Maximum scattered $\mathbb{F}_{q^{-}}$-linear sets of $\operatorname{PG}\left(1, q^{4}\right)$

Bence Csajbók and Corrado Zanella*

October 23, 2019

Abstract

There are two known families of maximum scattered \mathbb{F}_{q}-linear sets in $\mathrm{PG}\left(1, q^{t}\right)$: the linear sets of pseudoregulus type and for $t \geq 4$ the scattered linear sets found by Lunardon and Polverino. For $t=4$ we show that these are the only maximum scattered \mathbb{F}_{q}-linear sets and we describe the orbits of these linear sets under the groups PGL $\left(2, q^{4}\right)$ and $\operatorname{P\Gamma L}\left(2, q^{4}\right)$.

1 Introduction

Recent investigations on linear sets in a finite projective line $\mathrm{PG}\left(1, q^{t}\right)$ of rank t concerned: the hypersurface obtained from the linear sets of pseudoregulus type by applying field reduction [12]; a geometric characterization of the linear sets of pseudoregulus type [9; a characterization of the clubs, that is, the linear sets of rank r with a point of weight $r-1$ [13]; a generalization of clubs in order to construct KM-arcs [10]; a condition for the equivalence of two linear sets [8, 18]; the definition and study of the class of a linear set in order to study their equivalence [7; a construction method which yields MRD-codes from maximum scattered linear sets of $\operatorname{PG}\left(1, q^{t}\right)$ [17]. Furthermore, the linear sets in $\mathrm{PG}\left(1, q^{t}\right)$ coincide with the so-called splashes of subgeometries [13]. The results of such investigations make it reasonable to attempt to classify the linear sets in $\operatorname{PG}\left(1, q^{t}\right)$ of rank t for small t.

A point in $\operatorname{PG}\left(1, q^{t}\right)$ is the $\mathbb{F}_{q^{t}}$-span $\langle\mathbf{v}\rangle_{\mathbb{F}_{q^{t}}}$ of a nonzero vector \mathbf{v} in a two-dimensional vector space, say W, over $\mathbb{F}_{q^{t}}$. If U is a subspace over \mathbb{F}_{q} of

[^0]W, then $L_{U}=\left\{\langle\mathbf{v}\rangle_{\mathbb{F}_{q^{t}}}: \mathbf{v} \in U \backslash\{\mathbf{0}\}\right\}$ denotes the associated \mathbb{F}_{q}-linear set (or simply linear set) in $\mathrm{PG}\left(1, q^{t}\right)$. The rank of such a linear set is $r=\operatorname{dim}_{\mathbb{F}_{q}} U$. Any linear set in $\mathrm{PG}\left(1, q^{t}\right)$ of rank greater than t coincides with the whole projective line. The weight of a point $P=\langle\mathbf{v}\rangle_{\mathbb{F}_{q} t}$ is $w(P)=\operatorname{dim}_{\mathbb{F}_{q}}(U \cap P)$. If the rank and the size of L_{U} are r and $\left(q^{r}-1\right) /(q-1)$, respectively, then L_{U} is scattered. Equivalently, L_{U} is scattered if and only if all its points have weight one. A scattered \mathbb{F}_{q}-linear set of rank t in $\mathrm{PG}\left(1, q^{t}\right)$ is maximum scattered. An example of maximum scattered \mathbb{F}_{q}-linear set in $\mathrm{PG}\left(1, q^{t}\right)$ is L_{V} with $V=\left\{\left(u, u^{q}\right): u \in \mathbb{F}_{q^{t}}\right\}$. Any subset of $\mathrm{PG}\left(1, q^{t}\right)$ projectively equivalent to this L_{V} is called linear set of pseudoregulus type. See 9 for a geometric description, and [7] or the survey [16] for further background on linear sets. Note that for any $\varphi \in \Gamma L\left(2, q^{t}\right)$ with related collineation $\tilde{\varphi} \in \operatorname{P\Gamma L}\left(2, q^{t}\right)$ and any $\mathbb{F}_{q^{-}}$-linear set $L_{U}, L_{U^{\varphi}}=\left(L_{U}\right)^{\tilde{\varphi}}$. In [7, Theorem 4.5] it is proved that if $t=4$ and L_{U} has maximum field of linearity \mathbb{F}_{q}, that is, L_{U} is not an $\mathbb{F}_{q^{s}}$-linear set for $s>1$, then any linear set in the same orbit of L_{U} under the action of $\operatorname{P\Gamma L}\left(2, q^{4}\right)$ is of type $L_{U^{\varphi}}$ with $\varphi \in \Gamma \mathrm{L}\left(2, q^{4}\right)$. Note that this is not true if $t>4$. In [14, Lunardon and Polverino construct a class of maximum scattered linear sets:

Theorem 1.1 ([14). Let q be a prime power, $t \geq 4$ an integer, $b \in \mathbb{F}_{q^{t}}$ such that the norm $\mathrm{N}_{q^{t} / q}(b)$ of b over \mathbb{F}_{q} is distinct from one, and

$$
\begin{equation*}
U(b, t)=\left\{\left(u, b u^{q}+u^{q^{t-1}}\right): u \in \mathbb{F}_{q^{t}}\right\} . \tag{1}
\end{equation*}
$$

If $b \neq 0$ then $L_{U(b, t)}$ is a maximum scattered \mathbb{F}_{q}-linear set in $\mathrm{PG}\left(1, q^{t}\right)$ and if $q>3$, then it is not of pseudoregulus type.

