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Abstract

A connected graph G with chromatic number ¢ is double-critical if G\{z,y} is
(t — 2)-colorable for each edge zy € E(G). The complete graphs are the only known
examples of double-critical graphs. A long-standing conjecture of Erdds and Lovész
from 1966, which is referred to as the Double-Critical Graph Conjecture, states that
there are no other double-critical graphs. That is, if a graph G with chromatic number
t is double-critical, then G is the complete graph on t vertices. This has been verified
for t < 5, but remains open for ¢ > 6. In this paper, we first prove that if G is a
non-complete, double-critical graph with chromatic number ¢ > 6, then no vertex of
degree t+ 1 is adjacent to a vertex of degree t+1,t+2, or t +3 in G. We then use this
result to show that the Double-Critical Graph Conjecture is true for double-critical
graphs G with chromatic number ¢ < 8 if G is claw-free.
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1 Introduction

All graphs considered in this paper are finite and without loops or multiple edges. For a graph
G, we will use V(@) to denote the vertex set, E(G) the edge set, e(G) the number of edges,
a(G) the independence number, w(G) the clique number, x(G) the chromatic number, and
G the complement of G, respectively. For a vertex x € V(G), we will use Ng(x) to denote
the set of vertices in G which are adjacent to x. We define Ng[z] = Ng(z) U {z} and
dg(z) = |Ng(z)|. Given vertex sets A, B C V(G), we say that A is complete to (resp.
anti-complete to) B if for every a € A and every b € B, ab € E(G) (resp. ab ¢ E(G)). The
subgraph of G induced by A, denoted G[A], is the graph with vertex set A and edge set
{zy € E(GQ) : x,y € A}. We denote by B\ A the set B — A, eg(A, B) the number of edges
between A and B in G, and G\ A the subgraph of G induced on V(G)\A, respectively. If
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A = {a}, we simply write B\a, eg(a, B), and G\a, respectively. A graph H is an induced
subgraph of a graph G if V(H) C V(G) and H = G[V(H)]. A graph G is claw-free if G does
not contain K 3 as an induced subgraph. Given two graphs GG and H, the union of G and H,
denoted GU H, is the graph with vertex set V(G)UV (H) and edge set E(G)U E(H). Given
two isomorphic graphs G and H, we may (with a slight but common abuse of notation) write
G = H. A cycle with ¢ > 3 vertices is denoted by ;. Throughout this paper, a proper

vertex coloring of a graph GG with k colors is called a k-coloring of G.

In 1966, the following conjecture of Lovasz was published by Erdés [6] and is known as

the Erdds-Lovasz Tihany Conjecture.

Conjecture 1.1 For any integers s,t > 2 and any graph G with w(G) < x(G) = s+t — 1,
there exist disjoint subgraphs G; and G of G such that x(G;) > s and x(G3) > t.

To date, Conjecture [T has been shown to be true only for values of (s,t) € {(2,2), (2, 3),
(2,4),(3,3),(3,4),(3,5)}. The case (2,2) is trivial. The case (2, 3) was shown by Brown and
Jung in 1969 [3]. Mozhan [10] and Stiebitz [I3] each independently showed the case (2,4) in
1987. The cases (3, 3), (3,4), and (3, 5) were also settled by Stiebitz in 1987 [14]. Recent work
on the Erdés-Lovasz Tihany Conjecture has focused on proving the conjecture for certain
classes of graphs. Kostochka and Stiebitz [9] showed the conjecture holds for line graphs.
Balogh, Kostochka, Prince, and Stiebitz [2] then showed that the conjecture holds for all
quasi-line graphs and all graphs G with «(G) = 2. More recently, Chudnovsky, Fradkin,
and Plumettaz [5] proved the following slight weaking of Conjecture [l for claw-free graphs,
the proof of which is long and relies heavily on the structure theorem for claw-free graphs

developed by Chudnovsky and Seymour [4].

Theorem 1.2 Let G be a claw-free graph with x(G) > w(G). Then there exists a clique K
with [V (K)| <5 such that x(G \ V(K)) > x(G) — |[V(K)|.

