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Abstract

Directed graphs have long been used to gain understanding of the
structure of semigroups, and recently the structure of directed graph
semigroups has been investigated resulting in a characterization the-
orem and an analog of Fruct’s Theorem. We investigate four inverse
semigroups defined over undirected graphs constructed from the no-
tions of subgraph, vertex induced subgraph, rooted tree induced sub-
graph, and rooted path induced subgraph. We characterize the struc-
ture of the semilattice of idempotents and lattice of ideals of these four
inverse semigroups. Finally, we prove a characterization theorem that
states that every graph has a unique associated inverse semigroup up
to isomorphism.

1 Introduction

We will follow the notations of [5] for graph theory, [20] for semilattices
and lattices, and [9] for inverse semigroups. We will only consider finite
undirected graphs, but they are allowed to have multiple edges and loops.
We allow ∅ to be considered a graph without vertices or edges and the empty
map µ0 : ∅ → ∅ to be a valid graph isomorphism.

Much of the theory linking semigroups to graphs has been in the guise
of directed graphs [2, 15, 11, 10, 19]. However, undirected graphs have rich
internal symmetries for which groups are too coarse an algebraic structure
to distinguish. This has lead to notions of distinguishing number [1] and
fixing number [7]. Furthermore, local symmetry in the form of subgraph
embeddings has been used famously by Lovász to solve the edge reconstruc-
tion conjecture [8] for graphs with n vertices and m edges where m ≥ 1/2

(
n
2

)
[14]. The algebra of studying local symmetry is an inverse semigroup. This
leads us to investigate inverse semigroups on undirected graphs.
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In section 2, we begin by defining inverse semigroups associated to undi-
rected graphs to correspond to the ideas of subgraph symmetry, vertex
induced subgraph symmetry, tree induced subgraph symmetry, and path
induced subgraph symmetry. These four inverse semigroups are linked to
three famous conjectures in graph theory: the edge reconstruction conjec-
ture [8], the vertex reconstruction conjecture [4], and the Lovász conjecture
[13] which states that every vertex transitive graph contains a hamiltonian
path. These inverse semigroups are graph analogues of the inverse semi-
group of sets [16] with a necessary restriction of partial monomorphism to
partial isomorphism [6].

In section 3 we characterize the semilattice of idempotents for these
four inverse semigroups and their relation to the subgraph structure of the
associated graph. In section 4 we characterize the ideals of these four inverse
semigroups and characterize their ideal lattices. Finally, in section 5 we
prove that the inverse semigroup corresponding to all subgraphs of a graph
uniquely determines that graph up to isomorphism.

2 Inverse Semigroups Constructed from Graph Sym-
metry

We will start with the most general inverse semigroup associated to all
subgraphs of a graph.

Definition 2.1. Let G be a graph. We define Fisg(G) to be the collection
of all graph isomorphisms ϕ : H → J where H and J are subgraphs of G.

We then define composition. For ψ,ϕ ∈ Fisg(G) we define ψ ◦ ϕ :
ϕ−1(Dom(ψ)) → ψ(Im(ϕ)) to be ψ ◦ ϕ = ψ ◦ ϕ|ϕ−1(Dom(ψ)) and notice that
ψ ◦ ϕ is an isomorphism of subgraphs.

The composition of Fisg(G) is associative, and for any subgraph isomor-
phism ϕ, ϕ ◦ϕ−1 ◦ϕ = ϕ. Hence Fisg(G) forms an inverse semigroup under
composition. As we will see in section 4, Fisg(G) − Aut(G) is an ideal of
Fisg(G). When G is connected, a set of generators of this ideal is the set of
identity isomorphisms of edge deleted subgraphs of G, highlighting a strong
link to the edge reconstruction conjecture.

We get an analogous connection for the vertex reconstruction conjecture
if we instead consider an inverse semigroup associated to vertex induced
subgraphs of G.

Definition 2.2. Let G be a graph. We define Iisg(G) to be the collection
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of all graph isomorphisms ϕ : H → J where H and J are vertex induced
subgraphs of G.

We then define composition the same as for Fisg(G), and note that the
intersection of two vertex induced subgraphs is a vertex induced subgraph.
Hence Iisg(G) is also an inverse semigroup under composition, and the ideal
Iisg(G)−Aut(G) has a set of generators of identity isomorphisms of vertex
deleted subgraphs of G.

We now move to two inverse semigroups who are linked to the Lovász
conjecture. We would like to consider path induced subgraphs graph, as a
graph G has a hamiltonian path if and only if G is a path induced subgraph
of G. However, there is no natural well defined way to intersect two paths
and be guaranteed a path.

As the Lovász conjecture relates to vertex transitive graphs, we could
consider rooting the paths at any vertex. However, we still run into a prob-
lem where the intersection of path induced subgraphs is a non-path tree. For
an example of this, given any vertex root of the Petersen graph, two rooted
5-cycles generated by rooted paths that share the two edges incident to the
root in their cycles will have an intersection of a vertex rooted non-path
tree.