It can be directly seen that $L_{U(0, t)}$ is maximum scattered of pseudoregulus type. For $t=4$, Theorem 1.1 can be extended to $q=3$, as it can be checked by using the package FinIng of GAP [3]. In the following $t=4$ is assumed. For all $b \in \mathbb{F}_{q^{4}}$ define

$$
\begin{equation*}
U(b)=U(b, 4)=\left\{\left(x, b x^{q}+x^{q^{3}}\right): x \in \mathbb{F}_{q^{4}}\right\} . \tag{2}
\end{equation*}
$$

In section 2 it is shown that $\mathrm{N}_{q^{4} / q}(b) \neq 1$ is a necessary condition to obtain scattered linear sets of $\operatorname{PG}\left(1, q^{4}\right)$ and the case $\mathrm{N}_{q^{4} / q}(b)=1$ is dealt with. In this case, $L_{U(b)}$ contains either one or $q+1$ points of weight two, and the remaining points have weight one.

The main result in section 3 is that if L is a maximum scattered linear set in $\operatorname{PG}\left(1, q^{4}\right)$, then L is projectively equivalent to $L_{U(b)}$ for some $b \in \mathbb{F}_{q^{4}}$ with $\mathrm{N}_{q^{4} / q}(b) \neq 1$ (cf. Theorem 3.4).

In section 4 the orbits of the \mathbb{F}_{q}-linear sets of rank four in $\operatorname{PG}\left(1, q^{4}\right)$ of type $L_{U(b)}$, under the actions of both $\operatorname{PGL}\left(2, q^{4}\right)$ and $\operatorname{P\Gamma L}\left(2, q^{4}\right)$, are completely characterized. Such orbits only depend on the norm $b^{q^{2}+1}$ of b over $\mathbb{F}_{q^{2}}$. In particular, $\operatorname{PG}\left(1, q^{4}\right)$ contains precisely $q(q-1) / 2$ maximum scattered linear sets up to projective equivalence (Theorem4.5), one of them is of pseudoregulus type, the others are as in Theorem 1.1.

2 Classification

This section is devoted to the classification of all $L_{U(b)}$ for $b \in \mathbb{F}_{q^{4}}$, where $U(b)$ is as in (2).

Theorem 2.1. For $b \in \mathbb{F}_{q^{4}}$ the following holds.

1. If $\mathrm{N}_{q^{4} / q}(b) \neq 1$, then $L_{U(b)}$ is scattered.
2. If $\mathrm{N}_{q^{4} / q^{2}}(b)=1$, then $L_{U(b)}$ has a unique point with weight two, the point $\langle(1,0)\rangle_{\mathbb{F}_{q^{4}}}$, and all other with weight one.
3. If $\mathrm{N}_{q^{4} / q^{2}}(b) \neq 1$ and $\mathrm{N}_{q^{4} / q}(b)=1$, then $L_{U(b)}$ has $q+1$ points with weight two and all other with weight one.

Proof. Put $f_{b}(x)=b x^{q}+x^{q^{3}}$. For $x \in \mathbb{F}_{q^{4}}^{*}$ the point $P_{x}:=\left\langle\left(x, f_{b}(x)\right)\right\rangle_{\mathbb{F}_{q^{4}}}$ of $L_{U(b)}$ has weight more than one if and only if there exists $y \in \mathbb{F}_{q^{4}}^{*}$ and $\lambda \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q}$ such that $\lambda\left(x, f_{b}(x)\right)=\left(y, f_{b}(y)\right)$. This holds if and only if $y=\lambda x$ and

$$
\begin{equation*}
\lambda b x^{q}+\lambda x^{q^{3}}-\lambda^{q} b x^{q}-\lambda^{q^{3}} x^{q^{3}}=0 . \tag{3}
\end{equation*}
$$

For a given x the solutions in λ of (3) form an $\mathbb{F}_{q^{-}}$-subspace whom rank equals to the weight of the point P_{x}. Since q-polynomials over $\mathbb{F}_{q^{4}}$ of rank 1 are of the form $\alpha \operatorname{Tr}_{q^{4} / q}(\beta x) \in \mathbb{F}_{q^{4}}[x]$, it is clear that the kernel of the \mathbb{F}_{q}-linear map in the variable λ at the left-hand side of (3) has dimension at most two and hence the weight of each point of $L_{U(b)}$ is at most two. If (λ, x) is a solution of (3) for some $\lambda \in \mathbb{F}_{q^{4}}$ and $x \in \mathbb{F}_{q^{4}}^{*}$, then $\left(\lambda^{\prime}, x^{\prime}\right)$ is also a solution for each $\lambda^{\prime} \in\langle 1, \lambda\rangle_{\mathbb{F}_{q}}$ and $x^{\prime} \in\langle x\rangle_{\mathbb{F}_{q^{2}}}$ and hence for each $\mu \in \mathbb{F}_{q^{2}}^{*}$ if P_{x} has weight two, then $P_{\mu x}:=\left\langle\left(\mu x, f_{b}(\mu x)\right\rangle_{\mathbb{F}_{q^{4}}}\right.$ has weight two as well. Note that $P_{\mu x}=\left\langle\left(1, \mu^{q-1}\left(b x^{q-1}+x^{q^{3}-1}\right)\right)\right\rangle_{\mathbb{F}_{q^{4}}}$ and hence if $P_{x} \neq\langle(1,0)\rangle_{\mathbb{F}_{q^{4}}}$ has weight two, then $\left\{P_{\mu x}: \mu \in \mathbb{F}_{q^{2}}^{*}\right\}$ is a set of $q+1$ distinct points with weight 2.

