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Abstract

A path in an edge-colored graph is called proper if no two consecutive edges

of the path receive the same color. For a connected graph G, the proper con-

nection number pc(G) of G is defined as the minimum number of colors needed

to color its edges so that every pair of distinct vertices of G are connected by at

least one proper path in G. In this paper, we consider two conjectures on the

proper connection number of graphs. The first conjecture states that if G is a

noncomplete graph with connectivity κ(G) = 2 and minimum degree δ(G) ≥ 3,

then pc(G) = 2, posed by Borozan et al. in [Discrete Math. 312(2012), 2550-

2560]. We give a family of counterexamples to disprove this conjecture. However,

from a result of Thomassen it follows that 3-edge-connected noncomplete graphs

have proper connection number 2. Using this result, we can prove that if G is a

2-connected noncomplete graph with diam(G) = 3, then pc(G) = 2, which solves

the second conjecture we want to mention, posed by Li and Magnant in [Theory

& Appl. Graphs 0(1)(2015), Art.2].
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1 Introduction

All graphs in this paper are simple, finite and undirected. We follow [2] for graph

theoretical notation and terminology not defined here. Let G be a connected graph

with vertex set V (G) and edge set E(G). For v ∈ V (G), let N(v) denote the set of

neighbors of v. For a subset U ⊆ V (G), let N(U) =
(
⋃

v∈U N(v)
)

\ U . For any two

disjoint subsets X and Y of V (G), we use E(X, Y ) to denote the set of edges of G that

have one end in X and the other in Y . Denote by |E(X, Y )| the number of edges in

E(X, Y ). An (X, Y )-path is a path which starts at a vertex of X , ends at a vertex of

Y , and whose internal vertices belong to neither X nor Y .

LetG be a nontrivial connected graph with an edge-coloring c : E(G) → {1, 2, . . . , t},

t ∈ N, where adjacent edges may have the same color. If adjacent edges of G are as-

signed different colors by c, then c is called a proper (edge-)coloring. For a graph G,

the minimum number of colors needed in a proper coloring of G is referred to as the

edge-chromatic number of G and denoted by χ′(G). A path of an edge-colored graph

G is said to be a rainbow path if no two edges on the path have the same color. The

graph G is called rainbow connected if for any two vertices there is a rainbow path of G

connecting them. An edge-coloring of a connected graph is a rainbow connecting col-

oring if it makes the graph rainbow connected. For a connected graph G, the rainbow

connection number rc(G) of G is defined to be the smallest number of colors that are

needed in order to make G rainbow connected. The concept of rainbow connection of

graphs was introduced by Chartrand et al. [4] in 2008. Readers who are interested in

this topic can see [11, 12] for a survey.

Motivated by the rainbow coloring and proper coloring in graphs, Andrews et al. [1]

and Borozan et al. [3] introduced the concept of proper-path coloring. Let G be a

nontrivial connected graph with an edge-coloring. A path in G is called a proper path

if no two adjacent edges of the path are colored with the same color. An edge-coloring

of a connected graph G is a proper-path coloring if every pair of distinct vertices of G

are connected by a proper path in G. If k colors are used, then c is referred to as a

proper-path k-coloring. An edge-colored graph G is called proper connected if any two

vertices of G are connected by a proper path. For a connected graph G, the proper

connection number of G, denoted by pc(G), is defined as the smallest number of colors

that are needed in order to make G proper connected.

The proper connection of graphs has the following application background. When
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building a communication network between wireless signal towers, one fundamental

requirement is that the network be connected. If there cannot be a direct connection

between two towers A and B, say for example if there is a mountain in between, there

must be a route through other towers to get from A to B. As a wireless transmission

passes through a signal tower, to avoid interference, it would help if the incoming signal

and the outgoing signal do not share the same frequency. Suppose that we assign a

vertex to each signal tower, an edge between two vertices if the corresponding signal

towers are directly connected by a signal and assign a color to each edge based on

the assigned frequency used for the communication. Then, the number of frequencies

needed to assign frequencies to the connections between towers so that there is always a

path avoiding interference between each pair of towers is precisely the proper connection

number of the corresponding graph.

Let G be a nontrivial connected graph of order n (number of vertices) and size m

(number of edges). Then the proper connection number of G has the following clear

bounds:

1 ≤ pc(G) ≤ min{rc(G), χ′(G)} ≤ m.

Furthermore, pc(G) = 1 if and only if G = Kn, pc(G) = m if and only if G = K1,m is

a star of size m.