Figure 1: Two v-rooted path induced cycles of the Petersen Graph have a
v-rooted non-path tree intersection.

So we must either consider vertex rooted tree induced subgraphs or we
must consider vertex rooted path induced subgraphs paired with their vertex
rooted path. We will consider both, starting with the inverse semigroup
associated to vertex rooted tree induced subgraphs.

Definition 2.3. Let G be a graph and v ∈ V (G). We define v-rooted tree
induced subgraph H of G to be such that H = G[V (T )] for some tree T of
G rooted at v.
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Definition 2.4. Let G be a graph and v ∈ V (G). We define Tisg(G, v) to
be the collection of graph isomorphisms ϕ : H → J where ϕ(v) = v and H
and J are v-rooted tree induced subgraphs of G.

Defining composition is now a bit more technical. For ϕ,ψ ∈ Tisg(G, v)
we define ψ ◦ ϕ : ϕ−1(Cψ◦ϕ) → ψ(Cψ◦ϕ) where Cψ◦ϕ = G[V (Cψ◦ϕ)] and
V (Cψ◦ϕ) contains all vertices u ∈ V (G) such that there is a vu path con-
tained in both Im(ϕ) and Dom(ψ), and ψ ◦ ϕ = ψ ◦ ϕ|ϕ−1(Cψ◦ϕ).

Proposition 2.5. Let G be a graph and v ∈ V (G), then Tisg(G, v) is an
inverse semigroup.

Proof. Let ϕ,ψ, α ∈ Tisg(G, v). We first note that ψ ◦ ϕ is an isomorphism
between v-rooted tree induced subgraphs of G. For if x, y ∈ V (Cψ◦ϕ) then
there is a v, x-path contained in both Im(ϕ) and Dom(ψ), and similarly for
a v, y-path. Hence there is a x, y-path contained in Im(ϕ) and Dom(ψ) and
G[V (Cψ◦ϕ)] is connected. Then it contains a spanning tree which we root
at v, and as ψ and ϕ preserve v, the inverse image and image of G[V (Cψ◦ϕ)]
are also v-rooted tree induced subgraphs of G.

So it now suffices to show composition is associative. Consider α◦(ψ◦ϕ) :
(ψ ◦ ϕ)−1(Cα◦(ψ◦ϕ)) → α(Cα◦(ψ◦ϕ)). Let u ∈ V ((ψ ◦ ϕ)−1(Cα◦(ψ◦ϕ))), then
ψ ◦ ϕ(u) ∈ V (Cα◦(ψ◦ϕ)) and there is a v, ψ(ϕ(u))-path in both Im(ψ ◦ ϕ)
and Dom(α). As Im(ψ ◦ ϕ) = ψ(Cψ◦ϕ), there is a ψ−1(v), ψ−1(ψ(ϕ(u))) =
v, ϕ(u)-path in Cψ◦ϕ. Then there is a v, ϕ(u)-path in both Im(ϕ) and
Dom(ψ). Then the ψ(v), ψ(ϕ(u)) = v, ψ(ϕ(u))-path is a path in both
Im(ψ) and Dom(α). Hence ψ(ϕ(u)) ∈ V (Cα◦ψ), and the v, ϕ(u)-path is
both a path in Im(ϕ) and Dom(α ◦ ψ). Therefore ϕ(u) ∈ V (C(α◦ψ)◦ϕ)) and
u ∈ V (ϕ−1(C(α◦ψ)◦ϕ))). It is similar to show the reverse containment.

Hence ϕ−1(V (C(α◦ψ)◦ϕ))) = V ((ψ ◦ ϕ)−1(Cα◦(ψ◦ϕ))), and α ◦ (ψ ◦ ϕ)
and (α ◦ ψ) ◦ ϕ have the same domain. It is similar to show they have
the same codomain. Finally, as they have the same domain, codomain,
and are restrictions across the composition of isomorphisms, α ◦ (ψ ◦ ϕ) =
(α ◦ ψ) ◦ ϕ.

We now consider the case where we distinguish the vertex rooted path
that induces the subgraph.

Definition 2.6. Let G be a graph and v ∈ V (G). We define v-rooted path
induced subgraph H of G to be such that H = G[V (PH)] for some path PH
of G rooted at v. We call the pair (H,PH) the v-rooted path pair.
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Definition 2.7. Let G be a graph and v ∈ V (G). We define Pisg(G, v)
to be the collection of graph isomorphisms of v-rooted path pairs, that is
subgraph isomorphisms (ϕ,ϕ|PH ) : (H,PH)→ (J, PJ) where ϕ : H → J is a
subgraph isomorphism, ϕ(v) = v, and ϕ(PH) = PJ . When it does not cause
ambiguity, we will refer to (ϕ,ϕ|PH ) as ϕ.