The function $f_{b}(x)$ is not $\mathbb{F}_{q^{2}}$-linear and hence the maximum field of linearity of $L_{U(b)}$ is \mathbb{F}_{q}. It follows (cf. [7, Proposition 2.2])) that $L_{U(b)}$ has
at least one point with weight one, say $\left\langle\left(x_{0}, f_{b}\left(x_{0}\right)\right)\right\rangle_{\mathbb{F}_{q^{4}}}$. Then the line of $\mathrm{AG}\left(2, q^{4}\right)$ with equation $x_{0} Y=f_{b}\left(x_{0}\right) X$ meets the graph of $f_{b}(x)$, that is, $\left\{\left(x, f_{b}(x)\right): x \in \mathbb{F}_{q^{4}}\right\}$, in exactly q points. It follows from [1, 2], see also [6], that the number of directions determined by $f_{b}(x)$ is at least $q^{3}+1$, and hence also $\left|L_{U(b)}\right| \geq q^{3}+1$. Denote by w_{1} and w_{2} the number of points of $L_{U(b)}$ with weight one and two, respectively. Then

$$
\begin{gather*}
w_{1}+w_{2}=\left|L_{U(b)}\right| \geq q^{3}+1, \tag{4}\\
w_{1}(q-1)+w_{2}\left(q^{2}-1\right)=q^{4}-1 . \tag{5}
\end{gather*}
$$

Subtracting (4) ($q-1$)-times from (5) gives $w_{2}\left(q^{2}-q\right) \leq q^{3}-q$ and hence $w_{2} \leq q+1$. At this point it is clear that in $L_{U(b)}$ there is either one point with weight two, the point $\langle(1,0)\rangle_{\mathbb{F}^{4}}$, or there are exactly $q+1$ of them and $\langle(1,0)\rangle_{\mathbb{F}_{q^{4}}}$ is not one of them.

If $\mathrm{N}_{q^{4} / q}(b) \neq 1$, then Theorem 1.1 states that $L_{U(b)}$ is scattered. We show that $\langle(1,0)\rangle_{q^{4}}$ has weight two if and only if $\mathrm{N}_{q^{4} / q^{2}}(b)=1$. Note that the weight of this point is the dimension of the kernel of $f_{b}(x)$. If $f_{b}(x)=0$ for some $x \in \mathbb{F}_{q^{4}}^{*}$, then $b=-x^{q^{3}-q}$ and hence, by taking $\left(q^{2}+1\right)$-th powers at both sides, $\mathrm{N}_{q^{4} / q^{2}}(b)=1$. On the other hand, if $\mathrm{N}_{q^{4} / q^{2}}(b)=1$, then $b=w^{q^{2}-1}$ for some $w \in \mathbb{F}_{q^{4}}^{*}$. Let ε be a non-zero element of $\mathbb{F}_{q^{4}}$ such that $\varepsilon^{q^{2}}+\varepsilon=0$. Then it is easy to check that the kernel of $f_{b}(x)$ is $\left\langle(\varepsilon w)^{q^{3}}\right\rangle_{\mathbb{F}_{q^{2}}}$ which has dimension two over \mathbb{F}_{q} and hence $\langle(1,0)\rangle_{q^{4}}$ has weight two.

It remains to prove that if $\mathrm{N}_{q^{4} / q}(b)=1$ and $\mathrm{N}_{q^{4} / q^{2}}(b) \neq 1$, then there is at least one point (hence precisely $q+1$ points) of weight two. After rearranging in (3), we obtain

$$
\begin{equation*}
\left(\lambda-\lambda^{q}\right)^{q^{3}-1}=b x^{q-q^{3}} . \tag{6}
\end{equation*}
$$

By taking $\left(q^{2}+1\right)$-th powers on both sides we can eliminate x, obtaining

$$
\begin{equation*}
\left(\lambda-\lambda^{q}\right)^{\left(q^{3}-1\right)\left(q^{2}+1\right)}=\left(\lambda-\lambda^{q}\right)^{(q-1)\left(q^{2}+1\right)}=b^{q^{2}+1} . \tag{7}
\end{equation*}
$$

It is clear that we can find $\lambda \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q}$ satisfying (7) if and only if there exists $\epsilon \in \mathbb{F}_{q^{4}}^{*}$ such that

$$
\begin{equation*}
\left(\lambda-\lambda^{q}\right)^{q^{3}-1} / b=\epsilon^{q^{2}-1} . \tag{8}
\end{equation*}
$$

Then $x \in\left\langle\epsilon^{q}\right\rangle_{\mathbb{F}_{q^{2}}}$ with $y=\lambda x$ satisfies our initial conditions in (3).

Now use $\mathrm{N}_{q^{4} / q}(b)=1$ and put $b=\mu^{q-1}$ for some $\mu \in \mathbb{F}_{q^{4}}^{*}$. Then (7) can be written as

$$
\begin{equation*}
\left(\frac{\lambda-\lambda^{q}}{\mu}\right)^{(q-1)\left(q^{2}+1\right)}=1 \tag{9}
\end{equation*}
$$

We can solve (9) if and only if there exists $\delta \in \mathbb{F}_{q^{4}}^{*}$ such that

$$
\begin{equation*}
\left(\frac{\lambda-\lambda^{q}}{\mu}\right)^{q-1}=\delta^{q^{2}-1} \tag{10}
\end{equation*}
$$

or, equivalently,

$$
\begin{equation*}
\left\langle\frac{\lambda-\lambda^{q}}{\mu}\right\rangle_{\mathbb{F}_{q}}=\left\langle\delta^{q+1}\right\rangle_{\mathbb{F}_{q}} . \tag{11}
\end{equation*}
$$

Now we will continue in $\operatorname{PG}\left(\mathbb{F}_{q^{4}}, \mathbb{F}_{q}\right)=\mathrm{PG}(3, q)$. At the left-hand side of (111) we can see a point of the hyperplane \mathcal{H}_{μ} defined as

$$
\mathcal{H}_{\mu}=\left\{\langle z\rangle_{\mathbb{F}_{q}}: \operatorname{Tr}_{q^{4} / q}(\mu z)=0\right\}
$$

while on the right-hand side we can see a point of the elliptic quadric \mathcal{Q} defined as

$$
\mathcal{Q}=\left\{\langle z\rangle_{\mathbb{F}_{q}}: z^{(q-1)\left(q^{2}+1\right)}=1\right\} .
$$

For a proof that \mathcal{Q} is an elliptic quadric see [5, Theorem 3.2]. Since $\mathcal{Q} \cap \mathcal{H}_{\mu} \neq$ \emptyset it follows that we can always find $\lambda \in \mathbb{F}_{q^{4}} \backslash \mathbb{F}_{q}$ satisfying (8) and hence $L_{U(b)}$ is not scattered.

