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Abstract

A connected graph G with chromatic number t is double-critical if G\{x, y} is
(t − 2)-colorable for each edge xy ∈ E(G). The complete graphs are the only known
examples of double-critical graphs. A long-standing conjecture of Erdős and Lovász
from 1966, which is referred to as the Double-Critical Graph Conjecture, states that
there are no other double-critical graphs. That is, if a graph G with chromatic number
t is double-critical, then G is the complete graph on t vertices. This has been verified
for t ≤ 5, but remains open for t ≥ 6. In this paper, we first prove that if G is a
non-complete, double-critical graph with chromatic number t ≥ 6, then no vertex of
degree t+1 is adjacent to a vertex of degree t+1, t+2, or t+3 in G. We then use this
result to show that the Double-Critical Graph Conjecture is true for double-critical
graphs G with chromatic number t ≤ 8 if G is claw-free.

Keywords: vertex coloring, double-critical graphs, claw-free graphs

1 Introduction

All graphs considered in this paper are finite and without loops or multiple edges. For a graph

G, we will use V (G) to denote the vertex set, E(G) the edge set, e(G) the number of edges,

α(G) the independence number, ω(G) the clique number, χ(G) the chromatic number, and

G the complement of G, respectively. For a vertex x ∈ V (G), we will use NG(x) to denote

the set of vertices in G which are adjacent to x. We define NG[x] = NG(x) ∪ {x} and

dG(x) = |NG(x)|. Given vertex sets A,B ⊆ V (G), we say that A is complete to (resp.

anti-complete to) B if for every a ∈ A and every b ∈ B, ab ∈ E(G) (resp. ab /∈ E(G)). The

subgraph of G induced by A, denoted G[A], is the graph with vertex set A and edge set

{xy ∈ E(G) : x, y ∈ A}. We denote by B\A the set B − A, eG(A,B) the number of edges

between A and B in G, and G\A the subgraph of G induced on V (G)\A, respectively. If

∗E-mail address: mrolek@knights.ucf.edu.
†Corresponding author. E-mail address: Zixia.Song@ucf.edu.
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A = {a}, we simply write B\a, eG(a, B), and G\a, respectively. A graph H is an induced

subgraph of a graph G if V (H) ⊆ V (G) and H = G[V (H)]. A graph G is claw-free if G does

not contain K1,3 as an induced subgraph. Given two graphs G and H , the union of G and H ,

denoted G∪H , is the graph with vertex set V (G)∪V (H) and edge set E(G)∪E(H). Given

two isomorphic graphs G and H , we may (with a slight but common abuse of notation) write

G = H . A cycle with t ≥ 3 vertices is denoted by Ct. Throughout this paper, a proper

vertex coloring of a graph G with k colors is called a k-coloring of G.

In 1966, the following conjecture of Lovász was published by Erdős [6] and is known as

the Erdős-Lovász Tihany Conjecture.

Conjecture 1.1 For any integers s, t ≥ 2 and any graph G with ω(G) < χ(G) = s+ t− 1,

there exist disjoint subgraphs G1 and G2 of G such that χ(G1) ≥ s and χ(G2) ≥ t.

To date, Conjecture 1.1 has been shown to be true only for values of (s, t) ∈ {(2, 2), (2, 3),

(2, 4), (3, 3), (3, 4), (3, 5)}. The case (2, 2) is trivial. The case (2, 3) was shown by Brown and

Jung in 1969 [3]. Mozhan [10] and Stiebitz [13] each independently showed the case (2, 4) in

1987. The cases (3, 3), (3, 4), and (3, 5) were also settled by Stiebitz in 1987 [14]. Recent work

on the Erdős-Lovász Tihany Conjecture has focused on proving the conjecture for certain

classes of graphs. Kostochka and Stiebitz [9] showed the conjecture holds for line graphs.

Balogh, Kostochka, Prince, and Stiebitz [2] then showed that the conjecture holds for all

quasi-line graphs and all graphs G with α(G) = 2. More recently, Chudnovsky, Fradkin,

and Plumettaz [5] proved the following slight weaking of Conjecture 1.1 for claw-free graphs,

the proof of which is long and relies heavily on the structure theorem for claw-free graphs

developed by Chudnovsky and Seymour [4].

