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a b s t r a c t

Graphpebbling is a networkmodel for transporting discrete resources that are consumed in
transit. Deciding whether a given configuration on a particular graph can reach a specified
target is NP-complete, even for diameter two graphs, and deciding whether the pebbling
number has a prescribed upper bound is ΠP

2 -complete. Recently we proved that the
pebbling number of a split graph can be computed in polynomial time. This paper advances
the program of finding other polynomial classes, moving away from the large tree width,
small diameter case (such as split graphs) to small tree width, large diameter, continuing
an investigation on the important subfamily of chordal graphs called k-trees. In particular,
we provide a formula, that can be calculated in polynomial time, for the pebbling number
of any semi-2-tree, falling shy of the result for the full class of 2-trees.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The fundamental question in graph pebbling is whether a given supply (configuration) of discrete pebbles on the vertices
of a connected graph can satisfy a particular set of demands on the vertices. The operation of pebble movement across an
edge {u, v} is called a pebbling step: while two pebbles cross the edge, only one arrives at the opposite end, as the other is
consumed. We write (u, v) to denote a pebbling step from u to v. The most studied scenario involves the demand of one
pebble on a single root vertex r . Satisfying this demand is often referred to as reaching or solving r , and configurations are
consequently called either r-solvable or r-unsolvable.

The size |C | of a configuration C : V → N = {0, 1, . . .} is its total number of pebbles
∑

v∈VC(v). The pebbling number
π (G) = maxr∈Vπ (G, r), where π (G, r) is defined to be the minimum number s so that every configuration of size at least s
is r-solvable. Simple sharp lower bounds like π (G) ≥ n and π (G) ≥ 2diam(G) are easily derived. Graphs satisfying π (G) = n
are called Class 0 and are a topic of much interest. Recent chapters in [13] and [12] include variations on the theme such
as k-pebbling, fractional pebbling, optimal pebbling, cover pebbling, and pebbling thresholds, as well as applications to
combinatorial number theory, combinatorial group theory, and p-adic diophantine equations, and also contain important
open problems in the field.

Computing the pebbling number is difficult in general. The problem of deciding if a given configuration on a graph can
reach a particular vertex was shown in [14] and [16] to be NP-complete, even for diameter two graphs [10] or planar
graphs [15]. Interestingly, the problem was shown in [15] to be in P for graphs that are both planar and diameter two,
as well as for outerplanar graphs (which include 2-trees). The problem of deciding whether a graph G has pebbling number
at most kwas shown in [16] to be ΠP

2 -complete.
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In contrast, the pebbling number is known for many graphs. For example, in [17] the pebbling number of a diameter 2
graph G was determined to be n or n + 1. Moreover, [9] and [4] characterized those graphs having π (G) = n + 1, and
it was shown in [11] that one can recognize such graphs in quartic time, improving on the order n3m algorithm of [3].
Beginning a program to study for which graphs their pebbling number can be computed in polynomial time, the authors
of [1] produced a formula for the family of split graphs that involves several cases. For a given graph, finding to which case it
belongs takes O(n1.41) time. The authors also conjectured that the pebbling number of a chordal graph of bounded diameter
can be computed in polynomial time.

In opposition to the small diameter, large tree width case of split graphs, we turn here to chordal graphs with large
diameter and small tree width.1 Building on [2], in this paper we study 2-paths, the sub-class of 2-trees whose graphs
have exactly two simplicial vertices, as well as what we call semi-2-trees, the sub-class of 2-trees, each of whose blocks are
2-paths, and prove an exact formula that can be computed in linear time.

2. Preliminary definitions and results

In order to simplify notation, for a subgraph H ⊂ G or subset H ⊂ V (G) we write C(H) to denote
∑

v∈V (H)C(v). We use CH
for the restriction of C to H .

A simplicial vertex in a graph is a vertex whose neighbors form a complete graph. It is k-simplicial if it also has degree k.
A k-tree is a graph G that is either a complete graph of size k or has a k-simplicial vertex v for which G−v is a k-tree. A k-path
is a k-tree with exactly two simplicial vertices. A semi-2-tree is a graph in which each of its blocks is a 2-path, with each of
its cut-vertices being simplicial in all of its blocks. For the purpose of our work we derive a new characterization of 2-paths
that facilitates the analysis of its pebbling number.

Let P = x0, x1, . . . , xd−1, xd be a shortest rs-path between two vertices r = x0 and s = xd of G, where d = dist(r, s) =

diam(G). For 1 ≤ i ≤ d−1, an xi−1xi+1-fan (centered on xi) is a subgraph F of G consisting of the subpath xi−1, xi, xi+1 of P and
a path Q = xi−1, vi,1, . . . , vi,ki , xi+1 with ki ≥ 1 such that xi is adjacent to every vertex of Q . We call F ′ the set {vi,1, . . . , vi,ki}.

Let Fi be an xi−1xi+1-fan and Fi+1 be an xixi+2-fan, centered on xi and on xi+1, respectively. We say that Fi and Fi+1 are
opposite-sided if F ′

i ∩ F ′

i+1 = ∅; and that they are same-sidedwhen F ′

i ∩ F ′

i+1 = {vi,ki} and vi,ki = vi+1,1.
The graph G is an overlapping fan graph if the following three conditions are satisfied:

• for every 1 ≤ i ≤ d − 1, there is a subgraph Fi which is an xi−1xi+1-fan centered on xi,
• for every 1 ≤ i ≤ d − 2, Fi and Fi+1 are either opposite-sided or same-sided, and
• G is the union of the subgraphs Fi for 1 ≤ i ≤ d − 1.

If we agree in calling F1 an upper fan, then all further fans of an overlapping fan graph can be classified into upper or lower
(opposite-sided from upper) — see Fig. 1.

Notice that, in general, the description of a graph as an overlapping fan graph, may be done using different paths P (see
the examples in the center and right of Fig. 1). The path P used to describe G as an overlapping fan graph is called the spine
of G.

In an overlapping fan graph, |F ′

i ∩ F ′

i+3| = 0; while |F ′

i−1 ∩ F ′

i+1| ≤ 1, with equality if and only if ki = 1. Notice that we can
always choose the spine P so that |F ′

i−1 ∩ F ′

i+1| = 0 by swapping the names of vertices xi and vi,1, changing the fans Fi−1, Fi,
and Fi+1 from being same-sided to Fi being opposite-sided from Fi−1 and Fi+1. Such a choice of path P is called pleasant (see
Fig. 1).

For an internal vertex xi of the spine of an overlapping fan graph G, we let Axi be the set of vertices of F ′

i that are in no
other fan of G. If Axi = ∅ then ki = 1 and vi,1 ∈ F ′

i−1 or F ′

i+1; or ki = 2 and vi,1 ∈ F ′

i−1 and vi,2 ∈ F ′

i+1. In the former let exi be
the edge xi−1vi,1 or vi,1xi+1 respectively, and in the latter let exi = {vi,1, vi,2}. The following fact will be used in Section 5.2.

Claim 1. If Axi is empty (non empty) then G−exi (G−Axi ) is the union of two overlapping fan graphs each one with xi as simplicial
vertex and no other vertex in common.

A 2-path of diameter 1 is just a path on two vertices. In this case, its spine is the graph itself. For larger diameter we have
the following lemma.

Lemma 2. A graph G of diam(G) ≥ 2 is a 2-path if and only if it is an overlapping fan graph.

