+1
Figure 4: The surface of Lemma 4.1 is a “book” with arched leaves.

system gives a minimum genus embedding of Kn,m with parts {us : s ∈ Zm}
and {vt : t ∈ Zn}:

u2j : vn−1vn−2 . . . v0; u2j+1 : v0v1 . . . vn−1; j = 0, . . . ,m/2− 1;

v2k : u0u1 . . . um−1; v2k+1 : um−1um−2 . . . u0; k = 0, . . . , n/2− 1.

Proof The faces of the proposed embedding are

{vtus+1vt+1us : s even, t even} ∪ {usvt+1us+1vt : s odd, t odd}.

This is a minimum genus embedding of Kn,m because all faces are of length
4, which is minimum possible for a bipartite graph. Indeed, there are v = 2n
vertices, e = nm edges and f = nm

2 faces in total. By Euler’s formula the
genus g satisfies 2− 2g = v + f − e, or g = (n− 2)(m− 2)/4 = L(n,m). 2

The corresponding surface can be visualised as a book with n
2 thick

leaves, where each leaf has m
2 − 1 arcs, see Figure 4. For k ∈ {0, . . . , n2 − 1},

glue faces 2k and 2k+1 (bounded by the black edges in the figure) along the
alternating edges um−1um−2, um−3um−4, . . . , u1u0. Also glue faces 2k and
(2k − 1) mod (2n) along the remaining edges um−2um−3, um−4um−5, . . . ,
u2u1, forming a “leaf”. Each of the n faces is bounded by a Hamiltonian
cycle. Now, as in Bouchet [1], the embedding of Lemma 4.1 results by
placing a vertex vj inside each face j and connecting it to each vertex ui
(grey edges in the picture).

Note that for m = n the embedding of Lemma 4.1 contains a family

F(n) = {vsus+1vs+1us : s even} (2)

of n/2 disjoint faces that covers all of the vertices.

F ′(n) = {usvs+1us+1vs : s odd} (3)

7



is another such family. The union of F(n) and F ′(n) makes up a cylindrical
band of rectangles glued along their opposite sides, see Figure 5a. Below,
given an embedding of Kn,n as in Lemma 4.1, we call faces in F(n) special.

We prove Theorem 1.1 by combining 4 minimum genus embeddings of
complete bipartite graphs with equal part sizes. Our key insight comes after
a careful analysis of symmetric optimal n-way interchanges for n = 4 and
n = 8 generated by computer.

Proof of Theorem 1.1. We aim to construct an embedding of a complete
bipartite graph with parts {0, 2, . . . , 2n − 2} and {1, 3, . . . , 2n − 1}, such
that one of the faces is the Hamiltonian cycle (0, 1, . . . , 2n − 1). We view
the vertex set of the resulting graph as Z2n and perform arithmetics in the
proof modulo 2n.

The case n ≡ 0 (mod 4). We start by partitioning the edges of H into
four parts Pi, i ∈ {0, 1, 2, 3}, where

Pi = {(t− 1, t) : t ≡ i (mod 4), t ∈ Z2n}

For each i ∈ {0, 1, 2, 3} the pairs in Pi cover n/2 even and n/2 odd vertices.
We denote these sets by Ui = {u : uv ∈ Pi} and Vi = {v : uv ∈ Pi}.

For each i we apply Lemma 4.1 to get an embedding Ri of Gi, where Gi

is Kn/2,n/2 with parts Ui and Vi. To apply the lemma, it suffices to choose a
permutation ūi = ui,0ui,1 . . . ui,n

2
−1 of Ui as u0u1 . . . un

2
−1 and a permutation

v̄i = vi,0vi,1 . . . vi,n
2
−1 of Vi as v0v1 . . . vn

2
−1. We define these permutations

by setting for i ∈ {0, 1, 2, 3} and k ∈ {0, . . . , n4 − 1}

(vi,2k, ui,2k+1, vi,2k+1, ui,2k) = Ci,k. (4)

Here for k 6= 0

Ci,k =


(4k − 1, 4k, 2n− 4k − 1, 2n− 4k) i = 0;
(4k, 4k + 1, 2n− 4k, 2n− 4k + 1) i = 1;
(4k + 1, 4k + 2, 2n− 4k + 1, 2n− 4k + 2) i = 2;
(4k + 2, 4k + 3, 2n− 4k − 2, 2n− 4k − 1) i = 3;

and for k = 0

Ci,k =

{
(i− 1, i, n+ i− 1, n+ i) i ∈ {0, 1, 2};
(2, 3, 2n− 2, 2n− 1) i = 3.

