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1 Introduction

Fix an odd prime ℓ and let G be the poset of isomorphism classes of finite abelian ℓ-groups, with the relation[A] ≤ [B] if and only if there exists an injective group homomorphism A ↪ B. (For notational simplicity,
from this point forward we will conflate finite abelian ℓ-groups and the equivalence classes containing them.)
In 1984, Cohen and Lenstra [CL84] proved that the function

ν ∶ G → R
≥0

A↦ ∣AutA∣−1 ∞∏
i=1
(1 − ℓ−i)

is a discrete probability distribution on G. (This fact had already been proved by Hall in [Hal38], who used
a different method). They then conjectured that if A ∈ G, then ν(A) is the probability that the ℓ-Sylow
subgroup of the ideal class group of an imaginary quadratic number field is isomorphic to A. Since then,
mathematicians have defined various probability distributions on G and conjectured that these distributions
describe various phenomena, both number-theoretic (e.g., [FW89], [CM90], [EVW09], [Mal10], [Gar15]) and
combinatorial (e.g., [Mat14], [CKL+]).

Given any discrete probability distribution ξ ∶ G → R
≥0 and any A ∈ G, define the Ath moment of ξ to be

∑
B∈G
∣Surj (B,A)∣ ξ(B),

where for any B,A ∈ G, we define Surj (B,A) to be the set of surjective group homomorphisms from B to A.
This terminology, which is becoming standard in the literature related to the Cohen-Lenstra heuristics (see,
for example, [EVW09] and [Mat14]), is meant to evoke an analogy with the kth moment of a real-valued
random variable X : just as the kth moment of X is the expected value of Xk, the Ath moment of ξ is the
expected value of ∣Surj (B,A)∣, where B is a G-valued random variable. Moreover, under certain favorable
conditions, the set of Ath moments of a distribution on G determines the distribution, making the analogy
even stronger.

A precise description of these “favorable conditions”, however, is still elusive. In [EVW09], [Mat14],
and [Gar15], for example, the moments of the particular discrete probability distributions on G in question
completely determine the distribution. In [Gar15], a Möbius inversion-type procedure transforms closed
formulas for moments of certain distributions on G into closed formulas for the distribution itself. Some
natural questions are:

• what is this Möbius-type function?,

• in what ways does it behave like the classical Möbius function?, and

• in what conditions can it transform formulas for moments into formulas for distributions?

In this paper, we focus on the first two questions, leaving the third for later work. In Section 2, we begin
by addressing the first question. That is, we define this new Möbius-type function associated to the posetG, which we denote S ∶ G × G → Z. We also compare it to the case of the poset of subgroups of a group G,
which we denote PG, and its associated Möbius function, which we denote µG ∶ PG ×PG → Z. In particular,
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we state a result relating these two functions; see Remark 2.2. We then state the main results of the paper,
Theorems 3.8 and 3.9, which we prove in Section 3. As an example application of Theorems 3.8 and 3.9, we
remark that they immediately imply:

Corollary 3.10. If A,C ∈ G, then S(A,C) = 0 unless there exists an injection ι ∶ A ↪ B with coker (ι)
elementary abelian.

We would like to note the analogy between Corollary 3.10 and Hall’s result from 1934 [Hal34]: if G is an

ℓ-group of order ℓn, then µG(1,G) = 0 unless G is elementary abelian, in which case µG(1,G) = (−1)nℓ(n2).
In addition to implying Corollary 3.10, Theorems 3.8 and 3.9 are both integral to the inversion procedure
deployed in [Gar15], and will be a useful tool in answering the third question mentioned above. In [Gar],
we explore further properties of S, using it to expand on Cohen-Lenstra’s identities on finite abelian ℓ-
groups [CL84]. Moreover, Corollary 3.10 has applications to recent work in group theory: see Lucchini’s
Theorem 2.3 [Luc07], below, and the discussion following it.

2 Definitions and results

Let P be a locally finite poset. The Möbius function on P , denoted by µP , is defined by the following
criteria: for any x, z ∈ P ,

µP (x, z) = 0 if x ≰ z,

µP (x, z) = 1 if x = z,

∑
x≤y≤z

µP (x, y) = 0 if x < z.

A classic reference for Möbius functions is [Rot64]. Now, for any finite group G, let PG be the poset of
subgroups of G ordered by inclusion. (To ease notation, let µG be the Möbius function on this poset.) For a
history of the work on the Möbius function on this particular poset, see [HIÖ89]. Recall that G is the poset
of isomorphism classes of finite abelian ℓ-groups.