Proof. An overlapping fan graph is certainly a 2-path.
Let G be a 2-path with simplicial vertices r and s and diameter at least 2. The 2-path on 4 vertices is a fan, and hence an

overlapping fan graph, so we assume that G has at least 5 vertices. Let G′
= G − s, with simplicial vertices r and s′. Since G′

is a 2-path, by induction it is also an overlapping fan graph.
If diam(G) > diam(G′) then the inclusion of s creates a new fan centered on s′. Otherwise, the inclusion of s extends the

last fan of G′. In both cases, then, G is an overlapping fan graph. □

1 One can find the definition of tree-width in [5], but it is not necessary for this paper.
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Fig. 1. An overlapping fan graph (left) of diameter 4; fans F1 and F3 are same-sided (upper) fans, while F2 is a lower fan, opposite-sided from F1 and F3 . An
overlapping fan graph with unpleasant (center: v1,3 = v2,1 = v3,1) and pleasant (right: relabeled) shortest rs-paths.

Recall that if S is a set of vertices of G then G − S denotes the subgraph of G induced by V (G) − S. In an analogous way, if
F is a subgraph, we let G − F denote the subgraph of G induced by V (G) − V (F ).

With respect to pebbling configurations, we define an empty vertex (or zero) to be a vertex with no pebbles on it. A big
vertex has at least two pebbles on it; of course, in an r-unsolvable configuration, every path from a big vertex to the root r
must contain at least one zero. A huge vertex v has at least 2dist(v,r) pebbles on it; of course, no r-unsolvable configuration
has a huge vertex. The cost of a pebbling solution σ is the number of pebbles lost during the pebbling steps of σ , plus one
for the pebble that reaches r — we denote this by cost(σ ). A cheap r-solution is an r-solution of cost at most 2ecc(r), where
ecc(r) = eccG(r) is the eccentricity of r in G.

The t-pebbling number πt (G) is the minimum number s so that every configuration of size s is t-fold solvable (i.e., can
place t pebbles on any root). The t-pebbling number is related to the fractional pebbling number, which measures the
limiting average cost of repeated solutions; i.e. limt→∞πt (G)/t . It is also used as a powerful inductive tool for computing
the pebbling number. The following theorem was proven in [11].

Theorem 3 ([11]). If G is a graph of diameter 2 then πt (G) ≤ π (G) + 4t − 4.

In what follows we outline the key lemmas and ideas of our proof of the pebbling number for semi-2-trees. In Section 3
we introduce the Cheap Lemma, a powerful mechanism used in tandemwith t-pebbling techniques. Section 4 is devoted to
2-paths, which form the base step of our induction argument for semi-2-trees in Section 5. We finish with various remarks
for further progress in Section 6.

3. The Cheap Lemma

We begin by introducing the Cheap Lemma, which we believe is a useful tool of independent interest. First we develop a
general framework for some key ideas.

Fix a root r in a graph G. We say that a pebbling step from u to v is greedy if dist(v, r) < dist(u, r). Furthermore, an
r-solution σ is greedy if each of its pebbling steps is greedy, and a configuration C is greedy if it has a greedy r-solution.
Finally, G is greedy if every configuration of size at least π (G, r) is greedy. (If r needs to be specified, we will use the term
r-greedy.)

Given σ , let Gσ denote the subgraph of edges of G that are traversed by the pebbling steps of σ , oriented by the direction
of travel (bi-directed edges are allowed). We say that Gσ is acyclic if it contains no directed cycle. The r-solution σ is called
minimal if no subset of its pebbling steps solves r; it is minimum if no r-solution uses fewer steps. A well-known lemma of
great use is the No-Cycle Lemma of [6].

Lemma 4 (No-Cycle Lemma). If σ is a minimal r-solution of a configuration on G then Gσ is acyclic.

Because of the No-Cycle Lemma, we see that every tree is greedy. In particular, if T is a breadth-first-search spanning
tree of G, rooted at r , then T is an example of an r-greedy spanning subgraph of G preserving distances to r . Hence any
configuration of size at leastπ (T , r) onG has a greedy solution. Indeed,more can be said. Ourmain pointwill be thatminimal
greedy solutions are cheap, which we will show by using weight functions. We say that a configuration is cheap if it has a
cheap solution.

Lemma 5 (Cheap Lemma). Given a graph G with root r, let G∗ be an r-greedy spanning subgraph of G preserving distances to r.
Then any configuration on G of size at least π (G∗, r) is cheap.

Proof. For a vertex v define theweight functionw(v) = 2−dist(v,r); let theweight of a configuration C bew(C) =
∑

vC(v)w(v).
Note that the configuration with a single pebble on r has weight 1.

Suppose that C is a configuration on G of size at least π (G∗, r). Let σ be a minimal greedy r-solution from C . Denote by
Cσ the configuration on G∗ using only the pebbles of C that are used by σ . Then cost(σ ) = |Cσ |.
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For any configuration C ′, let C ′′ be a configuration that results frommaking one greedy pebbling step. Thenw(C ′) = w(C ′′).
Applied iteratively to Cσ , this means that w(Cσ ) = 1.

Now w(Cσ ) =
∑

vCσ (v)w(v) ≥
∑

vCσ (v)2−ecc(r), and so cost(σ ) = |Cσ | =
∑

vCσ (v) ≤ 2ecc(r)w(Cσ ) = 2ecc(r). □

The pebbling number for a rooted tree (T , r) was first derived in [8], using the notion of its maximum r-path partition P .
One can compute such a thing iteratively as follows. Beginning with F = T , W = {r}, and P = ∅, we choose a longest path
P in F having one endpoint inW . Then we add P to P , add its vertices toW , remove its edges from F , and repeat.

Theorem 6 ([8]). Let P = {P1, . . . , Pk} be amaximum r-path partition of a rooted tree (T , r), with each Pi having length (number
of edges) ai. (By construction, ai ≥ ai+1 for 1 ≤ i < k.) Then πt (T , r) = (t2a1 −1)+

∑k
i=2(2

ai −1)+1 = t2a1 +
∑k

i=22
ai −k+1.

The pebbling number πt (T ) is given by choosing r to be a leaf of a longest path of T . We say that a configuration C is
t-extremal for a rooted tree (T , r) if the following holds. Let P = {P1, . . . , Pk} be a maximum r-path partition of (T , r) with
each Pi having leaf endpoint vi. Then C(v1) = t2a1 − 1, C(vi) = 2ai − 1 for 2 ≤ i ≤ k, and C(v) = 0 otherwise. The proof of
the lower bound in Theorem 6 involves showing (by induction) that such a configuration is not t-fold r-solvable.

For a 2-path Gwith simplicial root r , we denote by T ∗(G, r) any spanning tree of G, rooted at r , that includes the spine of
G and all fan vertices as leaves, each one adjacent to its neighbor in the spine closest to r . Notice that T ∗(G, r) is an r-greedy
spanning subgraph of G preserving distances to r .

For a 2-path G with simplicial vertex r , root eccentricity d, and with n vertices, we define the functions pt (G, r) =

t2d
+ n − 2d (suppressing t when t = 1) and q(G, r) = 2d

+ n − d − 1. Note that p(G, r) < q(G, r) < p2(G, r) when
1 < d.

Corollary 7. Let G be a 2-path with simplicial vertex r and diameter d. If C is a configuration of size at least q(G, r) + (t − 1)2d

then C has t distinct cheap r-solutions.

Proof. For t = 1 this follows from the Cheap Lemma 5 and Theorem 6 because for T ∗
= T ∗(G, r) we have π (T ∗, r) = q(G, r).

The general statement follows by induction on t . □

The following two lemmas about pebbling in trees will be used in Section 5.2.