Theorem 1.2 Let G be a claw-free graph with χ(G) > ω(G). Then there exists a clique K

with |V (K)| ≤ 5 such that χ(G \ V (K)) > χ(G)− |V (K)|.

The most recent result related to the Erdős-Lovász Tihany Conjecture is due to Stieb-

itz [15], who showed that for integers s, t ≥ 2, any graph G with ω(G) < χ(G) = s + t − 1

contains disjoint subgraphs G1 and G2 of G with either χ(G1) ≥ s and col(G2) ≥ t, or

col(G1) ≥ s and χ(G2) ≥ t, where col(H) denotes the coloring number of a graph H .

If we restrict s = 2 in Conjecture 1.1, then the Erdős-Lovász Tihany Conjecture states

that for any graph G with χ(G) > ω(G) ≥ 2, there exists an edge xy ∈ E(G) such that

χ(G\{x, y}) ≥ χ(G)− 1. To prove this special case of Conjecture 1.1, suppose for a contra-

diction that no such edge exists. Then χ(G\{x, y}) = χ(G)− 2 for every edge xy ∈ E(G).

This motivates the definition of double-critical graphs. A connected graph G is double-

critical if for every edge xy ∈ E(G), χ(G\{x, y}) = χ(G) − 2. A graph G is t-chromatic if

χ(G) = t. We are now ready to state the following conjecture, which is referred to as the

Double-Critical Graph Conjecture, due to Erdős and Lovász [6].
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Conjecture 1.3 Let G be a double-critical, t-chromatic graph. Then G = Kt.

Since Conjecture 1.3 is a special case of Conjecture 1.1, it has been settled in the af-

firmative for t ≤ 5 [10, 13], for line graphs [9], and for quasi-line graphs and graphs with

independence number two [2]. Representing a weakening of Conjecture 1.3, Kawarabayashi,

Pedersen, and Toft [8] have shown that any double-critical, t-chromatic graph contains Kt as

a minor for t ∈ {6, 7}. As a further weakening, Pedersen [11] showed that any double-critical,

8-chromatic graph contains K−

8 as a minor. Albar and Gonçalves [1] later proved that any

double-critical, 8-chromatic graph contains K8 as a minor. Their proof is computer-assisted.

The present authors [12] gave a computer-free proof of the same result and further showed

that any double-critical, t-chromatic graph contains K9 as a minor for all t ≥ 9. We note

here that Theorem 1.2 does not completely settle Conjecture 1.3 for all claw-free graphs. Re-

cently, Huang and Yu [7] proved that the only double-critical, 6-chromatic, claw-free graph

is K6. We prove the following main results in this paper. Theorem 1.4 is a generalization of

a result obtained in [8] that no two vertices of degree t+1 are adjacent in any non-complete,

double-critical, t-chromatic graph.

Theorem 1.4 If G is a non-complete, double-critical, t-chromatic graph with t ≥ 6, then

for any vertex x ∈ V (G) with dG(x) = t + 1, the following hold:

(a) e(G[NG(x)]) ≥ 8; and

(b) for any vertex y ∈ NG(x), dG(y) ≥ t + 4. Furthermore, if dG(y) = t + 4, then |NG(x) ∩

NG(y)| = t − 2 and G[NG(x)] contains either only one cycle, which is isomorphic to C8,

or exactly two cycles, each of which is isomorphic to C5.

Corollary 1.5 below follows immediately from Theorem 1.4.

Corollary 1.5 If G is a non-complete, double-critical, t-chromatic graph with t ≥ 6, then

no vertex of degree t + 1 is adjacent to a vertex of degree t+ 1, t+ 2, or t+ 3 in G.

We then use Corollary 1.5 to prove the following main result.

Theorem 1.6 Let G be a double-critical, t-chromatic graph with t ∈ {6, 7, 8}. If G is

claw-free, then G = Kt.

