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Distant sum distinguishing index of graphs

Jakub Przyby lo1,2

AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Krakow, Poland

Abstract

Consider a positive integer r and a graph G = (V,E) with maximum degree ∆ and
without isolated edges. The least k so that a proper edge colouring c : E → {1, 2, . . . , k}
exists such that

∑

e∋u c(e) 6=
∑

e∋v c(e) for every pair of distinct vertices u, v at distance
at most r in G is denoted by χ′

Σ,r(G). For r = 1 it has been proved that χ′

Σ,1(G) =
(1 + o(1))∆. For any r ≥ 2 in turn an infinite family of graphs is known with χ′

Σ,r(G) =

Ω(∆r−1). We prove that on the other hand, χ′

Σ,r(G) = O(∆r−1) for r ≥ 2. In particular

we show that χ′

Σ,r(G) ≤ 6∆r−1 if r ≥ 4.

Keywords: distant sum distinguishing index of a graph, neighbour sum distinguishing
index, adjacent strong chromatic index, distant set distinguishing index

1. Introduction

Vertex distinguishing edge colourings have their origins in the concept of irregularity
strength. This graph invariant was designed in [10] as a peculiar measure of a “level of
irregularity” of a graph. A graph or multigraph is called irregular itself if all its vertices
have pairwise distinct degrees (see [9] for possible alternative definitions). Note that there
are in fact no irregular graphs at all, except the trivial 1 vertex case. Thus to capture
the degree of irregularity of a graph, the authors of [10] exploited the fact that there are
in turn irregular multigraphs of any order, except order 2. The irregularity strength of a
graph G = (V,E), s(G), is then defined as the least k such that we are able to construct
an irregular multigraph of a given graph by multiplying some of its edges – each at most
k times. Equivalently, it is the least k so that an edge colouring c : E → {1, 2, . . . , k}
exists attributing every vertex v ∈ V a distinct weighted degree defined as:

dc(v) :=
∑

e∋v

c(e).

This shall be also called the sum at v, see e.g. [3, 6, 11, 12, 14, 15, 17, 23, 27, 28, 30, 36, 37]
for exemplary results concerning s(G). An intriguing local version of the same problem
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was proposed in [25]. The parameter investigated there differs from s(G) by the reduction
of the pairwise distinction requirement only to adjacent vertices, and shall be denoted
by s1(G). The well known 1–2–3 Conjecture presumes that s1(G) ≤ 3 for every graph G
without isolated edges, see [25]. This was investigated e.g. in [1, 2, 42]. In general it is
however thus far only known that s1(G) ≤ 5, see [24]. A distance generalization of this
problem, introduced in [33] and referring in particular to the known distant chromatic
numbers (see [26] for a survey of this topic), handles a graph invariant sr(G) (where r is a
positive integer), that is the least integer k so that an edge colouring c : E → {1, 2, . . . , k}
exists with dc(u) 6= dc(v) for every u, v ∈ V at distance at most r in G, u 6= v – see
also [34].

The main subject of this paper is the correspondent of sr(v) in the case of proper

edge colourings. For any positive integer r and a graph G = (V,E) without isolated
edges, by χ′

Σ,r(G) we denote the least integer k such that a proper edge colouring c :
E → {1, 2, . . . , k} exists with dc(u) 6= dc(v) for every u, v ∈ V with 1 ≤ d(u, v) ≤ r,
where d(u, v) denotes the distance of u and v in G. This is called the r-distant sum

distinguishing index of G. Such concept develops the study on the earlier neighbour sum

distinguishing index of G, χ′

Σ(G) = χ′

Σ,1(G), for which it was conjectured in [16] that
χ′

Σ(G) ≤ ∆(G) + 2 for any connected graph G of order at least three different from the
cycle C5. This was asymptotically confirmed in [32] and [31], where it was showed that
χ′

Σ(G) ≤ (1 + o(1))∆(G), see also [8, 13, 16, 38, 39, 40] for other results concerning χ′

Σ.
Exactly the same upper bound as in the case of χ′

Σ above was conjectured to hold for
the graph invariant χ′

a(G) [43] (so called adjacent strong chromatic index of G), i.e. the
least k for which a proper edge colouring c : E → {1, 2, . . . , k} exists attributing distinct
sets of incident colours to the neighbours in G (see e.g. [4, 5, 18, 19, 20, 21, 22, 41, 43] for
a number of partial results and upper bounds for this graph invariant, which is one of the
most intensively studied subjects within the area), though obviously χ′

a(G) ≤ χ′

Σ(G) for
every graph G without isolated edges. It is however much more challenging to distinguish
vertices by sums than by the corresponding sets (even though the conjectured optimal
upper bounds are the same in case of the both parameters – χ′