Lemma 8. Let T be a tree with diameter d = diam(T ), r∗ and r be vertices with ecc(r) < ecc(r∗) = d. Let P∗ be a path
v0v1 · · · vd with v0 = r∗ and vd = s∗, labeled so that dist(r, s∗) ≤ dist(r, r∗) = ecc(r). Denote by P the path from r to r∗, and set
P∗

∩ P = v0 · · · vh′ . Define h = d − h′. Then πt (T , r) ≤ πt (T , r∗) − t(2d
− 2ecc(r)) + 2h

− 1 ≤ πt (T , r∗) − 2d−2.

Proof. Let P∗ be a maximum path partition of T with root r∗. Define P∗

0 = P∗, P∗

1 , . . . , P∗

k to be the sequence of paths of P∗

that are used sequentially while traveling from r∗ to r in P , and set d∗

i = length(P∗

i ) for each 0 ≤ i ≤ k (so d∗

0 = d). Next
define P ′

i = P ∩ P∗

i , with h′

i = length(P ′

i ) and hi = d∗

i − h′

i (so h′

0 = h′ and h0 = h). Notice that ecc(r) =
∑k

i=0h
′

i and h ≤ d/2.
Denote by P the maximum path partition of T with r as root. We will use the following facts in the calculations below.

• The longest path in P is P .
• In the component of the tree T–P that contains the path P̂i = P∗

i –P
′

i , the longest path is P̂i.

From these it follows that each P̂i ∈ P and, subsequently, that P∗
− {P∗

0 , . . . , P∗

k } = P − {P, P̂0, . . . , P̂k}. Now, by converting
P∗ to P , we find that

πt (T , r) = πt (T , r∗) −

[
(t2d

− 1) +

k∑
i=1

(2d∗
i − 1)

]
+

[
(t2ecc(r)

− 1) +

k∑
i=0

(2hi − 1)

]

≤ πt (T , r∗) + t2ecc(r)
−

(
t2d

− 2h0
)

−

[
k∑

i=1

(
2d∗

i − 2hi
)]

− 1

≤ πt (T , r∗) − t(2d
− 2ecc(r)) + 2h

− 1

≤ πt (T , r∗) − t2d−1
+ 2⌊d/2⌋

− 1

≤ πt (T , r∗) − 2d−2. □

Lemma 9. Let e = xy be a non pendant edge of a tree T and assume that ecc(x) ≥ ecc(y). If T ′ is the tree obtained by subdividing
the edge e with a new vertex r, then πt (T ′, r) = πt (T , x) + 2a, where a is the eccentricity of x in the connected component of
T − y that contains x (thus, a + ecc(x) ≤ diam(T )).

Proof. Define x′ to be the vertex having distT (x, x′) = eccT (x), and denote the xx′-path by P . Because eccT (y) ≤ eccT (x) we
know that y ∈ P . Let x′′ be a vertex having distT−y(x, x′′) = a, with xx′′-path Q , and note that a < eccT (x).

Now observe that distT ′ (r, x′) = distT (x, x′) (witnessed by the rx′ path P ′) and distT ′ (r, x′′) = distT (x, x′′)+1 (witnessed by
the rx′′ path Q ′). This means that the only changes from the maximum path partition of T with root x to the maximum path



L. Alcón et al. / Discrete Mathematics 340 (2017) 1467–1480 1471

partition of T ′ with root r are that the longest path P from x in T becomes the longest path P ′ from r in T ′, and the longest
path Q from x in T − y becomes the longest path Q ′ from r in T ′

− y. Hence we have πt (T , x) = t2eccT (x) + 2a
+ F (x), for some

F (x), and πt (T ′, r) = t2eccT ′ (r) + 2a+1
+ F (x) = πt (T , x) + 2a+1

− 2a. □

4. 2-paths

In this section we calculate a πt (G, r) for r a simplicial vertex of a 2-path G.

4.1. The lower bound

We now present some general removal techniques for finding lower bounds that may also be of independent interest.
For a vertex v, define its open neighborhood N(v) to be the set of vertices adjacent to v, and its closed neighborhood
N[v] = N(v) ∪ {v}. Also, for a set of vertices A write N(A) = ∪v∈AN(v). Along the lines of the definition of twin vertices,
for a non-root vertex y we say that y is a junior sibling of x (or, more simply, junior to x) if N(y) ⊆ N[x], and that y is a junior
if it is junior to some vertex x.

Lemma 10 (Junior Removal Lemma). Given the rooted graph (G, r)with configuration C, suppose that y is a junior with C(y) = 0.
Then C is t-fold r-solvable if and only if C restricted to G − y is t-fold r-solvable in G − y.

Proof. Sufficiency is obvious, so we only prove necessity. Suppose that σ is an r-solution from C that uses y. Let y be junior
to some vertex x. Construct σ ′ from σ by replacing every pebbling step (u, y) with (u, x) and every pebbling step (y, v) with
(x, v). Then σ ′ t-fold solves r as well. □

We say that a set of verticesW is a wart if it is a component of G − X for some clique cutset X , where by cliquewe mean
complete subgraph.

Lemma 11 (Wart Removal Lemma). Given the rooted graph (G, r) with configuration C, suppose that W is a wart of G not
containing r and that C(w) ≤ 1 for every w ∈ W. Then C is t-fold r-solvable if and only if C restricted to G − W is t-fold
r-solvable in G − W.

Proof. Sufficiency is obvious, so we only prove necessity. We show that no minimum r-solution from C usesW .
Suppose instead that σ is a minimum r-solution that usesW . Let X be a clique cutset that witnesses the wartW , and let

u be a vertex of X having a pebbling step intoW . Because σ is minimum, there is a vertex v ∈ X that receives a pebble from
W and that is different from u. By replacing those two pebbling steps by the single step from u to v we find an r-solution
with fewer steps, a contradiction. □

Let G be a 2-path with simplicial root r , pleasant path P , and configuration C . For a given t we say that C is t-extremal for
r (simply, extremal if t = 1) if there is a I-saturating matching M from the internal spine vertices I = {x1, . . . , xd−1} to the
fan vertices {vi,j} such that C(xd) = t2d

− 1, C(r) = 0, C(M) = 0, and C(v) = 1 otherwise. Notice that |C | = pt (G, r) − 1.
If a configuration C on G is t-fold r-solvable if and only if CH is t-fold r-solvable on the subgraph H ⊂ G, then we say that

G t-fold r-reduces to H for C . If C , t and r are clear from the context we just write reduces.

Lemma 12 (Extremal Lemma). If C is t-extremal for the simplicial root r of a 2-path G then C is not t-fold r-solvable. Moreover,
by using Lemmas 10 and 11 (repeatedly removing juniors and warts) G reduces to its spine, the path Pd, where d = diam(G).

Proof. We use induction on d. The result is trivial for d = 1. For d > 1 we suppose that C is t-fold r-solvable and let σ be
a t-fold r-solution. Write yi = vi,ji for the neighbor of xi in M and let ℓ be the smallest index i such that yi is a junior. This
exists because if yi is not a junior then either y ∈ Fi−1 ∩ Fi or y ∈ Fi ∩ Fi+1 (it is a fan intersection), and there are more fans
than fan intersections. Set y = yℓ and x = xℓ. Then y is junior to x and so, by Lemma 10, C is t-fold r-solvable in G − y.

Furthermore, let j+ be the maximum j such that vℓ,j ∈ Fℓ − Fℓ+1. If jℓ + 1 ≤ j+ then {vℓ,jℓ+1} is a wart in G − y, and
so Lemma 11 says that we can remove it. Once we do, {vℓ,jℓ+2} becomes a wart, and so on, until all the vertices vℓ,j with
jℓ < j ≤ j+ have been removed. Then the graph Gℓ+1 = ∪i>ℓFi is a 2-path, with the restriction, Cℓ+1, of C to Gℓ+1 being
2ℓt-extremal for xℓ. By induction, Cℓ+1 is not 2ℓt-fold xℓ-solvable and Gℓ+1 can be reduced to the path Pd−ℓ.