Composition will be defined similarly to that of Tisg(G, v) taking into
account the distinguished path. Let ϕ,ψ ∈ Pisg(G, v). Then ϕ : (H,PH)→
(J, PJ) and ψ : (K,PK)→ (M,PM ). Define Pψ◦ϕ to be the longest v-rooted
path in common to both PJ and PK . Define Cψ◦ϕ = G[V (Pψ◦ϕ)]. We
then define ψ ◦ ϕ : (ϕ−1(Cψ◦ϕ), ϕ−1(Pψ◦ϕ)) → (ψ(Cψ◦ϕ), ψ(Pψ◦ϕ)) to be
ψ ◦ ϕ|ϕ−1(Cψ◦ϕ). Then by noting that a vertex u ∈ V (Cψ◦ϕ) is on a v, u-
path contained in both PJ and PK , namely Pψ◦ϕ, the following proposition
follows from a similar proof to Proposition 2.5.

Proposition 2.8. Let G be a graph and v ∈ V (G). Then Pisg(G, v) is an
inverse semigroup.

3 Semilattice Structures

In this section we concern ourselves with the semilattice structure formed
by the idempotents of our inverse semigroups. The following lemma will be
useful in determining the structure of these semilattices.

Lemma 3.1. Let G be a graph, then e ∈ Fisg(G) is idempotent if and only
if there exists a subgraph H of G with e = idH , the identity automorphism.

Proof. (⇐) For every subgraph H, idH is idempotent.
(⇒) Let e ∈ Fisg(G) be an idempotent. Then as ee = e, Dom(e) = Im(e)
and e is an automorphism of a subgraph H = Dom(e). As Aut(H) is a
group, and the only idempotent of a group is the identity, e = idH .

As for any graph G and v ∈ V (G), Iisg(G), Tisg(G, v) are subsemi-
groups of Fisg(G), we note the idempotents are the identities of vertex
induced subgraphs and v-rooted tree induced subgraphs for these subsemi-
groups respectively. Using this lemma we now characterize the idempotent
semilattice structure of Fisg(G), Iisg(G), and Tisg(G, v).

Theorem 3.2. Given a graph G, the semilattice of idempotents of Fisg(G)
form a bi-Heyting Algebra.
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Proof. Let e and f be idempotents of Fisg(G) with e ≤ f . Thus e = ef .
By Lemma 3.1, e = idH for some subgraph H of G and f = idJ for some
subgraph J of G. Hence idH = idH ◦ idJ . By definition of composition
in Fisg(G) this means that H is a subgraph of J . The converse trivially
holds. Thus we have order preserving isomorphism between the semilattice
of idempotents of Fisg(G) and that of subgraphs of G ordered by inclusion.
By [12, 18] the semilattice of subgraphs of a graph form a bi-Heyting Algebra.

We note that as there are inverse semigroups whose semilattice of idem-
potents are non-graded lattices, there is no hope of establishing a Fruct
style theorem for inverse semigroups using Fisg(G). The next two theorems
establish graded lattice structures for Iisg(G) and Tisg(G, v).

Theorem 3.3. Given a graph G, the semilattice of idempotents of Iisg(G)
form a Boolean Algebra.

Proof. Similarly to the proof of Theorem 3.2, as the idempotents of Iisg(G)
are the identities of induced subgraphs of G, the semilattice of idempotents
of Iisg(G) is order isomorphic to the semilattice of vertex induced subgraphs
of G ordered by inclusion. However, this semilattice is order isomorphic to
the Boolean Algebra of subsets of V (G) ordered by inclusion, for given X,Y
subsets of V (G), X ⊆ Y if and only if G[X] is a subgraph of G[Y ].

Theorem 3.4. Given a graph G and v ∈ V (G), the semilattice of idempo-
tents of Tisg(G, v) form a graded lattice.

Proof. Similarly to the proof of Theorem 3.2, as the idempotents of Tisg(G, v)
are the identities of v-rooted tree induced subgraphs of G, the semilattice of
idempotents of Tisg(G, v) is order isomorphic to the semilattice of v-rooted
tree induced subgraphs of G ordered by inclusion.

Let H1 and H2 be v-rooted tree induced subgraphs of G. We define
H1 ∧H2 = G[V (H1 ∧H2)] where V (H1 ∧H2) is the set of vertices such that
there is a v, u-path contained both in H1 and H2. We note that H1 ∧H2 is
a v-rooted tree induced subgraph of G by a similar argument to the proof
of Proposition 2.5. So it suffices to show it is meet of H1 and H2.

Now let K be a v-rooted tree induced subgraph of G such that K is a
subgraph of both H1 and H2. Let u ∈ V (K). As K contains a v-rooted tree
that spans it, there exists a v, u-path contained in K. As K is a subgraph
of H1 and H2, this v, u-path is contained in both H1 and H2. Hence u ∈
V (H1 ∧H2), and V (K) ⊆ V (H1 ∧H2). Then K = G[V (K)] is a subgraph
of H1 ∧H2.
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We now define H1 ∨ H2 = G[V (H1) ∪ V (H2)]. For any two vertices
x, y ∈ V (H1) ∪ V (H2) we have a path from v to x in either H1 or H2 and
similarly for v to y. Thus H1∨H2 is connected and contains a spanning tree.
Rooting this tree at v yields H1 ∨H2 as a v-rooted tree induced subgraph
of G.