Definition 2.1. For any A,C ∈ G, let sub (A,C) be the number of subgroups of C that are isomorphic
to A. If A ∈ G, an A-chain is a finite linearly ordered subset of {B ∈ G ∣ B > A}. Now, given an A-chain

C = {Aj}ij=1, define
sub (C) ∶= (−1)i sub (A,A1) i−1∏

j=1
sub (Aj ,Aj+1).

Finally, for any A,C ∈ G, let

S(A,C) =
⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 if A ≰ C,

1 if A = C,

∑
A-chains C,
maxC=C

sub (C) if A < C.

Remark 2.2. Though S is defined on the poset G, it is closely related to the classical work on the Möbius
function on the poset of subgroups of a fixed group. Indeed, by applying Lemma 2.2 of [HIÖ89], we see that

S(A,C) = ∑
B≤C
B≃A

µC(B,C).

There has been recent progress towards describing groups with non-zero Möbius functions. For example,
in 2007 Lucchini [Luc07] proved the following:

Theorem 2.3. Assume that G is a finite solvable group and that H is a proper subgroup of G with µG(1,H) ≠
0. Then there exists a family M1, . . . ,Mt of maximal subgroups of G such that

• H =M1 ∩⋯∩Mt, and
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• [G ∶H] = [G ∶M1]⋯ [G ∶Mt].
In the light of Remark 2.2, Corollary 3.10 implies that there exists an infinite family of pairs of finite abelian
ℓ-groups with trivial Möbius function:

Corollary 3.11. If A,C ∈ G and C has exactly one subgroup isomorphic to A, then µC(A,C) = 0 unless

there exists some ι ∶ A↪ C with coker(i) elementary abelian.

In Section 3, below, we prove the main results of this paper, mentioned in Section 1. (See Notation 3.4
for the definition of rank.)

Theorem 3.8. Suppose that A,C ∈ G and rankA < rankC. If there exists k ∈ Z>0 and B ∈ G such that

A ≤ B < C, rankB = rankA, and

B ⊕

k times³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(Z/ℓ)⊕⋯⊕ (Z/ℓ) = C,
then S(A,C) = S(A,B) ⋅ S(B,C). Otherwise, S(A,C) = 0.
Theorem 3.9. Suppose that A,C ∈ G, that rankA = rankC = r, and that there does not exist an injection

ι ∶ A↪ C such that coker(ι) is elementary abelian. Then S(A,C) = 0.

3 Proofs of main results

The combinatorics of the proofs that follow will rely on Lemmas 3.5 to 3.7, which follow immediately from
Proposition 3.3 below. There are many descriptions of the quantity described in Proposition 3.3; one such
can be found in Theorem 8 in a recent paper of Delaunay and Jouhet [DJ14]. The formula we present
below is different than theirs; hopefully the ease with which it implies Lemmas 3.5 to 3.7 makes up for its
unwieldiness. Before we begin, we introduce some notation.

Notation 3.1. Suppose A ∈ G. Let Λ (A) be the set of alternating bilinear forms on A, with A thought of as
a (Z/ exp (A))-module. Next, for any A,B ∈ G, let Inj (A,B) be the set of injective group homomorphisms
from A into B.

Remark 3.2. In Section 1, we defined moments in terms of surjections, which is standard, but there is an
equivalent definition given in terms of injections; see Section 3 of [Gar15] for more details.

Proposition 3.3. Suppose A =⊕r
i=1 Z/ℓai and B =⊕r′

i=1 Z/ℓbi , with ai ≥ aj and bi ≥ bj for i ≤ j. Then

∣Inj (A,B)∣ = ∣Λ(A)∣ ⋅ r

∏
i=1
(ℓ∑r′

j=i min{ai,bj}
− ℓ∑

r′

j=i min{ai−1,bj}),
so

sub (A,B) = r

∏
i=1

⎛
⎝
ℓ∑

r′

j=i min{ai,bj} − ℓ∑
r′

j=i min{ai−1,bj}

ℓ∑
r
j=i

aj
− ℓ∑

r
j=i

min{ai−1,aj}

⎞
⎠.

Before stating some consequences of Proposition 3.3, we need a bit more notation.