Σ and χ′

a), what can
be easily seen while attempting to apply the probabilistic method. Such approach was
e.g. used in [19] to provide an upper bound χ′

a(G) ≤ ∆(G) + C for all graphs without
isolated edges where C is a constant (in particular, if ∆(G) is large enough, C = 300
suffices). In order to bring out the fact that distinguishing by sums is indeed much more
demanding than by sets, one needs to consider distance correspondents of χ′

Σ and χ′

a.
It was in particular conjectured in [35] that for any r ≥ 2, analogously as in the case of
r = 1, χ′

a,r(G) ≤ ∆(G) + C under minor assumption that δ(G) ≥ δ0, where C and δ0
are constants dependent on r. This was confirmed asymptotically and also exactly for
some wide graph classes, in particular for all regular (and almost regular) graphs with
degree large enough, see [35] for details. The same certainly does not hold in case of
distinguishing by sums, though. Indeed, from [33] follow lower bounds for χ′

Σ,r based
on research concerning so-called Moore bound (see e.g. a survey [29] concerning this),
focused on studying the largest possible number of vertices of a graph with maximum
degree ∆ and diameter r, denoted by n∆,r. Namely, it is known that χ′

Σ,r(G) ≥ sr(G) ≥
n∆,r

∆ , hence using e.g. a construction of undirected de Bruijn graphs we get for every
r ≥ 2 an infinite family of graph with χ′

Σ,r(G) ≥ Ω(∆r−1), while using an asymptotic
result of Bollobás and Fernandez de la Vega [7] we even obtain for a fixed ∆ an infinite
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family of graphs with diameter r tending to infinity of order asymptotically equivalent to
∆r (hence with χ′

Σ,r(G) at least asymptotically equivalent to ∆r−1), see [33] for details.
Lower bounds of the same form also hold if we narrow our interest down to regular (or
almost regular) graphs. This shows that the difference between the behaviour of χ′

Σ,r

and χ′

a,r is enormous for r > 2, what could not be discerned e.g. in case of distinguishing
only neighbours (i.e. for χ′

Σ = χ′

Σ,1 and χ′

a = χ′

a,1).
In this paper we provide general upper bounds for χ′

Σ,r of the same magnitude as

the lower ones above. In particular we prove that χ′

Σ,r(G) ≤ 6∆r−1 for r ≥ 4 and

prove the upper bound of order ∆r−1 also in the remaining cases (for r = 2, 3), see
Theorem 1 below for details. These are the first upper bounds of this order for these
graph invariants, refining the result from [33], where only slightly better upper bounds
(with the same leading ingredient) were proved to hold for the simpler case of non-proper
edge colourings, i.e., the graph invariants sr(G).

2. Main Result and Proof

The mentioned above Moore bound, expressing an upper bound for the largest possi-
ble number of vertices of a graph with maximum degree ∆ and diameter r is the following
(see [29]):

M∆,r := 1 + ∆ + ∆(∆ − 1) + . . . + ∆(∆ − 1)r−1.

Given a graph G = (V,E) with maximum degree ∆ and a vertex v ∈ V , denote by N r(v)
the set of r-neighbours of v, i.e. vertices u 6= v at distance at most r from v in G, and
note that dr(v) := |N r(v)| ≤ M∆,r − 1 ≤ ∆r for any r ≥ 1.

Theorem 1. Let G be a graph without isolated edges and with maximum degree ∆ ≥ 2,
and let r be an integer, r ≥ 2. Then

χ′

Σ,r(G) ≤ 6

(

M∆,r − 1

∆
+ ∆ − 1

)

+ ∆,

hence

χ′

Σ,r(G) ≤ 6∆r−1

for r ≥ 4, while χ′

Σ,3(G) ≤ 6∆2 + ∆ and χ′

Σ,2(G) ≤ 13∆ − 6.

Proof. We fix r ≥ 2 and prove the theorem by induction with respect to the number
of vertices of G, denoted by n. It is sufficient to show the thesis in the case when G is a
connected graph (which is not an isolated edge) with maximum degree ∆ ≥ 2.

