Double-critical graph conjecture for claw-free graphs

Martin Rolek* and Zi-Xia Song ${ }^{\dagger}$
Department of Mathematics
University of Central Florida
Orlando, FL 32816

September 12, 2018

Abstract

A connected graph G with chromatic number t is double-critical if $G \backslash\{x, y\}$ is $(t-2)$-colorable for each edge $x y \in E(G)$. The complete graphs are the only known examples of double-critical graphs. A long-standing conjecture of Erdős and Lovász from 1966, which is referred to as the Double-Critical Graph Conjecture, states that there are no other double-critical graphs. That is, if a graph G with chromatic number t is double-critical, then G is the complete graph on t vertices. This has been verified for $t \leq 5$, but remains open for $t \geq 6$. In this paper, we first prove that if G is a non-complete, double-critical graph with chromatic number $t \geq 6$, then no vertex of degree $t+1$ is adjacent to a vertex of degree $t+1, t+2$, or $t+3$ in G. We then use this result to show that the Double-Critical Graph Conjecture is true for double-critical graphs G with chromatic number $t \leq 8$ if G is claw-free.

Keywords: vertex coloring, double-critical graphs, claw-free graphs

1 Introduction

All graphs considered in this paper are finite and without loops or multiple edges. For a graph G, we will use $V(G)$ to denote the vertex set, $E(G)$ the edge set, $e(G)$ the number of edges, $\alpha(G)$ the independence number, $\omega(G)$ the clique number, $\chi(G)$ the chromatic number, and \bar{G} the complement of G, respectively. For a vertex $x \in V(G)$, we will use $N_{G}(x)$ to denote the set of vertices in G which are adjacent to x. We define $N_{G}[x]=N_{G}(x) \cup\{x\}$ and $d_{G}(x)=\left|N_{G}(x)\right|$. Given vertex sets $A, B \subseteq V(G)$, we say that A is complete to (resp. anti-complete to) B if for every $a \in A$ and every $b \in B, a b \in E(G)$ (resp. $a b \notin E(G)$). The subgraph of G induced by A, denoted $G[A]$, is the graph with vertex set A and edge set $\{x y \in E(G): x, y \in A\}$. We denote by $B \backslash A$ the set $B-A, e_{G}(A, B)$ the number of edges between A and B in G, and $G \backslash A$ the subgraph of G induced on $V(G) \backslash A$, respectively. If

[^0]$A=\{a\}$, we simply write $B \backslash a, e_{G}(a, B)$, and $G \backslash a$, respectively. A graph H is an induced subgraph of a graph G if $V(H) \subseteq V(G)$ and $H=G[V(H)]$. A graph G is claw-free if G does not contain $K_{1,3}$ as an induced subgraph. Given two graphs G and H, the union of G and H, denoted $G \cup H$, is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. Given two isomorphic graphs G and H, we may (with a slight but common abuse of notation) write $G=H$. A cycle with $t \geq 3$ vertices is denoted by C_{t}. Throughout this paper, a proper vertex coloring of a graph G with k colors is called a k-coloring of G.

In 1966, the following conjecture of Lovász was published by Erdős [6] and is known as the Erdős-Lovász Tihany Conjecture.

Conjecture 1.1 For any integers $s, t \geq 2$ and any graph G with $\omega(G)<\chi(G)=s+t-1$, there exist disjoint subgraphs G_{1} and G_{2} of G such that $\chi\left(G_{1}\right) \geq s$ and $\chi\left(G_{2}\right) \geq t$.

To date, Conjecture 1.1 has been shown to be true only for values of $(s, t) \in\{(2,2),(2,3)$, $(2,4),(3,3),(3,4),(3,5)\}$. The case $(2,2)$ is trivial. The case $(2,3)$ was shown by Brown and Jung in 1969 [3]. Mozhan [10] and Stiebitz [13] each independently showed the case $(2,4)$ in 1987. The cases $(3,3),(3,4)$, and $(3,5)$ were also settled by Stiebitz in 1987 [14]. Recent work on the Erdős-Lovász Tihany Conjecture has focused on proving the conjecture for certain classes of graphs. Kostochka and Stiebitz [9] showed the conjecture holds for line graphs. Balogh, Kostochka, Prince, and Stiebitz [2] then showed that the conjecture holds for all quasi-line graphs and all graphs G with $\alpha(G)=2$. More recently, Chudnovsky, Fradkin, and Plumettaz [5] proved the following slight weaking of Conjecture 1.1 for claw-free graphs, the proof of which is long and relies heavily on the structure theorem for claw-free graphs developed by Chudnovsky and Seymour [4].

Theorem 1.2 Let G be a claw-free graph with $\chi(G)>\omega(G)$. Then there exists a clique K with $|V(K)| \leq 5$ such that $\chi(G \backslash V(K))>\chi(G)-|V(K)|$.

The most recent result related to the Erdős-Lovász Tihany Conjecture is due to Stiebitz [15], who showed that for integers $s, t \geq 2$, any graph G with $\omega(G)<\chi(G)=s+t-1$ contains disjoint subgraphs G_{1} and G_{2} of G with either $\chi\left(G_{1}\right) \geq s$ and $\operatorname{col}\left(G_{2}\right) \geq t$, or $\operatorname{col}\left(G_{1}\right) \geq s$ and $\chi\left(G_{2}\right) \geq t$, where $\operatorname{col}(H)$ denotes the coloring number of a graph H.

