Double-critical graph conjecture for claw-free graphs

Martin Rolek^{*} and Zi-Xia Song[†] Department of Mathematics University of Central Florida Orlando, FL 32816

September 12, 2018

Abstract

A connected graph G with chromatic number t is double-critical if $G \setminus \{x, y\}$ is (t-2)-colorable for each edge $xy \in E(G)$. The complete graphs are the only known examples of double-critical graphs. A long-standing conjecture of Erdős and Lovász from 1966, which is referred to as the Double-Critical Graph Conjecture, states that there are no other double-critical graphs. That is, if a graph G with chromatic number t is double-critical, then G is the complete graph on t vertices. This has been verified for $t \leq 5$, but remains open for $t \geq 6$. In this paper, we first prove that if G is a non-complete, double-critical graph with chromatic number $t \geq 6$, then no vertex of degree t+1 is adjacent to a vertex of degree t+1, t+2, or t+3 in G. We then use this result to show that the Double-Critical Graph Conjecture is true for double-critical graphs G with chromatic number $t \leq 8$ if G is claw-free.

Keywords: vertex coloring, double-critical graphs, claw-free graphs

1 Introduction

All graphs considered in this paper are finite and without loops or multiple edges. For a graph G, we will use V(G) to denote the vertex set, E(G) the edge set, e(G) the number of edges, $\alpha(G)$ the independence number, $\omega(G)$ the clique number, $\chi(G)$ the chromatic number, and \overline{G} the complement of G, respectively. For a vertex $x \in V(G)$, we will use $N_G(x)$ to denote the set of vertices in G which are adjacent to x. We define $N_G[x] = N_G(x) \cup \{x\}$ and $d_G(x) = |N_G(x)|$. Given vertex sets $A, B \subseteq V(G)$, we say that A is complete to (resp. anti-complete to) B if for every $a \in A$ and every $b \in B$, $ab \in E(G)$ (resp. $ab \notin E(G)$). The subgraph of G induced by A, denoted G[A], is the graph with vertex set A and edge set $\{xy \in E(G) : x, y \in A\}$. We denote by $B \setminus A$ the set B - A, $e_G(A, B)$ the number of edges between A and B in G, and $G \setminus A$ the subgraph of G induced on $V(G) \setminus A$, respectively. If

^{*}E-mail address: mrolek@knights.ucf.edu.

[†]Corresponding author. E-mail address: Zixia.Song@ucf.edu.

 $A = \{a\}$, we simply write $B \setminus a$, $e_G(a, B)$, and $G \setminus a$, respectively. A graph H is an induced subgraph of a graph G if $V(H) \subseteq V(G)$ and H = G[V(H)]. A graph G is claw-free if G does not contain $K_{1,3}$ as an induced subgraph. Given two graphs G and H, the union of G and H, denoted $G \cup H$, is the graph with vertex set $V(G) \cup V(H)$ and edge set $E(G) \cup E(H)$. Given two isomorphic graphs G and H, we may (with a slight but common abuse of notation) write G = H. A cycle with $t \geq 3$ vertices is denoted by C_t . Throughout this paper, a proper vertex coloring of a graph G with k colors is called a k-coloring of G.

In 1966, the following conjecture of Lovász was published by Erdős [6] and is known as the Erdős-Lovász Tihany Conjecture.

Conjecture 1.1 For any integers $s, t \ge 2$ and any graph G with $\omega(G) < \chi(G) = s + t - 1$, there exist disjoint subgraphs G_1 and G_2 of G such that $\chi(G_1) \ge s$ and $\chi(G_2) \ge t$.

To date, Conjecture 1.1 has been shown to be true only for values of $(s,t) \in \{(2,2), (2,3), (2,4), (3,3), (3,4), (3,5)\}$. The case (2,2) is trivial. The case (2,3) was shown by Brown and Jung in 1969 [3]. Mozhan [10] and Stiebitz [13] each independently showed the case (2,4) in 1987. The cases (3,3), (3,4), and (3,5) were also settled by Stiebitz in 1987 [14]. Recent work on the Erdős-Lovász Tihany Conjecture has focused on proving the conjecture for certain classes of graphs. Kostochka and Stiebitz [9] showed the conjecture holds for line graphs. Balogh, Kostochka, Prince, and Stiebitz [2] then showed that the conjecture holds for all quasi-line graphs and all graphs G with $\alpha(G) = 2$. More recently, Chudnovsky, Fradkin, and Plumettaz [5] proved the following slight weaking of Conjecture 1.1 for claw-free graphs, the proof of which is long and relies heavily on the structure theorem for claw-free graphs developed by Chudnovsky and Seymour [4].

Theorem 1.2 Let G be a claw-free graph with $\chi(G) > \omega(G)$. Then there exists a clique K with $|V(K)| \leq 5$ such that $\chi(G \setminus V(K)) > \chi(G) - |V(K)|$.