Let Fi = {Ci,k : k ∈ {0, . . . , n4 − 1}}. Note that Fi is the family F(n/2)
of special faces of Ri defined in (2). Importantly, each special face of Fi is
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Figure 5: The case n = 8. (a) In Ri, the arcs of Pi are paired to make up the
n
4 disjoint special faces. The marks in their corners show where the rotations
are cut in the concatenation step. (b) The matchings of Pi, i ∈ {0, 1, 2, 3}.
The arc label i indicates the subgraph Gi. The dashed cycle shows one of
the new faces, F1,1 = (3, 14, 5, 12).

made of exactly two arcs in Pi. The family Fi can alternatively be seen as
a matching of the elements of Pi.

Let us now describe how R0, . . . ,R3 are combined into an embedding of
Kn,n. By the definition of Gi, any vertex v ∈ Z2n belongs to exactly two of
the four graphs, Gv mod 4 and G(v+1) mod 4. Let yv = (yv,0yv,1 . . . yv,n

2
−1) and

zv = (zv,0zv,1 . . . zv,n
2
−1) be the rotations at v in their respective embeddings.

Without loss of generality we can assume that yv,n
2
−1 = v−1 and zv,0 = v+1.

Note that the sets of elements of yv and zv are disjoint and partition the
odd (even) vertices of Z2n if v is even (odd).

The rotation system R = {πv : v ∈ Z2n} where

πv = (yv,0, . . . , yv,n
2
−1, zv,0, . . . , zv,n

2
−1) = (. . . , v − 1, v + 1, . . . ) (5)

defines an embedding of Kn,n. Notice the special role of vertices yv,0,
yv,n

2
−1 = v − 1, zv,0 = v + 1 and zv,n

2
−1: the embedding Rv mod 4 con-

tains a special face (v− 1, v, yv,0, yv,0 + 1). Similarly R(v+1) mod 4 contains a
special face (v, v + 1, zv,n

2
−1 − 1, zv,n

2
−1).

What are the faces of R? Note that if Ri has a rotation a : (. . . , b, c, . . . )
where (b, a) and (a, c) are not both directed edges of a special face, then R

9



also has a rotation a : (. . . , b, c, . . . ). Thus, if (a, b, c, d) is a non-special face
of Ri then it is also a face of R. It follows by (5) that the new faces of R
are formed only from the directed edges of the cycles in ∪iFi, see Figure 5a.

The right side of (5) implies that H is one of the new faces. Also, by (4)
and (5) we get that for each k ∈ {1, . . . , n4 − 1} the embedding R contains
a face

F1,k = (4k − 1, 2n− 4k + 2, 4k + 1, 2n− 4k)

and a face

F2,k = (4k, 2n− 4k − 1, 4k + 2, 2n− 4k + 1).

Finally, the arcs of Ci,0 for i ∈ {0, 1, 2} not lying on H, together with the
unused edges (2n− 1, 2) and (n− 1, n+ 2) of C3,0 and C3,n

4
−1 respectively

yield a cycle (0, n− 1, n+ 2, 1, n, 2n− 1, 2, n+ 1), which we denote C8.
Write F = {F1,k : k ∈ {1, . . . , n4 − 1}} ∪ {F2,k : k ∈ {1, . . . , n4 − 1}} and

note that the arcs of the cycles in {H,C8}∪F cover all edges of ∪iFi. Thus,
the lengths of face boundaries ofR are 2n, 8, 4, 4, . . . , 4, the number of faces is
2+ 2n2−2n−8

4 = n(n−1)
2 and by Euler’s formula, the genus is n2−3n+4

4 = L(n).
Interestingly, all the faces in {H,C8} ∪ F can be obtained by a face-

tracing algorithm on a graph formed by placing H on a circle and connecting
midpoints of the the elements of Pi that are matched (i.e. lying on the same
special face in Fi) by a chord, see Figure 5b.