The rest of this paper is organized as follows. In Section 2, we first list some known

properties of non-complete, double-critical graphs obtained in [8] and then establish a few

new ones. In particular, Lemma 2.4 turns out to be very useful. Our new lemmas lead to

a very short proof of Theorem 1.6 for t = 6, 7, which we place at the end of Section 2. We

prove the remainder of our main results in Section 3.
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2 Preliminaries

The following is a summary of the basic properties of non-complete, double-critical graphs

shown by Kawarabayashi, Pedersen, and Toft in [8].

Proposition 2.1 If G is a non-complete, double-critical, t-chromatic graph, then all of the

following are true.

(a) G does not contain Kt−1 as a subgraph.

(b) For all edges xy, every (t − 2)-coloring c : V (G)\{x, y} → {1, 2, . . . , t − 2} of G\{x, y},

and any non-empty sequence j1, j2, . . . , ji of i different colors from {1, 2, . . . , t− 2}, there

is a path of order i + 2 with vertices x, v1, v2, . . . , vi, y in order such that c(vk) = jk for

all k ∈ {1, 2, . . . , i}.

(c) For any edge xy ∈ E(G), x and y have at least one common neighbor in every color class

of any (t − 2)-coloring of G\{x, y}. In particular, every edge xy ∈ E(G) belongs to at

least t− 2 triangles.

(d) There exists at least one edge xy ∈ E(G) such that x and y share a common non-neighbor

in G.

(e) For any edge xy ∈ E(G), the subgraph of G induced by NG(x)\NG[y] contains no isolated

vertices. In particular, no vertex of NG(x) can have degree one in G[NG(x)].

(f) δ(G) ≥ t+ 1.

(g) For any vertex x ∈ V (G), α(G[NG(x)]) ≤ dG(x)− t+ 1.

(h) For any vertex x with at least one non-neighbor in G, χ(G[NG(x)]) ≤ t− 3.

(i) For any x ∈ V (G) with dG(x) = t+1, G[NG(x)] is the union of isolated vertices and cycles

of length at least five. Furthermore, there must be at least one such cycle in G[NG(x)].

(j) No two vertices of degree t + 1 are adjacent in G.

We next establish some new properties of non-complete, double-critical graphs.

Lemma 2.2 Let G be a double-critical, t-chromatic graph and let x ∈ V (G). If dG(x) =

|V (G)| − 1, then G\x is a double-critical, (t− 1)-chromatic graph.

Proof. Let uv be any edge of G\x. Clearly, χ(G\x) = t − 1. Since G is double-critical,

χ(G\{u, v}) = t − 2 and so χ(G\{u, v, x}) = t − 3 because x is adjacent to all the other

vertices in G\{u, v}. Hence G\x is double-critical and (t− 1)-chromatic.

Lemma 2.3 If G is a non-complete, double-critical, t-chromatic graph, then for any x ∈

V (G) with at least one non-neighbor in G, χ(G\NG[x]) ≥ 3. In particular, G\NG[x] must

contain an odd cycle, and so dG(x) ≤ |V (G)| − 4.
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Proof. Let x be any vertex in G with dG(x) < |V (G)| − 1 and let H = G\NG[x]. Suppose

that χ(H) ≤ 2. Since dG(x) < |V (G)| − 1, H contains at least one vertex. Let y ∈ V (H) be

adjacent to a vertex z ∈ NG(x). This is possible because G is connected. If H has no edge,

then G\(V (H) ∪ {z}) has a (t − 2)-coloring c, which can be extended to a (t − 1)-coloring

of G by assigning all vertices in V (H) the color c(x) and assigning a new color to the vertex

z, a contradiction. Thus H must contain at least one edge, and so χ(H) = 2. Let (A,B) be

a bipartition of H . Now G\H has a (t − 2)-coloring c∗, which again can be extended to a

(t − 1)-coloring of G by assigning all vertices in A the color c∗(x) and all vertices in B the

same new color, a contradiction. This proves that χ(H) ≥ 3, and so H must contain an odd

cycle. Therefore dG(x) ≤ |V (G)| − 4.