For n = 3 the theorem obviously holds, so assume n ≥ 4. Denote

M =
M∆,r − 1

∆
and K = M + ∆ − 1,

and note that then for every v ∈ V we in particular have

dr(v) ≤ d(v)M. (1)

Suppose first that G contains a vertex v of degree 2 such that d(u) ≤ 3 for every
u ∈ N(v). Let H = G − v. By induction hypothesis we may find a desired colouring
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of every component of H using colours 1, 2, . . . , 6K + ∆, where we use colour 1 on any
potential K2-component of H disregarding temporarily a sum conflict between the ends
of such K2. Let N(v) = {u1, u2}. We then greedily choose a colour in [1, 6K + ∆] for
the edge vu1 so that the obtained (partial) edge colouring (of G) is proper, the (partial)
sum at v is distinct from the (partial) sum at u2 and the sum at u1 is distinct from the
sums at all its r-neighbours in G. We are able to do this, as the restrictions above block
at most 2 + 1 + 3M of the available colours. Then we greedily choose a colour for vu2

from [1, 6K + ∆] so that the obtained edge colouring of G is proper and the sums at v
and u2 are distinct from the sums at their respective r-neighbours. This is feasible as
such restrictions block at most 1 + 2 + 2M + 3M options. We thus obtain a desired edge
colouring of G.

Hence we may assume from now on that:

(∗) every vertex of degree 2 is adjacent with a vertex of degree at least 4 in G.

We may also assume that G is not a star (as for any r, we obviously have χ′

Σ,r(G) = ∆
if G is a star). Then there are in G two adjacent vertices with degrees at least 2. We
choose a pair of such adjacent vertices that maximizes the sum of their degrees. By (∗)
above, the sum of their degrees must equal at least 6. We set one of these as a root
and denote it as vn, and denote the second of these vertices as vn−1. Then we continue
constructing a spanning tree of G using BFS algorithm, denoting the consecutively chosen
vertices by vn−2, vn−3, . . ., and denote the obtained tree by F . This way we also obtain
the ordering v1, v2, . . . , vn−1, vn of the vertices of G, such that dG(vn−1), dG(vn) ≥ 2,
dG(vn−1) + dG(vn) ≥ 6 and every vertex vi in this sequence except vn has a forward

neighbour in G, i.e. a neighbour vj of vi in G with j > i. Analogously we define
backward neighbours of vi, and forward and backward r-neighbours of vi in G. Moreover,
a backward or forward edge of vi shall be any vivj ∈ E with j < i or j > i, resp., while
by the last forward edge of vi with i 6= n − 1 we shall mean an edge vivj ∈ E with the
largest j. Note that in fact, due to the use of BFS algorithm, the set of all last forward
edges in G equals E(F ).

We first temporarily remove the edges of the spanning tree F of G, decreasing the
maximum degree of our graph by at least 1. Thus by Vizing’s Theorem, we may properly
colour the edges of the obtained G′ = G−E(F ) with integers in [2K + 1, 2K + ∆]. Then
we assign colour 2K + 1 to all edges of F . The obtained initial edge colouring of G we
denote by c0 (note it does not need to be proper due to potential conflicts involving edges
in E(F )).

We shall be modifying this in order to construct a desired final proper edge colouring
f : E → {1, 2, . . . , 6K + ∆} in n − 1 steps, each corresponding to a consecutive vertex
of the sequence v1, v2, . . ., except the last step, within which the weighted degrees of the
both vn−1 and vn shall be adjusted. From now on the contemporary edge colouring of G
shall be denoted by c, hence the contemporary weighted degree of every v ∈ V shall be
denoted by dc(v), while by d(v) we shall mean dG(v). The moment a given vertex vi is
analyzed (i.e., in step i of the algorithm, or in step n− 1 in case of vn) we shall associate
with it a 2-element set Di = {si, si + 2K} chosen from the family of pairwise disjoint
sets:

D := {{b, b + 2K} : b ∈ N, 0 ≤ (b mod 4K) ≤ 2K − 1} .