If we restrict $s=2$ in Conjecture 1.1, then the Erdős-Lovász Tihany Conjecture states that for any graph G with $\chi(G)>\omega(G) \geq 2$, there exists an edge $x y \in E(G)$ such that $\chi(G \backslash\{x, y\}) \geq \chi(G)-1$. To prove this special case of Conjecture 1.1, suppose for a contradiction that no such edge exists. Then $\chi(G \backslash\{x, y\})=\chi(G)-2$ for every edge $x y \in E(G)$. This motivates the definition of double-critical graphs. A connected graph G is doublecritical if for every edge $x y \in E(G), \chi(G \backslash\{x, y\})=\chi(G)-2$. A graph G is t-chromatic if $\chi(G)=t$. We are now ready to state the following conjecture, which is referred to as the Double-Critical Graph Conjecture, due to Erdős and Lovász [6].

Conjecture 1.3 Let G be a double-critical, t-chromatic graph. Then $G=K_{t}$.
Since Conjecture 1.3 is a special case of Conjecture 1.1, it has been settled in the affirmative for $t \leq 5$ [10, 13], for line graphs [9], and for quasi-line graphs and graphs with independence number two [2]. Representing a weakening of Conjecture 1.3, Kawarabayashi, Pedersen, and Toft [8] have shown that any double-critical, t-chromatic graph contains K_{t} as a minor for $t \in\{6,7\}$. As a further weakening, Pedersen [11] showed that any double-critical, 8 -chromatic graph contains K_{8}^{-}as a minor. Albar and Gonçalves [1] later proved that any double-critical, 8-chromatic graph contains K_{8} as a minor. Their proof is computer-assisted. The present authors [12] gave a computer-free proof of the same result and further showed that any double-critical, t-chromatic graph contains K_{9} as a minor for all $t \geq 9$. We note here that Theorem 1.2 does not completely settle Conjecture 1.3 for all claw-free graphs. Recently, Huang and Yu [7] proved that the only double-critical, 6-chromatic, claw-free graph is K_{6}. We prove the following main results in this paper. Theorem 1.4 is a generalization of a result obtained in [8] that no two vertices of degree $t+1$ are adjacent in any non-complete, double-critical, t-chromatic graph.

Theorem 1.4 If G is a non-complete, double-critical, t-chromatic graph with $t \geq 6$, then for any vertex $x \in V(G)$ with $d_{G}(x)=t+1$, the following hold:
(a) $e\left(\overline{G\left[N_{G}(x)\right]}\right) \geq 8$; and
(b) for any vertex $y \in N_{G}(x), d_{G}(y) \geq t+4$. Furthermore, if $d_{G}(y)=t+4$, then $\mid N_{G}(x) \cap$ $N_{G}(y) \mid=t-2$ and $\overline{G\left[N_{G}(x)\right]}$ contains either only one cycle, which is isomorphic to C_{8}, or exactly two cycles, each of which is isomorphic to C_{5}.

Corollary 1.5 below follows immediately from Theorem 1.4.
Corollary 1.5 If G is a non-complete, double-critical, t-chromatic graph with $t \geq 6$, then no vertex of degree $t+1$ is adjacent to a vertex of degree $t+1, t+2$, or $t+3$ in G.

We then use Corollary 1.5 to prove the following main result.
Theorem 1.6 Let G be a double-critical, t-chromatic graph with $t \in\{6,7,8\}$. If G is claw-free, then $G=K_{t}$.

The rest of this paper is organized as follows. In Section 2, we first list some known properties of non-complete, double-critical graphs obtained in [8] and then establish a few new ones. In particular, Lemma 2.4 turns out to be very useful. Our new lemmas lead to a very short proof of Theorem 1.6 for $t=6,7$, which we place at the end of Section 2. We prove the remainder of our main results in Section 3.

2 Preliminaries

The following is a summary of the basic properties of non-complete, double-critical graphs shown by Kawarabayashi, Pedersen, and Toft in [8].

Proposition 2.1 If G is a non-complete, double-critical, t-chromatic graph, then all of the following are true.
(a) G does not contain K_{t-1} as a subgraph.
(b) For all edges $x y$, every $(t-2)$-coloring $c: V(G) \backslash\{x, y\} \rightarrow\{1,2, \ldots, t-2\}$ of $G \backslash\{x, y\}$, and any non-empty sequence $j_{1}, j_{2}, \ldots, j_{i}$ of i different colors from $\{1,2, \ldots, t-2\}$, there is a path of order $i+2$ with vertices $x, v_{1}, v_{2}, \ldots, v_{i}, y$ in order such that $c\left(v_{k}\right)=j_{k}$ for all $k \in\{1,2, \ldots, i\}$.
(c) For any edge $x y \in E(G), x$ and y have at least one common neighbor in every color class of any $(t-2)$-coloring of $G \backslash\{x, y\}$. In particular, every edge $x y \in E(G)$ belongs to at least $t-2$ triangles.
(d) There exists at least one edge $x y \in E(G)$ such that x and y share a common non-neighbor in G.
(e) For any edge $x y \in E(G)$, the subgraph of G induced by $N_{G}(x) \backslash N_{G}[y]$ contains no isolated vertices. In particular, no vertex of $N_{G}(x)$ can have degree one in $\overline{G\left[N_{G}(x)\right]}$.
(f) $\delta(G) \geq t+1$.
(g) For any vertex $x \in V(G), \alpha\left(G\left[N_{G}(x)\right]\right) \leq d_{G}(x)-t+1$.
(h) For any vertex x with at least one non-neighbor in G, $\chi\left(G\left[N_{G}(x)\right]\right) \leq t-3$.
(i) For any $x \in V(G)$ with $d_{G}(x)=t+1, \overline{G\left[N_{G}(x)\right]}$ is the union of isolated vertices and cycles of length at least five. Furthermore, there must be at least one such cycle in $\overline{G\left[N_{G}(x)\right]}$.
(j) No two vertices of degree $t+1$ are adjacent in G.