Lemma 2.4 Let G be a double-critical, t-chromatic graph. For any edge xy ∈ E(G), let

c be any (t − 2)-coloring of G\{x, y} with color classes V1, V2, . . . , Vt−2. Then the following

two statements are true.

(a) For any i, j ∈ {1, 2, . . . , t − 2} with i 6= j, if NG(x) ∩ NG(y) ∩ Vi is anti-complete to

NG(x)∩Vj , then there exists at least one edge between (NG(y)\NG(x))∩Vi and NG(x)∩Vj

in G. In particular, (NG(y)\NG(x)) ∩ Vi 6= ∅.

(b) Assume that dG(x) = t + 1 and y belongs to a cycle of length k ≥ 5 in G[NG(x)].

(b1) If k ≥ 7, then dG(y) ≥ t + e(G[N(x)])− 4;

(b2) If k = 6, then dG(y) ≥ max{t+ 2, t+ e(G[NG(x)])− 5}; and

(b3) If k = 5, then dG(y) ≥ max{t+ 2, t+ e(G[NG(x)])− 6}.

Proof. Let G, x, y, c be as given in the statement. For any i, j ∈ {1, 2, . . . , t − 2} with

i 6= j, if NG(x) ∩ NG(y) ∩ Vi is anti-complete to NG(x) ∩ Vj, then G is non-complete. By

Proposition 2.1(b), there must exist a path x, uj, ui, y in G such that c(uj) = j and c(ui) = i.

Clearly, ujui ∈ E(G) and uj ∈ NG(x) ∩ Vj. Since NG(x) ∩ NG(y) ∩ Vi is anti-complete to

NG(x) ∩ Vj , we see that ui ∈ (NG(y)\NG(x)) ∩ Vi. This proves Lemma 2.4(a).

To prove Lemma 2.4(b), let H = G[NG(x)]. Assume that dG(x) = t + 1 and that y

belongs to a cycle, say Ck, of H , where k ≥ 5. By Proposition 2.1(j), dG(y) ≥ t + 2,

and by Proposition 2.1(i), H is the union of isolated vertices and cycles of length at least

five. Clearly, |NG(x) ∩ NG(y)| = t − 2. By Proposition 2.1(c), we may assume that Vi ∩

(NG(x)∩NG(y)) = {vi} for all i ∈ {1, . . . , t− 2}. Then NG(x)∩NG(y) = {v1, . . . , vt−2}. Let

{a, b} = NG(x)\NG[y]. Since a and b are neighbors of y in a cycle of length at least 5 in H ,

ab ∈ E(G). We may further assume that a ∈ V1 and b ∈ V2. Then v1aybv2 forms a path on

five vertices of Ck, since v1, a ∈ V1 and v2, b ∈ V2. If k ≥ 6, then v1v2 ∈ E(G) and both v1 and

v2 have precisely one non-neighbor in {v3, v4, . . . , vt−2}. We may assume that v1v3 /∈ E(G)

and v2vℓ /∈ E(G), where ℓ = 3 if k = 6, and ℓ = 4 if k ≥ 7. For any i, j ∈ {3, 4, . . . , t−2} with
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i 6= j, if vivj /∈ E(G), then by Lemma 2.4(a), there exists v′j ∈ Vj\vj such that v′jy ∈ E(G).

By symmetry, there exists v′i ∈ Vi\vi such that v′iy ∈ E(G). Therefore, if C is any cycle in

H \ V (Ck) and Vm ∩ V (C) 6= ∅ for some m ∈ {3, 4, . . . , t− 2}, then y is adjacent to a vertex

in Vm \ vm.

Assume that k = 5. Then v1v2 /∈ E(G) and so dG(y) ≥ |NG(x) ∩ NG(y)| + |{x}| +

e(H\V (Ck)) = (t − 2) + 1 + (e(H) − 5) = t + e(H) − 6. Next assume that k = 6. Then

vℓ = v3. Since both NG(x) ∩ NG(y) ∩ V1 and NG(x) ∩ NG(y) ∩ V2 are anti-complete to

NG(x) ∩ V3, by Lemma 2.4(a), NG(y) ∩ (V1\{a, v1}) 6= ∅ and NG(y) ∩ (V2\{b, v2}) 6= ∅.