The case n ≡ 2 (mod 4). For i ∈ {0, 1, 2, 3} set

P̃i ={(t− 1, t) : t ≡ i (mod 4), t ∈ {0, . . . , n− 1}}⋃
{(t− 1, t) : (t− n) ≡ i(mod 4), t ∈ {n, . . . , 2n− 1}}.

Let Pi = P̃i for i ∈ {1, 2} but P0 = P̃0 \ {(2n − 1, 0), (n − 1, n)} and
P3 = P̃3 ∪ {(2n − 1, 0), (n − 1, n)}. Define Ui = {u : uv ∈ Pi} and Vi =
{v : uv ∈ Pi} for i ∈ {0, 1, 2}, but U3 = {u : uv ∈ P̃3} ∪ {0, n} and
V3 = {v : uv ∈ P̃3} ∪ {n − 1, 2n − 1}. Note that |Ui| = |Vi| = ni is even:
ni = n−2

2 for i ∈ {0, 2} and ni = n+2
2 for i ∈ {1, 3}.

We again use Lemma 4.1 for each i ∈ {0, 1, 2, 3} to construct an em-
bedding Ri of a complete bipartite graph Gi with parts (Ui, Vi), with the
property that the arcs in Pi lie on the special faces of Ri. Specifically, we
define the permutations ūi = ui,0ui,1 . . . ui,ni−1 and v̄i = vi,0vi,1 . . . vi,ni−1
(and, implicitly, the matchings of Pi) by setting the following cycles as spe-
cial faces of the embedding Ri, i ∈ {0, 1, 2, 3}:

(vi,2k, ui,2k+1, vi,2k+1, ui,2k) =

{
Ci,k, k ∈ Si;
(n, 2n− 1, 0, n− 1), i = 3, k = n−2

4 .
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Here ui,ni = ui,0, vi,ni = vi,0 and Ci,k, Si are as follows (see also Figure 6)

i Ci,k Si
0 (4k + 3, 4k + 4, 2n− 4k − 3, 2n− 4k − 2) 0, . . . , n−24 − 1
1 (4k, 4k + 1, 2n− 4k − 2, 2n− 4k − 1) 0, . . . , n−24
2 (4k + 1, 4k + 2, 2n− 4k − 5, 2n− 4k − 4) 0, . . . , n−24 − 1
3 (4k + 2, 4k + 3, 2n− 4k − 4, 2n− 4k − 3) 0, . . . , n−24 − 1

We will now combine R0, . . . ,R3 similarly as in the case n ≡ 0 (mod 4),
but with one important difference: before concatenating rotations, we glue
R1 and R3 along the face on 4 shared vertices.

The gluing operation is carried out as follows. Let Fi, F ′i be the sets of
faces F(ni), F ′(ni) defined in (2) and (3) respectively for Ri. Note that F ′1
contains a face

F ′ = (u1,n
2
, v1,0, u1,0, v1,n

2
) = (n− 1, 0, 2n− 1, n),

and F3 contains a face

F = (v3,n−2
2
, u3,n

2
, v3,n

2
, u3,n−2

2
) = (n, 2n− 1, 0, n− 1).

Let S = {0, n− 1, n, 2n− 1}. We have V (G1) ∩ V (G3) = S.
For i ∈ {0, 1, 2, 3} and v ∈ V (Gi) let piv = (piv,0, . . . , p

i
v,ni−1) be the

rotation at v in Ri. Choose the indices so that piv,0 and piv,ni−1 are the
neighbours of v on the special face Fi containing v. Also for v ∈ S define
permutations q1v = (q1v,0, . . . , q

1
v,n1−1), such that q1v is p1v with q1v,0 and q1v,n1−1

the neighbours of v on the face F ′.
Let G13 be a graph with vertex set V (G1)∪V (G3) and edge set E(G1)∪

E(G3). This graph is bipartite, with parts U13 and V13, where

U13 = {0, 2, . . . , 2n− 2}, V13 = {1, 3, . . . , 2n− 1}.

Since F and F ′ have opposite directions, q1v,0 = p3v,n3−1 and q1v,n1−1 = p3v,0
for v ∈ S. Let the embedding of G13 be R13 = {p13v : v ∈ V (G13)} where

p13v =


(q1v,0, q

1
v,1, . . . , q

1
v,n1−1, p

3
v,1, p

3
v,2, . . . , p

3
v,n3−2), v ∈ S;

p1v, v ∈ V (G1) \ S;
p3v, v ∈ V (G3) \ S.