Similarly, let j− be the minimum j such that vℓ,j ∈ Fℓ − Fℓ−1. If jℓ − 1 ≥ j− then the warts {vℓ,j} for j− ≤ j < jℓ can
be successively removed, leaving the 2-path Gℓ

= ∪i≤ℓFi. Since C is t-fold r-solvable and xℓ is a cut-vertex of G − y, all the
pebbles of Gℓ+1 used by σ must pass through xℓ. But because Cℓ+1 is not 2ℓt-fold xℓ-solvable, the most number of pebbles
that can reach xℓ is 2ℓt − 1. After placing as many pebbles as possible on xℓ from Gℓ+1, the resulting configuration Cℓ is a
subconfiguration of a configuration Ĉℓ that is t-extremal for r on Gℓ. By induction, Ĉℓ is not t-fold r-solvable, a contradiction.
Also, Gℓ can be reduced to the path Pℓ, which reduces G to the path Pd. □

Corollary 13. If r is a simplicial vertex of a 2-path G then πt (G, r) ≥ pt (G, r). □
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4.2. The upper bound

We first note that a diameter two 2-path G is Class 0. Indeed, the following lemma is a corollary of the Class 0
characterization for diameter two graphs from [9] that shows that π (G) = n in this case and the t-pebbling bound of [11]
that states πt (G) ≤ π (G) + 4t − 4 for all diameter two graphs. Equality comes from Corollary 13. The diameter one case is
from [11] also.

Lemma 14 ([11]). If G is a 2-path on n vertices with diameter d ≤ 2 then πt (G) = t2d
+ n − 2d.

Theorem 15. Let G be a 2-path on n vertices with simplicial root vertex r having eccentricity d, and configuration C. If
|C | ≥ p(G, r) then C is r-solvable.

Proof. When d ≤ 2, the result is taken care of by Lemma 14. So we will assume that d > 2 and use induction. Suppose
that |C | = p(G, r) and let P = r, x1, . . . , xd−1, s be a pleasant shortest rs-path between the two simplicial vertices of G.
Write x0 = r and xd = s and label G by its fan graph labeling, so that V (Fi) = {xi−1, xi, xi+1, vi,1, . . . , vi,ki} and Qi is the path
xi−1, vi,1, . . . , vi,ki , xi+1. Let G′ be the restriction of G to the n′ vertices of ∪i≥2V (Fi), with C ′ denoting the restriction of C to G′.
We further use the abbreviations C1 = C(F1) and n1 = |V (F1)|. Notice that diam(G′) = d − 1, so that the Theorem holds for
G′. Define φ = 1 (0) if F2 is same-sided (opposite-sided) as F1.

If C(x1) ≥ 1, C(x2) ≥ 2, or C(v1,j) ≥ 2 for some j (either [φ = 1 and j = k1] or not), then we can place a pebble on x1. If
|C ′

|−(1, 2, 2, 0) ≥ p(G′, x1), where the coordinates correspond, in order, to the four cases above (first two cases plus two sub-
cases of the third case), thenwe can place another pebble on x1, and then one on r . Otherwise, |C ′

|−(1, 2, 2, 0) ≤ p(G′, x1)−1.
That is, |C ′

| ≤ [2d−1
+n′

−2(d−1)]+(0, 1, 1, −1). Thus |C1| ≥ |C |−|C ′
|+(1, 2, 2, 0) ≥ 2d−1

+(n1−2−φ)−2+(1, 1, 1, 1) =

n1 + (2d−1
− 3 − φ) ≥ n1, which means by Lemma 14 that we can solve r .

On the other hand, if C(x1) = 0, C(x2) ≤ 1, and C(v1,j) ≤ 1 for all j, then C({r, v1,1, . . . , v1,k1−1}) ≤ k1 − 1. Here we define
θ to be the number of zeros in {v1,1, . . . , v1,k1 , x2}, so that |C1| = n1 −2− θ , and set θ ′ to be the number of those zeros other
than x2 (i.e. θ − θ ′

= 1 − C(x2)). Now we have

|C ′
| ≥ |C | − |C1| + C(x2)

= (2d
+ n − 2d) − (n1 − 2 − θ ) + C(x2)

= (2)2d−1
+ (n′

− 2 − φ) − 2d + 2 + θ + C(x2)

= [(2)2d′

+ n′
− 2d′

] + [C(x2) + θ − 2 − φ]

= p2(G′, x1) + [θ ′
− 1 − φ].

If θ ′
− 1−φ ≥ 0 then |C ′

| ≥ p2(G′, x1) > q(G′, x1), which means, by Corollary 7, that we can place one pebble on x1 cheaply.
Because the remaining configuration (after solving x1 cheaply) has at least p2(G′, x1) − 2d′

= p(G′, x1) pebbles, induction
places a second pebble on x1. Then we move one to r .

Otherwise, we have θ ′
− 1 − φ < 0, which means that θ ′

≤ φ. If θ ′
= 0, that is C(v1,j) = 1 for all j, then we will show

that it is possible to place two pebbles on x2, from which we solve r by moving pebbles from x2 along Q1. Indeed, this is so
if C(x2) = 1 and Q2 has a big vertex, or if Q2 contains either a vertex with four pebbles or two big vertices, so we assume
otherwise. In this case, we have |C((F1 ∪ F2) − G′′)| ≤ |V ((F1 ∪ F2) − G′′)|, where G′′ is the restriction of G to the n′′ vertices
of ∪i≥3V (Fi). For the restriction C ′′ of C to G′′, this implies that

|C ′′
| = |C | − |C((F1 ∪ F2) − G′′)|

≥ 2d
+ n′′

− 2d

= [(2)2d−2
+ n′′

− 2(d − 2)] + [2d−1
− 4]

≥ p2(G′′, x2),

since d ≥ 3. As before, since p2(G′′, x2) > q(G′′, x2) and p2(G′′, x2) − 2d′′

= p(G′′, x2), we can place one pebble on x2 cheaply,
followed by a second pebble on x2.

We are left now with the final case (since θ ′
≤ φ ≤ 1) in which θ ′

= 1 (exactly one v1,j is empty), which means that
φ = 1 (F1 and F2 are same-sided, so that v1,k1 = v2,1).

If v1,k1 is not empty then k1 ≥ 2, and so

|C ′
| = |C | − (k1 − 2)

= (2)2d−1
+ (n − k1) − 2(d − 1)

= p2(G′, x1)
> q(G′, x1).

As above, this means, by Corollary 7 and induction, that we can place two pebbles on x1, and hence one on r .
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If instead v1,k1 is empty then set Ĝ = G′
− x1 and Ĉ = C(Ĝ), so that

|Ĉ | = |C | − (k1 − 1)

= (2)2d−1
+ (n − k1 − 1) − 2(d − 1)

= p2(Ĝ, v1,k1 ).

Again, this means that we can place two pebbles on v1,k1 , and hence one on r (via Q1).
This completes the proof. □

Corollary 16. If r is a simplicial vertex of a 2-path G then πt (G, r) = pt (G, r).