Remark 2.2. The linear sets in Theorem 2.1 are of sizes $q^{3}+q^{2}+q+1$, $q^{3}+q^{2}+1$, or $q^{3}+1$. The linear set associated with $\left\{\left(x, \operatorname{Tr}_{q^{4} / q}(x)\right): x \in \mathbb{F}_{q^{4}}\right\}$ is of size $q^{3}+1$ as well. As it turns out from [4] the projective line $\mathrm{PG}\left(1, q^{4}\right)$ also contains \mathbb{F}_{q}-linear sets of size $q^{3}+q^{2}-q+1$.

3 The canonical form

In this section \mathbb{L} denotes a maximum scattered \mathbb{F}_{q}-linear set in $\operatorname{PG}\left(1, q^{4}\right)$, not of pseudoregulus type. In particular, this implies $q>2$. By [15$], \mathbb{L}$ is a projection $p_{\ell}(\Sigma)$, where the vertex ℓ is a line and Σ is a q-order canonical subgeometry ${ }^{1}$ in $\mathrm{PG}\left(3, q^{4}\right)$, with $\ell \cap \Sigma=\emptyset$. The axis of the projection

[^1]is immaterial and can be chosen by convenience. Let σ be a generator of the subgroup of order four of $\operatorname{P\Gamma L}\left(4, q^{4}\right)$ fixing pointwise Σ. Let M be a k-dimensional subspace of $\operatorname{PG}\left(3, q^{4}\right)$. We say that M is a subspace of Σ if $M \cap \Sigma$ is a k-dimensional subpsace of Σ, which happens exactly when $M^{\sigma}=M$.

Proposition 3.1. Let Σ^{\prime} be the unique q^{2}-order canonical subgeometry of $\mathrm{PG}\left(3, q^{4}\right)$ containing Σ, that is, the set of all points fixed by σ^{2}. Then the intersection of ℓ and Σ^{\prime} is empty.

Proof. Assume the contrary, that is, there exists a point P in $\ell \cap \Sigma^{\prime}$. Then $P^{\sigma^{2}}=P$, the subspace $\ell_{P}=\left\langle P, P^{\sigma}\right\rangle$ is a line, and satisfies $\ell_{P}^{\sigma}=\ell_{P}$, whence ℓ_{P} is a line of Σ. This implies that $p_{\ell}\left(\ell_{P}\right)$ is a point, and \mathbb{L} is not scattered.

Let \mathcal{K} and \mathcal{K}^{\prime} be the Klein quadrics representing - via the Plücker embedding \wp - the lines of Σ and Σ^{\prime}. In order to precisely define \wp, take coordinates in $\operatorname{PG}\left(3, q^{4}\right)$ such that Σ (resp. $\left.\Sigma^{\prime}\right)$ is the set of all points with coordinates rational over \mathbb{F}_{q} (resp. $\mathbb{F}_{q^{2}}$), and define the image r^{\wp} of any line r through minors of order two in the usual way. Then $\mathcal{K}=\mathcal{K}^{\prime} \cap \operatorname{PG}(5, q)$ by considering $\operatorname{PG}(5, q)$ as a subset of $\operatorname{PG}\left(5, q^{2}\right)$. The only nontrivial element of the subgroup of $\mathrm{P} \Gamma \mathrm{L}\left(6, q^{2}\right)$ fixing $\mathrm{PG}(5, q)$ pointwise is

$$
\begin{equation*}
\tau:\left\langle\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)\right\rangle_{\mathbb{F}_{q^{2}}} \mapsto\left\langle\left(x_{0}^{q}, x_{1}^{q}, x_{2}^{q}, x_{3}^{q}, x_{4}^{q}, x_{5}^{q}\right)\right\rangle_{\mathbb{F}_{q^{2}}} . \tag{12}
\end{equation*}
$$

Then $\mathcal{K}_{2}^{\tau}=\mathcal{K}_{2}$, and $\sigma \wp=\wp \tau$.
Proposition 3.2. Let S be a solid in $\operatorname{PG}\left(5, q^{2}\right)$ such that (i) $S \cap \mathcal{K}^{\prime} \cong$ $Q^{-}\left(3, q^{2}\right)$, (ii) $S \cap \mathcal{K}=\emptyset$. Then $S \cap S^{\tau} \cap \mathcal{K}^{\prime}$ is a set of two distinct points forming an orbit of τ.

Proof. If $\operatorname{dim}\left(S \cap S^{\tau}\right) \geq 2$, then $S \cap S^{\tau}$ contains a plane of $\mathrm{PG}(5, q)$. Each plane of $\operatorname{PG}(5, q)$ meets \mathcal{K} in at least one point of $\operatorname{PG}(5, q)$, contradicting (ii). Then $r=S \cap S^{\tau}$ is a line fixed by τ, so it is a line of $\operatorname{PG}(5, q)$. This r is external to the Klein quadric \mathcal{K} by (ii), hence it meets \mathcal{K}^{\prime} in two points. Since both of \mathcal{K}^{\prime} and r are fixed by τ the assertion follows.

Proposition 3.3. There is a line r in $\operatorname{PG}\left(3, q^{4}\right)$, such that r and r^{σ} are skew lines both meeting ℓ, and $r^{\sigma^{2}}=r$.