We next establish some new properties of non-complete, double-critical graphs.
Lemma 2.2 Let G be a double-critical, t-chromatic graph and let $x \in V(G)$. If $d_{G}(x)=$ $|V(G)|-1$, then $G \backslash x$ is a double-critical, $(t-1)$-chromatic graph.

Proof. Let $u v$ be any edge of $G \backslash x$. Clearly, $\chi(G \backslash x)=t-1$. Since G is double-critical, $\chi(G \backslash\{u, v\})=t-2$ and so $\chi(G \backslash\{u, v, x\})=t-3$ because x is adjacent to all the other vertices in $G \backslash\{u, v\}$. Hence $G \backslash x$ is double-critical and $(t-1)$-chromatic.

Lemma 2.3 If G is a non-complete, double-critical, t-chromatic graph, then for any $x \in$ $V(G)$ with at least one non-neighbor in $G, \chi\left(G \backslash N_{G}[x]\right) \geq 3$. In particular, $G \backslash N_{G}[x]$ must contain an odd cycle, and so $d_{G}(x) \leq|V(G)|-4$.

Proof. Let x be any vertex in G with $d_{G}(x)<|V(G)|-1$ and let $H=G \backslash N_{G}[x]$. Suppose that $\chi(H) \leq 2$. Since $d_{G}(x)<|V(G)|-1, H$ contains at least one vertex. Let $y \in V(H)$ be adjacent to a vertex $z \in N_{G}(x)$. This is possible because G is connected. If H has no edge, then $G \backslash(V(H) \cup\{z\})$ has a $(t-2)$-coloring c, which can be extended to a $(t-1)$-coloring of G by assigning all vertices in $V(H)$ the color $c(x)$ and assigning a new color to the vertex z, a contradiction. Thus H must contain at least one edge, and so $\chi(H)=2$. Let (A, B) be a bipartition of H. Now $G \backslash H$ has a $(t-2)$-coloring c^{*}, which again can be extended to a $(t-1)$-coloring of G by assigning all vertices in A the color $c^{*}(x)$ and all vertices in B the same new color, a contradiction. This proves that $\chi(H) \geq 3$, and so H must contain an odd cycle. Therefore $d_{G}(x) \leq|V(G)|-4$.

Lemma 2.4 Let G be a double-critical, t-chromatic graph. For any edge $x y \in E(G)$, let c be any $(t-2)$-coloring of $G \backslash\{x, y\}$ with color classes $V_{1}, V_{2}, \ldots, V_{t-2}$. Then the following two statements are true.
(a) For any $i, j \in\{1,2, \ldots, t-2\}$ with $i \neq j$, if $N_{G}(x) \cap N_{G}(y) \cap V_{i}$ is anti-complete to $N_{G}(x) \cap V_{j}$, then there exists at least one edge between $\left(N_{G}(y) \backslash N_{G}(x)\right) \cap V_{i}$ and $N_{G}(x) \cap V_{j}$ in G. In particular, $\left(N_{G}(y) \backslash N_{G}(x)\right) \cap V_{i} \neq \emptyset$.
(b) Assume that $d_{G}(x)=t+1$ and y belongs to a cycle of length $k \geq 5$ in $\overline{G\left[N_{G}(x)\right]}$. $\left(b_{1}\right)$ If $k \geq 7$, then $d_{G}(y) \geq t+e(\overline{G[N(x)]})-4$;
$\left(b_{2}\right)$ If $k=6$, then $d_{G}(y) \geq \max \left\{t+2, t+e\left(\overline{G\left[N_{G}(x)\right]}\right)-5\right\}$; and
$\left(b_{3}\right)$ If $k=5$, then $d_{G}(y) \geq \max \left\{t+2, t+e\left(\overline{G\left[N_{G}(x)\right]}\right)-6\right\}$.

Proof. Let G, x, y, c be as given in the statement. For any $i, j \in\{1,2, \ldots, t-2\}$ with $i \neq j$, if $N_{G}(x) \cap N_{G}(y) \cap V_{i}$ is anti-complete to $N_{G}(x) \cap V_{j}$, then G is non-complete. By Proposition 2.1(b), there must exist a path x, u_{j}, u_{i}, y in G such that $c\left(u_{j}\right)=j$ and $c\left(u_{i}\right)=i$. Clearly, $u_{j} u_{i} \in E(G)$ and $u_{j} \in N_{G}(x) \cap V_{j}$. Since $N_{G}(x) \cap N_{G}(y) \cap V_{i}$ is anti-complete to $N_{G}(x) \cap V_{j}$, we see that $u_{i} \in\left(N_{G}(y) \backslash N_{G}(x)\right) \cap V_{i}$. This proves Lemma 2.4(a).