Then dG(y) ≥ |NG(x) ∩ NG(y)| + |{x}| + |NG(y) ∩ (V1\{a, v1})| + |NG(y) ∩ (V2\{b, v2})| +

e(H\V (Ck)) ≥ (t − 2) + 1 + 1 + 1 + (e(H) − 6) = t + e(H) − 5. Finally assume that

k ≥ 7. Then vℓ = v4. Since NG(x) ∩ NG(y) ∩ V1 is anti-complete to NG(x) ∩ V3 and

NG(x)∩NG(y)∩V2 is anti-complete to NG(x)∩V4, by Lemma 2.4(a), NG(y)∩(V1\{a, v1}) 6= ∅

and NG(y) ∩ (V2\{b, v2}) 6= ∅. As observed earlier, for any i, j ∈ {3, 4, . . . , t − 2} with

i 6= j and vivj /∈ E(G), y has at least one neighbor in each of Vi\vi and Vj\vj in G.

Hence dG(y) ≥ |NG(x) ∩NG(y)|+ |{x}|+ |NG(y) ∩ (V1\{a, v1})|+ |NG(y) ∩ (V2\{b, v2})|+

|V (Ck)\{a, b, v1, v2, y}|+e(H\V (Ck)) ≥ (t−2)+1+1+1+(k−5)+(e(H)−k) = t+e(H)−4.

Note that since k ≥ 7, we see that e(H) ≥ 7, and so d(y) ≥ t + e(H) − 4 > t + 2. This

completes the proof of Lemma 2.4(b).

Lemma 2.5 Let G be a double-critical, t-chromatic graph with t ≥ 6. If G is claw-free, then

for any x ∈ V (G), dG(x) ≤ 2t− 4. Furthermore, if dG(x) < |V (G)| − 1, then dG(x) ≤ 2t− 6.

Proof. Let x ∈ V (G) be a vertex of maximum degree in G, and let uv be any edge of

G\x. Let c be any (t − 2)-coloring of G\{u, v} with color classes V1, V2, . . . , Vt−2. We may

assume that x ∈ Vt−2. Since G is claw-free, x can have at most two neighbors in each of

V1, . . . , Vt−3. Additionally, x may be adjacent to u and v in G. Therefore dG(x) ≤ 2t− 4. If

dG(x) < |V (G)| − 1, then χ(G[NG(x)]) ≤ t− 3 by Proposition 2.1(h). Since G is claw-free,

each color class in any (t− 3)-coloring of G[NG(x)] can contain at most two vertices, and so

dG(x) ≤ 2t− 6.

It is now an easy consequence of Proposition 2.1 and Lemma 2.5 that Theorem 1.6 is

true for t = 6, 7.

Proof of Theorem 1.6 for t = 6, 7. Let G and t ∈ {6, 7} be as given in the statement.

Suppose that G 6= Kt. By Proposition 2.1(d), there exists an edge xy ∈ E(G) such that x and

y have a common non-neighbor. By Proposition 2.1(f) and Lemma 2.5, t+1 ≤ dG(x) ≤ 2t−6

and t + 1 ≤ dG(y) ≤ 2t − 6. Thus t = 7 and dG(x) = dG(y) = 8, which contradicts

Proposition 2.1(j).
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3 Proofs of Main Results

In this section, we prove our main results, namely, Theorem 1.4 and Theorem 1.6 for the

case t = 8. We first prove Theorem 1.4.

Proof of Theorem 1.4. Let G and x be as given in the statement. Let H = G[NG(x)].