Proof. The lower bound was stated in Corollary 13. The upper bound for t = 1 follows from Theorem 15. If t > 1, then for
any configuration C of size pt (G, r) = p2(G, r)+ (t −2)2d > q(G, r)+ (t −2)2d, we can place t −1 pebbles on r , each cheaply,
by Corollary 7. The remaining configuration has at least pt (G, r) − (t − 1)2d

= p(G, r) pebbles, from which we can place the
tth pebble on r by Theorem 15. □

5. Pebbling number of semi-2-trees

We define the skeleton T of a semi-2-tree G to be the union of the spines of its blocks; it is a geodesic tree spanning all
of the simplicial vertices of G. Let e(T ) denote the number of edges of T , b(G) denote the number of blocks of G, and for a
simplicial vertex or cut-vertex r and positive integer t define pt (G, r) = πt (T , r) + (n − 1) + b(G) − 2e(T ) (suppressing t
when t = 1). Notice that this matches the corresponding formula for 2-paths because b = 1 and T is a path. In addition,
we have pt (G, r) = pt−1(G, r) + 2eccG(r) because of Theorem 6. We also define q(G, r) = π (T , r) + n − e(T ) − 1; note that
q(G, r) = π (T ∗, r), where T ∗ is a spanning tree of G, rooted at r , that contains its skeleton and all its fan vertices as leaves,
each one adjacent to its neighbor in the skeleton closest to r . Notice that T ∗ is an r-greedy spanning tree of G preserving
distances to r .

5.1. Simplicial or cut-vertex roots

We begin with another consequence of the Cheap Lemma, generalizing Corollary 7. The proof is similar and is left to the
reader.

Corollary 17. Let r be a simplicial vertex or cut-vertex with eccentricity d of a semi-2-tree G. If C is a configuration of size at least
q(G, r) + (t − 1)2d then C has t distinct cheap r-solutions. □

For a tree T with maximum r-path partition P = {P1, . . . , Pk}, each Pi having length ai (sorted so that ai ≥ ai+1), let CT
be its t-extremal configuration for r .

For a semi-2-tree G, call a vertex of the skeleton T internal if it is not a simplicial vertex or cut-vertex, and let M be any
I-saturating matching from the internal vertices I to the fan vertices of G. For a simplicial or cut vertex r of G, define the
configuration C by C(T ) = CT , C(M) = 0, and C(v) = 1 otherwise — such a configuration we call t-extremal for r . Note that
|C | = pt (G, r) − 1.

As in the proof of the Extremal Lemma 12, we can use the Removal Lemmas 10 and 11 to prove that G reduces to T for C
and obtain the following more general extremal lemma, which we leave to the reader.

Lemma 18. If C is t-extremal for the simplicial or cut-vertex root r of a semi-2-tree G then C is not t-fold r-solvable. Moreover,
by using Lemmas 10 and 11, G can be reduced to its skeleton T . □

Now we state and prove the solvability theorem in this case.

Theorem 19. Let G be a semi-2-tree on n vertices with simplicial or cut-vertex r and configuration C. If |C | ≥ p(G, r) then C is
r-solvable.

Proof. We use induction on nwith base case ecc(r) = 1, which is handled by Theorem 3. So we assume that ecc(r) > 1. We
may also assume that C(r) = 0. We consider two cases.

1. r is a cut-vertex.
Let H1, . . . ,Hk be the components of G − r , with Gi induced by V (Hi) ∪ {r}; then each Gi is a semi-2-tree, so that

the theorem holds for them by induction. Let Ci and Ti be the restrictions of C and T to Gi, with ni and bi counting the



1474 L. Alcón et al. / Discrete Mathematics 340 (2017) 1467–1480

number of vertices and blocks of Gi. If some |Ci| ≥ p(Gi, r) then Ci solves r , so we assume not. Then

|C | =

∑
i

|Ci|

≤

∑
i

[p(Gi, r) − 1]

=

∑
i

[π (Ti, r) + (ni − 1) + bi − 2e(Ti) − 1]

= π (T , r) + (n − 1) + b(G) − 2e(T ) − k
< p(G, r),

a contradiction. Hence some Ci solves r .
2. r is a simplicial vertex.

Let H be the block of G containing r , with r ′ the other simplicial vertex of H . If |C(H)| ≥ p(H, r) then we solve r
directly on H . Otherwise, we assume that |C(H)| = p(H, r) − s for some s > 0. Recall that p(H, r) = 2dH + nH − 2dH ,
where nH = |H| and dH = eccH (r). Let G′ be the subgraph of G induced by (G − H) ∪ {r ′

}, having n′
= n − nH + 1

vertices, b′ blocks, and root eccentricity eccG′ (r ′) = d′
= d − dH , with T ′

= T ∩ G′ and d = eccG(r). Define the
configuration C ′ on G′ by C ′(r ′) = 0 and C ′(v) = C(v) for all other v ∈ G′.

Suppose that s ≤ 2dH . Then

|C ′
| = |C | − |C(H)|
= p(G, r) − p(H, r) + s

= [π (T , r) + (n − 1) + b(G) − 2e(T )] − [2dH + nH − 2dH ] + s

= [πs(T ′, r ′) + (n′
− 1) + b′

− 2e(T ′)] + [s − 2dH + 2d
− s2d′

]

= ps(G′, r ′) + (2d′

− 1)(2dH − s)
≥ ps(G′, r ′),

which means that we can place s pebbles on r ′, so that now there are p(H, r) pebbles in H , enough to solve r .
Suppose that s ≥ 2dH ; i.e. |C(H)| ≤ nH − 2dH . Then

|C ′
| = |C | − |C(H)|
≥ [π (T , r) + (n − 1) + b(G) − 2e(T )] − [nH − 2dH ]

= [π2dH (T
′, r ′) + (n′

− 1) + b′
− 2e(T ′)]

≥ p2dH (G
′, r ′),

which means that we can place 2dH pebbles on r ′, enough to solve r on T . □

Corollary 20. If r is a simplicial vertex or cut-vertex of a semi-2-tree G then πt (G, r) = pt (G, r).

Proof. As in the proof of Corollary 16. □

Theorem 21. If r is a simplicial vertex or cut-vertex of a semi-2-tree G and r∗ is a simplicial vertex with ecc(r∗) = diam(G) then
πt (G, r) ≤ πt (G, r∗).

Proof. Let T be a skeleton of G. Because the only term in pt (G, r) = πt (T , r) + (n − 1) + b(G) − 2e(T ) that depends on r is
πt (T , r), it follows that πt (G, r) is maximized precisely where πt (T , r) is maximized, which is well-known [8] to be at r∗. □

5.2. Other roots

We begin with two more removal lemmas of general use.

Lemma 22 (Edge Removal Lemma). Let r be a vertex of a connected graph G and suppose e is an edge between two neighbors of
r. Then π (G, r) = π (G − e, r).

Proof. Given any configuration on V (G) = V (G − e), every minimal r-solution in one graph is a minimal solution in the
other. □

Lemma 23. Let r be a cut-vertex of a graph G, and denote the connected components of G − r by H1, . . . ,Hk. For each i define
the graph Gi induced by Hi ∪ {r}. Then π (G, r) = 1 +

∑
i(π (Gi, r) − 1).
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Fig. 2. A non-semi-2-tree G for which G − x is a semi-2-tree. The configuration C(r, x, y, z) = (0, 1, 0, 3) is extremal for r .

Proof. The lower bound follows from the union of the individual maximum-sized r-unsolvable configurations on Hi. The
upper bound follows from the pigeonhole principle. □

Lemma 24 (Neighbor Removal Lemma). Let r be a vertex of a connected graph G. Suppose that A ⊆ N(r) such that N(A) ⊆ N[r].
Let {H1, . . . ,Hk} be the connected components of (G − r) − A and denote by Gi the subgraph of G induced by V (Hi) ∪ {r}. Then
π (G, r) = 1 + |A| +

∑
i(π (Gi, r) − 1) = |A| + π (G − A, r).

