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Abstract

There are two known families of maximum scattered Fg-linear sets
in PG(1,¢"): the linear sets of pseudoregulus type and for ¢t > 4 the
scattered linear sets found by Lunardon and Polverino. For t = 4 we
show that these are the only maximum scattered F,-linear sets and
we describe the orbits of these linear sets under the groups PGL(2, ¢*)
and PTL(2, ¢%).

1 Introduction

Recent investigations on linear sets in a finite projective line PG(1,q") of
rank t concerned: the hypersurface obtained from the linear sets of pseu-
doregulus type by applying field reduction [12]; a geometric characterization
of the linear sets of pseudoregulus type [9]; a characterization of the clubs,
that is, the linear sets of rank r with a point of weight » — 1 [13]; a gen-
eralization of clubs in order to construct KM-arcs [10]; a condition for the
equivalence of two linear sets [8], [I8]; the definition and study of the class of
a linear set in order to study their equivalence [7]; a construction method
which yields MRD-codes from maximum scattered linear sets of PG(1,q")
[17]. Furthermore, the linear sets in PG(1,q") coincide with the so-called
splashes of subgeometries [I3]. The results of such investigations make it
reasonable to attempt to classify the linear sets in PG(1,q!) of rank ¢ for
small ¢.

A point in PG(1,¢") is the F-span <V>th of a nonzero vector v in a
two-dimensional vector space, say W, over Fy:. If U is a subspace over I, of
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W, then Ly = {(v)r , : v € U\{0}} denotes the associated Fg-linear set (or

simply linear set) in PG(1,¢"). The rank of such a linear set is 7 = dimg, U.
Any linear set in PG(1,¢") of rank greater than ¢ coincides with the whole
projective line. The weight of a point P = <V>th is w(P) = dimp, (U N P).
If the rank and the size of Ly are r and (¢" — 1)/(q — 1), respectively, then
Ly is scattered. Equivalently, Ly is scattered if and only if all its points
have weight one. A scattered F,-linear set of rank ¢ in PG(1, ¢*) is mazimum
scattered. An example of maximum scattered F,-linear set in PG(1, ¢") is Ly
with V' = {(u,u?): u € F}. Any subset of PG(1, ¢") projectively equivalent
to this Ly is called linear set of pseudoregulus type. See [9] for a geometric
description, and [7] or the survey [16] for further background on linear sets.
Note that for any ¢ € T'L(2, ¢*) with related collineation ¢ € PI'L(2, ¢') and
any F,-linear set Ly, Lye = (Ly)?. In [7, Theorem 4.5] it is proved that
if t = 4 and Ly has mazimum field of linearity Fy, that is, Ly is not an
Fys-linear set for s > 1, then any linear set in the same orbit of Ly under
the action of PT'L(2, ¢*) is of type Lye with ¢ € I'L(2,¢*). Note that this
is not true if ¢ > 4. In [14], Lunardon and Polverino construct a class of
maximum scattered linear sets:

Theorem 1.1 ([14]). Let q be a prime power, t > 4 an integer, b € Fy such
that the norm Nyt q(b) of b over Fy is distinct from one, and

Ub,t) = {(u,bu? +u?"") :u € Fy}. (1)

If b # 0 then Ly is a mazimum scattered Fy-linear set in PG(1, q') and
if ¢ > 3, then it is not of pseudoregulus type.

It can be directly seen that Ly (o) is maximum scattered of pseudoreg-
ulus type. For ¢ = 4, Theorem [[.1] can be extended to ¢ = 3, as it can be
checked by using the package FinInG of GAP [3]. In the following t = 4 is
assumed. For all b € F 4 define

U(b) = U(b,4) = {(2,b2? + %) : x € Fu}. (2)

In section [ it is shown that Nga/,(b) # 1 is a necessary condition to
obtain scattered linear sets of PG(1,¢") and the case Ny (b) = 1 is dealt
with. In this case, Ly ) contains either one or ¢ + 1 points of weight two,
and the remaining points have weight one.