The most recent result related to the Erdds-Lovasz Tihany Conjecture is due to Stieb-
itz [15], who showed that for integers s,t > 2, any graph G with w(G) < x(G) = s+t —1
contains disjoint subgraphs G; and G of G with either x(G;) > s and col(Gy) > t, or
col(G1) > s and x(G3y) > t, where col(H) denotes the coloring number of a graph H.

If we restrict s = 2 in Conjecture [Tl then the Erdos-Lovasz Tihany Conjecture states
that for any graph G with x(G) > w(G) > 2, there exists an edge ry € E(G) such that
X(G\{z,y}) > x(G) — 1. To prove this special case of Conjecture [[.T], suppose for a contra-
diction that no such edge exists. Then x(G\{z,y}) = x(G) — 2 for every edge zy € E(G).
This motivates the definition of double-critical graphs. A connected graph G is double-
critical if for every edge zy € E(G), x(G\{z,y}) = x(G) — 2. A graph G is t-chromatic if
X(G) = t. We are now ready to state the following conjecture, which is referred to as the

Double-Critical Graph Conjecture, due to Erdés and Lovész [6].

2



Conjecture 1.3 Let G be a double-critical, t-chromatic graph. Then G = Kj.

Since Conjecture is a special case of Conjecture [T} it has been settled in the af-
firmative for t < 5 [10, [13], for line graphs [9], and for quasi-line graphs and graphs with
independence number two [2]. Representing a weakening of Conjecture [[L3] Kawarabayashi,
Pedersen, and Toft [8] have shown that any double-critical, t-chromatic graph contains K; as
a minor for t € {6,7}. As a further weakening, Pedersen [I1] showed that any double-critical,
8-chromatic graph contains Kg as a minor. Albar and Gongalves [1] later proved that any
double-critical, 8-chromatic graph contains Ky as a minor. Their proof is computer-assisted.
The present authors [12] gave a computer-free proof of the same result and further showed
that any double-critical, t-chromatic graph contains Ky as a minor for all £ > 9. We note
here that Theorem [[.2] does not completely settle Conjecture for all claw-free graphs. Re-
cently, Huang and Yu [7] proved that the only double-critical, 6-chromatic, claw-free graph
is Kg. We prove the following main results in this paper. Theorem [[.4]is a generalization of
a result obtained in [§] that no two vertices of degree ¢+ 1 are adjacent in any non-complete,

double-critical, t-chromatic graph.

Theorem 1.4 If G is a non-complete, double-critical, ¢-chromatic graph with ¢ > 6, then
for any vertex x € V(@) with dg(x) =t + 1, the following hold:

(a) e(G[Ng(x)]) = 8; and
(b) for any vertex y € Ng(z), dg(y) > t + 4. Furthermore, if dg(y) =t + 4, then |Ng(x) N

Ne(y)| =t — 2 and G[Ng(z)] contains either only one cycle, which is isomorphic to Cs,

or exactly two cycles, each of which is isomorphic to Cj.

Corollary below follows immediately from Theorem [L.4]

Corollary 1.5 If G is a non-complete, double-critical, t-chromatic graph with ¢ > 6, then
no vertex of degree t + 1 is adjacent to a vertex of degree t + 1, ¢ + 2, or t + 3 in G.

We then use Corollary to prove the following main result.

Theorem 1.6 Let G be a double-critical, ¢-chromatic graph with ¢ € {6,7,8}. If G is
claw-free, then G = Kj.

The rest of this paper is organized as follows. In Section 2] we first list some known
properties of non-complete, double-critical graphs obtained in [§] and then establish a few
new ones. In particular, Lemma 2.4l turns out to be very useful. Our new lemmas lead to
a very short proof of Theorem for t = 6,7, which we place at the end of Section 2 We

prove the remainder of our main results in Section 3]



2 Preliminaries

The following is a summary of the basic properties of non-complete, double-critical graphs

shown by Kawarabayashi, Pedersen, and Toft in [§].

Proposition 2.1 If G is a non-complete, double-critical, t-chromatic graph, then all of the
following are true.

(a) G does not contain K;_; as a subgraph.

(b) For all edges xy, every (t — 2)-coloring ¢ : V(G)\{z,y} — {1,2,...,t — 2} of G\{z,y},
and any non-empty sequence ji, jo, . .., j; of @ different colors from {1,2,...,¢t— 2}, there
is a path of order i + 2 with vertices x, vy, va, ..., v;,y in order such that c(vy) = jj for
all ke {1,2,...,i}.