Proof. We can remove the edges incident with A by Lemma 22. Then each v ∈ A is its own component of G − r . The result
follows from Lemma 23. □

Under the conditions of Lemma 24, if each (Gi, r) is a rooted semi-2-tree, then we say that a configuration C on G is
extremal for r if C(x) = 1 for every x ∈ A and each CGi is extremal for r on Gi.

A small example of a non-semi-2-tree to which Lemma 24 applies is shown in Fig. 2. This idea is used later in the proof
of Corollary 32.

A simple consequence (using the Cheap Lemma and induction) of Lemma 22 is the following.

Corollary 25. Let G be a semi-2-tree with skeleton T , and suppose that r is a vertex of T that is not a simplicial or cut vertex of
G. Let Ar be the set of vertices of the fan centered on r that are in no other fan of G. If Ar is empty and er is as defined on Claim 1,
then πt (G, r) = πt (G − er , r) for all t ≥ 1. □

Notice that the previous corollary allows one to calculate the pebbling number for r . In fact, by Claim 1, G − er is a
semi-2-tree with r a simplicial or cut vertex, then we use Corollary 20 to calculate π (G, r) = π (G − er , r).

Analogously, a consequence (using the Cheap Lemma and induction) of Lemma 24 is the following.

Corollary 26. Let G be a semi-2-treewith skeleton T , and suppose that r is a vertex of T that is not a simplicial or cut vertex of G. Let
Ar be the set of vertices of the fan centered on r that are in no other fan of G. If Ar is non empty then πt (G, r) = πt (G−Ar , r)+|Ar |

for all t ≥ 1. □

Notice that the previous corollary allows one to calculate the pebbling number for r . In fact, by Claim 1, G − Ar is a
semi-2-tree with r a simplicial or cut vertex, then we use Corollary 20 to calculate π (G, r) = π (G − Ar , r).

Theorem 27. Let G be a semi-2-tree with skeleton T . Suppose that r is a vertex of T that is not a simplicial or cut vertex of G, and
let r∗ be a simplicial vertex of G with ecc(r∗) = diam(G). Then πt (G, r) < πt (T , r∗).

Proof. Let Ar be the set of vertices of the fan centered on r that are in no other fan of G. First assume Ar = ∅ and let er be as in
Corollary 25. Notice that the skeleton of G− er is the same T , while G− er has one block less than G, thus (using Corollaries
20 and 25)

πt (G, r) = πt (G − er , r)

= pt (G − er , r)

= πt (T , r) + (n(G − er ) − 1) + b(G − er ) − 2e(T )

= πt (T , r) + (n(G) − 1) + (b(G) − 1) − 2e(T )

≤ πt (T , r∗) + (n(G) − 1) + b(G) − 2e(T ) − 1

= πt (G, r∗) − 1

< πt (G, r∗).
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Analogously, if Ar ̸= ∅ then (using Corollary 26)

πt (G, r) = πt (G − Ar , r) + |Ar |

= pt (G − Ar , r) + |Ar |

= πt (T , r) + (n(G − Ar ) − 1) + b(G − Ar ) − 2e(T ) + |Ar |

= πt (T , r) + ((n(G) − |Ar |) − 1) + (b(G) − 1) − 2e(T ) + |Ar |

= πt (T , r) + (n(G) − 1) + b(G) − 2e(T ) − 1
≤ πt (G, r∗) − 1
< πt (G, r∗). □

Another consequence (again using the Cheap Lemma and induction) of Lemma 22 is the following. We say that a vertex
r is not in any skeleton of Gwhen for every skeleton T of G, r is a fan vertex, i.e. r ∈ V (G − T ).

Corollary 28. Let r be a vertex of a semi-2-tree G that is not in any skeleton of G. If the root r is in two fans of G, centered on x
and y, with edge e = xy, then πt (G, r) = πt (G − e, r). □

Since G − e is a semi-2-tree with cut-vertex root r , the value of πt (G − e, r) is computed by Corollary 20.

Theorem29. Let r be a vertex of a semi-2-tree G that is not in any skeleton of G. Suppose that the root r is in two fans of G, centered
on x and y, with edge e = xy, labeled so that ecc(x) ≥ ecc(y), and let r∗ be a simplicial vertex of G with ecc(r∗) = diam(G). Then
πt (G, r) < πt (G, r∗).

Proof. We note that r is a cut vertex of G − e, and so b(G − e) = b(G) + 1. Also, the skeleton T ′ of G − e has one more edge
than does T ; in fact, T ′ can be seen as the tree obtained from T by subdividing the edge e with the vertex r . Furthermore,
r ̸∈ N(r∗), which means that eccT ′ (r) ≤ diam(T ′) − 2. As in Lemma 9, define a = eccT−y(x), and set d = diam(T ). Then, by
Corollaries 20 and 28, and Lemmas 8 and 9, we have

πt (G, r) = πt (G − e, r)
= pt (G − e, r)
= πt (T ′, r) + (n(G − e) − 1) + b(G − e) − 2e(T ′)
= πt (T ′, r) + (n(G) − 1) + b(G) + 1 − 2e(T ) − 2
= πt (T , x) + 2a

+ (n(G) − 1) + b(G) + 1 − 2e(T ) − 2

≤ πt (T , x) + 2d−ecc(x)
+ (n(G) − 1) + b(G) − 2e(T ) − 1.

If ecc(x) ≥ 3 then we write

πt (G, r) ≤ πt (T , x) + 2d−ecc(x)
+ (n(G) − 1) + b(G) − 2e(T ) − 1

≤ πt (T , r∗) − (2d−2
− 2d−3) + (n(G) − 1) + b(G) − 2e(T ) − 1

< πt (G, r∗).

Otherwise we have ecc(x) ≤ 2 and so, with h′ defined as in Lemma 8, we find that

πt (G, r) ≤ πt (T , x) + 2d−ecc(x)
+ (n(G) − 1) + b(G) − 2e(T ) − 1

≤ πt (T , r∗) − t(2d
− 2ecc(x)) + 2h′

− 1 + 2d−ecc(x)
+ (n(G) − 1) + b(G) − 2e(T ) − 1

= πt (G, r∗) − t(2d
− 2ecc(x)) + 2h′

− 1 + 2d−ecc(x)

≤ πt (G, r∗) − (2d
− 2d−2

− 2⌊d/2⌋
+ 1)

< πt (G, r∗),

since d ≥ 3. □

We pause to develop some notation that will be used in Corollary 32. Suppose that r is a fan vertex of G, in a unique fan F
centered on x. Denote by H1 and H2 the two components of G− {r, x}, and by Gi the subgraph of G induced by V (Hi)∪ {r, x}.
Let Vi be the vertices of F ′

∩ Hi that are not in any other fan. Define G′

i = Gi − Vi. Finally, let the subscripts be labeled either
so that V2 is empty or so that neither V1 nor V2 is empty and eccG1 (r) ≥ eccG2 (r). See Fig. 3.

We note thatGi is a semi-2-tree except in the case that the block of Gi containing r , x and their unique common neighbor y
is aK3 (as in Fig. 2), becauseK3 is not a 2-path. Observe that this happens if and only ifVi = ∅ and y is a cut vertex ofG, and that
in such a case Gi−x is a semi-2-tree. Moreover, by the Neighbor Removal Lemma 24with A = {x},π (Gi, r) = π (Gi−x, r)+1.