Then |V (H)| = t+1. Note that if dG(x) = |V (G)|−1, then it follows from Proposition 2.1(f)

that G = Kt+1, a contradiction. Thus dG(x) < |V (G)| − 1. Now by Proposition 2.1(g) and

Proposition 2.1(h) applied to the vertex x, α(H) ≤ 2 and χ(H) ≤ t − 3. Let c∗ be any

(t − 3)-coloring of H. Then each color class of c∗ contains at most two vertices. Since

|V (H)| = t + 1, we see that at least four color classes of c∗ must each contain two vertices.

By Proposition 2.1(e), H has at least eight vertices of degree two and so e(H) ≥ 8. This

proves Theorem 1.4(a).

To prove Theorem 1.4(b), let y ∈ NG(x). Since dG(x) = t + 1, by Proposition 2.1(i),

either |NG(x)∩NG(y)| = t or |NG(x)∩NG(y)| = t−2. Assume that |NG(x)∩NG(y)| = t−2.

Then y belongs to a cycle of length k ≥ 5 in H because H is a disjoint union of isolated

vertices and cycles. By Proposition 2.1(i), y belongs to a cycle of length at least 5 in

H . By Theorem 1.4(a), e(H) ≥ 8. Note that if 5 ≤ k ≤ 7, then by Proposition 2.1(i),

H has at least two cycles of length at least 5, and so e(H) ≥ k + 5 ≥ 10. Thus by

Lemma 2.4(b), dG(y) ≥ t + 4. If dG(y) = t + 4, then it follows from Lemma 2.4(b) that

either k = 8 and H is isomorphic to C8 ∪ Kt−7 or k = 5 and H is isomorphic to C5 ∪

C5 ∪ Kt−9. So we may assume that |NG(x) ∩ NG(y)| = t. Let c be any (t − 2)-coloring

of G\{x, y} with color classes V1, V2, . . . , Vt−2. Since α(H) ≤ 2, we may further assume

that NG(x) ∩ V1 = {v1, v
′

1}, NG(x) ∩ V2 = {v2, v
′

2}, and NG(x) ∩ Vi = {vi} for all i ∈

{3, 4, . . . , t − 2}. Then v1v
′

1, v2v
′

2 ∈ E(H). By Proposition 2.1(i) applied to the vertex

x, eH({v1, v
′

1, v2, v
′

2}, {v3, v4, . . . , vt−2}) ≤ 4. By Theorem 1.4(a), e(H) ≥ 8. Thus there

must exist at least four vertices in {v3, v4, . . . , vt−2}, say v3, v4, v5, v6, such that dH(vj) = 2

and y is adjacent to at least one vertex of Vj\vj in G for all j ∈ {3, 4, 5, 6}. Therefore

|NG(y)\NG[x]| ≥ 4 and so dG(y) = |NG[x] ∩NG(y)|+ |NG(y)\NG[x]| ≥ (t + 1) + 4 = t+ 5.

This completes the proof of Theorem 1.4.

We are now ready to complete the proof of Theorem 1.6.

Proof of Theorem 1.6 for t = 8. Let G and t = 8 be as given in the statement. Suppose

that G 6= K8. We claim that

Claim 1. G is 10-regular.

Proof. By Lemma 2.2 and Theorem 1.6 for t = 7, ∆(G) ≤ |V (G)|−2. By Proposition 2.1(f)

and Lemma 2.5, we see that 9 ≤ dG(x) ≤ 10 for all vertices x ∈ V (G). By Corollary 1.5, G

is 10-regular.
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Claim 2. For any x ∈ V (G), 2 ≤ δ(G[NG(x)]) ≤ ∆(G[NG(x)]) ≤ 3.

Proof. Let x ∈ V (G). Then x has at least one non-neighbor in G, otherwise G = K11 by

Claim 1, a contradiction. By Proposition 2.1(h), χ(G[NG(x)]) ≤ 5. Since G is claw-free, we

see that α(G[NG(x)]) = 2, and so χ(G[NG(x)]) = 5 since every color class can contain at

most two vertices. Thus every vertex of NG(x) has at least one non-neighbor in G[NG(x)].

By Proposition 2.1(e) and Proposition 2.1(c), 2 ≤ δ(G[NG(x)]) ≤ ∆(G[NG(x)]) ≤ 3.