Ever since Di is associated with vi (i.e., before and after steps i + 1, . . . , n− 1), we shall
require so that dc(vi) ∈ Di.
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We shall admit at most two alterations of the colour of every edge e of G except
vn−1vn, whose colour shall be modified only once – at the end of the construction and
via separate rules. First time, when e = vivj with i < j is a forward edge (of vi, i.e. in
step i), we shall allow adding to its colour 2K (or 0), unless e is the last forward edge
of vi, when we allow adding to it any integer from the set {0, . . . , 2K − 1} so that the
obtained afterwards c(e) is not congruent to c(e′) modulo 2K for any adjacent edge e′ of
e in G. Note that such requirement concerning properness of an edge colouring modulo
2K blocks at most 2∆− 3 (as every vertex vl with l ≤ n− 1 has a forward edge) of these
available 2K options (2∆− 2 instead of 2∆− 3 for vn−1vn) – this leaves at least 2M + 1
options for the colour of any such last forward edge e. Second time, the colour of e = vivj
with i < j may be modified when e is a backward edge (of vj , i.e. in step j), when we
shall allow only two possible modifications, i.e., adding 2K or subtracting 2K from its
colour (or doing nothing). Thus the colour of each edge shall always belong to the set
{1, . . . , 6K+∆}. The main aim of our colour modifications in each (except the last one),
say i-th, i ≤ n − 2, step of the algorithm shall be to find a set Di = {si, si + 2K} ∈ D
disjoint with all the previously fixed Dl for all vl ∈ N r(vi) (with l < i) so that we may
assure that dc(vi) ∈ Di via admissible alterations of colours of the edges incident with
vi.

Suppose that so far every rule and all our requirements above have been fulfilled, and
we are about to analyze vi (perform i-th step of the algorithm), where i ≤ n − 2. As
we have available at least 2M + 1 options non-congruent modulo 2K for the colour of
the last forward edge of vi, as mentioned above, and a possibility to modify the sum at
vi by exactly 2K via the admitted alteration for every of the remaining d(vi) − 1 edges
incident with vi in G (indeed, we unconditionally admitted adding 2K to the colour of a
forward edge of vi, except the last one, and may add or subtract 2K from the colour of
any backward edge vlvi of vi dependent on whether dc(vl) = sl or dc(vl) = sl + 2K – so
that dc(vl) remained in Dl), we have available at least

d(vi) (2M + 1) > 2d(vi)M (2)

possibilities for dc(vi) via admitted alterations of colours of the edges incident with vi.
We have to only make sure that the option that we shall choose out of these does not
belong to Dl for any backward r-neighbour vl of vi. By (1) this requirement blocks
however merely at most 2d(vi)M integers, hence by (2) we may perform the admissible
colour modifications so that afterwards dc(vi) /∈ Dl for every vl ∈ N r(vi) with l < i. We
then choose Di ∈ D so that dc(vi) ∈ Di. By the definition of D this guarantees that Di

is disjoint with all Dl such that vl ∈ N r(vi) and l < i.
It is thus sufficient to comment now on the last step of the algorithm within which we

simultaneously adjust the sums at vn−1 and vn. We allow to replace the colour of vn−1vn
with any integer in [1, 6K] which guarantees properness of the obtained edge colouring
modulo 2K. This requirement itself excludes at most 2∆ − 2 potential residues modulo
2K of a colour for vn−1vn, hence at least 2M remain available. Let

R = {r1, r2, . . . , r2M}

denote a set of exactly 2M residues such that for each j = 1, 2, . . . , 2M , c(e) 6= rj mod 2K
for every edge e adjacent with vn−1vn in G. For the remaining edges (all except vn−1vn)
incident with vn−1 or vn, which are their backward edges, we similarly as earlier admit
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adding or subtracting 2K so that afterwards dc(vj) ∈ Dj for every j ≤ n− 2. (Note that
such changes do not influence properness of an edge colouring modulo 2K.) It is now
enough to prove that the adjustments on the edges incident with vn−1 or vn can be chosen
so that the obtained dc(vn−1) and dc(vn) are distinct from the sums at their respective
r-neighbours. As vertices vl at distance at least 2 from vn−1 and vn shall not change
their weighted degrees in this last step, we may admit dc(vn−1) ∈ Dl or dc(vn) ∈ Dl this
time. To be strict we shall require that after the last step:

(A) dc(vn−1) 6= dc(vn);

(B) the sums at vn−1 and vn are distinct from the sums of their respective r-neighbours
vl with l ≤ n− 2;

(C) neither of the weighted degrees dc(vn−1), dc(vn) belongs to any of the sets Dc(vl)
for any vl ∈ N(vn−1) ∪N(vn) with l ≤ n− 2.