To prove Lemma [2.4(b), let $H=\overline{G\left[N_{G}(x)\right]}$. Assume that $d_{G}(x)=t+1$ and that y belongs to a cycle, say C_{k}, of H, where $k \geq 5$. By Proposition 2.1(j), $d_{G}(y) \geq t+2$, and by Proposition 2.1(i), H is the union of isolated vertices and cycles of length at least five. Clearly, $\left|N_{G}(x) \cap N_{G}(y)\right|=t-2$. By Proposition 2.1(c), we may assume that $V_{i} \cap$ $\left(N_{G}(x) \cap N_{G}(y)\right)=\left\{v_{i}\right\}$ for all $i \in\{1, \ldots, t-2\}$. Then $N_{G}(x) \cap N_{G}(y)=\left\{v_{1}, \ldots, v_{t-2}\right\}$. Let $\{a, b\}=N_{G}(x) \backslash N_{G}[y]$. Since a and b are neighbors of y in a cycle of length at least 5 in H, $a b \in E(G)$. We may further assume that $a \in V_{1}$ and $b \in V_{2}$. Then $v_{1} a y b v_{2}$ forms a path on five vertices of C_{k}, since $v_{1}, a \in V_{1}$ and $v_{2}, b \in V_{2}$. If $k \geq 6$, then $v_{1} v_{2} \in E(G)$ and both v_{1} and v_{2} have precisely one non-neighbor in $\left\{v_{3}, v_{4}, \ldots, v_{t-2}\right\}$. We may assume that $v_{1} v_{3} \notin E(G)$ and $v_{2} v_{\ell} \notin E(G)$, where $\ell=3$ if $k=6$, and $\ell=4$ if $k \geq 7$. For any $i, j \in\{3,4, \ldots, t-2\}$ with
$i \neq j$, if $v_{i} v_{j} \notin E(G)$, then by Lemma 2.4(a), there exists $v_{j}^{\prime} \in V_{j} \backslash v_{j}$ such that $v_{j}^{\prime} y \in E(G)$. By symmetry, there exists $v_{i}^{\prime} \in V_{i} \backslash v_{i}$ such that $v_{i}^{\prime} y \in E(G)$. Therefore, if C is any cycle in $H \backslash V\left(C_{k}\right)$ and $V_{m} \cap V(C) \neq \emptyset$ for some $m \in\{3,4, \ldots, t-2\}$, then y is adjacent to a vertex in $V_{m} \backslash v_{m}$.

Assume that $k=5$. Then $v_{1} v_{2} \notin E(G)$ and so $d_{G}(y) \geq\left|N_{G}(x) \cap N_{G}(y)\right|+|\{x\}|+$ $e\left(H \backslash V\left(C_{k}\right)\right)=(t-2)+1+(e(H)-5)=t+e(H)-6$. Next assume that $k=6$. Then $v_{\ell}=v_{3}$. Since both $N_{G}(x) \cap N_{G}(y) \cap V_{1}$ and $N_{G}(x) \cap N_{G}(y) \cap V_{2}$ are anti-complete to $N_{G}(x) \cap V_{3}$, by Lemma 2.4(a), $N_{G}(y) \cap\left(V_{1} \backslash\left\{a, v_{1}\right\}\right) \neq \emptyset$ and $N_{G}(y) \cap\left(V_{2} \backslash\left\{b, v_{2}\right\}\right) \neq \emptyset$. Then $d_{G}(y) \geq\left|N_{G}(x) \cap N_{G}(y)\right|+|\{x\}|+\left|N_{G}(y) \cap\left(V_{1} \backslash\left\{a, v_{1}\right\}\right)\right|+\left|N_{G}(y) \cap\left(V_{2} \backslash\left\{b, v_{2}\right\}\right)\right|+$ $e\left(H \backslash V\left(C_{k}\right)\right) \geq(t-2)+1+1+1+(e(H)-6)=t+e(H)-5$. Finally assume that $k \geq 7$. Then $v_{\ell}=v_{4}$. Since $N_{G}(x) \cap N_{G}(y) \cap V_{1}$ is anti-complete to $N_{G}(x) \cap V_{3}$ and $N_{G}(x) \cap N_{G}(y) \cap V_{2}$ is anti-complete to $N_{G}(x) \cap V_{4}$, by Lemma2.4(a), $N_{G}(y) \cap\left(V_{1} \backslash\left\{a, v_{1}\right\}\right) \neq \emptyset$ and $N_{G}(y) \cap\left(V_{2} \backslash\left\{b, v_{2}\right\}\right) \neq \emptyset$. As observed earlier, for any $i, j \in\{3,4, \ldots, t-2\}$ with $i \neq j$ and $v_{i} v_{j} \notin E(G), y$ has at least one neighbor in each of $V_{i} \backslash v_{i}$ and $V_{j} \backslash v_{j}$ in G. Hence $d_{G}(y) \geq\left|N_{G}(x) \cap N_{G}(y)\right|+|\{x\}|+\left|N_{G}(y) \cap\left(V_{1} \backslash\left\{a, v_{1}\right\}\right)\right|+\left|N_{G}(y) \cap\left(V_{2} \backslash\left\{b, v_{2}\right\}\right)\right|+$ $\left|V\left(C_{k}\right) \backslash\left\{a, b, v_{1}, v_{2}, y\right\}\right|+e\left(H \backslash V\left(C_{k}\right)\right) \geq(t-2)+1+1+1+(k-5)+(e(H)-k)=t+e(H)-4$. Note that since $k \geq 7$, we see that $e(H) \geq 7$, and so $d(y) \geq t+e(H)-4>t+2$. This completes the proof of Lemma 2.4(b).