Given an edge-colored path P = v1v2 . . . vs−1vs between any two vertices v1 and

vs, we denote by start(P ) the color of the first edge in the path, i.e., c(v1v2), and by

end(P ) the color of the last edge in the path, i.e., c(vs−1vs). If P is just the edge v1vs,

then start(P ) = end(P ) = c(v1vs).

Definition 1.1 ([3]) Let c be an edge-coloring of G that makes G proper connected.

We say that G has the strong property under c if for any pair of vertices u, v ∈ V (G),

there exist two proper paths P1, P2 connecting them (not necessarily disjoint) such that

start(P1) 6= start(P2) and end(P1) 6= end(P2).

Next we list the following three lemmas, which will be used in this work.

Lemma 1.1 ([1]) If G is a nontrivial connected graph and H is a connected spanning

subgraph of G, then pc(G) ≤ pc(H). In particular, pc(G) ≤ pc(T ) for every spanning

tree T of G.

Lemma 1.2 ([3]) If G is a 2-connected graph with n vertices, then pc(G) ≤ 3. Fur-

thermore, there exists a 3-edge-coloring c of G such that G has the strong property

under c.

Lemma 1.3 ([3, 8]) If G is a connected bridgeless bipartite graph with n vertices,

then pc(G) ≤ 2. Furthermore, there exists a 2-edge-coloring c of G such that G has the

strong property under c.
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} (complete) bipartite

one edge

independent set

Figure 1: Counterexamples for Conjecture 1.1

Lemma 1.4 ([1]) Let G be a connected graph and v a vertex not in G. If pc(G) = 2,

then pc(G ∪ v) = 2 as long as d(v) ≥ 2, that is, we connect v to G by using at least

two edges.

For more details we refer to [1, 3, 5, 6, 7, 10] and a dynamic survey [9].

The first conjecture we will consider in this paper is as follows, which was posed by

Borozan et al. in [3].

Conjecture 1.1 ([3]) If G is not a complete graph such that the connectivity κ(G) = 2

and the minimum degree δ(G) ≥ 3, then pc(G) = 2.

The second conjecture we will consider is as follows, which was posed by Li and

Magnant in [9]

Conjecture 1.2 ([9]) If G is a 2-connected noncomplete graph with diam(G) = 3,

then pc(G) = 2.

Unfortunately, Conjecture 1.1 is not true. A family of counterexamples is shown

in Figure 1. It is obvious that the graph in Figure 1 has connectivity 2 and minimum

degree 3, however, we will show in next section that it has proper connection number

3, but not 2. From a result of Thomassen [13] it follows immediately that 3-edge-

connected noncomplete graphs have proper connection number 2. Using this result we

can prove in Section 3 that Conjecture 1.2 holds true.

2 Disprove Conjecture 1.1

Theorem 2.1 Let G be a graph as shown in Figure 1. Then, pc(G) = 3, which

disproves Conjecture 1.1.

4



a′a

b

b′c

c′

A

A′

B

B′

C

C ′

a1 a2

a′1 a′2

b1

b2

b′1

b′2

c1

c2 c′1

c′2

Figure 2: Labeling of the graph G

Proof. First, we label the graph G as in Figure 2 for simplicity where subgraphs

correspond to the subgraphs in Figure 1. From Lemma 1.2, we have that pc(G) ≤ 3.

Thus, it is sufficient to show that pc(G) 6= 2. Assume, to the contrary, that we have a

2-edge-coloring c which makes G proper connected. Then, for any two vertices of G,

there is a proper path connecting them.

Claim 2.1 In each pair (A,A′), (B,B′) and (C,C ′), say (A,A′), there exists a vertex

v such that either all the proper paths from v to G \ (A ∪ A′) go through the edge ac′

rather than a′b or all the proper paths from v to G \ (A ∪ A′) go through the edge a′b

rather than ac′.

Proof. Suppose, to the contrary, that every vertex in A ∪ A′ has proper paths to

G \ (A ∪ A′) through ac′ and also has proper paths to G \ (A ∪ A′) through a′b. Let

f = v1v2 and f ′ = v3v4 be the two cut-edges in G[A] with f the closer edge to a and

f ′ the closer edge to a′. Let e = u1u2 and e′ = u3u4 be the two cut-edges in G[A′] with

e the closer edge to a and e′ the closer edge to a′. Also assume the vertices with lower

index on each of these edges are closer to a.

If aa1 and f have different colors, then all the proper paths from v2 to G \A must

go through a2a
′. Thus, a′a′2 and a′b have the same color. So a′2 has no proper path

to G \ (A ∪ A′) through a′b, a contradiction. Hence, aa1 and f have the same color.