For each k ∈ {n− 1, n}, by (1), the rules (B) and (C) may block at most

d(vk)M − 1 + (d(vn−1) − 1) + (d(vn) − 1) < (d(vk) + 2)M (3)

possible weighted degrees for vk. Denote the set of these blocked integers (for dc(vk)) by
I(k), and let J (k) ⊂ I(k) be the subset of these integers in I(k) that would be attainable
for dc(vk) via admissible modifications of colours of the edges incident with vn−1 or
vn (if we disregard rules (A), (B), (C)) and by setting a colour c(vn−1vn) ∈ [1, 6K]
congruent to some residue in R. We then partition this set into 2M subsets, J (k) =

J
(k)
1 ∪ J

(k)
2 ∪ . . .∪ J

(k)
2M , where for each t ∈ {1, . . . , 2M}, J

(k)
t consists of all these integers

from J (k) which could be attained as the weighted degree of vk only if we used a colour
congruent to rt modulo 2K for the edge vn−1vn (note that there are always 3 such options
in the range [1, 6K] for vn−1vn). Set

j
(k)
t := |J

(k)
t |, a

(k)
t :=

j
(k)
t

d(vk) + 2

for t ∈ {1, . . . , 2M} and k ∈ {n−1, n}. Note that there must exist t′ ∈ {1, . . . , 2M} such

that a
(n−1)
t′ + a

(n)
t′ < 1. Otherwise,

2M ≤
2M
∑

t=1

(

a
(n−1)
t + a

(n)
t

)

=

2M
∑

t=1

a
(n−1)
t +

2M
∑

t=1

a
(n)
t ,

hence at least one of the two sums, say the second one, on the right hand side of the
equality above would be at least M , but then

(d(vn) + 2)M ≤
2M
∑

t=1

a
(n)
t (d(vn) + 2) =

2M
∑

t=1

|J
(n)
t | = |J (n)| ≤ |I(n)|,

thus we would obtain a contradiction with inequality (3).

Now, since a
(n−1)
t′ +a

(n)
t′ < 1, while (d(vn−1)+2), (d(vn)+2) ≥ 4 and d(vn−1)+d(vn) ≥

6, then j
(n−1)
t′ ≤ d(vn−1) + 1 and j

(n)
t′ ≤ d(vn) + 1, and moreover at least one of the

following must hold:
6



(1◦) j
(n−1)
t′ ≤ d(vn−1) + 1 and j

(n)
t′ ≤ d(vn) − 2, or

(2◦) j
(n−1)
t′ = d(vn−1) and j

(n)
t′ = d(vn) − 1 with d(vn−1) ∈ {4, 5} and d(vn) = 2, or

(3◦) j
(n−1)
t′ ≤ d(vn−1) − 1 and j

(n)
t′ ≤ d(vn) − 1, or

(4◦) j
(n−1)
t′ = d(vn−1) − 1 and j

(n)
t′ = d(vn) with d(vn−1) = 2 and d(vn) ∈ {4, 5}, or

(5◦) j
(n−1)
t′ ≤ d(vn−1) − 2 and j

(n)
t′ ≤ d(vn) + 1.

We shall first try to fix the final sum at vn−1. For this goal, to colour the edge vn−1vn
we shall use an integer congruent to rt′ (rt′ ∈ [0, 2K − 1]) modulo 2K, i.e. rt′ , rt′ + 2K
or rt′ + 4K (2K, 4K or 6K if rt′ = 0). Such three options, combined with the admitted
adjustments for colours of the remaining d(vn−1) − 1 edges incident with vn−1 yield
d(vn−1) + 2 possible weighted degrees for vn−1, which form an arithmetic progression of
difference 2K.

Suppose first that (1◦) is true. Then at least one of these d(vn−1)+2 possible weighted
degrees for vn−1, say d0, is not blocked by conditions (B) and (C). Thus we perform
admissible modifications of colours of the edges incident with vn−1 so that dc(vn−1) = d0
(fixing c(vn−1vn) ≡ rt′ (mod 2K)). As then, via admissible modifications on all edges
incident with vn except vn−1vn we may generate d(vn) sums at vn, at most d(vn) − 2
of which might be blocked by (B) and (C) in this case, we are left with at least two
of these, one of which, say d′0 is distinct from d0 = dc(vn−1). We then perform the
admissible alterations of colours of the edges incident with vn different from vn−1vn so
that dc(vn) = d′0 afterwards. Analogously we proceed in the symmetrical case (5◦).