Lemma 2.5 Let G be a double-critical, t-chromatic graph with $t \geq 6$. If G is claw-free, then for any $x \in V(G), d_{G}(x) \leq 2 t-4$. Furthermore, if $d_{G}(x)<|V(G)|-1$, then $d_{G}(x) \leq 2 t-6$.

Proof. Let $x \in V(G)$ be a vertex of maximum degree in G, and let $u v$ be any edge of $G \backslash x$. Let c be any $(t-2)$-coloring of $G \backslash\{u, v\}$ with color classes $V_{1}, V_{2}, \ldots, V_{t-2}$. We may assume that $x \in V_{t-2}$. Since G is claw-free, x can have at most two neighbors in each of V_{1}, \ldots, V_{t-3}. Additionally, x may be adjacent to u and v in G. Therefore $d_{G}(x) \leq 2 t-4$. If $d_{G}(x)<|V(G)|-1$, then $\chi\left(G\left[N_{G}(x)\right]\right) \leq t-3$ by Proposition 2.1(h). Since G is claw-free, each color class in any $(t-3)$-coloring of $G\left[N_{G}(x)\right]$ can contain at most two vertices, and so $d_{G}(x) \leq 2 t-6$.

It is now an easy consequence of Proposition 2.1 and Lemma 2.5 that Theorem 1.6 is true for $t=6,7$.

Proof of Theorem 1.6 for $t=6,7$. Let G and $t \in\{6,7\}$ be as given in the statement. Suppose that $G \neq K_{t}$. By Proposition[2.1(d), there exists an edge $x y \in E(G)$ such that x and y have a common non-neighbor. By Proposition2.1(f) and Lemma 2.5, $t+1 \leq d_{G}(x) \leq 2 t-6$ and $t+1 \leq d_{G}(y) \leq 2 t-6$. Thus $t=7$ and $d_{G}(x)=d_{G}(y)=8$, which contradicts Proposition 2.1(j).

3 Proofs of Main Results

In this section, we prove our main results, namely, Theorem 1.4 and Theorem 1.6 for the case $t=8$. We first prove Theorem 1.4.

Proof of Theorem 1.4. Let G and x be as given in the statement. Let $H=\overline{G\left[N_{G}(x)\right]}$. Then $|V(H)|=t+1$. Note that if $d_{G}(x)=|V(G)|-1$, then it follows from Proposition 2.1(f) that $G=K_{t+1}$, a contradiction. Thus $d_{G}(x)<|V(G)|-1$. Now by Proposition [2.1(g) and Proposition 2.1(h) applied to the vertex $x, \alpha(\bar{H}) \leq 2$ and $\chi(\bar{H}) \leq t-3$. Let c^{*} be any $(t-3)$-coloring of \bar{H}. Then each color class of c^{*} contains at most two vertices. Since $|V(H)|=t+1$, we see that at least four color classes of c^{*} must each contain two vertices. By Proposition [2.1(e), H has at least eight vertices of degree two and so $e(H) \geq 8$. This proves Theorem 1.4(a).

To prove Theorem 1.4(b), let $y \in N_{G}(x)$. Since $d_{G}(x)=t+1$, by Proposition 2.1(i), either $\left|N_{G}(x) \cap N_{G}(y)\right|=t$ or $\left|N_{G}(x) \cap N_{G}(y)\right|=t-2$. Assume that $\left|N_{G}(x) \cap N_{G}(y)\right|=t-2$. Then y belongs to a cycle of length $k \geq 5$ in H because H is a disjoint union of isolated vertices and cycles. By Proposition 2.1(i), y belongs to a cycle of length at least 5 in H. By Theorem 1.4(a), $e(H) \geq 8$. Note that if $5 \leq k \leq 7$, then by Proposition 2.1(i), H has at least two cycles of length at least 5 , and so $e(H) \geq k+5 \geq 10$. Thus by Lemma 2.4(b), $d_{G}(y) \geq t+4$. If $d_{G}(y)=t+4$, then it follows from Lemma 2.4(b) that either $k=8$ and H is isomorphic to $C_{8} \cup \bar{K}_{t-7}$ or $k=5$ and H is isomorphic to $C_{5} \cup$ $C_{5} \cup \bar{K}_{t-9}$. So we may assume that $\left|N_{G}(x) \cap N_{G}(y)\right|=t$. Let c be any $(t-2)$-coloring of $G \backslash\{x, y\}$ with color classes $V_{1}, V_{2}, \ldots, V_{t-2}$. Since $\alpha(\bar{H}) \leq 2$, we may further assume that $N_{G}(x) \cap V_{1}=\left\{v_{1}, v_{1}^{\prime}\right\}, N_{G}(x) \cap V_{2}=\left\{v_{2}, v_{2}^{\prime}\right\}$, and $N_{G}(x) \cap V_{i}=\left\{v_{i}\right\}$ for all $i \in$ $\{3,4, \ldots, t-2\}$. Then $v_{1} v_{1}^{\prime}, v_{2} v_{2}^{\prime} \in E(H)$. By Proposition 2.1(i) applied to the vertex $x, e_{H}\left(\left\{v_{1}, v_{1}^{\prime}, v_{2}, v_{2}^{\prime}\right\},\left\{v_{3}, v_{4}, \ldots, v_{t-2}\right\}\right) \leq 4$. By Theorem 1.4(a), $e(H) \geq 8$. Thus there must exist at least four vertices in $\left\{v_{3}, v_{4}, \ldots, v_{t-2}\right\}$, say $v_{3}, v_{4}, v_{5}, v_{6}$, such that $d_{H}\left(v_{j}\right)=2$ and y is adjacent to at least one vertex of $V_{j} \backslash v_{j}$ in G for all $j \in\{3,4,5,6\}$. Therefore $\left|N_{G}(y) \backslash N_{G}[x]\right| \geq 4$ and so $d_{G}(y)=\left|N_{G}[x] \cap N_{G}(y)\right|+\left|N_{G}(y) \backslash N_{G}[x]\right| \geq(t+1)+4=t+5$.