The most recent result related to the Erdős-Lovász Tihany Conjecture is due to Stiebitz [15], who showed that for integers $s, t \ge 2$, any graph G with $\omega(G) < \chi(G) = s + t - 1$ contains disjoint subgraphs G_1 and G_2 of G with either $\chi(G_1) \ge s$ and $\operatorname{col}(G_2) \ge t$, or $\operatorname{col}(G_1) \ge s$ and $\chi(G_2) \ge t$, where $\operatorname{col}(H)$ denotes the coloring number of a graph H.

If we restrict s = 2 in Conjecture 1.1, then the Erdős-Lovász Tihany Conjecture states that for any graph G with $\chi(G) > \omega(G) \ge 2$, there exists an edge $xy \in E(G)$ such that $\chi(G \setminus \{x, y\}) \ge \chi(G) - 1$. To prove this special case of Conjecture 1.1, suppose for a contradiction that no such edge exists. Then $\chi(G \setminus \{x, y\}) = \chi(G) - 2$ for every edge $xy \in E(G)$. This motivates the definition of double-critical graphs. A connected graph G is doublecritical if for every edge $xy \in E(G)$, $\chi(G \setminus \{x, y\}) = \chi(G) - 2$. A graph G is t-chromatic if $\chi(G) = t$. We are now ready to state the following conjecture, which is referred to as the Double-Critical Graph Conjecture, due to Erdős and Lovász [6].

Conjecture 1.3 Let G be a double-critical, t-chromatic graph. Then $G = K_t$.

Since Conjecture 1.3 is a special case of Conjecture 1.1, it has been settled in the affirmative for $t \leq 5$ [10, 13], for line graphs [9], and for quasi-line graphs and graphs with independence number two [2]. Representing a weakening of Conjecture 1.3, Kawarabayashi, Pedersen, and Toft [8] have shown that any double-critical, *t*-chromatic graph contains K_t as a minor for $t \in \{6, 7\}$. As a further weakening, Pedersen [11] showed that any double-critical, 8-chromatic graph contains K_8^- as a minor. Albar and Gonçalves [1] later proved that any double-critical, 8-chromatic graph contains K_8 as a minor. Their proof is computer-assisted. The present authors [12] gave a computer-free proof of the same result and further showed that any double-critical, *t*-chromatic graph contains K_9 as a minor for all $t \geq 9$. We note here that Theorem 1.2 does not completely settle Conjecture 1.3 for all claw-free graphs. Recently, Huang and Yu [7] proved that the only double-critical, 6-chromatic, claw-free graph is K_6 . We prove the following main results in this paper. Theorem 1.4 is a generalization of a result obtained in [8] that no two vertices of degree t + 1 are adjacent in any non-complete, double-critical, *t*-chromatic graph.

Theorem 1.4 If G is a non-complete, double-critical, t-chromatic graph with $t \ge 6$, then for any vertex $x \in V(G)$ with $d_G(x) = t + 1$, the following hold:

- (a) $e(\overline{G[N_G(x)]}) \ge 8$; and
- (b) for any vertex $y \in N_G(x)$, $d_G(y) \ge t + 4$. Furthermore, if $d_G(y) = t + 4$, then $|N_G(x) \cap N_G(y)| = t 2$ and $\overline{G[N_G(x)]}$ contains either only one cycle, which is isomorphic to C_8 , or exactly two cycles, each of which is isomorphic to C_5 .

Corollary 1.5 below follows immediately from Theorem 1.4.

Corollary 1.5 If G is a non-complete, double-critical, t-chromatic graph with $t \ge 6$, then no vertex of degree t + 1 is adjacent to a vertex of degree t + 1, t + 2, or t + 3 in G.

We then use Corollary 1.5 to prove the following main result.

Theorem 1.6 Let G be a double-critical, t-chromatic graph with $t \in \{6, 7, 8\}$. If G is claw-free, then $G = K_t$.

The rest of this paper is organized as follows. In Section 2, we first list some known properties of non-complete, double-critical graphs obtained in [8] and then establish a few new ones. In particular, Lemma 2.4 turns out to be very useful. Our new lemmas lead to a very short proof of Theorem 1.6 for t = 6, 7, which we place at the end of Section 2. We prove the remainder of our main results in Section 3.

2 Preliminaries

The following is a summary of the basic properties of non-complete, double-critical graphs shown by Kawarabayashi, Pedersen, and Toft in [8].

Proposition 2.1 If G is a non-complete, double-critical, t-chromatic graph, then all of the following are true.