Proof. Let Σ and Σ^{\prime} be as in Proposition 3.1. Since $\ell \cap \Sigma^{\prime}=\emptyset, \ell$ defines a regular (Desarguesian) spread \mathcal{F} of Σ^{\prime}. The lines of \mathcal{F} are all lines $\left\langle P, P^{\sigma^{2}}\right\rangle \cap$ Σ^{\prime} where $P \in \ell$. The image \mathcal{F}^{\wp} under the Plücker embedding of \mathcal{F} is an
elliptic quadric $S \cap \mathcal{K}^{\prime} \cong Q^{-}\left(3, q^{2}\right)$ in $\operatorname{PG}\left(5, q^{2}\right), S$ a solid. Since \mathbb{L} is scattered, there is no line of \mathcal{F} fixed by σ, whence $S \cap \mathcal{K}=\emptyset$. Then the assertion follows from Proposition 3.2.

Theorem 3.4. Any maximum scattered linear \mathbb{F}_{q}-linear set in $\mathrm{PG}\left(1, q^{4}\right)$ is projectively equivalent to $L_{U(b)}$ for some $b \in \mathbb{F}_{q^{4}}, \mathrm{~N}_{q^{4} / q}(b) \neq 1$.

Proof. The set $L_{U(0)}$ is a linear set of pseudoregulus type. Now assume that $\mathbb{L}=p_{\ell}(\Sigma)$ is maximum scattered, not of pseudoregulus type. Coordinates $X_{0}, X_{1}, X_{2}, X_{3}$ in $\operatorname{PG}\left(3, q^{4}\right)$ can be chosen such that

$$
\begin{equation*}
\Sigma=\left\{\left\langle\left(u, u^{q}, u^{q^{2}}, u^{q^{3}}\right)\right\rangle_{\mathbb{F}_{q^{4}}}: u \in \mathbb{F}_{q^{4}}^{*}\right\} \tag{13}
\end{equation*}
$$

and a generator of the subgroup of $\operatorname{P\Gamma L}\left(4, q^{4}\right)$ fixing Σ pointwise is

$$
\begin{equation*}
\sigma:\left\langle\left(x_{0}, x_{1}, x_{2}, x_{3}\right)\right\rangle_{\mathbb{F}_{q^{4}}} \mapsto\left\langle\left(x_{3}^{q}, x_{0}^{q}, x_{1}^{q}, x_{2}^{q}\right)\right\rangle_{\mathbb{F}_{q^{4}}} . \tag{14}
\end{equation*}
$$

Define $C=\ell \cap r$, where r is as in Proposition 3.3. The points C and $C^{\sigma^{2}}$ lie on r, as well as the points C^{σ} and $C^{\sigma^{3}}$ lie on r^{σ}. By Proposition 3.1, $C \neq C^{\sigma^{2}}$ and $C^{\sigma} \neq C^{\sigma^{3}}$. This implies $\ell \subset\left\langle C, C^{\sigma}, C^{\sigma^{3}}\right\rangle$, and $\left\langle C, C^{\sigma}, C^{\sigma^{2}}, C^{\sigma^{3}}\right\rangle=$ $\operatorname{PG}\left(3, q^{4}\right)$. Since the stabilizer of Σ in $\operatorname{PGL}\left(4, q^{4}\right)$ acts transitively on the points C of $\mathrm{PG}\left(3, q^{4}\right)$ such that $\left\langle C, C^{\sigma}, C^{\sigma^{2}}, C^{\sigma^{3}}\right\rangle=\mathrm{PG}\left(3, q^{4}\right)$ [4, Proposition 3.1], it may be assumed that $C=\langle(0,0,1,0)\rangle_{\mathbb{F}_{q^{4}}}$, whence

$$
\ell=\langle(0,0,1,0),(0, a, 0,-b)\rangle_{\mathbb{F}_{q^{4}}},
$$

for some $a, b \in \mathbb{F}_{q^{4}}$, not both of them zero. If $a=0$, then \mathbb{L} is of pseudoregulus type [9, Theorem 2.3], so $a=1$ may be assumed. For any point $P_{u}=\left\langle\left(u, u^{q}, u^{q^{2}}, u^{q^{3}}\right)\right\rangle_{\mathbb{F}_{q^{4}}}$ in Σ, the plane containing ℓ and P_{u} has coordinates $\left[u^{q^{3}}+b u^{q},-b u, 0,-u\right]$, and this leads to the desired form for the coordinates of \mathbb{L}.

4 Orbits

Analogously to the definition of the ГL-class of linear sets (cf. Definition 2.4 in [7]) we define the GL-class, which will be needed to study PGL $\left(2, q^{4}\right)$ equivalence. Note that for any scattered \mathbb{F}_{q}-linear set the maximum field of linearity is \mathbb{F}_{q}.

Definition 4.1. Let L_{U} be an \mathbb{F}_{q}-linear set of $\operatorname{PG}\left(1, q^{t}\right)$ of rank t with maximum field of linearity \mathbb{F}_{q}. We say that L_{U} is of ГL-class s [resp.

GL-class $s]$ if s is the largest integer such that there exist \mathbb{F}_{q}-subspaces U_{1}, U_{2}, \ldots, U_{s} of $\mathbb{F}_{q^{t}}^{2}$ with $L_{U_{i}}=L_{U}$ for $i \in\{1,2, \ldots, s\}$ and there is no $\varphi \in \Gamma \mathrm{L}\left(2, q^{t}\right)$ [resp. $\varphi \in \mathrm{GL}\left(2, q^{t}\right)$] such that $U_{i}=U_{j}^{\varphi}$ for each $i \neq j$, $i, j \in\{1,2, \ldots, s\}$.

The first part of the following result is [7, Theorem 4.5], while the second part follows from its proof. We briefly summarize the main steps of the proof from [7].

Theorem 4.2. 7, Theorem 4.5] Each \mathbb{F}_{q}-linear set of rank four in $\mathrm{PG}\left(1, q^{4}\right)$, with maximum field of linearity \mathbb{F}_{q}, is of $\Gamma \mathrm{L}$-class one. More precisely, if $L_{U}=L_{V}$ for some 4 dimensional \mathbb{F}_{q}-subspaces U, V of $\mathbb{F}_{q^{4}}^{2}$, then there exists $\varphi \in \Gamma \mathrm{L}\left(2, q^{4}\right)$ such that $U^{\varphi}=V$. Also, φ can be chosen such that it has companion automorphism either the identity, or $x \mapsto x^{q^{2}}$.