This completes the proof of Theorem 1.4.
We are now ready to complete the proof of Theorem 1.6.
Proof of Theorem 1.6 for $t=8$. Let G and $t=8$ be as given in the statement. Suppose that $G \neq K_{8}$. We claim that

Claim 1. G is 10 -regular.
Proof. By Lemma 2.2 and Theorem 1.6 for $t=7, \Delta(G) \leq|V(G)|-2$. By Proposition 2.1)(f) and Lemma 2.5, we see that $9 \leq d_{G}(x) \leq 10$ for all vertices $x \in V(G)$. By Corollary 1.5, G is 10-regular.

Claim 2. For any $x \in V(G), 2 \leq \delta\left(\overline{G\left[N_{G}(x)\right]}\right) \leq \Delta\left(\overline{G\left[N_{G}(x)\right]}\right) \leq 3$.
Proof. Let $x \in V(G)$. Then x has at least one non-neighbor in G, otherwise $G=K_{11}$ by Claim 1, a contradiction. By Proposition [2.1(h), $\chi\left(G\left[N_{G}(x)\right]\right) \leq 5$. Since G is claw-free, we see that $\alpha\left(G\left[N_{G}(x)\right]\right)=2$, and so $\chi\left(G\left[N_{G}(x)\right]\right)=5$ since every color class can contain at most two vertices. Thus every vertex of $N_{G}(x)$ has at least one non-neighbor in $G\left[N_{G}(x)\right]$. By Proposition 2.1(e) and Proposition 2.1(c), $2 \leq \delta\left(\overline{G\left[N_{G}(x)\right]}\right) \leq \Delta\left(\overline{G\left[N_{G}(x)\right]}\right) \leq 3$.

Claim 3. For any $x \in V(G), \Delta\left(\overline{G\left[N_{G}(x)\right]}\right)=3$. That is, $\overline{G\left[N_{G}(x)\right]}$ is not 2-regular.
Proof. Suppose that there exists a vertex $x \in V(G)$ such that $\overline{G\left[N_{G}(x)\right]}$ is 2-regular. Let $y \in N_{G}(x)$ and let c be any 6 -coloring of $G \backslash\{x, y\}$ with color classes $V_{1}, V_{2}, \ldots, V_{6}$. Let $W=N_{G}(x) \cap N_{G}(y)$. Then $|W|=7$ because $\overline{G\left[N_{G}(x)\right]}$ is 2-regular. By Proposition 2.1(c), we may assume that $\left|V_{1} \cap W\right|=2$ and $\left|V_{i} \cap W\right|=1$ for every $i \in\{2,3,4,5,6\}$. Let $V_{1} \cap W=\left\{v_{1}, u_{1}\right\}$ and $V_{i} \cap W=\left\{v_{i}\right\}$ for each $i \in\{2,3,4,5,6\}$. Since G is claw-free, we may further assume that $N_{G}(x) \cap V_{2}=\left\{v_{2}, u_{2}\right\}$ and $N_{G}(x) \cap V_{3}=\left\{v_{3}, u_{3}\right\}$. Clearly, $y u_{2}, y u_{3} \notin E(G)$ and thus $u_{2} u_{3} \in E(G)$ because G is claw-free. Since $\overline{G\left[N_{G}(x)\right]}$ is 2regular, we see that $G\left[\left\{v_{4}, v_{5}, v_{6}\right\}\right]$ is not a clique. We may assume that $v_{4} v_{5} \notin E(G)$. By Lemmar 2.4(a), $N_{G}(y) \cap\left(V_{j} \backslash\left\{v_{j}\right\}\right) \neq \emptyset$ for all $j \in\{4,5\}$. Let $w_{4} \in V_{4} \backslash v_{4}$ and $w_{5} \in V_{5} \backslash v_{5}$ be two other neighbors of y in G. Then $N_{G}(y) \backslash N_{G}[x]=\left\{w_{4}, w_{5}\right\}$ since G is 10-regular by Claim 11. By Lemma 2.4(a), v_{6} must be complete to $\left\{v_{2}, v_{3}, v_{4}, v_{5}\right\}$ in G. Notice that v_{6} is complete to $\left\{u_{2}, u_{3}\right\}$ in G since $\overline{G\left[N_{G}(x)\right]}$ is 2-regular. Thus v_{6} must be anti-complete to $\left\{v_{1}, u_{1}\right\}$ in G and so $G\left[\left\{x, v_{1}, u_{1}, v_{6}\right\}\right]$ is a claw, a contradiction.