The main result in section Bl is that if L is a maximum scattered linear
set in PG(1,¢%), then L is projectively equivalent to Ly ) for some b € Fa
with Nga o (b) # 1 (cf. Theorem B.4).



In section [ the orbits of the F-linear sets of rank four in PG(1,q¢%)
of type Ly ), under the actions of both PGL(2,¢*) and PI'L(2,¢%), are
completely characterized. Such orbits only depend on the norm b+ of b
over F. In particular, PG(1,q*) contains precisely ¢(q — 1)/2 maximum
scattered linear sets up to projective equivalence (Theorem [4.5]), one of them
is of pseudoregulus type, the others are as in Theorem [I.11

2 Classification

This section is devoted to the classification of all Ly for b € Fja, where
U(b) is as in (2).

Theorem 2.1. For b € Fa the following holds.
1. If Nga,q(b) # 1, then Lyy) is scattered.

2. If Nq4/qz(b) = 1, then Lyy) has a unique point with weight two, the
point <(1,0)>1Fq4, and all other with weight one.

3. If Ngasq2(b) # 1 and Ngajo(b) = 1, then Ly has g + 1 points with
weight two and all other with weight one.

Proof. Put fy(z) = bz? + 27", For x € F?4 the point Py := <(:E,fb(x))>1pq4
of Ly ) has weight more than one if and only if there exists y € IFZ4 and
A € Fpu \ Fy such that A(z, fy(z)) = (y, fo(y)). This holds if and only if

y = Az and , .
Abx? + Az — Nbx? — A\ 27 = 0. (3)

For a given z the solutions in A of (@) form an F,-subspace whom rank
equals to the weight of the point P,. Since g-polynomials over Fg s of rank
1 are of the form aTry/,(Bx) € Fplx], it is clear that the kernel of the
[F4-linear map in the variable A at the left-hand side of (3] has dimension
at most two and hence the weight of each point of L) is at most two. If
(A, ) is a solution of (@) for some A € Fyu and x € F,, then (X', 2’) is also
a solution for each X' € (1, \)p, and z’ € (a:>1pq2 and hence for each p € Fy,
if P, has weight two, then P, = ((uz, fb(ux)>1gq4 has weight two as well.
Note that Py = (1,0~ (ba%~! +29'~1)))g. , and hence if P, # ((1,0))z,,
has weight two, then {P,,: 1 € IE‘}} is a set of ¢ + 1 distinct points with
weight 2.

The function fy(x) is not Fjp-linear and hence the maximum field of
linearity of Ly is Fy. It follows (cf. [7, Proposition 2.2])) that Ly has
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at least one point with weight one, say ((zo, fb(mo))>1pq4. Then the line of
AG(2,q*) with equation 7Y = fy(79)X meets the graph of fi(z), that is,
{(z, fo(x)): © € Fpu}, in exactly q points. It follows from [T} 2], see also [6],
that the number of directions determined by fy(z) is at least ¢> + 1, and
hence also |Lyy| > q® + 1. Denote by w; and wy the number of points of
Ly y) with weight one and two, respectively. Then

wy +we = [ Ly @)l > ¢+ 1, (4)

wi(g —1) +wag* 1) =¢* - L. (5)
Subtracting @) (q — 1)-times from () gives wa(q? — q) < ¢> — ¢ and hence
wy < g+ 1. At this point it is clear that in Ly there is either one point
with weight two, the point ((1, 0)>Fq ., or there are exactly ¢+ 1 of them and
((1,O)>Fq4 is not one of them.

If Ngajq(b) # 1, then Theorem [Tl states that Ly is scattered. We
show that ((1,0)),+ has weight two if and only if Nga/p2(b) = 1. Note that
the weight of this point is the dimension of the kernel of f,(z). If fi(z) =0
for some z € IE‘;4, then b = —29° 7 and hence, by taking (¢? + 1)-th powers
at both sides, Nya/p2(b) = 1. On the other hand, if Ny /2(b) = 1, then
b = w?1 for some w € FZ4. Let € be a non-zero element of g4 such that

€9’ 4+ ¢ = 0. Then it is easy to check that the kernel of fy(z) is ((Ew)q?)}qu

which has dimension two over F, and hence ((1,0)),+ has weight two.