- (a) G does not contain K_{t-1} as a subgraph.
- (b) For all edges xy, every (t-2)-coloring $c: V(G) \setminus \{x, y\} \to \{1, 2, \dots, t-2\}$ of $G \setminus \{x, y\}$, and any non-empty sequence j_1, j_2, \dots, j_i of i different colors from $\{1, 2, \dots, t-2\}$, there is a path of order i + 2 with vertices $x, v_1, v_2, \dots, v_i, y$ in order such that $c(v_k) = j_k$ for all $k \in \{1, 2, \dots, i\}$.
- (c) For any edge $xy \in E(G)$, x and y have at least one common neighbor in every color class of any (t-2)-coloring of $G \setminus \{x, y\}$. In particular, every edge $xy \in E(G)$ belongs to at least t-2 triangles.
- (d) There exists at least one edge $xy \in E(G)$ such that x and y share a common non-neighbor in G.
- (e) For any edge $xy \in E(G)$, the subgraph of G induced by $N_G(x) \setminus N_G[y]$ contains no isolated vertices. In particular, no vertex of $N_G(x)$ can have degree one in $\overline{G[N_G(x)]}$.

(f)
$$\delta(G) \ge t+1$$
.

- (g) For any vertex $x \in V(G)$, $\alpha(G[N_G(x)]) \leq d_G(x) t + 1$.
- (h) For any vertex x with at least one non-neighbor in G, $\chi(G[N_G(x)]) \leq t 3$.
- (i) For any $x \in V(G)$ with $d_G(x) = t+1$, $\overline{G[N_G(x)]}$ is the union of isolated vertices and cycles of length at least five. Furthermore, there must be at least one such cycle in $\overline{G[N_G(x)]}$.
- (j) No two vertices of degree t + 1 are adjacent in G.

We next establish some new properties of non-complete, double-critical graphs.

Lemma 2.2 Let G be a double-critical, t-chromatic graph and let $x \in V(G)$. If $d_G(x) = |V(G)| - 1$, then $G \setminus x$ is a double-critical, (t - 1)-chromatic graph.

Proof. Let uv be any edge of $G \setminus x$. Clearly, $\chi(G \setminus x) = t - 1$. Since G is double-critical, $\chi(G \setminus \{u, v\}) = t - 2$ and so $\chi(G \setminus \{u, v, x\}) = t - 3$ because x is adjacent to all the other vertices in $G \setminus \{u, v\}$. Hence $G \setminus x$ is double-critical and (t - 1)-chromatic.

Lemma 2.3 If G is a non-complete, double-critical, t-chromatic graph, then for any $x \in V(G)$ with at least one non-neighbor in G, $\chi(G \setminus N_G[x]) \geq 3$. In particular, $G \setminus N_G[x]$ must contain an odd cycle, and so $d_G(x) \leq |V(G)| - 4$.

Proof. Let x be any vertex in G with $d_G(x) < |V(G)| - 1$ and let $H = G \setminus N_G[x]$. Suppose that $\chi(H) \leq 2$. Since $d_G(x) < |V(G)| - 1$, H contains at least one vertex. Let $y \in V(H)$ be adjacent to a vertex $z \in N_G(x)$. This is possible because G is connected. If H has no edge, then $G \setminus (V(H) \cup \{z\})$ has a (t-2)-coloring c, which can be extended to a (t-1)-coloring of G by assigning all vertices in V(H) the color c(x) and assigning a new color to the vertex z, a contradiction. Thus H must contain at least one edge, and so $\chi(H) = 2$. Let (A, B) be a bipartition of H. Now $G \setminus H$ has a (t-2)-coloring c^* , which again can be extended to a (t-1)-coloring of G by assigning all vertices in A the color $c^*(x)$ and all vertices in B the same new color, a contradiction. This proves that $\chi(H) \geq 3$, and so H must contain an odd cycle. Therefore $d_G(x) \leq |V(G)| - 4$.

Lemma 2.4 Let G be a double-critical, t-chromatic graph. For any edge $xy \in E(G)$, let c be any (t-2)-coloring of $G \setminus \{x, y\}$ with color classes $V_1, V_2, \ldots, V_{t-2}$. Then the following two statements are true.

- (a) For any $i, j \in \{1, 2, ..., t 2\}$ with $i \neq j$, if $N_G(x) \cap N_G(y) \cap V_i$ is anti-complete to $N_G(x) \cap V_j$, then there exists at least one edge between $(N_G(y) \setminus N_G(x)) \cap V_i$ and $N_G(x) \cap V_j$ in G. In particular, $(N_G(y) \setminus N_G(x)) \cap V_i \neq \emptyset$.
- (b) Assume that $d_G(x) = t + 1$ and y belongs to a cycle of length $k \ge 5$ in $\overline{G[N_G(x)]}$. (b₁) If $k \ge 7$, then $d_G(y) \ge t + e(\overline{G[N(x)]}) - 4$; (b₂) If k = 6, then $d_G(y) \ge \max\{t + 2, t + e(\overline{G[N_G(x)]}) - 5\}$; and
 - (b₃) If k = 5, then $d_G(y) \ge \max\{t + 2, t + e(\overline{G[N_G(x)]}) 6\}$.