(c) For any edge zy € E(G), x and y have at least one common neighbor in every color class
of any (t — 2)-coloring of G\{z,y}. In particular, every edge xy € E(G) belongs to at
least ¢t — 2 triangles.

(d) There exists at least one edge xy € E(G) such that « and y share a common non-neighbor
in G.

(e) For any edge zy € E(G), the subgraph of G induced by N¢(z)\Ng[y] contains no isolated
vertices. In particular, no vertex of Ng(z) can have degree one in G[Ng(z)].

(f) 6(G) > t+ 1.

(g) For any vertex xz € V(G), a(G[Ng(z)]) < dg(x) —t + 1.

(h) For any vertex x with at least one non-neighbor in G, x(G[Ng(x)]) <t —3.

)

(i) For any x € V(G) with dg(z) = t41, G[Ng(z)] is the union of isolated vertices and cycles

of length at least five. Furthermore, there must be at least one such cycle in G[Ng(z)].

(j) No two vertices of degree t + 1 are adjacent in G.

We next establish some new properties of non-complete, double-critical graphs.

Lemma 2.2 Let G be a double-critical, t-chromatic graph and let x € V(G). If dg(z) =
|[V(G)| — 1, then G\z is a double-critical, (¢t — 1)-chromatic graph.

Proof. Let uv be any edge of G\z. Clearly, x(G\z) =t — 1. Since G is double-critical,
X(G\{u,v}) =t —2 and so x(G\{u,v,z}) = t — 3 because z is adjacent to all the other

vertices in G\{u,v}. Hence G\z is double-critical and (¢t — 1)-chromatic. -

Lemma 2.3 If G is a non-complete, double-critical, t-chromatic graph, then for any x €
V(G) with at least one non-neighbor in G, x(G\N¢|z]) > 3. In particular, G\ N¢[x] must
contain an odd cycle, and so dg(x) < |V(G)| —4
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Proof. Let x be any vertex in G with dg(z) < |V(G)| — 1 and let H = G\ Ng[x]. Suppose
that x(H) < 2. Since dg(z) < |[V(G)| — 1, H contains at least one vertex. Let y € V(H) be
adjacent to a vertex z € Ng(x). This is possible because G is connected. If H has no edge,
then G\(V(H) U {z}) has a (t — 2)-coloring ¢, which can be extended to a (t — 1)-coloring
of G by assigning all vertices in V(H) the color ¢(z) and assigning a new color to the vertex
z, a contradiction. Thus H must contain at least one edge, and so x(H) = 2. Let (A, B) be
a bipartition of H. Now G\ H has a (t — 2)-coloring ¢*, which again can be extended to a
(t — 1)-coloring of G' by assigning all vertices in A the color ¢*(z) and all vertices in B the

same new color, a contradiction. This proves that x(H) > 3, and so H must contain an odd
cycle. Therefore dg(z) < |V(G)| — 4. -

Lemma 2.4 Let G be a double-critical, t-chromatic graph. For any edge zy € E(G), let
¢ be any (t — 2)-coloring of G\{z,y} with color classes Vi, Vs, ..., V;_5. Then the following

two statements are true.

(a) For any 4,5 € {1,2,...,t — 2} with i # j, if Ng(x) N Ng(y) NV is anti-complete to
N¢(x)NVj;, then there exists at least one edge between (N¢(y)\Ng(z))NV; and Ng(z)NV;
in G. In particular, (Ng(y)\Ng(x))NV; # 0.

(b) Assume that dg(z) =t + 1 and y belongs to a cycle of length k& > 5 in G[Ng(x)].
(b)) If k > 7, then dg(y) >t + e(G[N(z)]) — 4;

(by) If k = 6, then dg(y) > max{t + 2,t + e(G[Ng(z)]) — 5}; and

(b3) If k =5, then dg(y) > max{t + 2,t + e(G[Na(z)]) — 6}.

Proof. Let G,z,y,c be as given in the statement. For any i,7 € {1,2,...,t — 2} with

i # j, if Ne(z) N Ne(y) NV is anti-complete to Ng(z) NV, then G is non-complete. By

Proposition 2.I|(b), there must exist a path x, u;, u;, y in G such that ¢(u;) = j and c(u;) = 1.