It remains to prove that if Ny ,(b) = 1 and Nga/p2(b) # 1, then there
is at least one point (hence precisely ¢ + 1 points) of weight two. After
rearranging in (3]), we obtain

(A= ADT = bt~ (©)
By taking (¢% + 1)-th powers on both sides we can eliminate z, obtaining
(A — )\q)(qB—l)(qu,_l) =(\— )\q)(q—l)(q2+1) _ P+l (7)

It is clear that we can find A € Fy4 \ F, satisfying (@) if and only if there
exists € € IE“Z4 such that

(A= A1 /p = 0", (8)

Then z € <€q>[p‘q2 with y = Az satisfies our initial conditions in (3]).



Now use Nya/,(b) = 1 and put b = p97! for some p € F7.. Then () can

be written as (D@D

A — )\ q—1)(¢"+

( ) 1 )
i

We can solve (@) if and only if there exists § € IE‘}L such that

_ya\ 71
<A : ) =or (10)
7

<A — Aq>IF = (07 g, . (11)

1
Now we will continue in PG(F,1,F,) = PG(3,q). At the left-hand side of
(II) we can see a point of the hyperplane H,, defined as

Hy = {<z>Fq: Trq‘*/q(:uz) = 0},

while on the right-hand side we can see a point of the elliptic quadric Q
defined as

or, equivalently,

Q = {(2)g,: 207 D@D — 13},

For a proof that Q is an elliptic quadric see [5, Theorem 3.2]. Since QNH,, #
0 it follows that we can always find A € F 4 \ F, satisfying (8) and hence
Ly p) is not scattered.

O

Remark 2.2. The linear sets in Theorem [Z1) are of sizes ¢°> + ¢*> + q + 1,
@ +q*+1, or ¢>+1. The linear set associated with {(z, Tryag(w)) i 2 €Fpa}
is of size ¢+ 1 as well. As it turns out from [J|] the projective line PG(1, ¢*)
also contains IF-linear sets of size e+ —q+1

3 The canonical form

In this section L denotes a maximum scattered Fg-linear set in PG(1, qh),
not of pseudoregulus type. In particular, this implies ¢ > 2. By [15], L is
a projection py(3), where the vertex ¢ is a line and ¥ is a g-order canonical
subgeometr in PG(3,¢%), with £N'Y = (). The axis of the projection

Let PG(V, F,.) =PG(n -1, q"), let U be an n-dimensional F,-vector subspace of V,
and ¥ = {(u)r . : u € U\ {0}}. If (¥) = PG(n — 1,4¢"), then ¥ is a (g-order) canonical
subgeometry of PG(n — 1,¢"). Here and in the following, angle brackets (—) without a
subscript denote projective span in PG(n — 1,¢"), that is, PG(3, ¢*) in our case.



is immaterial and can be chosen by convenience. Let o be a generator of
the subgroup of order four of PI'L(4,¢*) fixing pointwise . Let M be a
k-dimensional subspace of PG(3,¢*). We say that M is a subspace of ¥
if M NY is a k-dimensional subpsace of ¥, which happens exactly when
M? = M.

Proposition 3.1. Let ¥ be the unique q*>-order canonical subgeometry of
PG(3,q*) containing 3, that is, the set of all points fized by o®. Then the
intersection of £ and X' is empty.

Proof. Assume the contrary, that is, there exists a point P in £ N Y'. Then
P’ = P, the subspace {p = (P, P?) is a line, and satisfies {3, = {p, whence
(p is a line of X. This implies that py(¢p) is a point, and L is not scattered.