Now let J be a v-rooted tree induced subgraph of G that contains H1

and H2 as subgraphs, and let u ∈ V (H1 ∨H2) = V (H1) ∪ V (H2). Then as
both H1 and H2 are subgraphs of J , u ∈ V (J). Then as V (H1∨H2) ⊆ V (J),
H1 ∨H2 is a subgraph of J .

As is G is finite, the lattice is bounded. For the component of G con-
taining v, all v-rooted spanning trees have the same number of edges. Hence
every chain of the lattice has the same length, and the lattice is graded.

Finally, we see that Pisg(G, v) will not be a lattice except for a specific
class of rooted graphs.

Proposition 3.5. Let G be a graph and v ∈ V (G), then the idempotents of
Pisg(G, v) form a lattice if and only if G is a v-rooted path.

Proof. (⇒) Similarly to the proof of Theorem 3.2, the idempotents of Pisg(G, v)
are the identities of v-rooted path pairs, and the idempotent order is order
isomorphic to the inclusion order of v-rooted path pairs. So suppose that G
is not a v-rooted path. There there are two distinct v-rooted paths PH and
PJ in G with v-rooted path pairs (H,PH) and (J, PJ). As the only v-rooted
subgraph that can contain both PH and PJ contains either a non-path tree
or a cycle, (H,PH)∨(J, PJ) does not exist. Hence Pisg(G, v) is not a lattice.

(⇐) As the semilattice of v-rooted path pairs of a v-rooted path is a
chain, it is a lattice.

4 Ideals and Ideal Lattice Structures

In this section, we study the ideals of our graph inverse semigroups and the
lattice structure of these ideals.

Definition 4.1. Given a semigroup S, a two sided ideal (or simply ideal)
of S, I is a set I ⊆ S where SI, IS ⊆ I. [9]

This is of particular note since ideals of a semigroup induce an equiva-
lence relationship which leads to the construction of a quotient semigroup:

Theorem 4.2 (Rees Factor Theorem). Let S be a semigroup and let I be
an ideal of S. Then define the relation ∼I⊆ S × S where a ∼I b if and only
if a, b ∈ I or a = b. It follows that:

7



1. ∼ is an equivalence relationship.

2. S/ ∼I is a well defined factor semigroup.

[17]

Since each ideal I of S gives rise to a factor semigroup, and consequently
a kernel of a semigroup homomorphism, one naturally wishes to classify all
such ideals for the inverse semigroups of graphs and consider their structure.

We begin with a utility lemma regarding ideals.

Lemma 4.3. Let S be a semigroup and {Ii} be a collection of ideals of S.
Then

⋂
Ii and

⋃
Ii are ideals of S.[9]

Then, the following results with proof for Fisg(G) are given.

Definition 4.4. Given a graph G and a ∈ Fisg(G) where a : H → K, we
call 〈a〉 := {ϕ : L→M | L,M are isomorphic to a subgraph of H} the ideal
generated by a.

We note that since µ0, the empty map, is in Fisg(G), µ0 ◦ a = a ◦ µ0 =
µ0 ∈ 〈a〉. To earn its name, we prove that 〈a〉 is in fact an ideal.

Proposition 4.5. Given a graph G and a ∈ Fisg(G) where a : H → K, it
follows that 〈a〉 is an ideal.

Proof. Let α ∈ Fisg(G). We consider α◦a. If Im(a)∩Dom(α) = ∅ then α◦a
is the empty map and is in 〈a〉. Otherwise α ◦ a = α ◦ a|a−1(Dom(α)). Notice
that Im(a) ∩ Dom(α) is a subgraph of Im(a). Since Im(a) is isomorphic
to H, Im(a) ∩ Dom(α) is isomorphic to a subgraph of H and α ◦ a is an
isomorphism of subgraphs isomorphic to a subgraph of H.

Similarly, consider a ◦ α. If Im(α) ∩ Dom(a) = ∅ then a ◦ α is the
empty map and is in 〈a〉. Otherwise a ◦ α = a ◦ α|α−1(Dom(a)). Notice that
Im(α) ∩ Dom(a) is a subgraph of H. Thus the domain α ◦ a is a subgraph
of H and α ◦ a is an isomorphism of subgraphs isomorphic to a subgraph of
H.

Theorem 4.6. Given a graph G and a ∈ Fisg(G) where a : H → K,
〈a〉 =

⋂
Ii where Ii is an ideal of Fisg(G) containing a.

Proof. Since 〈a〉 is an ideal containing a, we have that 〈a〉 ⊇
⋂
Ii.