Notation 3.4. For any A ∈ G and any i ∈ Z≥0, let

A⊕i ∶= A⊕

i times³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ(Z/ℓ)⊕⋯⊕ (Z/ℓ) .
If i ≥ 1, let

rankℓi A ∶= dimFℓ
(ℓi−1A/ℓiA).

We will abbreviate rankℓA by rankA.

As an example, consider the group A = Z/ℓ4⊕Z/ℓ4⊕Z/ℓ. Then rankℓ5 A = 0, rankℓ4 A = rankℓ3 A = rankℓ2 A =
2, and rankA = 3. We will use the following three lemmas in the proofs of our main results.
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Lemma 3.5. Suppose A,B ∈ G. If rankB − rankA = i ≥ 0, then

sub (A,A⊕i) ⋅ sub (A⊕i,B) = sub (A,B).
Proof. Computation following from Proposition 3.3.

Lemma 3.6. Suppose A,B ∈ G and rankA = rankB. If

j ≤max{i ∣ rankℓi A = rankA},
then

sub (A⊕Z/ℓj ,B ⊕Z/ℓj) = sub (A,B).
Proof. Computation following from Proposition 3.3.

Lemma 3.7. Suppose A ∈ G. If i ∈ Z≥0, rankA = r, and ⊕r
j=1 (Z/ℓi) ≤ A, then

sub( r

⊕
j=1
(Z/ℓi),A) = 1.

Proof. Computation following from Proposition 3.3.

We now have the tools to prove Theorems 3.8 and 3.9. For any A,C ∈ G, Theorem 3.8 concerns the case
where rankA < rankC, and Theorem 3.9 concerns the case where rankA = rankC.

Theorem 3.8. Suppose that A,C ∈ G and rankA < rankC. If there exists k ∈ Z>0 and B ∈ G such that

A ≤ B < C, rankB = rankA, and B⊕k = C, then S(A,C) = S(A,B) ⋅ S(B,C). Otherwise, S(A,C) = 0.
Proof. By Definition 2.1, we know S(A,C) is a sum of products of subgroup data—one summand for every

A-chain with maximum C. Choose some such chain, say C = {Ai}ji=1, where j ∈ Z>0 and A = A0 < ⋯ < Aj = C.
Consider the set

MC = {j0 ∈ {1, . . . , j} ∣ there is no kj0 ∈ Z
>0 such that Aj0 = A⊕kj′

} .
If MC is empty, then the theorem is trivially true since there is some k ∈ Z>0 such that C = A⊕k. Thus,
suppose it is not empty and let j′ =min (MC).

There are two possibilities for the ranks of Aj′ and Aj′−1: either rank (Aj′−1) = rank (Aj′) or rank (Aj′−1) <
rank (Aj′). It turns out that summands in the former case cancel out those in the latter. Indeed, if
rank (Aj′) − rank (Aj′−1) = k0 > 0, then we know by Lemma 3.5 that

sub (Aj′−1, (Aj′−1)⊕k0

) ⋅ sub ((Aj′−1)⊕k0
,Aj′) = sub (Aj′−1,Aj′).

Thus, sub (C) cancels with another summand in S(A,B), one associated to a chain that is longer than C by
one subgroup; namely, the chain

A1 < ⋯ < Aj′−1 < (Aj′−1)⊕k0
< Aj′ < ⋯ < Aj = B. (C′)

In contrast to C, the first subgroup in C
′ that is not of the form A⊕k for any k ∈ Z≥0 has the same rank as

its predecessor (ie, rank ((Aj′−1)⊕k0

) = rank (Aj′)).
Now suppose that Aj′ and Aj′−1 had satisfied the other possibility; ie, that rank (Aj′−1) = rank (Aj′). If

j′ > 1, then the summand cancels with a summand whose chain is one shorter. Specifically, we know by
Lemma 3.5 that it cancels with the summand associated to the chain C∖{Aj′−1}. Thus, the only summands
of S(A,B) that that remain are those associated to chains with minimum element the same rank as A. Using
this fact, we can write

S(A,C) = − ∑
B0∈G,A<B0<C,
rankB0=rankA

sub (A,B0) ⋅ S (B0,C).
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Note that if {B0 ∈ G ∣ A < B0 < C, rankB0 = rankA} = ∅, then the above sum vanishes and we are done.
Thus, suppose it is not empty and let

B =max{B0 ∈ G ∣ A < B0 < C, rankB0 = rankA}.
We can repeat the argument above to see that

S(A,C) = S(A,B) ⋅ S(B,C).
If there is some k ∈ Z>0 such that C = B⊕k, then we are done. If not, then the argument from the previous
paragraphs and the definition of B imply that S(B,C) = 0, completing the proof.