O

Let K and K’ be the Klein quadrics representing — via the Pliicker em-
bedding g — the lines of ¥ and ¥’. In order to precisely define g, take
coordinates in PG(3, ¢*) such that ¥ (resp. ¥') is the set of all points with
coordinates rational over Fy (resp. F,2), and define the image 7% of any line
r through minors of order two in the usual way. Then K = K' N PG(5, q) by
considering PG(5,q) as a subset of PG(5,¢?). The only nontrivial element
of the subgroup of PI'L(6,¢?) fixing PG (5, q) pointwise is

T ((mo,xl,xg,xg,x4,a;5)>1pq2 — <(w8,x‘f,x%,x§,xj,x§)>yq2. (12)
Then K3 = K», and op = pr7.

Proposition 3.2. Let S be a solid in PG(5,q%) such that (i) SN K =
Q™ (3,¢%), (i) SNK =0. Then SNS™NK' is a set of two distinct points
forming an orbit of T.

Proof. If dim(S N S7) > 2, then SN S™ contains a plane of PG(5,q). Each
plane of PG(5,q) meets K in at least one point of PG(5,¢), contradicting
(77). Then r = SN S7 is a line fixed by 7, so it is a line of PG(5,¢). This r
is external to the Klein quadric K by (ii), hence it meets K’ in two points.
Since both of K’ and r are fixed by 7 the assertion follows. O

Proposition 3.3. There is a line r in PG(3,q*), such that r and r° are
2
skew lines both meeting £, and r° =r.

Proof. Let ¥ and Y’ be as in Proposition B.Il Since £ NY' = (), ¢ defines a
regular (Desarguesian) spread F of ¥’. The lines of F are all lines (P, P7")N
Y where P € . The image F¥ under the Pliicker embedding of F is an



elliptic quadric S N K’ = Q7 (3,¢%) in PG(5,¢%), S a solid. Since L is
scattered, there is no line of F fixed by o, whence S N K = (). Then the
assertion follows from Proposition O

Theorem 3.4. Any mazimum scattered linear F,-linear set in PG(1,q¢?) is
projectively equivalent to Ly for some b € Fpa, Nq4/q(b) # 1.

Proof. The set Ly (g) is a linear set of pseudoregulus type. Now assume that
L = pe(X) is maximum scattered, not of pseudoregulus type. Coordinates
Xo, X1, X2, X3 in PG(3,¢*) can be chosen such that

2 3 *

Y = {<(u,uq7u‘1 ,ul )>Fq4 Tu € Fq4}, (13)

and a generator of the subgroup of PI'L(4, ¢*) fixing ¥ pointwise is
o: <(l‘0, L1, X2, l‘3)>]}rq4 = <($gv :Egv :E({v $g)>]Fq4 . (14)
Define C' = ¢Nr, where r is as in Proposition3.3l The points C and C°° lie on
r, as well as the points C and C°° lie on 7°. By Proposition 3.1 C # o
and C7 # C°°. This implies ¢ C (C,C°,C°"), and (C,C7,C",C°") =
PG(3,¢%). Since the stabilizer of ¥ in PGL(4,¢%) acts transitively on the

points C' of PG(3, ¢*) such that (C, C’U,C’UQ,C"’B> = PG(3,q¢*) [, Proposi-
tion 3.1], it may be assumed that C' = ((0,0, 1,0))r, ,, whence

(= <(07 07 17 0)7 (07 a, 07 _b)>Fq4 5

for some a,b € F,4, not both of them zero. If a = 0, then L is of pseu-
doregulus type [9, Theorem 2.3], so a = 1 may be assumed. For any point

P, = <(u,uq,uq2,uq )>Fq4 in X, the plane containing ¢ and P, has coor-
dinates [uq3 + bu?, —bu,0, —u|, and this leads to the desired form for the
coordinates of L. O
4 Orbits

Analogously to the definition of the I'L-class of linear sets (cf. Definition 2.4
in [7]) we define the GL-class, which will be needed to study PGL(2, ¢%)-
equivalence. Note that for any scattered Fg-linear set the maximum field of
linearity is [F,.

Definition 4.1. Let Ly be an F,-linear set of PG(1,¢") of rank t with
mazimum field of linearity Fy. We say that Ly is of TI'L-class s [resp.