Clearly, uju; € E(G) and u; € Ng(z) NV}, Since Ng(x) N Ng(y) N'V; is anti-complete to

Ne(x) NV, we see that u; € (Ng(y)\Ng(z)) N'V;. This proves Lemma 2.4(a).

To prove Lemma 2.4(b), let H = G[Ng(z)]. Assume that dg(z) = t + 1 and that y
belongs to a cycle, say Cy, of H, where k > 5. By Proposition 2.1Ij), dg(y) > t + 2,
and by Proposition 21(i), H is the union of isolated vertices and cycles of length at least
five. Clearly, |Ng(z) N Ng(y)| = t — 2. By Proposition 2.1(c), we may assume that V; N
(Ng(z) N Ng(y)) ={v;} forallt € {1,...,t—2}. Then Ng(z) N Ng(y) = {v1,...,v2}. Let
{a,b} = Ng(z)\Ng[y]. Since a and b are neighbors of y in a cycle of length at least 5 in H,
ab € E(G). We may further assume that a € V; and b € V,. Then viaybuvy forms a path on
five vertices of Cy, since vi,a € V; and vg, b € V5. If k > 6, then v1v5 € E(G) and both v; and
vy have precisely one non-neighbor in {vs, vy, ..., v, 2}. We may assume that viv3 ¢ E(G)
and vov, ¢ E(G), where { =3ifk =6,and ¢ = 4if k > 7. Foranyi,j € {3,4,...,t—2} with



i # j, if vy ¢ E(G), then by Lemma [Z4(a), there exists v} € Vj\v; such that vjy € E(G).
By symmetry, there exists v, € V;\v; such that vy € E(G). Therefore, if C' is any cycle in
H\V(Cy) and V,,, NV (C) # O for some m € {3,4,...,t — 2}, then y is adjacent to a vertex
in Vi, \ v,

Assume that k& = 5. Then vivy ¢ E(G) and so dg(y) > |Ng(x) N Ne(y)| + {z} +
e(H\V(Cy)) = (t—=2)+ 1+ (e(H) —5) =t+e(H) — 6. Next assume that & = 6. Then
vy = v3. Since both Ng(x) N Ng(y) N Vi and Ng(x) N Ng(y) N Vs are anti-complete to
Ng(z) NV, by Lemma 24(a), Ng(y) N (Vi\{a,v1}) # 0 and Ng(y) N (Va\{b,v2}) # 0.
Then dg(y) = [Ne(x) N Na(y)l + {2} + [Ne(y) 0 (ViN{a, vi})| + [Ne(y) 0 (Va\{b, v2})| +
e(H\V(Cy)) > (t—2)+1+1+4+1+ (e(H) —6) = t+ e(H) — 5. Finally assume that
k > 7. Then v, = v4. Since Ng(x) N Ng(y) N Vy is anti-complete to Ng(z) N Vs and
Ng(x)NNg(y)NVa is anti-complete to Ng(x)NVy, by LemmalZ4(a), No(y)N(Vi\{a,vi}) # 0
and Ng(y) N (Vo\{b,va}) # 0. As observed earlier, for any i,j € {3,4,...,t — 2} with
i # j and v;v; ¢ E(G), y has at least one neighbor in each of V;\v; and V;\v,; in G.
Hence dg(y) > [Ne() N No@)] + [{z}] + INa(w) 0 (Vi\{a 01 })] + [Ne(y) 0 (Vo\ b ea))] +
IV (Ck)\{a,b,v1,v2, y}|+e(H\V(Cy)) > (t—=2)+1+1+1+(k—=5)+(e(H)—k) = t+e(H)—4.
Note that since k > 7, we see that e(H) > 7, and so d(y) > t+e(H) —4 > t + 2. This
completes the proof of Lemma 24(b). -

Lemma 2.5 Let GG be a double-critical, t-chromatic graph with ¢t > 6. If G is claw-free, then
for any =z € V(G), dg(x) < 2t — 4. Furthermore, if dg(z) < |V(G)| — 1, then dg(x) < 2t —6.