In the light of Theorem 3.8, we now address S(A,C) in the case where rankA = rankC.

Theorem 3.9. Suppose that A,C ∈ G, that rankA = rankC = r, and that there does not exist an injection

ι ∶ A↪ C such that coker(ι) is elementary abelian. Then S(A,C) = 0.
Proof. Suppose that A < C (otherwise the result is trivial). We will induct on r. To begin, suppose that r = 1,
and define a, c ∈ Z≥0 by ℓa = ∣A∣ and ℓc = ∣C ∣. Since A and C are cyclic, we see that for any i ∈ {1, . . . , c − a},

∣{A-chains C ∣maxC = C, ∣C∣ = i}∣ = (c − a − 1
i − 1

).
Moreover, the fact that A and C are cyclic also implies that sub (C) = (−1)i for any A-chain in the above
set. By assumption, we know that c − a − 1 > 0, so ∑c−a

i=1 (−1)i(c−a−1i−1 ) = 0. This completes the base case.
We split the general case into three cases. For the first case, suppose that expA = expC. For any

B ∈ G, let B denote B/⟨b⟩, where b ∈ B is any element of order expB. Similarly, if C is a B-chain, we
define C to be {D ∣D ∈ C}. Now, since expA = expC, we see that {A-chains C ∣maxC = C} is in bijection

with {A-chains C ∣maxC = C} under the map C ↦ C. Moreover, given any A-chain C with maxC = C,

Proposition 3.3 implies that sub (C) = K ⋅ sub (C), where K is a constant depending only on A and C. The
result now follows by induction.

For the second case, suppose that ℓ ⋅ expA = expC. For any A-chain C with maxC = C, let Ĉ de-
note min {B ∈ C ∣ expB = expC}. For any B ∈ G such that A < B ≤ C and expB > expA, let BC =

B/ (ℓ−1 expC)B. For any such B with BC ≠ A, we can partition the set {A-chains C ∣maxC = C, Ĉ = B} into
two subsets: those chains that contain BC and those that do not. We remark that these two subsets are in
bijection under the following map: if an A-chain does not contain BC , then add it. The inverse to this map
is simply the deletion of BC from any A-chain. Now, by Lemmas 3.6 and 3.7, we know that B has exactly
one subgroup isomorphic to BC . Thus, for any A0 such that A ≤ A0 < BC , we know that

sub (A0,BC) sub (BC ,B) = sub (A0,B).
But this means that any summand associated to a chain in the first subset cancels with the summand
associated to the image of the chain under the above bijection. Thus,

S(A,C) = ∑
A-chains C

(Ĉ)
C
=A

sub (C).

Now, for any B ∈ G with A < B ≤ C, expB > expA, and BC = A, note that

∑
A-chains C
maxC=C

Ĉ=B

sub (C) = S(B,C) ⋅ ∑
A-chains C
maxC=B

max{expD∣D∈C∖{B}}=expA

sub (C).

But S(B,C) = 0 for all such B, by the argument of the previous paragraph. Thus,

S(A,C) = ∑
A-chains C

(Ĉ)
C
=A

sub (C) = ∑
A<B≤C

expB>expA
BC=A

∑
A-chains C
maxC=C

Ĉ=B

sub (C) = 0,
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completing this case.
Finally, consider the case where ℓ ⋅ expA < expC. As in the previous case, we have that

S(A,C) = ∑
A-chains C

(Ĉ)
C
=A

sub (C).

The difference in this case is that if C is an A-chain with maxC = C, then it is impossible that (Ĉ)
C
= A, so

the proof is complete.

Theorems 3.8 and 3.9 immediately imply the following corollary.

Corollary 3.10. If A,C ∈ G, then S(A,C) = 0 unless there exists an injection ι ∶ A ↪ B with coker (ι)
elementary abelian.

Finally, Remark 2.2 and Corollary 3.10 imply the following result.

Corollary 3.11. If A,C ∈ G and C has exactly one subgroup isomorphic to A, then µC(A,C) = 0 unless

there exists some ι ∶ A↪ C with coker(i) elementary abelian.
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