Proof. Assume $L_{U}=L_{V}$. We may assume $\langle(0,1)\rangle_{\mathbb{F}_{q^{4}}} \notin L_{U}$. Then $U=$ $U_{f}=\left\{(x, f(x)): x \in \mathbb{F}_{q^{4}}\right\}$ and $V=V_{g}=\left\{(x, g(x)): x \in \mathbb{F}_{q^{4}}\right\}$ for some q-polynomials f and g over $\mathbb{F}_{q^{4}}$. By [7, Proposition 4.2], either $g(x)=$ $f(\lambda x) / \lambda$, or $g(x)=\hat{f}(\lambda x) / \lambda$ for some $\lambda \in \mathbb{F}_{q^{4}}^{*}$, where here \hat{f} denotes the adjoint map of f with respect to the bilinear form $<x, y>:=\operatorname{Tr}_{q^{4} / q}(x y)$. The $\mathbb{F}_{q^{4}}$-linear map $\mathbf{v} \mapsto \lambda \mathbf{v}$ maps U_{g} to one of U_{f}, or $U_{\hat{f}}$. In the proof of [7, Theorem 4.5], a $\kappa \in \Gamma \mathrm{L}\left(2, q^{4}\right)$ with companion automorphism the identity, or $x \mapsto x^{q^{2}}$ is determined such that $U_{f}^{\kappa}=U_{\hat{f}}$.

Theorem 4.3. For any $b \in \mathbb{F}_{q^{4}}, L_{U(b)}$ is of GL-class one.
Proof. By Theorem4.2, if $L_{U(b)}=L_{V}$, then there exists $\varphi \in \Gamma L\left(2, q^{4}\right)$ such that $U(b)^{\varphi}=V$ and the companion automorphism of φ is $x \mapsto x^{q^{2}}$, or the identity. In order to prove the statement it is enough to show that $U(b)$ and $U(b)^{q^{2}}=\left\{\left(x^{q^{2}}, y^{q^{2}}\right):(x, y) \in U(b)\right\}$ lie on the same orbit of $\mathrm{GL}\left(2, q^{4}\right)$. If $b=0$, then $U(b)=U(b)^{q^{2}}$. If $b \neq 0$, then for any $u \in \mathbb{F}_{q^{4}}$,

$$
\left(\begin{array}{cc}
b^{q^{3}} & 0 \\
0 & b^{q^{2}}
\end{array}\right)\binom{u}{b u^{q}+u^{q^{3}}}=\binom{b^{q} u^{q^{2}}}{b\left(b^{q} u^{q^{2}}\right)^{q}+\left(b^{q} u^{q^{2}}\right)^{q^{3}}}^{q^{2}}=\binom{v}{b v^{q}+v^{q^{3}}}^{q^{2}}
$$

with $v=b^{q} u^{q^{2}}$.
Corollary 4.4. Let $b, c \in \mathbb{F}_{q^{4}}$. The linear sets $L_{U(b)}$ and $L_{U(c)}$ are projectively equivalent if and only if $U(b)$ and $U(c)$ are in the same orbit under the action of $\mathrm{GL}\left(2, q^{4}\right)$.

Proof. The "if" part is obvious, so assume that $L_{U(b)}^{\tilde{\kappa}}=L_{U(c)}$ where $\kappa \in$ $\mathrm{GL}\left(2, q^{4}\right)$. Then $L_{U(b)^{\kappa}}=L_{U(c)}$ and by Theorem 4.3 there is $\kappa^{\prime} \in \mathrm{GL}\left(2, q^{4}\right)$ such that $U(b)^{\kappa \kappa^{\prime}}=U(c)$.

It follows that in order to classify the \mathbb{F}_{q}-linear sets $L_{U(b)}$ up to PGL $\left(2, q^{4}\right)$ and $\mathrm{P} \Gamma \mathrm{L}\left(2, q^{4}\right)$-equivalence, it is enough to determine the orbits of the subspaces $U(b)$ under the actions of $\Gamma \mathrm{L}\left(2, q^{4}\right)$ and $\mathrm{GL}\left(2, q^{4}\right)$.
Theorem 4.5. Let q be a power of a prime p.
(i) For any $b, c \in \mathbb{F}_{q^{4}}, L_{U(b)}$ and $L_{U(c)}$ are equivalent up to an element of $\mathrm{P} \Gamma \mathrm{L}\left(2, q^{4}\right)$ if and only if $c^{q^{2}+1}=b^{ \pm p^{s}\left(q^{2}+1\right)}$ for some integer $s \geq 0$.
(ii) For any $b, c \in \mathbb{F}_{q^{4}}$, the linear sets $L_{U(b)}$ and $L_{U(c)}$ are projectively equivalent if and only if $c^{q^{2}+1}=b^{q^{2}+1}$ or $c^{q^{2}+1}=b^{-q\left(q^{2}+1\right)}$.
(iii) All linear sets described in 2. of Theorem 2.1 are projectively equivalent.
(iv) There are precisely $q(q-1) / 2$ distinct linear sets up to projective equivalence in the family described in 1. of Theorem 2.1, and these are the only maximum scattered linear sets of $\mathrm{PG}\left(1, q^{4}\right)$.
(v) There are precisely q distinct linear sets up to projective equivalence in the family described in 3. of Theorem 2.1.