To show the other containment, we let I be an ideal containing a. Let L′

be a subgraph of H. Then idL′ ∈ Fisg(G) and so a◦ idL′ ∈ I. Since Im(idL′)
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is L′, we have that a ◦ idL′ = a|L′ and a ◦ idL′ is an isomorphism from L′

to an isomorphic subgraph of K, let us call this subgraph L′′. Given any
subgraph of G M isomorphic to L′, there is an isomorphism ϕ : L′ → M .
But notice that since a◦idL′ is an isomorphism, it is invertible and moreover
a ◦ idL′ ∈ I. Thus ϕ ◦ (a ◦ idL′)−1 ◦ (a ◦ idL′) ∈ I and ϕ ∈ I.

Then consider an induced subgraph of G L isomorphic to L′. There is
then an isomorphism ψ : L → L′. Since Im(ψ) = L′ = Dom(ϕ), it follows
that ϕ ◦ ψ is an isomorphism, where ϕ ◦ ψ : L→M . Since ϕ ∈ I, ϕ ◦ ψ ∈ I.

Thus, given any L,M isomorphic to a subgraph of H, there is an iso-
morphism ϕ ◦ ψ ∈ I, ϕ ◦ ψ : L→M . So given any isomorphism γ : L→M ,
γ ◦ (ϕ ◦ψ)−1 ◦ (ϕ ◦ψ) ∈ I and γ ∈ I. So it follows that 〈a〉 ⊆ I. Since I was
arbitrarily chosen, 〈a〉 ⊆

⋂
Ii and so 〈a〉 =

⋂
Ii.

Corollary 4.7. 〈a〉 = Fisg(G)aFisg(G).

Proof. Fisg(G)aFisg(G) is the principle ideal containing a [9] and so by
Theorem 4.6 〈a〉 ⊆ Fisg(G)aFisg(G). Conversely, given any φ ◦ a ◦ ρ ∈
Fisg(G)aFisg(G), φ ◦ a ∈ 〈a〉 by the arguments in Proposition 4.5, and so
by the same arguments, (φ ◦ a) ◦ ρ ∈ 〈a〉. Thus Fisg(G)aFisg(G) ⊆ 〈a〉.

In other words 〈a〉 is the minimal ideal of Fisg(G) containing a.
We notice that an ideal generated by a single element of Fisg(G) is totally

determined by the domain subgraph of that element, and all of its subgraphs.
Since ideals are closed under unions and intersections, it is easy to see that
any ideal is the union of all the principle ideals of its elements. Thus one
can see that an ideal is best understood by the subgraphs which constitute
the domains of these functions. In order to deal with these subgraphs in a
clear way, we introduce the notion of a basis.

Definition 4.8. Let G be a graph and let I be an ideal of Fisg(G). Let B
be a family of graphs where given any a ∈ I, a : H → K H is isomorphic to
a subgraph of Bi ∈ B. Moreover, given any Bi ∈ B, there is an α ∈ I where
Bi is the domain of α. We call B a generating set of graphs of I. If B is
minimal, we say B is a basis of I.

We can think of a basis of an ideal I either as the minimal collection of
subgraphs whose subgraphs are domains of elements of I, or we can think
of the elements of B as the maximal subgraphs who are domains of elements
of I. We prove some essential properties of the basis.

Lemma 4.9. Let G be a graph and let I be an ideal for Fisg(G). Let C be a
finite family of graphs which is a generating set of graphs for I. Then there
is a B ⊆ C where B is a basis for I.
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Proof. We begin with induction on |C|. If |C| = 1, then C = {C1} is a
singleton and is clearly minimal. So we assume this is true for C where
|C| < n and consider the case where |C| = n. If C is minimal with respect
to being a generating set of graphs for I, then we let B = C and we are
done. Otherwise there is a Cj , without loss of generality Cn where C\{Cn}
remains a generating set of graphs for I. By induction, there is a B ⊆ C\{Cn}
minimal with respect to this property. Thus B is a basis for I.

Corollary 4.10. Given a graph G and I an ideal of Fisg(G), I has a basis
B.

Proof. We let C := {H | ∃a ∈ I, a : H → K}. Since G is finite, C is finite,
and by Lemma 4.9 there is a basis for I, B ⊆ C.

Proposition 4.11. Let G be a graph and let I, J be ideals of Fisg(G) where
I ⊆ J . Let B = {B1, . . . Bm} be a generating set for J . Then there is a
basis for I, C = {C1, . . . , Cm} where Ci is isomorphic to a subgraph of some
Bj ∈ B.

Proof. Let C = {C1, . . . Cm} be a basis for I. Consider Ci, there is an
a ∈ I, a : Ci → K. Thus Ci is the induced subgraph of H ′ where H ′ is
a subgraph of G and there is a b ∈ J where b : H ′ → K ′. Since B is a
generating set for J , there is a Bj where H ′ is isomorphic to a subgraph of
Bj . Thus Ci is isomorphic to a subgraph of Bj .

Proposition 4.12. Given a graph G and I, J ideals of Iisg(G) with basis
B, C respectively, then B ∪ C is a generating set of graphs for I ∪ J .

Proof. Let a ∈ I ∪ J , then a ∈ I or a ∈ J . If a ∈ I then a : H → K where
H is isomorphic to a subgraph of Bi ∈ B otherwise if a ∈ J then a : M → L
where M is isomorphic to a subgraph of Cj ∈ C. Either way, the domain of
a is isomorphic to a subgraph of an element of B ∪ C.