Proof. Let G, x, y, c be as given in the statement. For any $i, j \in \{1, 2, ..., t - 2\}$ with $i \neq j$, if $N_G(x) \cap N_G(y) \cap V_i$ is anti-complete to $N_G(x) \cap V_j$, then G is non-complete. By Proposition 2.1(b), there must exist a path x, u_j, u_i, y in G such that $c(u_j) = j$ and $c(u_i) = i$. Clearly, $u_j u_i \in E(G)$ and $u_j \in N_G(x) \cap V_j$. Since $N_G(x) \cap N_G(y) \cap V_i$ is anti-complete to $N_G(x) \cap V_j$, we see that $u_i \in (N_G(y) \setminus N_G(x)) \cap V_i$. This proves Lemma 2.4(a).

To prove Lemma 2.4(b), let $H = \overline{G[N_G(x)]}$. Assume that $d_G(x) = t + 1$ and that y belongs to a cycle, say C_k , of H, where $k \ge 5$. By Proposition 2.1(j), $d_G(y) \ge t + 2$, and by Proposition 2.1(i), H is the union of isolated vertices and cycles of length at least five. Clearly, $|N_G(x) \cap N_G(y)| = t - 2$. By Proposition 2.1(c), we may assume that $V_i \cap (N_G(x) \cap N_G(y)) = \{v_i\}$ for all $i \in \{1, \ldots, t-2\}$. Then $N_G(x) \cap N_G(y) = \{v_1, \ldots, v_{t-2}\}$. Let $\{a, b\} = N_G(x) \setminus N_G[y]$. Since a and b are neighbors of y in a cycle of length at least 5 in H, $ab \in E(G)$. We may further assume that $a \in V_1$ and $b \in V_2$. Then $v_1 v_2 \in E(G)$ and both v_1 and v_2 have precisely one non-neighbor in $\{v_3, v_4, \ldots, v_{t-2}\}$. We may assume that $v_1v_3 \notin E(G)$ and $v_2v_\ell \notin E(G)$, where $\ell = 3$ if k = 6, and $\ell = 4$ if $k \ge 7$. For any $i, j \in \{3, 4, \ldots, t-2\}$ with

 $i \neq j$, if $v_i v_j \notin E(G)$, then by Lemma 2.4(a), there exists $v'_j \in V_j \setminus v_j$ such that $v'_j y \in E(G)$. By symmetry, there exists $v'_i \in V_i \setminus v_i$ such that $v'_i y \in E(G)$. Therefore, if C is any cycle in $H \setminus V(C_k)$ and $V_m \cap V(C) \neq \emptyset$ for some $m \in \{3, 4, \ldots, t-2\}$, then y is adjacent to a vertex in $V_m \setminus v_m$.

Assume that k = 5. Then $v_1v_2 \notin E(G)$ and so $d_G(y) \ge |N_G(x) \cap N_G(y)| + |\{x\}| + e(H \setminus V(C_k)) = (t-2) + 1 + (e(H) - 5) = t + e(H) - 6$. Next assume that k = 6. Then $v_\ell = v_3$. Since both $N_G(x) \cap N_G(y) \cap V_1$ and $N_G(x) \cap N_G(y) \cap V_2$ are anti-complete to $N_G(x) \cap V_3$, by Lemma 2.4(a), $N_G(y) \cap (V_1 \setminus \{a, v_1\}) \neq \emptyset$ and $N_G(y) \cap (V_2 \setminus \{b, v_2\}) \neq \emptyset$. Then $d_G(y) \ge |N_G(x) \cap N_G(y)| + |\{x\}| + |N_G(y) \cap (V_1 \setminus \{a, v_1\})| + |N_G(y) \cap (V_2 \setminus \{b, v_2\})| + e(H \setminus V(C_k)) \ge (t-2) + 1 + 1 + 1 + (e(H) - 6) = t + e(H) - 5$. Finally assume that $k \ge 7$. Then $v_\ell = v_4$. Since $N_G(x) \cap N_G(y) \cap V_1$ is anti-complete to $N_G(x) \cap V_3$ and $N_G(x) \cap N_G(y) \cap V_2$ is anti-complete to $N_G(x) \cap V_4$, by Lemma 2.4(a), $N_G(y) \cap (V_1 \setminus \{a, v_1\}) \neq \emptyset$ and $N_G(y) \cap (V_2 \setminus \{b, v_2\}) \neq \emptyset$. As observed earlier, for any $i, j \in \{3, 4, \dots, t-2\}$ with $i \neq j$ and $v_i v_j \notin E(G)$, y has at least one neighbor in each of $V_i \setminus v_i$ and $V_j \setminus v_j$ in G. Hence $d_G(y) \ge |N_G(x) \cap N_G(y)| + |\{x\}| + |N_G(y) \cap (V_1 \setminus \{a, v_1\})| + |N_G(y) \cap (V_2 \setminus \{b, v_2\})| + |V(C_k) \setminus \{a, b, v_1, v_2, y\}| + e(H \setminus V(C_k)) \ge (t-2) + 1 + 1 + 1 + (k-5) + (e(H) - k) = t + e(H) - 4$. Note that since $k \ge 7$, we see that $e(H) \ge 7$, and so $d(y) \ge t + e(H) - 4 > t + 2$. This completes the proof of Lemma 2.4(b).