Proof. Take $b \in \mathbb{F}_{q^{4}}^{*}$. If $L_{U(b)}$ is not scattered, then it clearly cannot be equivalent to $L_{U(0)}$ (the scattered linear set of pseudoregulus type), while if $L_{U(b)}$ is scattered, then it follows from Theorem 1.1 (and from a computer search when $q=3$) that $U(b)$ and $U(0)$ yield projectively inequivalent linear sets. Since the automorphic collineations $(x, y) \mapsto\left(x^{p^{s}}, y^{p^{s}}\right)$ fix $U(0)$, it also follows that $L_{U(0)}$ and $L_{U(b)}$ lie on different orbits of PГL $\left(2, q^{4}\right)$. Thus (i) and (ii) are true when one of b or c is zero, so from now on we may assume $b \neq 0$ and $c \neq 0$.

The sets $L_{U(b)}$ and $L_{U(c)}$ are equivalent up to elements of $\operatorname{P\Gamma L}\left(2, q^{4}\right)$ if and only for some $\psi=p^{k}, k \in \mathbb{N}$ and some $A, B, C, D \in \mathbb{F}_{q^{4}}$ such that $A D-B C \neq 0$ the following holds:

$$
\left\{\left(\begin{array}{ll}
A & B \tag{15}\\
C & D
\end{array}\right)\binom{u^{\psi}}{b^{\psi} u^{\psi q}+u^{\psi q^{3}}}: u \in \mathbb{F}_{q^{4}}\right\}=\left\{\binom{v}{c v^{q}+v^{q^{3}}}: v \in \mathbb{F}_{q^{4}}\right\} .
$$

Furthermore, by Corollary 4.4, $L_{U(b)}$ and $L_{U(c)}$ are projectively equivalent if, and only if, (15) has a solution with $\psi=1$. This leads to a polynomial in
u^{ψ} of degree at most q^{3} which is identically zero. Equating its coefficients to zero,

$$
\left\{\begin{align*}
A^{q^{3}}-D & =0 \tag{16}\\
B^{q} b^{\psi q} c+B^{q^{3}} & =0 \\
A^{q} c-D b^{\psi} & =0 \\
B^{q} c+B^{q^{3}} b^{\psi q^{3}}-C & =0
\end{align*}\right.
$$

Assume that $L_{U(b)}$ and $L_{U(c)}$ are in the same orbit of $\operatorname{P\Gamma L}\left(2, q^{4}\right)$, and take $\psi=1$ in case they are also projectively equivalent. If $D \neq 0$, then the first and third equations imply $b^{\psi}=D^{q^{2}-1} c$ and so $c^{q^{2}+1}=b^{\psi\left(q^{2}+1\right)}$. If $D=0$, then $B C \neq 0$; from the second equation, $\left(b^{\psi q} c\right)^{q^{2}+1}=1$, hence $c^{q^{2}+1}=b^{-\psi q\left(q^{2}+1\right)}$. This proves the only if parts of (i) and (ii).

Conversely, if $c^{q^{2}+1}=b^{p^{s}\left(q^{2}+1\right)}$ for some $s \in \mathbb{N}$, then $b^{p^{s}} c^{-1}=\delta^{q^{2}-1}$ for some $\delta \in \mathbb{F}_{q^{4}}^{*}$. The quadruple $A=\delta^{q}, B=C=0, D=\delta$ with $\psi=p^{s}$ is a solution of (16) with $A D-B C \neq 0$. This proves the if part of (i) when $c^{q^{2}+1}=b^{p^{s}\left(q^{2}+1\right)}$ and the if part of (ii) when $c^{q^{2}+1}=b^{q^{2}+1}$. If $b^{q^{2}+1}=c^{q^{2}+1}=1$, i.e. when $U(b)$ and $U(c)$ define linear sets described in 2. of Theorem [2.1, then the above condition holds, thus (iii) follows. From now on we may assume $b^{q^{2}+1} \neq 1$ and $c^{q^{2}+1} \neq 1$.

Assume $c^{q^{2}+1}=b^{-p^{s}\left(q^{2}+1\right)}$ for some $s \in \mathbb{N}$, i.e. $b^{p^{s}} c=\varepsilon^{q^{2}-1}$ for some $\varepsilon \in \mathbb{F}_{q^{4}}^{*}$. Define $\psi=p^{s} q^{3}$. A $\rho \in \mathbb{F}_{q^{4}}^{*}$ exists such that $\rho^{q^{2}-1}=-1$. Take $A=D=0, B=(\rho \varepsilon)^{q^{3}}, C=\varepsilon \rho c\left(1-b^{p^{s}\left(q^{2}+1\right)}\right)$. If $C=0$, then $b^{q^{2}+1}=1$, a contradiction. So $A D-B C \neq 0$ and (16) has a solution. If $p^{s}=q$, then $\psi=1$, hence in this case $L_{U(b)}$ and $L_{U(c)}$ are projectively equivalent. This finishes the proofs of (i) and (ii).

Now we prove (iv). Note that $\mathrm{N}_{q^{4} / q}(b)=\left(b^{q^{2}+1}\right)^{q+1}$ for any $b \in \mathbb{F}_{q}$, therefore, $L_{U(b)}$ is a maximum scattered \mathbb{F}_{q}-linear set not of pseudoregulus type if, and only if, $b^{q^{2}+1}$ is an element of the set

$$
S=\left\{x \in \mathbb{F}_{q^{2}}^{*}: x^{q+1} \neq 1\right\} .
$$

The orbits of point sets of type $L_{U(b)}, b \neq 0$, under the action of PGL $\left(2, q^{4}\right)$ are as many as the pairs $\left\{x, x^{-q}\right\}$ of elements in S. Since all such pairs are made of distinct elements, adding one for the linear set of pseudoregulus type, one obtains

$$
1+\frac{q^{2}-q-2}{2}=\frac{q(q-1)}{2} .
$$

Finally we prove (v). $L_{U(b)}$ is an \mathbb{F}_{q}-linear set described in 3. of Theorem 2.1 if, and only if, $b^{q^{2}+1}$ is an element of the set

$$
Z=\left\{x \in \mathbb{F}_{q^{2}} \backslash\{1\}: x^{q+1}=1\right\} .
$$

The orbits of point sets of this type under the action of $\operatorname{PGL}\left(2, q^{4}\right)$ are as many as the pairs $\left\{x, x^{-q}\right\}$ of elements in Z. Since for each $x \in Z$ we have $x=x^{-q}$, this number is q.