From now on, we fix an arbitrary vertex $x \in V(G)$. Let $H=\overline{G\left[N_{G}(x)\right]}$. By Claim 3, let $y \in N_{G}(x)$ with $\left|N_{G}(x) \cap N_{G}(y)\right|=6$. We choose such a vertex $y \in N_{G}(x)$ so that $N_{G}(x) \backslash N_{G}[y]$ contains as many vertices of degree two in H as possible. Let c be any 6-coloring of $G \backslash\{x, y\}$ with color classes $V_{1}, V_{2}, \ldots, V_{6}$. We may assume that $V_{i} \cap N_{G}(x) \cap N_{G}(y)=\left\{v_{i}\right\}$ for all $i \in\{1,2,3,4,5,6\}$. Since G is claw-free, we may further assume that $N_{G}(x) \cap V_{j}=$ $\left\{v_{j}, u_{j}\right\}$ for all $j \in\{1,2,3\}$. Notice that y is anti-complete to $\left\{u_{1}, u_{2}, u_{3}\right\}$ in G, and since G is claw-free, $G\left[\left\{u_{1}, u_{2}, u_{3}\right\}\right]=K_{3}$. Let $A=\left\{u_{1}, u_{2}, u_{3}\right\}, B=\left\{v_{1}, v_{2}, v_{3}\right\}$, and $C=\left\{v_{4}, v_{5}, v_{6}\right\}$.

Claim 4. B is not complete to C in G.
Proof. Suppose that B is complete to C in G. Then $e_{H}(C, A)=\sum_{v \in C} d_{H}(v)-2 e(H[C]) \geq$ $6-2 e(H[C])$. For each $i \in\{1,2,3\}, u_{i} v_{i}, u_{i} y \notin E(G)$ and $d_{H}\left(u_{i}\right) \leq 3$. Thus $e_{H}(A, C) \leq 3$ and so $e(H[C]) \geq 2$. Since G is claw-free, we have $e(H[C])=2$. We may assume that $v_{4} v_{6} \notin E(H)$. Then $v_{4} v_{6} \in E(G)$ and $v_{4} v_{5}, v_{5} v_{6} \notin E(G)$. Since $d_{H}\left(v_{4}\right) \geq 2, d_{H}\left(v_{6}\right) \geq 2$, and B is complete to C in G, we may assume that $u_{2} v_{4}, u_{3} v_{6} \notin E(G)$. Note that H is not 3 -regular since $e_{H}(A, C) \leq 3$ and $e_{H}(B, C)=0$. By the choice of $y, d_{H}\left(u_{1}\right)=2$ and
$d_{H}\left(v_{j}\right)=2$ for all $j \in\{4,5,6\}$. Since $d_{H}\left(u_{2}\right)=d_{H}\left(u_{3}\right)=3$, by the choice of y again, $d_{H}\left(v_{2}\right)=d_{H}\left(v_{3}\right)=3$. Thus $G[B]=\overline{K_{3}}$ and so $G[\{x\} \cup B]$ is a claw, a contradiction.

Claim 5. $G[C]=K_{3}$.
Proof. Suppose that $G[C]$ contains a missing edge, say $v_{4} v_{5} \notin E(G)$. By Lemma 2.4(a), there exist $w_{4} \in V_{4} \backslash v_{4}$ and $w_{5} \in V_{5} \backslash v_{5}$ such that $y w_{4}, y w_{5} \in E(G)$. By Claim 4, we may assume that $v_{3} v_{j} \notin E(G)$ for some $j \in\{4,5,6\}$. By Lemma 2.4(a), y has another neighbor, say w_{3}, in $V_{3} \backslash v_{3}$. Since G is 10 -regular, $\left\{w_{3}, w_{4}, w_{5}\right\}=N(y) \backslash N[x]$, so by Lemma 2.4(a), $v_{4} v_{5}$ is the only missing edge in $G[C]$ and $\left\{v_{1}, v_{2}\right\}$ is complete to C in G. If $e_{H}(A, C)=3$, then $d_{H}\left(u_{i}\right)=3$ for all $i \in\{1,2,3\}$. By the choice of $y, d_{H}\left(v_{3}\right)=3$, or else we could replace y with u_{3}. Notice that for all $i \in\{4,5,6\}, e_{H}\left(v_{i}, A \cup\left\{v_{3}\right\}\right) \geq 1$, and so by the choice of y, $d_{H}\left(v_{i}\right)=3$, or else we could replace y with v_{3}. Thus $e_{H}(A, C) \geq 5$, which is impossible. Hence $e_{H}(A, C) \leq 2$. Notice that $e_{H}(A, C)=\left(d_{H}\left(v_{4}\right)-1\right)+\left(d_{H}\left(v_{5}\right)-1\right)+d_{H}\left(v_{6}\right)-e_{H}\left(v_{3}, C\right) \geq 2$. it follows that $e_{H}(A, C)=2, e_{H}\left(v_{3}, C\right)=2$ and $d_{H}\left(v_{i}\right)=2$ for all $i \in\{4,5,6\}$. Then $N_{G}(x) \backslash N_{G}[y]$ has at most one vertex of degree two in H, but $N_{G}(x) \backslash N_{G}\left[v_{3}\right]$ has two vertices of degree two in H, contradicting the choice of y.