Proof. Let z € V(G) be a vertex of maximum degree in G, and let uv be any edge of
G\z. Let ¢ be any (t — 2)-coloring of G\{u, v} with color classes Vi, Vs, ..., Vi_o. We may
assume that © € V,_5. Since G is claw-free, x can have at most two neighbors in each of
Vi,..., Vi_3. Additionally, x may be adjacent to u and v in G. Therefore dg(z) < 2t — 4. If
da(z) < |[V(G)| — 1, then x(G[Ng(z)]) <t — 3 by Proposition 2Ii(h). Since G is claw-free,
each color class in any (¢t — 3)-coloring of G[Ng(z)] can contain at most two vertices, and so
dg(z) < 2t — 6. -

It is now an easy consequence of Proposition 1] and Lemma that Theorem is
true for t =6, 7.

Proof of Theorem for t = 6,7. Let G and t € {6,7} be as given in the statement.
Suppose that G # K;. By Proposition 2.I)(d), there exists an edge xy € E(G) such that x and
y have a common non-neighbor. By Proposition 2.I(f) and Lemma2.5] t+1 < dg(x) < 2t—6
and t + 1 < dg(y) < 2t — 6. Thus t = 7 and dg(z) = dg(y) = 8, which contradicts
Proposition 211j). -



3 Proofs of Main Results

In this section, we prove our main results, namely, Theorem [[.4l and Theorem for the
case t = 8. We first prove Theorem [T.4l

Proof of Theorem .4l Let G' and x be as given in the statement. Let H = G[Ng(z)].
Then |V (H)| = t+1. Note that if dg(x) = |V (G)|—1, then it follows from Proposition 2.I[(f)
that G = K;;1, a contradiction. Thus dg(x) < |V(G)| — 1. Now by Proposition 2.1}g) and
Proposition 2II(h) applied to the vertex x, a(H) < 2 and x(H) < t — 3. Let ¢* be any
(t — 3)-coloring of H. Then each color class of ¢* contains at most two vertices. Since
|[V(H)| =t + 1, we see that at least four color classes of ¢* must each contain two vertices.
By Proposition 2.Ie), H has at least eight vertices of degree two and so e(H) > 8. This

proves Theorem [L4a).

To prove Theorem [[4(b), let y € Ng(z). Since dg(z) = t + 1, by Proposition 2)i),
either |[Ng(2) N Ng(y)| =t or |[Ng(x) N Ng(y)| = t —2. Assume that | Ng(z) N Ne(y)| =t —2.
Then y belongs to a cycle of length £ > 5 in H because H is a disjoint union of isolated
vertices and cycles. By Proposition 2.Ii), y belongs to a cycle of length at least 5 in
H. By Theorem [[4(a), e(H) > 8. Note that if 5 < k < 7, then by Proposition 2.1Ji),
H has at least two cycles of length at least 5, and so e(H) > k + 5 > 10. Thus by
Lemma 2.4(b), da(y) > t + 4. If dg(y) = t + 4, then it follows from Lemma 2.4(b) that
either k = 8 and H is isomorphic to Cs U K;_7 or k = 5 and H is isomorphic to C5 U
Cs5 U K; 9. So we may assume that |[Ng(z) N Ng(y)| = t. Let ¢ be any (¢t — 2)-coloring
of G\{z,y} with color classes Vi,V,...,V,_5. Since a(H) < 2, we may further assume
that Ng(x) NV = {v,v1}, Ng(x) N Vo = {v, vy}, and Ng(z) NV, = {v;} for all i €
{3,4,...,t —2}. Then vv], vl € E(H). By Proposition 2Ii) applied to the vertex
x, eg({vy,v], v, v5}, {vs, vy, ..., v4_2}) < 4. By Theorem [[.4(a), e(H) > 8. Thus there
must exist at least four vertices in {vs, vy,...,v_2}, say vs, v4, vs, v, such that dy(v;) = 2
and y is adjacent to at least one vertex of V;\v; in G for all j € {3,4,5,6}. Therefore

|Ne(y)\Nela]] = 4 and so da(y) = [Nelz] N Na(y)| + [Na(y)\Nelz]| = (t +1) +4 =1 +5.