Claim 3. For any x ∈ V (G), ∆(G[NG(x)]) = 3. That is, G[NG(x)] is not 2-regular.

Proof. Suppose that there exists a vertex x ∈ V (G) such that G[NG(x)] is 2-regular.

Let y ∈ NG(x) and let c be any 6-coloring of G\{x, y} with color classes V1, V2, . . . , V6.

Let W = NG(x) ∩ NG(y). Then |W | = 7 because G[NG(x)] is 2-regular. By Proposition

2.1(c), we may assume that |V1 ∩ W | = 2 and |Vi ∩ W | = 1 for every i ∈ {2, 3, 4, 5, 6}.

Let V1 ∩ W = {v1, u1} and Vi ∩ W = {vi} for each i ∈ {2, 3, 4, 5, 6}. Since G is claw-free,

we may further assume that NG(x) ∩ V2 = {v2, u2} and NG(x) ∩ V3 = {v3, u3}. Clearly,

yu2, yu3 /∈ E(G) and thus u2u3 ∈ E(G) because G is claw-free. Since G[NG(x)] is 2-

regular, we see that G[{v4, v5, v6}] is not a clique. We may assume that v4v5 /∈ E(G). By

Lemma 2.4(a), NG(y) ∩ (Vj\{vj}) 6= ∅ for all j ∈ {4, 5}. Let w4 ∈ V4\v4 and w5 ∈ V5\v5

be two other neighbors of y in G. Then NG(y)\NG[x] = {w4, w5} since G is 10-regular by

Claim 1. By Lemma 2.4(a), v6 must be complete to {v2, v3, v4, v5} in G. Notice that v6 is

complete to {u2, u3} in G since G[NG(x)] is 2-regular. Thus v6 must be anti-complete to

{v1, u1} in G and so G[{x, v1, u1, v6}] is a claw, a contradiction.

From now on, we fix an arbitrary vertex x ∈ V (G). Let H = G[NG(x)]. By Claim 3,

let y ∈ NG(x) with |NG(x) ∩ NG(y)| = 6. We choose such a vertex y ∈ NG(x) so that

NG(x)\NG[y] contains as many vertices of degree two inH as possible. Let c be any 6-coloring

of G\{x, y} with color classes V1, V2, . . . , V6. We may assume that Vi∩NG(x)∩NG(y) = {vi}

for all i ∈ {1, 2, 3, 4, 5, 6}. Since G is claw-free, we may further assume that NG(x) ∩ Vj =

{vj, uj} for all j ∈ {1, 2, 3}. Notice that y is anti-complete to {u1, u2, u3} in G, and since G is

claw-free, G[{u1, u2, u3}] = K3. Let A = {u1, u2, u3}, B = {v1, v2, v3}, and C = {v4, v5, v6}.

Claim 4. B is not complete to C in G.

Proof. Suppose that B is complete to C in G. Then eH(C,A) =
∑

v∈C dH(v)−2e(H [C]) ≥

6 − 2e(H [C]). For each i ∈ {1, 2, 3}, uivi, uiy /∈ E(G) and dH(ui) ≤ 3. Thus eH(A,C) ≤ 3

and so e(H [C]) ≥ 2. Since G is claw-free, we have e(H [C]) = 2. We may assume that

v4v6 /∈ E(H). Then v4v6 ∈ E(G) and v4v5, v5v6 /∈ E(G). Since dH(v4) ≥ 2, dH(v6) ≥ 2,

and B is complete to C in G, we may assume that u2v4, u3v6 /∈ E(G). Note that H is

not 3-regular since eH(A,C) ≤ 3 and eH(B,C) = 0. By the choice of y, dH(u1) = 2 and
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dH(vj) = 2 for all j ∈ {4, 5, 6}. Since dH(u2) = dH(u3) = 3, by the choice of y again,

dH(v2) = dH(v3) = 3. Thus G[B] = K3 and so G[{x} ∪B] is a claw, a contradiction.

Claim 5. G[C] = K3.