Lemma 2.5 Let G be a double-critical, t-chromatic graph with $t \ge 6$. If G is claw-free, then for any $x \in V(G)$, $d_G(x) \le 2t - 4$. Furthermore, if $d_G(x) < |V(G)| - 1$, then $d_G(x) \le 2t - 6$.

Proof. Let $x \in V(G)$ be a vertex of maximum degree in G, and let uv be any edge of $G \setminus x$. Let c be any (t-2)-coloring of $G \setminus \{u, v\}$ with color classes $V_1, V_2, \ldots, V_{t-2}$. We may assume that $x \in V_{t-2}$. Since G is claw-free, x can have at most two neighbors in each of V_1, \ldots, V_{t-3} . Additionally, x may be adjacent to u and v in G. Therefore $d_G(x) \leq 2t - 4$. If $d_G(x) < |V(G)| - 1$, then $\chi(G[N_G(x)]) \leq t - 3$ by Proposition 2.1(h). Since G is claw-free, each color class in any (t-3)-coloring of $G[N_G(x)]$ can contain at most two vertices, and so $d_G(x) \leq 2t - 6$.

It is now an easy consequence of Proposition 2.1 and Lemma 2.5 that Theorem 1.6 is true for t = 6, 7.

Proof of Theorem 1.6 for t = 6, 7. Let G and $t \in \{6, 7\}$ be as given in the statement. Suppose that $G \neq K_t$. By Proposition 2.1(d), there exists an edge $xy \in E(G)$ such that x and y have a common non-neighbor. By Proposition 2.1(f) and Lemma 2.5, $t+1 \leq d_G(x) \leq 2t-6$ and $t + 1 \leq d_G(y) \leq 2t - 6$. Thus t = 7 and $d_G(x) = d_G(y) = 8$, which contradicts Proposition 2.1(j).

3 Proofs of Main Results

In this section, we prove our main results, namely, Theorem 1.4 and Theorem 1.6 for the case t = 8. We first prove Theorem 1.4.

Proof of Theorem 1.4. Let G and x be as given in the statement. Let $H = \overline{G[N_G(x)]}$. Then |V(H)| = t+1. Note that if $d_G(x) = |V(G)| - 1$, then it follows from Proposition 2.1(f) that $G = K_{t+1}$, a contradiction. Thus $d_G(x) < |V(G)| - 1$. Now by Proposition 2.1(g) and Proposition 2.1(h) applied to the vertex x, $\alpha(\overline{H}) \leq 2$ and $\chi(\overline{H}) \leq t - 3$. Let c^* be any (t-3)-coloring of \overline{H} . Then each color class of c^* contains at most two vertices. Since |V(H)| = t + 1, we see that at least four color classes of c^* must each contain two vertices. By Proposition 2.1(e), H has at least eight vertices of degree two and so $e(H) \geq 8$. This proves Theorem 1.4(a).

To prove Theorem 1.4(b), let $y \in N_G(x)$. Since $d_G(x) = t + 1$, by Proposition 2.1(i), either $|N_G(x) \cap N_G(y)| = t$ or $|N_G(x) \cap N_G(y)| = t-2$. Assume that $|N_G(x) \cap N_G(y)| = t-2$. Then y belongs to a cycle of length $k \ge 5$ in H because H is a disjoint union of isolated vertices and cycles. By Proposition 2.1(i), y belongs to a cycle of length at least 5 in H. By Theorem 1.4(a), $e(H) \ge 8$. Note that if $5 \le k \le 7$, then by Proposition 2.1(i), H has at least two cycles of length at least 5, and so $e(H) \ge k+5 \ge 10$. Thus by Lemma 2.4(b), $d_G(y) \ge t + 4$. If $d_G(y) = t + 4$, then it follows from Lemma 2.4(b) that either k = 8 and H is isomorphic to $C_8 \cup \overline{K}_{t-7}$ or k = 5 and H is isomorphic to $C_5 \cup$ $C_5 \cup \overline{K}_{t-9}$. So we may assume that $|N_G(x) \cap N_G(y)| = t$. Let c be any (t-2)-coloring of $G \setminus \{x, y\}$ with color classes $V_1, V_2, \ldots, V_{t-2}$. Since $\alpha(\overline{H}) \leq 2$, we may further assume that $N_G(x) \cap V_1 = \{v_1, v_1'\}, N_G(x) \cap V_2 = \{v_2, v_2'\}, \text{ and } N_G(x) \cap V_i = \{v_i\} \text{ for all } i \in \{v_i\}$ $\{3, 4, \ldots, t-2\}$. Then $v_1v_1', v_2v_2' \in E(H)$. By Proposition 2.1(i) applied to the vertex $x, e_H(\{v_1, v'_1, v_2, v'_2\}, \{v_3, v_4, \dots, v_{t-2}\}) \leq 4$. By Theorem 1.4(a), $e(H) \geq 8$. Thus there must exist at least four vertices in $\{v_3, v_4, \ldots, v_{t-2}\}$, say v_3, v_4, v_5, v_6 , such that $d_H(v_i) = 2$ and y is adjacent to at least one vertex of $V_j \setminus v_j$ in G for all $j \in \{3, 4, 5, 6\}$. Therefore $|N_G(y) \setminus N_G[x]| \ge 4$ and so $d_G(y) = |N_G[x] \cap N_G(y)| + |N_G(y) \setminus N_G[x]| \ge (t+1) + 4 = t + 5.$