This completes the proof of Theorem .4l -

We are now ready to complete the proof of Theorem

Proof of Theorem for t = 8. Let G and t = 8 be as given in the statement. Suppose
that G # Kg. We claim that

Claim 1. G is 10-regular.
Proof. By Lemmal[2.2/and Theorem [[.@for t = 7, A(G) < |[V(G)|—2. By Proposition 2.I[(f)
and Lemma 2.5 we see that 9 < dg(x) < 10 for all vertices x € V(G). By Corollary [L3 G

is 10-regular. -



Claim 2. For any = € V(G), 2 < §(G[Ne(2)]) < A(G[Ne(@)]) < 3.

Proof. Let z € V(G). Then z has at least one non-neighbor in G, otherwise G = K;; by
Claim [Il a contradiction. By Proposition 2.I(h), x(G[Ng(x)]) < 5. Since G is claw-free, we
see that a(G[Ng(x)]) = 2, and so x(G[Ng(x)]) = 5 since every color class can contain at

most two vertices. Thus every vertex of Ng(x) has at least one non-neighbor in G[N¢g(x)].
By Proposition 2I](e) and Proposition 21(c), 2 < §(G[Ng(x)]) < A(G[Ng(z)]) < 3. -

Claim 3. For any = € V(G), A(G[Ng(z)]) = 3. That is, G[Ng(x)] is not 2-regular.

Proof. Suppose that there exists a vertex z € V(G) such that G[Ng(z)] is 2-regular.
Let y € Ng(x) and let ¢ be any 6-coloring of G\{z,y} with color classes Vi, Vs, ..., V.
Let W = Ng(x) N Ng(y). Then |W| = 7 because G[Ng(x)] is 2-regular. By Proposition
2.1(c), we may assume that [V; N W/| = 2 and |V; N W| = 1 for every i € {2,3,4,5,6}.
Let ViNW = {v,u1} and V; N W = {v;} for each i € {2,3,4,5,6}. Since G is claw-free,
we may further assume that Ng(xz) N Ve = {vg,us} and Ng(z) N V3 = {vs,u3}. Clearly,
yus,yus ¢ E(G) and thus usus € E(G) because G is claw-free. Since G[Ng(z)] is 2-
regular, we see that G[{vy, vs,v6}] is not a clique. We may assume that vyv; ¢ E(G). By
Lemma 24(a), Ne(y) N (V;\{v;}) # 0 for all j € {4,5}. Let wy € Vi\vy and w5 € Vi\vs
be two other neighbors of y in G. Then Ng(y)\Nglz] = {ws, ws} since G is 10-regular by
Claim [l By Lemma 2.4[(a), vs must be complete to {vs,v3,v4,v5} in G. Notice that vg is
complete to {ug,uz} in G since m is 2-regular. Thus vg must be anti-complete to

{v1,u1} in G and so G[{z, v1,u1,v6}] is a claw, a contradiction. -

From now on, we fix an arbitrary vertex x € V(G). Let H = G[Ng(z)]. By Claim 3
let y € Ng(z) with |Ng(z) N Ng(y)| = 6. We choose such a vertex y € Ng(x) so that
Ne(2)\Ng[y] contains as many vertices of degree two in H as possible. Let ¢ be any 6-coloring
of G\{z,y} with color classes V1, V3, ..., V5. We may assume that V; N Ng(x) N Ng(y) = {v:}
for all i € {1,2,3,4,5,6}. Since G is claw-free, we may further assume that Ng(z) NV, =
{v;,u;} for all j € {1,2,3}. Notice that y is anti-complete to {u, us, us} in G, and since G is
claw-free, G[{uy, us, us}] = K3. Let A = {uq,us,us}, B = {v1,v9,v3}, and C = {vy, vs, v6}.

Claim 4. B is not complete to C' in G.

Proof. Suppose that B is complete to C'in G. Then ey (C, A) = > .~ du(v) —2e(H[C]) >
6 — 2¢e(H[C]). For each i € {1,2,3}, wv;,u;y ¢ E(G) and dy(u;) < 3. Thus eg(A,C) <3
and so e(H[C]) > 2. Since G is claw-free, we have e(H[C]) = 2. We may assume that
v ¢ E(H). Then vyvg € E(G) and vyvs, vsv6 ¢ E(G). Since dy(vy) > 2, dg(ve) > 2,
and B is complete to C' in G, we may assume that ugvs, usvg ¢ E(G). Note that H is
not 3-regular since ey(A,C) < 3 and ey (B,C) = 0. By the choice of y, dg(u;) = 2 and



di(v;) = 2 for all j € {4,5,6}. Since dy(uz) = du(us) = 3, by the choice of y again,
dy(ve) = dg(vs3) = 3. Thus G[B] = K3 and so G[{z} U B] is a claw, a contradiction. -

Claim 5. G[C] = K;.