Theorem 4.13. Let G be a graph, and let I be an ideal of Fisg(G) with
basis B. Then B is unique up to isomorphism.

Proof. Let B = {B1, . . . Bm} and C = {C1, . . . Cn} be basis of I. Suppose
that Bm is not isomorphic to any Cj ∈ C. Then there must be a Ck where
Bm is isomorphic to a subgraph of Ck. Since Ck ∈ C, Ck is isomorphic
to the domain of some a ∈ I. Thus there is a Bi where Ck is isomorphic
to a subgraph of Bi. But then Bm is isomorphic to a subgraph of Bi,
contradicting the minimality of B.
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Proposition 4.14. Let H1, . . . Hn be a collection of subgraphs of G where

no Hi is a subgraph of Hj when i 6= j. Then

n⋃
i=1

〈idHi〉 has basis B =

{H1, . . . ,Hn}.

Proof. First, note that 〈idHi〉 contains a subgraph isomorphism whose do-
main is Hi. Thus, 〈idHi〉 is the collection of all subgraph isomorphisms

between any graphs isomorphic to a subgraph of Hi. Let I :=
n⋃
i=1

〈idHi〉.

Notice that given any a ∈ I it follows that a ∈ 〈idHi〉 for some i and thus
the domain of a is isomorphic to a subgraph of Hi. Thus B is a generat-
ing set for I. But since no Hi is a subgraph of any Hj , i 6= j and each
idHi ∈ I, it follows that B is minimal, since removing any Hi would contra-
dict idHi ∈ I.

This collection of results show that each ideal is determined exactly
by its basis, and exhibits a 1-1 correspondence between ideals of Fisg(G)
and collections of subgraphs of G where no element of these collections is
isomorphic to a subgraph of another.

Finally, we consider the lattice structure of this ideal as in Theorems 3.2,
3.3, 3.4 and Proposition 3.5.

Theorem 4.15. Let G be a graph and let I denote the collection of ideals of
Fisg(G). Then, I forms a distributive semimodular lattice under inclusion.

Proof. To show that I is a distributive lattice, we notice that by Lemma 4.3,
the elements of I are closed under union and intersection. Thus it follows
that I is a distributive lattice [3], where given A,B ∈ I, A∧B = A∩B and
A ∨B = A ∪B.

To show semimodularity, notice Let A,B ∈ I such that A ∨B does not
cover B. That is, there is a C ∈ I such that B < C < A∪B. Thus there is
a ψ ∈ C\B and since C ⊆ A ∪B we have that ψ ∈ A. But 〈ψ〉 6= A or else
B ⊆ C, 〈ψ〉 ⊆ C and A ∪B ⊆ C.

Thus consider 〈ψ〉 ∪ (A ∩ B). By 4.3 this is an ideal of Fisg(G). It
is clear that A ∩ B ⊆ 〈ψ〉 ∪ (A ∩ B), but moreover this containment is
strict since ψ 6∈ B. Similarly 〈ψ〉 ∪ (A ∩ B) ⊆ A but this containment is
strict, else if 〈ψ〉 ∪ (A ∩ B) = A, then (〈ψ〉 ∪ (A ∩ B)) ∪ B) = A ∪ B, but
〈ψ〉 ∪ (A ∩ B) ∪ B = 〈ψ〉 ∪ B = C 6= A ∪ B. Thus A does not cover A ∩ B
and I is semimodular.
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Proposition 4.16. Let G be a graph other than K1, and let I be the ideals
of Fisg(G). Then the lattice of I ordered by inclusion is not atomic.

Proof. Let S denote the collection of proper subgraphs of G and consider

X =
⋃
H∈S
〈idH〉. By Lemma 4.3 this is an ideal of Fisg(G) with a generating

set of graphs S. Let B ⊆ S be a basis for X. So notice that idG 6∈ X, or
else G would be the subgraph of some element of B, and all elements of B
are proper subgraphs of G. But clearly idG ∈ 〈idG〉 = Fisg(G). Since G has
proper subgraphs, 〈idG〉 is not an atom, and since 〈idG〉 is not the join of
any other elements of I, I is not atomic.

Notice that the results of this section can be easily extended to Iisg(G),
Tisg(G, v) and Pisg(G, v) with similar definitions. In the case of Iisg(G),
we replace the notion of subgraph with induced subgraph. Since the in-
duced subgraphs of induced subgraphs are in fact induced subgraphs of G,
as are the intersection of such subgraphs, by mimicking the arguments of
Proposition 4.5 and Theorem 4.6 we have:

Theorem 4.17. Let G be a graph, a ∈ Iisg(G), consider the ideal generated
by a, 〈a〉 := {ϕ : H → K} where H,K are induced subgraphs of G isomor-
phic to an induced subgraph of the domain of a. Then 〈a〉 is an ideal of
Iisg(G) and is the minimal such ideal containing a.