This completes the proof of Theorem 1.4.

We are now ready to complete the proof of Theorem 1.6.

Proof of Theorem 1.6 for t = 8. Let G and t = 8 be as given in the statement. Suppose that $G \neq K_8$. We claim that

Claim 1. G is 10-regular.

Proof. By Lemma 2.2 and Theorem 1.6 for t = 7, $\Delta(G) \leq |V(G)| - 2$. By Proposition 2.1(f) and Lemma 2.5, we see that $9 \leq d_G(x) \leq 10$ for all vertices $x \in V(G)$. By Corollary 1.5, G is 10-regular.

Claim 2. For any $x \in V(G)$, $2 \le \delta(\overline{G[N_G(x)]}) \le \Delta(\overline{G[N_G(x)]}) \le 3$.

Proof. Let $x \in V(G)$. Then x has at least one non-neighbor in G, otherwise $G = K_{11}$ by Claim 1, a contradiction. By Proposition 2.1(h), $\chi(G[N_G(x)]) \leq 5$. Since G is claw-free, we see that $\alpha(G[N_G(x)]) = 2$, and so $\chi(G[N_G(x)]) = 5$ since every color class can contain at most two vertices. Thus every vertex of $N_G(x)$ has at least one non-neighbor in $G[N_G(x)]$. By Proposition 2.1(e) and Proposition 2.1(c), $2 \leq \delta(\overline{G[N_G(x)]}) \leq \Delta(\overline{G[N_G(x)]}) \leq 3$.

Claim 3. For any $x \in V(G)$, $\Delta(\overline{G[N_G(x)]}) = 3$. That is, $\overline{G[N_G(x)]}$ is not 2-regular.

Proof. Suppose that there exists a vertex $x \in V(G)$ such that $\overline{G[N_G(x)]}$ is 2-regular. Let $y \in N_G(x)$ and let c be any 6-coloring of $G \setminus \{x, y\}$ with color classes V_1, V_2, \ldots, V_6 . Let $W = N_G(x) \cap N_G(y)$. Then |W| = 7 because $\overline{G[N_G(x)]}$ is 2-regular. By Proposition 2.1(c), we may assume that $|V_1 \cap W| = 2$ and $|V_i \cap W| = 1$ for every $i \in \{2, 3, 4, 5, 6\}$. Let $V_1 \cap W = \{v_1, u_1\}$ and $V_i \cap W = \{v_i\}$ for each $i \in \{2, 3, 4, 5, 6\}$. Since G is claw-free, we may further assume that $N_G(x) \cap V_2 = \{v_2, u_2\}$ and $N_G(x) \cap V_3 = \{v_3, u_3\}$. Clearly, $yu_2, yu_3 \notin E(G)$ and thus $u_2u_3 \in E(G)$ because G is claw-free. Since $\overline{G[N_G(x)]}$ is 2regular, we see that $G[\{v_4, v_5, v_6\}]$ is not a clique. We may assume that $v_4v_5 \notin E(G)$. By Lemma 2.4(a), $N_G(y) \cap (V_j \setminus \{v_j\}) \neq \emptyset$ for all $j \in \{4, 5\}$. Let $w_4 \in V_4 \setminus v_4$ and $w_5 \in V_5 \setminus v_5$ be two other neighbors of y in G. Then $N_G(y) \setminus N_G[x] = \{w_4, w_5\}$ since G is 10-regular by Claim 1. By Lemma 2.4(a), v_6 must be complete to $\{v_2, v_3, v_4, v_5\}$ in G. Notice that v_6 is complete to $\{u_2, u_3\}$ in G since $\overline{G[N_G(x)]}$ is 2-regular. Thus v_6 must be anti-complete to $\{v_1, u_1\}$ in G and so $G[\{x, v_1, u_1, v_6\}]$ is a claw, a contradiction.