GL-class s/ if s is the largest integer such that there exist Fy-subspaces Uy,
Us, ..., Us of th with Ly, = Ly for i € {1,2,...,s} and there is no
¢ € TL(2,¢") [resp. v € GL(2,¢")] such that U; = U for each i # j,
i,7€{1,2,...,s}.

The first part of the following result is [7, Theorem 4.5], while the second
part follows from its proof. We briefly summarize the main steps of the proof
from [7].

Theorem 4.2. [7, Theorem 4.5] Each F,-linear set of rank four in
PG(1,q%), with mazimum field of linearity F,, is of I'L-class one. More
precisely, if Ly = Ly for some 4 dimensional Fy-subspaces U, V' of F(Qf;,
then there exists o € TL(2,q%) such that U? = V. Also, ¢ can be chosen
such that it has companion automorphism either the identity, or x +> z?,

Proof. Assume Ly = Ly. We may assume <(0,1)>]Fq4 ¢ Ly. Then U =
Up = {(z, f(x)): z € Fu} and V =V, = {(z,9(z)): v € Fpu} for some
g-polynomials f and g over Fu. By [7 Proposition 4.2], either g(z) =
FAz)/A, or g(z) = f(Ax)/A for some A € ., where here f denotes the
adjoint map of f with respect to the bilinear form < x,y >:= Trga /. (zy).
The Fjs-linear map v — Av maps Uy to one of Uy, or Uf' In the proof of [7,

Theorem 4.5], a k € I'L(2,¢*) with companion automorphism the identity,

or x s 29° is determined such that U ]'? =U i O

Theorem 4.3. For any b € Fya, Ly is of GL-class one.

Proof. By Theorem 2] if Ly = Ly, then there exists ¢ € I'L(2, q*) such

that U(b)? = V and the companion automorphism of ¢ is z a:qz, or the
identity. In order to prove the statement it is enough to show that U(b) and
UD)” = {(27°,y7"): (z,y) € U(b)} lie on the same orbit of GL(2,¢%). If
b =0, then U(b) = U(b)?. If b 0, then for any u € Fa,

2
b’ 0 u b ' v @
. | = 3 —
0 b (buq + Uq3> b (bqqu)q + (bquq2)q <bvq + vq3> 7

with v = b9ud’. O

Corollary 4.4. Let b,c € Fja. The linear sets Ly ) and Ly () are projec-
tively equivalent if and only if U(b) and U(c) are in the same orbit under
the action of GL(2,¢%).



Proof. The “if” part is obvious, so assume that L’%U(b) = Ly(c) where k €
GL(2,¢*). Then Lywy = Ly(ey and by Theorem E3] there is ' € GL(2, qh)
such that U (b)" = U(c). O

It follows that in order to classify the F,-linear sets L) up to PGL(2, q*)
and PTL(2, ¢*)-equivalence, it is enough to determine the orbits of the sub-
spaces U(b) under the actions of I'L(2,¢*) and GL(2, ¢*).

Theorem 4.5. Let g be a power of a prime p.

(i) For any b,c € Fpa, Ly and Ly are equivalent up to an element of
PTL(2,¢%) if and only if ¢’ T1 = b*P"(@+D) for some integer s > 0.

(ii) For any b,c € Fga, the linear sets Lyy) and Ly are projectively
equivalent if and only if T+l = pa*+1 op 4°+1 = p=al@®+1)

(iii) All linear sets described in 2. of Theorem [21] are projectively equiva-
lent.

(iv) There are precisely q(q—1)/2 distinct linear sets up to projective equiv-
alence in the family described in 1. of Theorem [2.1], and these are the
only mazimum scattered linear sets of PG(1,q%).

(v) There are precisely q distinct linear sets up to projective equivalence in
the family described in 3. of Theorem [21l.