The faces of R13 are the union of faces of R1 and R3 except {F, F ′}; in
particular they are all quadrangular. Call the faces in the set F13 = F1 ∪

11
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Figure 6: The case n = 10. (a) The embeddings of Gi (only faces in Fi ∪F ′i
shown). (b) The matchings of arcs in Pi, i = 0, 1, 2, 3. The dashed edges
show the face F1,0 = (1, 18, 3, 16).

(F3 \ {F}), the special faces of R13. F13 consists of n−2
2 + 1 vertex-disjoint

faces and covers V (G13) = Z2n. Note that for v ∈ S, p13v is a permutation
of V13 (U13) if v is even (odd).

Now the sets V (G0) and V (G2) partition Z2n \ S into two subsets, each
containing n−2

2 even and n−2
2 odd vertices. For v ∈ Z2n\S we let t(v) ∈ {0, 2}

denote the index of the graph Gt(v) it belongs to. It is easy to see that the
neighbours of v in G13 and the neighbours of v in Gt(v) partition the set of
odd (even) vertices in Z2n if v is even (odd).

Thus the rotation system R = {πv : v ∈ Z2n} defined by

πv =


p13v , v ∈ S;
(p0v,0, p

0
v,1, . . . , p

0
v,n−2

2

, p13v,0, p
13
v,1, . . . , p

13
v,n+2

2

), v ∈ G0;

(p2v,0, p
2
v,1, . . . , p

2
v,n−2

2

, p13v,0, p
13
v,1, . . . , p

13
v,n+2

2

), v ∈ G2.

is an embedding of Kn,n with parts {0, 2, . . . , 2n− 2} and {1, 3, . . . , 2n− 1}.
Suppose v ∈ Z2n \ S. By the definition of Ri and piv we have that

piv,0 = v + 1 if v is even and i ∈ {1, 3} or v is odd and i ∈ {0, 2}. Similarly,

piv,ni−1 = v−1 if v is odd and i ∈ {1, 3} or v is even and i ∈ {0, 2}. Thus πv =
(. . . , v−1, v+ 1, . . . ) if v is even and πv = (v+ 1, . . . , v−1) if v is odd. Now
R1 and hence also R13 contains the face C1,0 = (0, 1, 2n− 2, 2n− 1) and the

12



face C1,n−2
4

= (n−2, n−1, n, n+1). This implies p13v = (. . . , v−1, v+1, . . . )

for v ∈ S. Thus πv = (. . . , v − 1, v + 1, . . . ) for all v ∈ Z2n and H is a face
of R.

To complete the proof, we show that all faces of R, apart from H, are
of length 4. Then by Euler’s formula the genus g of R satisfies 2 − 2g =
2n− n2 + (2n2 − 2n)/4 + 1, or g = (n2 − 3n+ 2)/4 = L(n), as stated.

As before, we only need to check the lengths of new faces in R, that is,
the faces formed from the arcs of the special faces of R0, R2 and R13. Since
these embeddings have n−2

4 , n−2
4 and n−2

2 +1 special faces respectively, there
are in total 4(n− 1) such arcs.

Now R contains for each k ∈ {0, . . . , n−24 − 1} a pair of faces F1,k and
F2,k, where

F1,k = (4k + 1, 2n− 4k − 2, 4k + 3, 2n− 4k − 4),

F2,k = (4k + 2, 2n− 4k − 5, 4k + 4, 2n− 4k − 3).

The faces in F = {F1,k : {0, . . . , n−24 − 1}} ∪ {F2,k : {0, . . . , n−24 − 1}} are
pairwise arc-disjoint and there are 2(n− 2) of them. Thus {H} ∪ F covers
all 2(n− 2) + 2n = 4(n− 1) arcs from the special faces. This completes the
proof.

The faces in {H}∪F can again be traced in a simple arc matching graph,
see Figure 6. The illustration indicates one extra face F = (0, n−1, n, 2n−1)
which is lost from R when gluing. 2

Acknowledgement. I would like to sincerely thank Rimvydas Kra-
sauskas who introduced me to the road interchange problem and suggested to
model it via graph embeddings.
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