From now on, we fix an arbitrary vertex $x \in V(G)$. Let $H = \overline{G[N_G(x)]}$. By Claim 3, let $y \in N_G(x)$ with $|N_G(x) \cap N_G(y)| = 6$. We choose such a vertex $y \in N_G(x)$ so that $N_G(x) \setminus N_G[y]$ contains as many vertices of degree two in H as possible. Let c be any 6-coloring of $G \setminus \{x, y\}$ with color classes V_1, V_2, \ldots, V_6 . We may assume that $V_i \cap N_G(x) \cap N_G(y) = \{v_i\}$ for all $i \in \{1, 2, 3, 4, 5, 6\}$. Since G is claw-free, we may further assume that $N_G(x) \cap V_j =$ $\{v_j, u_j\}$ for all $j \in \{1, 2, 3\}$. Notice that y is anti-complete to $\{u_1, u_2, u_3\}$ in G, and since G is claw-free, $G[\{u_1, u_2, u_3\}] = K_3$. Let $A = \{u_1, u_2, u_3\}, B = \{v_1, v_2, v_3\}$, and $C = \{v_4, v_5, v_6\}$.

Claim 4. B is not complete to C in G.

Proof. Suppose that B is complete to C in G. Then $e_H(C, A) = \sum_{v \in C} d_H(v) - 2e(H[C]) \ge 6 - 2e(H[C])$. For each $i \in \{1, 2, 3\}$, $u_i v_i, u_i y \notin E(G)$ and $d_H(u_i) \le 3$. Thus $e_H(A, C) \le 3$ and so $e(H[C]) \ge 2$. Since G is claw-free, we have e(H[C]) = 2. We may assume that $v_4 v_6 \notin E(H)$. Then $v_4 v_6 \in E(G)$ and $v_4 v_5, v_5 v_6 \notin E(G)$. Since $d_H(v_4) \ge 2$, $d_H(v_6) \ge 2$, and B is complete to C in G, we may assume that $u_2 v_4, u_3 v_6 \notin E(G)$. Note that H is not 3-regular since $e_H(A, C) \le 3$ and $e_H(B, C) = 0$. By the choice of $y, d_H(u_1) = 2$ and

 $d_H(v_j) = 2$ for all $j \in \{4, 5, 6\}$. Since $d_H(u_2) = d_H(u_3) = 3$, by the choice of y again, $d_H(v_2) = d_H(v_3) = 3$. Thus $G[B] = \overline{K_3}$ and so $G[\{x\} \cup B]$ is a claw, a contradiction.

Claim 5. $G[C] = K_3$.

Proof. Suppose that G[C] contains a missing edge, say $v_4v_5 \notin E(G)$. By Lemma 2.4(a), there exist $w_4 \in V_4 \setminus v_4$ and $w_5 \in V_5 \setminus v_5$ such that $yw_4, yw_5 \in E(G)$. By Claim 4, we may assume that $v_3v_j \notin E(G)$ for some $j \in \{4, 5, 6\}$. By Lemma 2.4(a), y has another neighbor, say w_3 , in $V_3 \setminus v_3$. Since G is 10-regular, $\{w_3, w_4, w_5\} = N(y) \setminus N[x]$, so by Lemma 2.4(a), v_4v_5 is the only missing edge in G[C] and $\{v_1, v_2\}$ is complete to C in G. If $e_H(A, C) = 3$, then $d_H(u_i) = 3$ for all $i \in \{1, 2, 3\}$. By the choice of $y, d_H(v_3) = 3$, or else we could replace y with u_3 . Notice that for all $i \in \{4, 5, 6\}$, $e_H(v_i, A \cup \{v_3\}) \ge 1$, and so by the choice of y, $d_H(v_i) = 3$, or else we could replace y with v_3 . Thus $e_H(A, C) \ge 5$, which is impossible. Hence $e_H(A, C) \le 2$. Notice that $e_H(A, C) = (d_H(v_4) - 1) + (d_H(v_5) - 1) + d_H(v_6) - e_H(v_3, C) \ge 2$. it follows that $e_H(A, C) = 2$, $e_H(v_3, C) = 2$ and $d_H(v_i) = 2$ for all $i \in \{4, 5, 6\}$. Then $N_G(x) \setminus N_G[y]$ has at most one vertex of degree two in H, but $N_G(x) \setminus N_G[v_3]$ has two vertices of degree two in H, contradicting the choice of y.

Claim 6. v_1u_1, v_2u_2 , and v_3u_3 are the only edges in $H[A \cup B]$.