Similarly, following the arguments of Lemma 4.9, Propositions 4.11, 4.12
and Theorem 4.13 we have:

Theorem 4.18. Let G be a graph and I an ideal of Iisg(G), and then let
B be a collection of induced subgraphs of G so that given any a ∈ I, the
domain of a is isomorphic to an induced subgraph of some Bi ∈ B, and for
each Bi ∈ B, there is an a ∈ I where the domain of a is isomorphic to Bi.
We call B a generating set of graphs for I, and if B is minimal, then B is
called a basis of I.

Then we have that each ideal I of Iisg(G) has a basis, that basis is unique
up to isomorphism, each generating set of graphs for an ideal I contains a
basis, the union of ideals I, J has a generating set which is the union of the
basis, and given any ideals I,K where I ⊆ K, the elements of the basis for
I are induced subgraphs of the elements of the basis for K.

Finally, mimicking the arguments for Theorem 4.15 and Proposition 4.16,
we have that:

12



Theorem 4.19. Let G be a graph and let I be the poset of ideals of Iisg(G)
ordered by inclusion. Then I is semimodular, but if G contains more than
2 vertices, then I is not atomic.

The structure of Tisg(G, v) is nearly identical to the structure of Iisg(G)
except that the domains of these subgraph isomorphisms are induced sub-
graphs which contain a specific root vertex v. Nevertheless we may use
similar arguments to obtain:

Theorem 4.20. Let G be a graph, v ∈ G, a ∈ Tisg(G, v), consider the
ideal generated by a, 〈a〉 := {ϕ : H → K} where H,K are connected induced
subgraphs of G containing v and isomorphic to a connected induced subgraph
the domain of a containing v. Then 〈a〉 is an ideal of Tisg(G, v) and is the
minimal such ideal containing a.

Theorem 4.21. Let G be a graph, v ∈ G and I an ideal of Tisg(G, v), and
then let B be a collection of connected induced subgraphs of G containing
v so that given any a ∈ I, the domain of a is isomorphic to a connected
induced subgraph of some Bi ∈ B containing v, and for each Bi ∈ B, there is
an a ∈ I where the domain of a is isomorphic to Bi. We call B a generating
set of graphs for I, and if B is minimal, then B is called a basis of I.

Then we have that each ideal I of Tisg(G, v) has a basis, that basis
is unique up to isomorphism, each generating set of graphs for an ideal I
contains a basis, the union of ideals I, J has a generating set which is the
union of the basis, and given any ideals I,K where I ⊆ K, the elements of
the basis for I are connected induced subgraphs of the elements of the basis
for K and contain v.

Theorem 4.22. Let G be a graph and let I be the poset of ideals of Tisg(G, v)
ordered by inclusion. Then I is semimodular, but if G is connected and con-
tains more than 2 vertices, then I is not atomic.

The structure of Pisg(G, v) is further complicated by the ordered graph,
path structure. However, analogous definitions and results still hold:

Theorem 4.23. Let G be a graph, v ∈ G, a ∈ Pisg(G, v), consider the
ideal generated by a : (L,PL) → (M,PM ), 〈a〉 := {ϕ : (H,PH) → (K,PK)}
where PH , PK are paths rooted at v and isomorphic to a subpath of PL, P ′L,
rooted at v, and H,K are isomorphic to G[V (P ′L)]. Then 〈a〉 is an ideal of
Pisg(G, v) and is the minimal such ideal containing a.

Theorem 4.24. Let G be a graph, v ∈ G and I an ideal of Pisg(G, v), and
then let B be a collection of pairs (Bi, PBi) where PBi is a path rooted at v,
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Bi = G[V (PBi)] and given any a ∈ I, the domain of a with domain (H,PH),
we have that PH is isomorphic to a v rooted subpath of some PBi and H
is isomorphic to G[V (PBi)], and for each (Bi, PBi) ∈ B, there is an a ∈ I
where the domain of a is isomorphic to (Bi, PBi). We call B a generating
set of graphs for I, and if B is minimal, then B is called a basis of I.

Then we have that each ideal I of Pisg(G, v) has a basis, that basis is
unique up to isomorphism, each generating set of graphs for an ideal I con-
tains a basis, the union of ideals I, J has a generating set which is the union
of the basis, and given any ideals I,K where I ⊆ K, the elements of the
basis for I are v rooted path induced subgraphs of the elements of the basis
for K.

Theorem 4.25. Let G be a graph and let I be the poset of ideals of Pisg(G, v)
ordered by inclusion. Then I is semimodular, but if G is connected and con-
tains more than 2 vertices, then I is not atomic.

5 Graph Characterization by Inverse Semigroups

We now consider the question of characterization. We show that Fisg(G)
characterizes G and conversely. We then show this characterization will not
hold in Iisg(G) and give an infinite class of counterexamples.

Theorem 5.1. Let G and H be graphs, then Fisg(G) ∼= Fisg(H) if and only
if G ∼= H.