Proof. Suppose that G[C] contains a missing edge, say v4v5 /∈ E(G). By Lemma 2.4(a),

there exist w4 ∈ V4\v4 and w5 ∈ V5\v5 such that yw4, yw5 ∈ E(G). By Claim 4, we may

assume that v3vj /∈ E(G) for some j ∈ {4, 5, 6}. By Lemma 2.4(a), y has another neighbor,

say w3, in V3\v3. Since G is 10-regular, {w3, w4, w5} = N(y)\N [x], so by Lemma 2.4(a),

v4v5 is the only missing edge in G[C] and {v1, v2} is complete to C in G. If eH(A,C) = 3,

then dH(ui) = 3 for all i ∈ {1, 2, 3}. By the choice of y, dH(v3) = 3, or else we could replace

y with u3. Notice that for all i ∈ {4, 5, 6}, eH(vi, A ∪ {v3}) ≥ 1, and so by the choice of y,

dH(vi) = 3, or else we could replace y with v3. Thus eH(A,C) ≥ 5, which is impossible. Hence

eH(A,C) ≤ 2. Notice that eH(A,C) = (dH(v4)− 1)+ (dH(v5)− 1)+ dH(v6)− eH(v3, C) ≥ 2.

it follows that eH(A,C) = 2, eH(v3, C) = 2 and dH(vi) = 2 for all i ∈ {4, 5, 6}. Then

NG(x)\NG[y] has at most one vertex of degree two in H , but NG(x)\NG[v3] has two vertices

of degree two in H , contradicting the choice of y.

Claim 6. v1u1, v2u2, and v3u3 are the only edges in H [A ∪ B].

Proof. Suppose that H [A ∪ B] has at least four edges. By Claim 5 and Claim 2, eH(A ∪

B,C) ≥ 6. On the other hand, eH(A ∪ B,C) =
∑

v∈A∪B dH(v) − 2e(H [A ∪ B]) − 3 ≤

15− 2e(H [A ∪B]). It follows that e(H [A ∪B]) = 4 and A ∪B contains at most one vertex

of degree two in H . Thus eH(A ∪ B,C) ≤ 7 and so at least two vertices of C, say v4 and

v5, are of degree two in H . Since eH(A,C) ≤ 3 and G[C] = K3 by Claim 5, we may assume

that v4v3 /∈ E(G). If dH(v3) = 3, then since dH(v4) = 2 and at most one vertex of A ∪ B

has degree two in H , by the choice of y, exactly one of u1, u2, u3 has degree two in H . Then

eH(A ∪ B,C) = 6. Thus dH(vj) = 2 for all j ∈ {4, 5, 6} and by the choice of y, each vertex

of B is adjacent to at most one vertex of C in H . Thus eH(A ∪ B,C) ≤ 5, a contradiction.

Hence dH(v3) = 2. Now dH(ui) = 3 for all i ∈ {1, 2, 3} because at most one vertex of

A ∪ B has degree two in H . We see that N(x)\N [y] has no vertex of degree two in H but

N(x)\N [u3] has at least one vertex of degree two in H , contrary to the choice of y.

By Claim 6, we see that for any i ∈ {1, 2, 3}, vivj /∈ E(G) for some j ∈ {4, 5, 6}. By

Lemma 2.4(a), let wi ∈ Vi\vi be such that ywi ∈ E(G) for all i ∈ {1, 2, 3}. Let D =

{w1, w2, w3}. Then NG(y)\NG[x] = D and G[D] = K3 because G is claw-free. Clearly, D

is not complete to C in G, otherwise G[{y} ∪D ∪ C] = K7, contrary to Proposition 2.1(a).

We may assume that w3v4 /∈ E(G). For each i ∈ {1, 2}, viv3, viu3 ∈ E(G) by Claim 6. Thus

v1w3, v2w3 /∈ E(G) because G is claw-free. Notice that w3, x, v1, v2, v4 ∈ NG(y) and w3 is

anti-complete to {x, v1, v2, v4} in G. Thus ∆(G[NG(y)]) ≥ 4, contrary to Claim 2.
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This completes the proof of Theorem 1.6.
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