Proof. Suppose that $H[A \cup B]$ has at least four edges. By Claim 5 and Claim 2, $e_H(A \cup B, C) \geq 6$. On the other hand, $e_H(A \cup B, C) = \sum_{v \in A \cup B} d_H(v) - 2e(H[A \cup B]) - 3 \leq 15 - 2e(H[A \cup B])$. It follows that $e(H[A \cup B]) = 4$ and $A \cup B$ contains at most one vertex of degree two in H. Thus $e_H(A \cup B, C) \leq 7$ and so at least two vertices of C, say v_4 and v_5 , are of degree two in H. Since $e_H(A, C) \leq 3$ and $G[C] = K_3$ by Claim 5, we may assume that $v_4v_3 \notin E(G)$. If $d_H(v_3) = 3$, then since $d_H(v_4) = 2$ and at most one vertex of $A \cup B$ has degree two in H, by the choice of y, exactly one of u_1, u_2, u_3 has degree two in H. Then $e_H(A \cup B, C) = 6$. Thus $d_H(v_j) = 2$ for all $j \in \{4, 5, 6\}$ and by the choice of y, each vertex of B is adjacent to at most one vertex of C in H. Thus $e_H(A \cup B, C) \leq 5$, a contradiction. Hence $d_H(v_3) = 2$. Now $d_H(u_i) = 3$ for all $i \in \{1, 2, 3\}$ because at most one vertex of $A \cup B$ has degree two in H. We see that $N(x) \setminus N[y]$ has no vertex of degree two in H but $N(x) \setminus N[u_3]$ has at least one vertex of degree two in H, contrary to the choice of y.

By Claim 6, we see that for any $i \in \{1, 2, 3\}, v_i v_j \notin E(G)$ for some $j \in \{4, 5, 6\}$. By Lemma 2.4(a), let $w_i \in V_i \setminus v_i$ be such that $yw_i \in E(G)$ for all $i \in \{1, 2, 3\}$. Let $D = \{w_1, w_2, w_3\}$. Then $N_G(y) \setminus N_G[x] = D$ and $G[D] = K_3$ because G is claw-free. Clearly, D is not complete to C in G, otherwise $G[\{y\} \cup D \cup C] = K_7$, contrary to Proposition 2.1(a). We may assume that $w_3v_4 \notin E(G)$. For each $i \in \{1, 2\}, v_iv_3, v_iu_3 \in E(G)$ by Claim 6. Thus $v_1w_3, v_2w_3 \notin E(G)$ because G is claw-free. Notice that $w_3, x, v_1, v_2, v_4 \in N_G(y)$ and w_3 is anti-complete to $\{x, v_1, v_2, v_4\}$ in G. Thus $\Delta(\overline{G[N_G(y)]}) \geq 4$, contrary to Claim 2.

Acknowledgement

The authors would like to thank the anonymous referees for many helpful comments, which greatly improve the presentation of this paper.

References

- [1] B. Albar and D. Gonçalves, On triangles in K_r -minor free graphs, available at arXiv:1304.5468.
- [2] J. Balogh, A. V. Kostochka, N. Prince, and M. Stiebitz, The Erdős-Lovász Tihany conjecture for quasi-line graphs, Discrete Math., 309 (2009), pp. 3985–3991.
- [3] W. G. Brown and H. A. Jung, On odd circuits in chromatic graphs, Acta Math. Sci. Hung., 20 (1969), pp. 129–134.
- [4] M. Chudnovsky and P. Seymour, Claw-free graphs. V. Global structure, J. Combin. Theory, Ser. B, 98 (2008), pp. 1373–1410.
- [5] M. Chudnovsky, A. Fradkin, and M. Plumettaz, On the Erdős-Lovász Tihany conjecture for claw-free graphs, available at arXiv:1309.1020.
- [6] P. Erdős, Problems, *Theory of Graphs* in: Proc. Colloq. Tihany, Academic Press, New York, 1968, pp. 361–362.
- [7] H. Huang and A. Yu, A note on the double-critical graph conjecture, available at arXiv:1604.05262.
- [8] K. Kawarabayashi, A. S. Pedersen, and B. Toft, Double-critical graphs and complete minors, Electron. J. Combin., 17 (2010), R87.
- [9] A. V. Kostochka and M. Stiebitz, Partitions and edge colorings of multigraphs, Electron. J. Combin. 15 (2008), N25.
- [10] N. N. Mozhan, On doubly critical graphs with the chromatic number five, Metody Diskretn. Anal., 46 (1987), pp. 50–59.
- [11] A. S. Pedersen, Complete and almost complete minors in double-critical 8-chromatic graphs, Electron. J. Combin., 18 (2011), P80.
- [12] M. Rolek and Z-X. Song, Clique minors in double-critical graphs, submitted, available at arXiv:1603.06964.
- [13] M. Stiebitz, K₅ is the only double-critical 5-chromatic graph, Discrete Math., 64 (1987), pp. 91–93.

- [14] M. Stiebitz, On k-critical n-chromatic graphs, in Combinatorics . Colloq. Math. Soc. János Bolyai, Combinatorics, Eger (Hungary) 52 (1987), pp. 509–514.
- [15] M. Stiebitz, A relaxed version of the Erdős-Lovász Tihany conjecture, to appear in J. Graph Theory.