Proof. Suppose that G[C] contains a missing edge, say vqv; ¢ E(G). By Lemma 2.4(a),
there exist wy € Vj\vy and ws € V5\vs such that ywy, yws € E(G). By Claim @ we may
assume that vsv; ¢ E(G) for some j € {4,5,6}. By Lemma [2.4(a), y has another neighbor,
say ws, in Vi\vs. Since G is 10-regular, {ws, w4, w5} = N(y)\N[z], so by Lemma 2.4(a),
v4v5 is the only missing edge in G[C] and {vy, v} is complete to C' in G. If ey (A, C) = 3,
then dg(u;) = 3 for all i € {1,2,3}. By the choice of y, dgy(v3) = 3, or else we could replace
y with us. Notice that for all i € {4,5,6}, ey(v;, AU {vs}) > 1, and so by the choice of v,
dy(v;) = 3, or else we could replace y with v3. Thus ey (A, C') > 5, which is impossible. Hence
en(A,C) < 2. Notice that ey (A, C) = (dg(vs) — 1)+ (dg(vs) — 1) +dg(ve) — em(vs, C) > 2.
it follows that ey(A,C) = 2, eg(vs,C) = 2 and dy(v;)) = 2 for all i € {4,5,6}. Then
Ne(x)\ N[y has at most one vertex of degree two in H, but Ng(x)\ Ng[vs] has two vertices

of degree two in H, contradicting the choice of y. -
Claim 6. vjuy, vous, and vsug are the only edges in H[AU BJ.

Proof. Suppose that H[A U B] has at least four edges. By Claim [5 and Claim 2, ey (A U
B,C) > 6. On the other hand, eg(AU B,C) = > 4 5dua(v) — 2¢(H[AU B]) — 3 <
15 — 2e(H[A U B]). It follows that e(H[AU B]) = 4 and AU B contains at most one vertex
of degree two in H. Thus ey(AU B,C) < 7 and so at least two vertices of C, say v, and
vs, are of degree two in H. Since ey (A, C) < 3 and G[C] = K3 by Claim [}l we may assume
that vyvs ¢ E(G). If dg(vs) = 3, then since dy(vs) = 2 and at most one vertex of AU B
has degree two in H, by the choice of y, exactly one of uy, us, us has degree two in H. Then
en(AUB,C) =6. Thus dy(v;) = 2 for all j € {4,5,6} and by the choice of y, each vertex
of B is adjacent to at most one vertex of C'in H. Thus eg(A U B, C) < 5, a contradiction.
Hence dy(v3) = 2. Now dg(u;) = 3 for all i@ € {1,2,3} because at most one vertex of
AU B has degree two in H. We see that N(z)\N[y] has no vertex of degree two in H but

N(z)\N[us] has at least one vertex of degree two in H, contrary to the choice of y. -

By Claim [6] we see that for any i € {1,2,3}, v,v; ¢ E(G) for some j € {4,5,6}. By
Lemma 24)(a), let w; € Vi\v; be such that yw; € E(G) for all i € {1,2,3}. Let D =
{wy, we,ws}. Then Ng(y)\Ng[z] = D and G[D] = K3 because G is claw-free. Clearly, D
is not complete to C' in G, otherwise G[{y} U D U C] = K7, contrary to Proposition 2.I](a).
We may assume that wsvy ¢ E(G). For each i € {1, 2}, v;u3, v;us € E(G) by Claim 6l Thus
viws, vows ¢ E(G) because G is claw-free. Notice that ws, z, vy, v2,v4 € Ng(y) and wy is

anti-complete to {z, vy, ve,v4} in G. Thus A(G[Ng(y)]) > 4, contrary to Claim 2



This completes the proof of Theorem -
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