Claim 30. Let G be a semi-2-tree and suppose that r is a fan vertex of G, in a unique fan F centered on x. Define Gi (i ∈ {1, 2}) as
above, having ni vertices. Define Ti(r) to be the skeleton of Gi when Gi is a semi-2-tree and of Gi − x when Gi is not a semi-2-tree.
Define Ti(x) to be the skeleton of Gi−Vi− r. Then for each v ∈ {r, x}we have π (Gi, v) = π (Ti(v), v)+ (ni−1)+b(Gi)−2e(Ti(v)).
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Fig. 3. A semi-2-tree G (left), split into G1 (center) and G2 (right).

Proof. For v = r the result is true by Corollary 20 when Gi is a semi-2-tree, because r is simplicial. If Gi is not a semi-2-tree
then |Vi| = 0 and {r, x, y} is a K3 block, where y is the common neighbor of r and x. In this case Gi − x is a semi-2-tree,
and so π (Gi, r) = π (Gi − x, r) + 1 by Lemma 24. This equals π (Ti(r), r) + ((ni − 1) − 1) + b(Gi − x) − 2e(Ti(r)) + 1 =

π (Ti(r), r) + (ni − 1) + b(Gi) − 2e(Ti(r)).
For v = xwe have that x is a simplicial vertex of the semi-2-tree Gi−Vi−r , and so by Lemma 24we obtain thatπ (Gi, x) =

π (Gi−Vi−r, x)+|Vi|+1 = π (Ti(x), x)+((ni−|Vi|−1)−1)+b(Gi−Vi−r)−2e(Ti(x))+|Vi|+1 = π (Ti(x), x)+(ni−1)+b(Gi)−
2e(Ti(x)). □

Claim 31. Under the same hypotheses as in Claim 30 we have π (G1, r) + π (G2, x) ≥ π (G1, x) + π (G2, r).

Proof. Because of the cancellation of common terms, we have

[π (G1, r) + π (G2, x)] − [π (G1, x) + π (G2, r)]
= [π (T1(r), r) + π (T2(x), x)] − [π (T1(x), x) + π (T2(r), r)]
= [π (T1(r), r) − π (T1(x), x)] − [π (T2(r), r) − π (T2(x), x)] .

Because of the cancellation of common branches, this equals[
2eccG1 (r) − 2eccG1 (x)

]
−

[
2eccG2 (r) − 2eccG2 (x)

]
. (1)

We note that eccGi (x) ≤ eccGi (r) ≤ eccGi (x) + 1 for each i, with eccGi (x) = eccGi (r) precisely when Vi = ∅. Thus, the choice
of labeling ensures that (1) is non-negative. □

Corollary 32. Let (G, r) be a rooted semi-2-tree with r not in any skeleton of G. If r is in a unique fan, centered on x, then (using
the notation defined above) π (G, r) = π (G1, r) + π (G2, x) − 2.

Proof. The lower bound is argued as follows. Let C1 be an extremal configuration for r on G1, C2 be an extremal configuration
for x on G2 − r (which is defined by using A = V2 in the Neighbor Removal Lemma 24), and define the configuration
C = C1 + C2.

Now |C1| = π (G1, r) − 1 and |C2| = π (G2 − r, x) − 1 = π (G2, x) − 2 (by Lemma 24 with A = {r}), and thus
|C | = |C1| + |C2| = π (G1, r) + π (G2, x) − 3. Furthermore, we claim that C is r-unsolvable. Indeed, C1 cannot solve r by
itself and cannot receive another pebble from C2 through x, and C2 (without its pebble already on r) cannot solve r by itself
(any step to r can be replaced by a step to x, which would be a contradiction).

For the upper bound, assume that |C | = π (G1, r) + π (G2, x) − 2. Let i ∈ {1, 2} and j = 3 − i. Define Ci to be the
restriction of C to Gi. If |Ci| ≥ π (Gi, r) then Ci can solve r , so we assume otherwise. Then |Cj| = |C | − |Ci| + C(x) ≥

[π (G1, r) + π (G2, x) − 2] − [π (Gi, r) − 1] + C(x) ≥ π (Gj, x) − 1 + C(x). Indeed, this follows trivially for j = 2, and from
Claim 31 for j = 1. If C(x) ≥ 2 then we can move a pebble to r . If C(x) = 1 then, since we may assume that C(r) = 0, we
have |C(Gj − r − x)| ≥ π (Gj, x) − 1 = π (Gj − r, x) by Lemma 24, and so we can move a second pebble to x and then one to
r . Hence we will assume that C(x) = 0.

If |C(Vi)| ≥ |Vi| + 2 then Vi either has a huge vertex or two big vertices in which case it can solve r through x, or it has a
big vertex with a path of all ones to r , which also solves r . Hence we assume that each |C(Vi)| ≤ |Vi| + 1. Thus we have that

|C(G′

i)| = |Ci| − |C(Vi)|
≥ π (Gi, x) − |Vi| − 2
= π (G′

i, x) − 1,

for each i.
Also, if some |C(G′

i)| ≥ π (G′

i, x) then we could place a pebble on x. This implies that |C(Vj)| ≤ |Vj| since a big vertex in Vj
could place a second pebble on x, and then one on r . Then we would have

|C(G′

j)| = |Cj| − |C(Vj)|
≥ π (Gj, x) − |Vj| − 1
= π (G′

j, x),

so that we could place a second pebble on x and solve r . Thus we must have |C(G′

i)| = π (G′

i, x) − 1 for each i.



1478 L. Alcón et al. / Discrete Mathematics 340 (2017) 1467–1480

Finally we see that

|V1| + |V2| + 2 ≥ |C(F )|
= |C | − |C(G′

1)| − |C(G′

2)|
= [π (G1, r) − π (G′

1, x)] + [π (G2, x) − π (G′

2, x)]
= [π (G1, r) − π (G1, x)] + [π (G1, x) − π (G′

1, x)] + [|V2| + 1]

= [2eccG1 (r) − 2eccG1 (x)] + [|V1| + 1] + [|V2| + 1],

which means that 2eccG1 (x) ≥ 2eccG1 (r), and hence 2eccG1 (x) = 2eccG1 (r). That is, V1 = ∅, which implies by our labeling that
V2 = ∅. Define x− and x+ to be the common neighbors of r and x. Then in the skeleton of G we can replace the path x−xx+

by the path x−rx+ to obtain a new skeleton containing r , which is a contradiction, completing the proof. □

Notice that the previous corollary allows one to calculate the pebbling number for r . In fact, one can use Corollaries 20
and 26 to calculate π (G1, r) and π (G2, x), respectively.

As with Corollary 7, the following is a simple consequence of Lemma 5.

Corollary 33. Let (G, r) be a rooted semi-2-tree with r not in any skeleton of G. If C is a configuration of size at least
π (G, r) + (t − 1)2ecc(r) then C has t distinct cheap r-solutions. □

Similarly, Corollaries 28, 32 and 33 yield the following result.

Corollary 34. Let (G, r) be a rooted semi-2-tree with r not in any skeleton of G. Then πt (G, r) = π (G, r) + (t − 1)2ecc(r). □

Theorem 35. Let (G, r) be a rooted semi-2-tree with r not in any skeleton of G, and let r∗ be a simplicial vertex of G with
ecc(r∗) = diam(G). Then πt (G, r) ≤ πt (G, r∗), with equality if and only if ecc(r) = diam(G).

Proof. We prove that π (G, r) ≤ π (G, r∗); then πt (G, r) = π (G, r)+ (t − 1)2ecc(r)
≤ π (G, r∗)+ (t − 1)2ecc(r∗)

= πt (G, r∗) will
follow.