Proof. Take b € FZ4. If Ly is not scattered, then it clearly cannot be
equivalent to Ly (q) (the scattered linear set of pseudoregulus type), while if
Ly is scattered, then it follows from Theorem [L.T] (and from a computer
search when ¢ = 3) that U(b) and U(0) yield projectively inequivalent linear
sets. Since the automorphic collineations (z,y) — (2P, y?") fix U(0), it also
follows that Loy and Ly lie on different orbits of PT'L(2,¢*). Thus (i)
and (ii) are true when one of b or ¢ is zero, so from now on we may assume
b# 0 and c # 0.

The sets L) and Ly () are equivalent up to elements of PTL(2,¢") if
and only for some ¢ = pF, k € N and some A,B,C,D € [F,4 such that
AD — BC # 0 the following holds:

A B u¥ v
{<C’ D> (bwud’q +u¢q3> Tu € Fq4} = {(cvq +qu> tvE Fq4}. (15)

Furthermore, by Corollary 1.4, Ly and L) are projectively equivalent
if, and only if, (I5)) has a solution with ¢ = 1. This leads to a polynomial in



u¥ of degree at most ¢® which is identically zero. Equating its coefficients
to zero,
AT - D =
Bip¥ic + BY =
Alec — DY =
Bic+ BTy — C

(16)

o oo o

Assume that Ly and Ly are in the same orbit of PI'L(2,q¢*), and
take ¢ = 1 in case they are also projectively equivalent. If D # 0, then
the first and third equations imply »¥ = D% ~lc and so ¢?°+1 = p¥(@*+1),
If D =0, then BC # 0; from the second equation, (bd’qc)‘fJrl = 1, hence
¢ +1 = p=va(@®+1) This proves the only if parts of (i) and (ii).

Conversely, if ¢+ = pP" @+ for some s E N, then bP°¢c™! = §7°~1

for some § € IE‘Z The quadruple A = 49, =C =0, D =0 with
Y =p°is a Solutlon of @3[) with AD — BC 75 0. This proves the 1f part
of ( ) when ¢ “+1 = pp*(@®+D) and the if part of (ii) when ¢’ 1 = p?’ 1, If

pH = L = 1 e When U(b) and U(c) define linear sets described in
2. of Theorem 2.1] then the above condition holds, thus (iii) follows. From
now on we may assume b1 £ 1 and ¢ 1 £ 1.

Assume @+ = pP*(@+D) for some s € N, ie. WP¢c = £~ for some
€€ IF};. Define ¢ = p°q. A p € IF}L exists such that /)‘12_1 = —1. Take
A=D =0, B=(pe)?, C =epe(l — b @) If C = 0, then b1 =1,
a contradiction. So AD — BC # 0 and (I0]) has a solution. If p® = ¢, then
¢ =1, hence in this case Ly ;) and Ly () are projectively equivalent. This
finishes the proofs of (i) and (ii).

Now we prove (iv). Note that Ny, (b) = (BTNt for any b € Fy,
therefore, L) is a maximum scattered Fy-linear set not of pseudoregulus

type if, and only if, b2°+1 is an element of the set
S={z €Fp: 9Tt £ 1)

The orbits of point sets of type Ly ), b # 0, under the action of PGL(2, ¢ 4
are as many as the pairs {z, 277} of elements in S. Since all such pairs are
made of distinct elements, adding one for the linear set of pseudoregulus
type, one obtains

2

“—q—-2 q(g—1)

1 — .
+ 2 2

Finally we prove (v). Ly is an Fy-linear set described in 3. of Theorem
2.11if, and only if, 57°+1 is an element of the set

Z={zeFp\{1}: 29" =1},

10



The orbits of point sets of this type under the action of PGL(2,¢*) are as
many as the pairs {z,z7%} of elements in Z. Since for each x € Z we have
x = x~ 9, this number is q. O

Remark 4.6. The number of orbits of mazimum scattered linear sets under
the action of PTL(2,q*) depends on the exponent e in q = p°. A general
formula is mot provided here. For e = 1 each orbit which does not arise
from the linear set of pseudorequlus type is related to two or four norms
over F 2, according to whether Nga 2 (b) € Fg\ {0,1, =1} or not. This leads
(including now the linear set of pseudoregulus type) to a total number of
(q? —1)/4 orbits for odd q.
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