Similarly, f and f ′ as well as f ′ and a2a
′ have the same color. Thus, aa1, f , f

′ and

a2a
′ all have the same color. If a′a2 and a′b have the same color, then there is no

proper path from a2 to G \ (A ∪ A′) through a′b since the parity of any path from a

to a′ passing through A is different from the parity of any path from a to a′ passing

through A′. Thus, a′a2 and a′b have different colors and symmetrically, aa1 and ac′

have different colors.

If e has the opposite color from aa′1, then u2 cannot possibly have a proper path

leaving A′ through the edge a′1a. Then, since a2a
′ and a′b have different colors, the edge
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a′2a
′ must share one of those colors. This means that u2 has a proper path to G\(A∪A′)

through only one of ac′ or a′b, a contradiction. On the other hand, this means that e

must have the same color as aa′1. Similarly, we have that e′ must have the same color

as a′a′2. If e and e′ have the same color, then u1 cannot possibly have a proper path

leaving A′ through the edge a′2a. Thus, u1 has no proper path to G \ (A∪A′) through

one of ac′ or a′b, a contradiction. Now we have that e and e′ have different colors. By

the symmetry, we suppose that aa′1 and aa1 have the same color and a′a′2 and a′b have

the same color. Thus, any vertex of A′ has no proper path to G \ (A∪A′) through a′b,

which is a contradiction. So, there exists a vertex v ∈ A ∪ A′ such that either all the

proper paths from v to G \ (A ∪A′) go through the edge ac′ rather than a′b or all the

proper paths from v to G\ (A∪A′) go through the edge a′b rather than ac′. Of course,

the same argument holds in B ∪ B′ and C ∪ C ′ to complete the proof. �

Let a∗ be the vertex in A∪A′ resulting from Claim 2.1 and similarly define b∗ and

c∗. By the pigeonhole principle, there exists a pair of these vertices that leave their

respective sets in the same direction. More specifically, we may assume without loss of

generality that all the proper paths from a∗ to G \ (A ∪A′) through only ac′ (and not

a′b) and all the proper paths from b∗ to G \ (B ∪ B′) through only ba′ (and not b′c).

Then there can be no proper path from a∗ to b∗. �

3 Proof of Conjecture 1.2

Thomassen [13] observed that given a graph G which is at least (2k − 1)-edge-

connected, then G contains a bipartite spanning subgraph H for which H is k-edge-

connected. Combining with Lemma 1.3, we have the following Theorem.

Theorem 3.1 If G is a 3-edge-connected noncomplete graph, then pc(G) = 2 and there

exists a 2-edge-coloring c of G such that G has the strong property under c.

In the following, we will use Theorem 3.1 to give a confirmative proof for Conjec-

ture 1.2.

Theorem 3.2 If G is a 2-connected noncomplete graph with diam(G) = 3, then

pc(G) = 2.

Proof. If G is 3-edge-connected, Theorem 3.1 implies that pc(G) = 2. So, we may

assume κ′(G) = 2, where κ′(G) denotes the edge-connectivity of G. We distinguish the

following two cases to proceed the proof.

Case 1: There is a 2-edge-cut S of G such that each component of G − S has at

least three vertices.
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u1 u2
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Q1,1

Q1,0

Q1,2

Q2,1

Q2,0

Q2,2

Figure 3: The graph G in Case 1

Then, let S = {u1u2, v1v2} be the 2-edge-cut of G and H1, H2 be the components

of G\S such that |Hi| ≥ 3 for i = 1, 2, where u1, v1 ∈ H1 and u2, v2 ∈ H2. Since

G is 2-connected, we have that u1 6= v1 and u2 6= v2. Let Qi = Hi \ {ui, vi} for

i = 1, 2. Since diam(G) = 3, we know that any vertex w ∈ Qi must be adjacent to

at least one vertex of {ui, vi} for i = 1, 2. For each Qi (i = 1, 2), define the subsets

Qi,0 = N(ui)∩N(vi)∩Qi, Qi,1 = (N(ui)∩Qi)\Qi,0 and Qi,2 = (N(vi)∩Qi)\Qi,0. Since

diam(G) = 3, we have that at least one of Q1,1 and Q2,2 is empty. Without loss of

generality, we may assume that Q2,2 is empty. Similarly, at least one of Q1,2 and Q2,1

is empty. So, there are two subcases to deal with.

Subcase 1.1: Q1,2 is empty.

If Q1,0 is empty, then u1 is a cut-vertex of G, a contradiction. So, Q1,0 is nonempty.

Similarly, Q2,0 is nonempty. Let G0 = G[{u1, v1, u2, v2} ∪ Q1,0 ∪ Q2,0]. The graph G0

contains a 2-connected bipartite spanning subgraph. So, pc(G0) = 2 from Lemmas 1.1

and 1.3.