First we analyze the case in which ecc(r) = ecc(r∗). Define x to be the center of the fan containing r . Thenwe can suppose
that x is in first (longest) path P∗ in the maximum path partition of T with root r∗. If s∗ is the other endpoint of P∗ then x is
adjacent to s∗. Hence eccG2 (x) = 1 and so π (G2, x) = n(G2) = |V2| + 3. Thus

π (G, r) = π (G1, r) + π (G2, x) − 2
= π (G1, r) + |V2| + 3 − 2
= π (G1, r) + |V2| + 1.

Also,

π (G, r∗) = π (T , r∗) + (n(G) − 1) + b(G) − 2e(T )
= π (T1, r) + (n(G1) + |V2| + 1 − 1) + b(G1) − 2e(T1)
= π (G1, r) + |V2| + 1.

Henceforth we will assume that ecc(r) < ecc(r∗). In this case we will make use of Lemma 8 and Corollaries 32 and 34.
We will also use the facts that n(G1) + n(G2) = n(G) + 2, b(G1) + b(G2) = b(G) + 1, and e(T1) + e(T2) = e(T ) + ϵ, where ϵ,
depends on some cases.

Notice that T2 does not include the edge xr because x is the root, while T1 does include the edge xr unless V1 = ∅ and r and
xhave a commonneighbor in T∩V1. Hence ϵ = 1 except in this latter case, inwhich ϵ = 0; that is, ϵ = 1−|N(r)∩N(x)∩T∩V1|.
Now

π (G, r) = π (G1, r) + π (G2, x) − 2
= π (T1, r) + (n(G1) − 1) + b(G1) − 2e(T1)

+ π (T2, x) + (n(G2) − 1) + b(G2) − 2e(T2) − 2
= π (T1, r) + π (T2, x) + (n(G) − 1) + b(G) − 2e(T ) − 2ϵ.

Analogous to the proof of Lemma 8, let P∗ be a path v0v1 · · · vd with v0 = r∗ and vd = s∗, labeled so that dist(x, s∗) ≤

dist(x, r∗) = ecc(x). Denote by P the path from r∗ to x, and set P∗
∩ P = v0 · · · vh′ . Define h = d − h′. let P∗ be a maximum

path partition of T with root r∗. Define P∗

0 = P∗, P∗

1 , . . . , P∗

k to be the sequence of paths of P∗ that are used sequentially in P ,
and set d∗

i = length(P∗

i ) for each 0 ≤ i ≤ k (so d∗

0 = d). Next define P ′

i = P ∩ P∗

i , with h′

i = length(P ′

i ) and hi = d∗

i − h′

i (so
h′

0 = h′ and h0 = h). Note that 1 ≤ h′

i ≤ d∗

i ≤ d/2.
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Suppose that k > 0. Then, since ecc(r) < ecc(r∗), we have

π (T1, r) + π (T2, x) ≤ π (T1, r∗) − 2d−2
+ π (T2, x)

= π (T , r∗) + (2h′
k+1

− 1) + (2hk − 1) − (2d∗
k − 1) − 2d−2

≤ π (T , r∗) + 1 − 2d−2

< π (T , r∗),

because d ≥ 3 and 2a+1
+ 2b

− 2a+b
≤ 2 for all a, b ≥ 1.

Suppose instead that k = 0. Define Q to be the longest path in a maximum path partition of T1 (choosing the partition to
contain P , if possible). If Q = P then we have

π (T1, r) + π (T2, x) ≤ π (T1, r∗) − 2(h′
0+1)−2

+ π (T2, x)

= π (T , r∗) − (2d
− 1) + (2h′

0+1
− 1) + (2h0 − 1) − 2h′

0−1

< π (T , r∗) − 2d
− 2h′

0+1
+ 2h0 − 2h′

0−1

< π (T , r∗) − 2d
+ 2h0

≤ π (T , r∗) − 2d
+ 2d−1

< π (T , r∗).

Otherwise, when Q ̸= P we define Q0 = Q ∩P and Q1 = Q −Q0, having lengths q0 and q1, respectively, and set ĥ0 = h′

0 −q0.
Here we will use that q0 + q1 < d, q1 > ĥ0, and h0 ≤ d/2 ≤ q0 + ĥ0 ≤ q0 + q1. Hence

π (T1, r) + π (T2, x) ≤ π (T1, r∗) − 2q0+q1−2
+ π (T2, x)

= π (T , r∗) − (2d
− 1) − (2q1 − 1) + (2q0+q1 − 1) + (2ĥ0+1

− 1) + (2h0 − 1) − 2q0+q1−2

< π (T , r∗) − 2d
− 2q1 + 2q0+q1 + 2ĥ0+1

+ 2q0+q1 − 2q0+q1−2

< π (T , r∗) − (2d
− 2q0+q1+1) − (2q1 − 2ĥ0+1)

≤ π (T , r∗).

In all cases, then, we see that

π (G, r) = π (T1, r) + π (T2, x) + (n(G) − 1) + b(G) − 2e(T ) − 2ϵ.
< π (T , r∗) + (n(G) − 1) + b(G) − 2e(T )
= π (G, r∗),

and the result follows. □

Theorem 36. If G is a semi-2-tree then πt (G) = πt (G, r∗), where r∗ is a simplicial vertex with ecc(r∗) = diam(G).

Proof. Use Theorems 21, 27, 29 and 35. □

Theorem 37. If G is a semi-2-tree then πt (G) can be computed in linear time.

Proof. A breadth-first search from any simplicial vertex finds r∗, a simplicial vertex with ecc(r∗) = diam(G). Indeed, this is
true for trees, and the result extends to semi-2-trees as follows. Let T be the skeleton of G and let A be a breadth-first search
algorithm on G. Then A is also a breadth-first search algorithm on T and so finds a simplicial vertex r with eccT (r) = diam(T ).
Because T is a geodesic tree spanning all of the simplicial vertices of G, we have eccG(r) = eccT (r) and diam(G) = diam(T ),
and so r∗

= r .
At this point, we do not yet know T . However, we realize that T can be constructed during A because it is a geodesic tree

spanning all of the simplicial vertices of G. Once we have T we can remove its cut-vertices S (those having degree bigger
than 2) to reveal b, which equals the number of components of T − S.

Then πt (T , r) can be computed in linear time, according to Theorem 3 of [6]. □

6. Remarks

The obvious pressing question is how to extend this work to 2-trees. The pyramid is the graph on 6 vertices formed by
adjoining a 2-simplicial vertex onto each of the three sides of a triangle. The pyramid is the key structure that forms the basis
in the Class 0 characterization of diameter two graphs found in [9] and is what causes the extra 1 in their pebbling numbers
— the configuration with 3 pebbles at two of the simplicial vertices cannot reach the third. The pyramid is also the smallest
example of a 2-tree that is not a semi-2-tree, and it hints at the complexity that can ensue in a more general 2-tree.
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Another natural question in the direction of this research program regards other simple examples of chordal graphs, such
as interval graphs. It would seem that tackling k-paths is a necessary investigation toward approaching interval graphs. One
interesting thing about the 2-path pebbling number is that both of the standard lower bounds of n(G) and 2diam(G) for general
graphs G appear in its formula. This is encouraging in light of themanner in which the size of k can determine which of those
two terms is dominant.

It appears that parameters such as pathwidth and treewidth may figure prominently in the determination of pebbling
numbers of general graphs. Other authors have made similar remarks, for example in [7]. Thus considering these classes of
graphs seems the most productive direction of research.

Our final thought points to the many lemmas developed in this paper that should be of very general use, including the
Cheap Lemma 5 and the four Removal lemmas: Junior 10, Wart 11, Edge 22, and Neighbor 24. We anticipate their ability to
simplify the analysis of many future problems.
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