Claim 6. $v_{1} u_{1}, v_{2} u_{2}$, and $v_{3} u_{3}$ are the only edges in $H[A \cup B]$.
Proof. Suppose that $H[A \cup B]$ has at least four edges. By Claim 5 and Claim 2, $e_{H}(A \cup$ $B, C) \geq 6$. On the other hand, $e_{H}(A \cup B, C)=\sum_{v \in A \cup B} d_{H}(v)-2 e(H[A \cup B])-3 \leq$ $15-2 e(H[A \cup B])$. It follows that $e(H[A \cup B])=4$ and $A \cup B$ contains at most one vertex of degree two in H. Thus $e_{H}(A \cup B, C) \leq 7$ and so at least two vertices of C, say v_{4} and v_{5}, are of degree two in H. Since $e_{H}(A, C) \leq 3$ and $G[C]=K_{3}$ by Claim 5, we may assume that $v_{4} v_{3} \notin E(G)$. If $d_{H}\left(v_{3}\right)=3$, then since $d_{H}\left(v_{4}\right)=2$ and at most one vertex of $A \cup B$ has degree two in H, by the choice of y, exactly one of u_{1}, u_{2}, u_{3} has degree two in H. Then $e_{H}(A \cup B, C)=6$. Thus $d_{H}\left(v_{j}\right)=2$ for all $j \in\{4,5,6\}$ and by the choice of y, each vertex of B is adjacent to at most one vertex of C in H. Thus $e_{H}(A \cup B, C) \leq 5$, a contradiction. Hence $d_{H}\left(v_{3}\right)=2$. Now $d_{H}\left(u_{i}\right)=3$ for all $i \in\{1,2,3\}$ because at most one vertex of $A \cup B$ has degree two in H. We see that $N(x) \backslash N[y]$ has no vertex of degree two in H but $N(x) \backslash N\left[u_{3}\right]$ has at least one vertex of degree two in H, contrary to the choice of y.

By Claim 6, we see that for any $i \in\{1,2,3\}, v_{i} v_{j} \notin E(G)$ for some $j \in\{4,5,6\}$. By Lemma 2.4(a), let $w_{i} \in V_{i} \backslash v_{i}$ be such that $y w_{i} \in E(G)$ for all $i \in\{1,2,3\}$. Let $D=$ $\left\{w_{1}, w_{2}, w_{3}\right\}$. Then $N_{G}(y) \backslash N_{G}[x]=D$ and $G[D]=K_{3}$ because G is claw-free. Clearly, D is not complete to C in G, otherwise $G[\{y\} \cup D \cup C]=K_{7}$, contrary to Proposition 2.1(a). We may assume that $w_{3} v_{4} \notin E(G)$. For each $i \in\{1,2\}, v_{i} v_{3}, v_{i} u_{3} \in E(G)$ by Claim 6. Thus $v_{1} w_{3}, v_{2} w_{3} \notin E(G)$ because G is claw-free. Notice that $w_{3}, x, v_{1}, v_{2}, v_{4} \in N_{G}(y)$ and w_{3} is anti-complete to $\left\{x, v_{1}, v_{2}, v_{4}\right\}$ in G. Thus $\Delta\left(\overline{G\left[N_{G}(y)\right]}\right) \geq 4$, contrary to Claim 2.

This completes the proof of Theorem 1.6.

Acknowledgement

The authors would like to thank the anonymous referees for many helpful comments, which greatly improve the presentation of this paper.

References

[1] B. Albar and D. Gonçalves, On triangles in K_{r}-minor free graphs, available at arXiv:1304.5468.
[2] J. Balogh, A. V. Kostochka, N. Prince, and M. Stiebitz, The Erdős-Lovász Tihany conjecture for quasi-line graphs, Discrete Math., 309 (2009), pp. 3985-3991.
[3] W. G. Brown and H. A. Jung, On odd circuits in chromatic graphs, Acta Math. Sci. Hung., 20 (1969), pp. 129-134.
[4] M. Chudnovsky and P. Seymour, Claw-free graphs. V. Global structure, J. Combin. Theory, Ser. B, 98 (2008), pp. 1373-1410.
[5] M. Chudnovsky, A. Fradkin, and M. Plumettaz, On the Erdős-Lovász Tihany conjecture for claw-free graphs, available at arXiv:1309.1020.
[6] P. Erdős, Problems, Theory of Graphs in: Proc. Colloq. Tihany, Academic Press, New York, 1968, pp. 361-362.
[7] H. Huang and A. Yu, A note on the double-critical graph conjecture, available at arXiv:1604.05262.
[8] K. Kawarabayashi, A. S. Pedersen, and B. Toft, Double-critical graphs and complete minors, Electron. J. Combin., 17 (2010), R87.
[9] A. V. Kostochka and M. Stiebitz, Partitions and edge colorings of multigraphs, Electron. J. Combin. 15 (2008), N25.
[10] N. N. Mozhan, On doubly critical graphs with the chromatic number five, Metody Diskretn. Anal., 46 (1987), pp. 50-59.
[11] A. S. Pedersen, Complete and almost complete minors in double-critical 8-chromatic graphs, Electron. J. Combin., 18 (2011), P80.
[12] M. Rolek and Z-X. Song, Clique minors in double-critical graphs, submitted, available at arXiv:1603.06964.
[13] M. Stiebitz, K_{5} is the only double-critical 5-chromatic graph, Discrete Math., 64 (1987), pp. 91-93.
[14] M. Stiebitz, On k-critical n-chromatic graphs, in Combinatorics . Colloq. Math. Soc. János Bolyai, Combinatorics, Eger (Hungary) 52 (1987), pp. 509-514.
[15] M. Stiebitz, A relaxed version of the Erdős-Lovász Tihany conjecture, to appear in J. Graph Theory.

[^0]: *E-mail address: mrolek@knights.ucf.edu.
 ${ }^{\dagger}$ Corresponding author. E-mail address: Zixia.Song@ucf.edu.