Let G1 be a subgraph of G obtained by adding a vertex to G0 which has at least 2

edges into G0. Furthermore, let Gi be a subgraph of G obtained by adding a vertex to

Gi−1 which has at least 2 edges connecting to Gi−1. By Lemma 1.4, pc(Gi) = 2 for all

i. We claim that such a sequence of subgraphs of G exists, and we can find a spanning

subgraph of G by repeating this procedure. In order to prove this, suppose that Gi

is the largest such subgraph of G and suppose that there exists a vertex v ∈ G \ Gi.

Assume, without loss of generality, that v ∈ Q1,1. Since G is 2-connected, we have that

there is a 2-fan from v to Gi. So we can find a path from v to Gi other than vu1 within

H1. Let w be the last vertex on this path which is not in Gi. We know that w must

be adjacent to u1. This means that dGi
(w) ≥ 2, and so we may set Gi+1 = Gi ∪ w to

get a contradiction. This completes the proof.

Subcase 1.2: Q2,1 is empty.
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If E(Q1,1, Q1,2) = ∅, then we can get pc(G) = 2 by a similar argument as in Case

1. Now we have |E(Q1,1, Q1,2)| ≥ 1. Let M be a maximum matching of E(Q1,1, Q1,2),

and let G′

0 = G[{u1, u2, v1, v2} ∪ M ∪ Q2,0]. Note that G[{u2, v2} ∪ Q2,0] contains a

2-connected bipartite spanning subgraph if |Q2,0| ≥ 2. From Lemma 1.3 we know that

G[{u2, v2} ∪ Q2,0] has a 2-edge-coloring with the strong property. If |M | ≥ 2, then

G[M ∪ {u1, v1}] contains a 2-connected bipartite spanning subgraph, and we can also

get that G[M ∪{u1, v1}] has a 2-edge-coloring with the strong property by Lemma 1.3.

It is easy to check that pc(G′

0) = 2.

Let G′

1 be a subgraph of G obtained by adding a vertex to G′

0 which has at least 2

edges connecting to G′

0. Furthermore, let G′

i be a subgraph of G obtained by adding

a vertex to G′

i−1 which has at least 2 edges connecting to G′

i−1. By Lemma 1.4,

pc(G′

i) = 2 for all i. We claim that such a sequence of subgraphs of G exists, and

we can find a spanning subgraph of G by repeating this procedure. In order to prove

this, suppose that G′

i is the largest such subgraph of G and suppose that there exists

a vertex v ∈ G \ G′

i. Let Q′

1,1 = Q1,1 \ V (G′

i), Q
′

1,2 = Q1,2 \ V (G′

i). According to the

construction of G′

0, we have E(Q′

1,1, Q
′

1,2) = ∅. Certainly, every vertex adjacent to both

u1 and v1 is in G′

i. This means v ∈ Q′

1,1 ∪Q′

1,2. Without loss of generality, we assume

v ∈ Q′

1,1. Since G is 2-connected, we have that there is a 2-fan from v to G′

i. So, we

can find a path from v to G′

i other than vu1 within H1. Let w be the last vertex on

this path which is not in G′

i. We know that w must be adjacent to u1. This means that

dG′

i
(w) ≥ 2, and so we may set G′

i+1 = G′

i ∪ w to get a contradiction. This completes

the proof.

Case 2: For every 2-edge-cut S of G, G − S has a component with at most two

vertices.

If G does not have even cycle, then G = C3, C5 or C7 since G is 2-connected and

diam(G) = 3. It follows that pc(G) = 2. Thus, we suppose G contains an even cycle.

Let H = H(U, V ) be a maximal 2-edge-connected bipartite subgraph of G. We claim

that H contains all the vertices with degree at least 3 of G. Assume, to the contrary,

that there is a vertex v ∈ V (G) \ V (H) with dG(v) ≥ 3. We know that there exist

three edge-disjoint (v,H)-paths. If this is not the case, then we can find a 2-edge-

cut S ′ of G such that each component of G − S ′ has at least three vertices, which

contradicts the assumption. By the pigeonhole principle, there is a pair of (v,H)-paths

with the same parity of number of edges. Using these two paths, we can get a 2-edge-

connected bipartite subgraph H ′ containing the vertex v and H , which contradicts to

the maximality of H .