Proof. (⇒) Let Φ : Fisg(G) → Fisg(H) be a semigroup isomorphism. Let
v ∈ V (G), and idv : {v} → {v} be the identity subgraph isomorphism.
As idv is an idempotent Φ(idv) is an idempotent. By Lemma 3.1, Φ(idv)
is a subgraph automorphism of H. Furthermore as the lattice structure of
idempotents is preserved by the semigroup isomorphism, Φ(idv) corresponds
to a single vertex subgraph of H as Φ(idv) covers the empty map. Thus
we define φ : V (G) → V (H) by φ(v) = Φ(idv)(v). For u ∈ V (H), we
similarly define φ−1 : V (H) → V (G) by φ−1(u) = Φ−1(idu)(u) and notice
that φ−1 ◦ φ = idV (G) and φ ◦ φ−1 = idV (H). Hence φ is a bijection.

Now let e ∈ E(G) be a loop. Let E be the subgraph of e and its incident
vertex, v. Then Φ(idE) corresponds to an idempotent that only covers a
single vertex, namely Φ(idv) as Φ(idE ◦ idv) = Φ(idE) ◦ Φ(idv) = Φ(idv).
Thus Φ(idE) is the identity of a subgraph of H consisting of an edge and its
incident vertex Φ(idv)(v). Thus Φ(idE)(e) is a loop in E(H).

If e ∈ E(G) is a non-loop edge and E is the subgraph of e and its two
incident vertices u and v, then Φ(idE) covers the join of Φ(idu) and Φ(idv),
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and it does not cover any other single vertex isomorphisms. Hence Φ(idE) is
a subgraph consisting of an edge and two incident vertices, namely Φ(idu)(u)
and Φ(idv)(v). Then Φ(idE)(e) is an edge of H. Thus for e ∈ E(G) we define
θ : E(G) → E(H) by θ(e) = Φ(idE)(e) for E the subgraph consisting of e
and its incident vertices (or vertex if it is a loop). For f ∈ E(H), we similarly
define θ−1 : E(H)→ E(G) by θ−1(f) = Φ−1(idF )(f) for F the subgraph of
H consisting of f and its incident vertices (or vertex if it is a loop). Then
θ−1 ◦ θ = idE(G) and θ ◦ θ−1 = idE(H), and θ is a bijection.

Let e ∈ E(G) incident to u, v ∈ V (G). Then as Φ(idE)(E) is a subgraph
of H with vertices Φ(idu)(u) and Φ(idv)(v), θ(e) = Φ(idE)(e) is incident to
φ(u) = Φ(idu)(u) and φ(v) = Φ(idv)(v). Thus θ preserves incidence. Hence
ϕ = (φ, θ) is a graph isomorphism and G ∼= H.

(⇐) Let ϕ : G → H be an isomorphism. Then for f : G1 → G2 in
Fisg(G) define Φ : Fisg(G)→ Fisg(H) by Φ(f) = ϕfϕ−1 : ϕ(G1)→ ϕ(G2).
As ϕ is an isomorphism, ϕ(G1) ∼= ϕ(G2) in H and Φ(f) ∈ Fisg(H).

Now suppose f, g ∈ Fisg(G) with f : G1 → G2 and g : G3 → G4. Then
G2 ∩ G3 is a subgraph of G and g ◦ f : f−1(G2 ∩ G3) → g(G2 ∩ G3) is an
subgraph isomorphism. Hence Φ(g ◦ f) = ϕ ◦ (g ◦ f) ◦ ϕ−1 : ϕ(f−1(G2 ∩
G3)) → ϕ(g(G2 ∩ G3)) and is an element of Fisg(G). Then, Φ(g ◦ f) =
ϕ ◦ (g ◦ f) ◦ ϕ−1 = (ϕ ◦ g ◦ ϕ−1) ◦ (ϕ ◦ f ◦ ϕ−1) = Φ(g) ◦Φ(f). Hence Φ is a
semigroup homomorphism.

Now for j : H1 → H2 in Fisg(H), we define Φ−1 : Fisg(H)→ Fisg(G) by
Φ−1(j) = ϕ−1 ◦ j ◦ ϕ : ϕ−1(H1) → ϕ−1(H2). Similarly Φ−1 is a semigroup
homomorphism and Φ−1 ◦ Φ = idFisg(G) and Φ ◦ Φ−1 = idFisg(H). Thus
Fisg(G) ∼= Fisg(H).

For G the graph of a vertex with a loop and K1 the single vertex graph,
we have that Iisg(G) ∼= Iisg(K1). Furthermore for Kn and Kn the empty
edge graph on n vertices Iisg(Kn) ∼= Iisg(Kn). As isomorphisms preserve
both adjacency and non-adjacency in simple graphs, an isomorphism of ver-
tex induced subgraphs of a simple graph induces an isomorphism of the
subgraphs of its complement on the same vertex sets. Thus they will have
isomorphic induced subgraph inverse semigroups. We formally state this
below.

Proposition 5.2. Let G be a simple graph and G be its complement graph,
then Iisg(G) ∼= Iisg(G).
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