Remark 4.6. The number of orbits of maximum scattered linear sets under the action of $\mathrm{P} \Gamma \mathrm{L}\left(2, q^{4}\right)$ depends on the exponent e in $q=p^{e}$. A general formula is not provided here. For $e=1$ each orbit which does not arise from the linear set of pseudoregulus type is related to two or four norms over $\mathbb{F}_{q^{2}}$, according to whether $\mathrm{N}_{q^{4} / q^{2}}(b) \in \mathbb{F}_{q} \backslash\{0,1,-1\}$ or not. This leads (including now the linear set of pseudoregulus type) to a total number of $\left(q^{2}-1\right) / 4$ orbits for odd q.

Acknowledgement

The authors of this paper thank Michel Lavrauw, Giuseppe Marino and Olga Polverino for useful discussions and suggestions during the development of this research.

References

[1] S. BALL: The number of directions determined by a function over a finite field, J. Combin. Theory Ser. A 104 (2003), 341-350.
[2] S. Ball, A. Blokhuis, A.E. Brouwer, L. Storme and T. Szőnyi: On the number of slopes of the graph of a function definied over a finite field, J. Combin. Theory Ser. A 86 (1999), 187-196.
[3] J. Bamberg, A. Betten, Ph. Cara, J. De Beule, M. Lavrauw and M. Neunhöffer: FinInG - Finite Incidence Geometry, a GAP package. Version 1.3.3, 2016.
[4] G. Bonoli and O. Polverino: \mathbb{F}_{q}-linear blocking sets in $\operatorname{PG}\left(2, q^{4}\right)$. Innov. Incidence Geom. 2 (2005), 35-56.
[5] A. Cossidente and L. Storme: Caps on Elliptic Quadrics. Finite Fields Appl. 1 (1995), 412-420.
[6] B. Csajbóк: On bisecants of Rédei type blocking sets and applications, to appear in Combinatorica, DOI: 10.1007/s00493-016-3442-6
[7] B. Csajbók, G. Marino and O. Polverino: On the equivalence of linear sets of rank n in $\operatorname{PG}\left(1, q^{n}\right)$. Submitted manuscript, 2016. arXiv:1607.06962
[8] B. Csajbók and C. Zanella: On the equivalence of linear sets. Des. Codes Cryptogr. 81 (2016), 269-281.
[9] B. Csajbók and C. Zanella: On scattered linear sets of pseudoregulus type in $\operatorname{PG}\left(1, q^{t}\right)$. Finite Fields Appl. 41 (2016), 34-54.
[10] M. De Boeck and G. Van de Voorde: A linear set view on KMarcs, J. Algebraic Combin. 44 (1) (2016), 131-164.
[11] J.W.P. Hirschfeld: Projective Geometries over Finite Fields, $2^{\text {nd }}$ ed., Clarendon Press, Oxford, 1998.
[12] M. Lavrauw, J. Sheekey and C. Zanella: On embeddings of minimum dimension of $\mathrm{PG}(n, q) \times \operatorname{PG}(n, q)$. Des. Codes Cryptogr. 74 (2015), 427-440.
[13] M. Lavrauw and C. Zanella: Subgeometries and linear sets on a projective line. Finite Fields Appl. 34 (2015), 95-106.
[14] G. Lunardon and O. Polverino: Blocking sets and derivable partial spreads. J. Algebraic Combin. 14 (2001), 49-56.
[15] G. Lunardon and O. Polverino: Translation ovoids of orthogonal polar spaces. Forum Math. 16 (2004), 663-669.
[16] O. Polverino: Linear sets in finite projective spaces, Discrete Math. 310 (2010), 3096-3107.
[17] J. Sheekey: A new family of linear maximum rank distance codes, Adv. Math. Commun. 10(3) (2016), 475-488.
[18] G. Van de Voorde: Desarguesian spreads and field reduction for elements of the semilinear group. Linear Algebra Appl. 507 (2016), 96-120.

Bence Csajbók
MTA-ELTE Geometric and Algebraic Combinatorics Research Group, Eötvös Loránd University,

H-1117 Budapest, Pázmány Péter Sétány 1/C, Hungary
csajbok.bence@gmail.com
Corrado Zanella
Dipartimento di Tecnica e Gestione dei Sistemi Industriali, Università di Padova, Stradella S. Nicola, 3, I-36100 Vicenza, Italy corrado.zanella@unipd.it

[^0]: *The research was supported by Ministry for Education, University and Research of Italy MIUR (Project PRIN 2012 "Strutture Geometriche, Combinatoria e loro applicazioni") and by the Italian National Group for Algebraic and Geometric Structures and their Applications (GNSAGA-INdAM).

[^1]: ${ }^{1}$ Let $\operatorname{PG}\left(V, \mathbb{F}_{q^{t}}\right)=\operatorname{PG}\left(n-1, q^{t}\right)$, let U be an n-dimensional \mathbb{F}_{q}-vector subspace of V, and $\Sigma=\left\{\langle\mathbf{u}\rangle_{\mathbb{F}_{q^{t}}}: \mathbf{u} \in U \backslash\{\mathbf{0}\}\right\}$. If $\langle\Sigma\rangle=\mathrm{PG}\left(n-1, q^{t}\right)$, then Σ is a (q-order) canonical subgeometry of $\operatorname{PG}\left(n-1, q^{t}\right)$. Here and in the following, angle brackets $\langle-\rangle$ without a subscript denote projective span in $\operatorname{PG}\left(n-1, q^{t}\right)$, that is, $\mathrm{PG}\left(3, q^{4}\right)$ in our case.