If H is a spanning subgraph of G, then pc(G) = 2 by Lemmas 1.1 and 1.3. Oth-

erwise, the components of G − H has the following two types: (1) an isolated ver-

tex; (2) an edge. Let A1, . . . , Ap, B1, . . . , Bq be the components of G − H such that

|Ai| = 1 (1 ≤ i ≤ p) and |Bj | = 2 (1 ≤ j ≤ q), where p, q are nonnegative integers, and

8



p = 0 or q = 0 means that there is no Ai-type component or Bj-type component. Let

N(Bj) = {aj , bj}. Then aj 6= bj since G is 2-connected. If aj and bj are in different par-

tite sets of H , then Bj∪H is also a 2-edge-connected bipartite graph, which contradicts

to the maximality of H . So, for each Bj we have that aj and bj are in the same partite

set of H . Let C(a, b) = {Bi|N(Bi) = {a, b}, 1 ≤ i ≤ q}. Since H is a 2-edge-connected

bipartite graph, it follows from Lemma 1.3 that H has a 2-edge-coloring c which makes

H have the strong property under c. If |C(a, b)| ≥ 2, then G[V (C(a, b)) ∪ {a, b}]− ab

is a 2-edge-connected bipartite graph. Thus, there is a 2-edge-coloring c such that

G[V (C(a, b)) ∪ {a, b}] − ab has the strong property under c by Lemma 1.3. Now we

color the edges of G \ {A1, . . . , Ap} with two colors {1, 2}. Firstly, we color the edges

of H such that H has the strong property under this coloring. Then, we color the

edges of G[U ] and G[V ] with color 2. If |C(a, b)| ≥ 2, then we color the edges of

G[V (C(a, b))∪{a, b}]−ab such that G[V (C(a, b))∪{a, b}]−ab has the strong property

under this coloring. If |C(a, b)| = 1, then G[V (C(a, b)) ∪ {a, b}]− ab is a path P with

length 3. Thus, we color the two pendant edges of P with color 1 and the central edge

of P with color 2.

Next, we will show that this 2-edge-coloring c makes G \ {A1, . . . , Ap} proper con-

nected. Let u, v be any two vertices of G \ {A1, . . . , Ap}. If both u and v are in H ,

then there is already a proper path connecting them in H . If one of u, v is in H ,

without loss of generality, let u ∈ H , then v has a neighbor v′ in H . Since H has

the strong property under c, it follows that there is a proper path P connecting u

and v′ in H such that end(P ) 6= c(vv′), and P ∪ {vv′} is a proper path connecting

u, v. If {u, v} ∈ V (C(a, b)), then there is already a proper path connecting them in

G[V (C(a, b)) ∪ {a, b}] − ab. Suppose that u ∈ V (C(a, b)) and v ∈ V (C(a′, b′)). Since

diam(G) = 3, we have E({a, b}, {a′, b′}) 6= ∅. If {a, b, a′, b′} ⊆ U or V , then without loss

of generality, let aa′ ∈ E({a, b}, {a′, b′}). If b = b′ and |C(a, b)| ≥ 2, |C(a′, b′)| ≥ 2, then

it is easy to check that there is a proper path P1 connecting u and b with end(P1) = 1

in G[V (C(a, b)) ∪ {a, b}] − ab, and there is also a proper path P2 connecting v and b′

with end(P2) = 2 in G[V (C(a′, b′))∪{a′, b′}]−a′b′. Thus, P1∪P2 is a proper path con-

necting u and v. If b 6= b′ or b = b′ and |C(a, b)| = 1 or b = b′ and |C(a′, b′)| = 1, then

it is easy to see that there is a proper path P1 connecting u and a with end(P1) = 1

in G[V (C(a, b)) ∪ {a, b}] − ab, and there is also a proper path P2 connecting v and a′

with end(P2) = 1 in G[V (C(a′, b′)) ∪ {a′, b′}]− a′b′. Thus, P1 ∪ {aa′} ∪ P2 is a proper

path connecting u and v. If {a, b} ⊆ U and {a′, b′} ⊆ V , then there is already a proper

({a, b}, {a′, b′})-path P in H with start(P ) = end(P ) = 2. Without loss of generality,

let a, a′ be the two endvertices of P . It is easy to check that there is a proper path P1

connecting u and a with end(P1) = 1 in G[V (C(a, b))∪ {a, b}]− ab, and there is also a

proper path P2 connecting v and a′ with end(P2) = 1 in G[V (C(a′, b′))∪{a′, b′}]−a′b′.

Thus, P1 ∪ P ∪ P2 is a proper path connecting u and v. Hence, G \ {A1, . . . , Ap} is

9



proper connected. Since dG(v) = 2 for each vertex v of Ai(1 ≤ i ≤ p), it follows that

pc(G) = 2 by Lemma 1.4, completing the proof. �
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