Suppose now that (2◦) holds. Then at least two of the possible weighted degrees for
vn−1, say d1 and d2 with d1 < d2, attainable with c(vn−1) ∈ {rt′ , rt′ + 2K, rt′ + 4K}
(analogously with c(vn−1) ∈ {2K, 4K, 6K} if rt′ = 0) are not blocked by (B) and (C).
Suppose that for i = 1, 2 we first try to perform any admissible modifications of the edges
incident with vn−1 so that dc(vn−1) = di, and then examine d(vn) = 2 sums attainable
at vn via admissible modifications on the only edge incident with it and distinct from
vn−1vn, denote the set of these by Ai, |Ai| = 2. Since at most d(vn) − 1 = 1 of these
might be blocked due to (B) and (C) in this case, the only possibility which might prevent
us from finishing our construction as above is that we have only one available option left
for dc(vn) (i.e. exactly 1 is blocked by (B) and (C)), and this option is di = dc(vn−1).
So suppose it it is the case for i = 1, 2. Then however, as each Ai, i = 1, 2, consists
of two elements which differ by exactly 2K, we obtain that and d2 = d1 + 4K and

J
(n)
t′ = {d1 + 2K}. As d(vn−1) ∈ {4, 5}, at least 2 neighbours of vn−1, say u1 and u2,

different from vn are not neighbours of vn in G (and hence any change of the colour of
vn−1u1 or vn−1u2 does not influence the list of sums attainable at vn). Note now that as
d2 − d1 = 4K, we may assume that within our examination above the sum d1 for vn−1

was attained using the same colours as in the case of the sum d2 on all edges incident
with vn−1 in G except the edges vn−1u1 and vn−1u2, whose colours had to be bigger by
exactly 2K in the case of d2, and in particular with the same colour r∗ associated to
vn−1vn. Suppose then that r∗ − 2K ∈ [1, 6K] (the reasoning when r∗ + 2K ∈ [1, 6K] is
analogous). Then in the formerly used colouring of the edges incident with vn−1 yielding
dc(vn−1) = d1 we may introduce two modifications which do not change the sum at vn−1,
namely we increase the colour of vn−1u1 by 2K and decrease the colour of vn−1vn by
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2K (to r∗ − 2K). This way the list of attainable sums at vn via admissible alteration
on the only edge incident with vn and distinct from vn−1vn shifts from {d1, d1 + 2K} to
{d1 − 2K, d1}, hence we may accomodate d1 − 2K 6= dc(vn−1) as the sum at vn (since

J
(n)
t′ = {d1 + 2K}) and finish the construction of a desired proper edge colouring of G.

Again analogously one may proceed in the symmetrical case (4◦).
Suppose then finally that (3◦) holds. Then however we have at least 3 sums attainable

at vn−1 via admissible colour alterations of the edges incident with vn−1 which are not
blocked by (B) and (C), denote these by d1, d2, d3 with d1 < d2 < d3. For i = 1, 2, 3 one
after another let us perform these admissible colour shifts so that dc(vn−1) = di. Denote
the set of d(vn) sums attainable at vn via admissible colour alterations of its incident
edges other than vn−1vn by Ai and assume that all of these are blocked by (B) and

(C) except one which equals exactly di = dc(vn−1) (as otherwise, as j
(n)
t′ ≤ d(vn) − 1,

we may finish constructing our desired colouring by fixing an available not blocked sum
different from di at vn). Then however, as each Ai forms an arithmetic progression
of difference 2K and each contains exactly one of the three sums d1 < d2 < d3, not
blocked for vn (i.e. d1 ∈ A1, d2 ∈ A2, d3 ∈ A3), we obtain that A1 ∩ A3 = ∅, hence
|A1 ∪ A2 ∪ A3| ≥ 2d(vn) + 1 ≥ d(vn) + 3, and thus at least one Ai must contain at least

2 sums not blocked for vn by (B) and (C), as j
(n)
t′ ≤ d(vn)− 1 in this case, what yields a

contradiction with our assumption above concerning A1, A2, A3.
At the end of our construction we set f(e) = c(e) for e ∈ E to obtain a desired final

proper edge colouring of G. �

3. Conclusion

We conclude the paper by posing the following two conjectures.

Conjecture 2. For every integer r ≥ 3 and each graph G without isolated edges of

maximum degree ∆, χ′

Σ,r(G) ≤ (1 + o(1))∆r−1.

Conjecture 3. For every graph G without isolated edges of maximum degree ∆, χ′

Σ,2(G) ≤
(2 + o(1))∆.
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Bolyai, 52, Combinatorics, Eger North Holland, Amsterdam, (1987), 247–256.

[16] E. Flandrin, A. Marczyk, J. Przyby lo, J-F. Sacle, M. Woźniak, Neighbor sum distinguishing index,
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