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Abstract

There are two known families of maximum scattered Fq-linear sets
in PG(1, qt): the linear sets of pseudoregulus type and for t ≥ 4 the
scattered linear sets found by Lunardon and Polverino. For t = 4 we
show that these are the only maximum scattered Fq-linear sets and
we describe the orbits of these linear sets under the groups PGL(2, q4)
and PΓL(2, q4).

1 Introduction

Recent investigations on linear sets in a finite projective line PG(1, qt) of
rank t concerned: the hypersurface obtained from the linear sets of pseu-
doregulus type by applying field reduction [12]; a geometric characterization
of the linear sets of pseudoregulus type [9]; a characterization of the clubs,
that is, the linear sets of rank r with a point of weight r − 1 [13]; a gen-
eralization of clubs in order to construct KM-arcs [10]; a condition for the
equivalence of two linear sets [8, 18]; the definition and study of the class of
a linear set in order to study their equivalence [7]; a construction method
which yields MRD-codes from maximum scattered linear sets of PG(1, qt)
[17]. Furthermore, the linear sets in PG(1, qt) coincide with the so-called
splashes of subgeometries [13]. The results of such investigations make it
reasonable to attempt to classify the linear sets in PG(1, qt) of rank t for
small t.

A point in PG(1, qt) is the Fqt-span 〈v〉F
qt

of a nonzero vector v in a
two-dimensional vector space, say W , over Fqt . If U is a subspace over Fq of

∗The research was supported by Ministry for Education, University and Research of
Italy MIUR (Project PRIN 2012 “Strutture Geometriche, Combinatoria e loro appli-
cazioni”) and by the Italian National Group for Algebraic and Geometric Structures and
their Applications (GNSAGA–INdAM).

1

http://arxiv.org/abs/1705.00731v1


W , then LU = {〈v〉F
qt
: v ∈ U \{0}} denotes the associated Fq-linear set (or

simply linear set) in PG(1, qt). The rank of such a linear set is r = dimFq
U .

Any linear set in PG(1, qt) of rank greater than t coincides with the whole
projective line. The weight of a point P = 〈v〉F

qt
is w(P ) = dimFq

(U ∩ P ).

If the rank and the size of LU are r and (qr − 1)/(q − 1), respectively, then
LU is scattered. Equivalently, LU is scattered if and only if all its points
have weight one. A scattered Fq-linear set of rank t in PG(1, qt) is maximum
scattered. An example of maximum scattered Fq-linear set in PG(1, qt) is LV
with V = {(u, uq) : u ∈ Fqt}. Any subset of PG(1, qt) projectively equivalent
to this LV is called linear set of pseudoregulus type. See [9] for a geometric
description, and [7] or the survey [16] for further background on linear sets.
Note that for any ϕ ∈ ΓL(2, qt) with related collineation ϕ̃ ∈ PΓL(2, qt) and
any Fq-linear set LU , LUϕ = (LU )

ϕ̃. In [7, Theorem 4.5] it is proved that
if t = 4 and LU has maximum field of linearity Fq, that is, LU is not an
Fqs-linear set for s > 1, then any linear set in the same orbit of LU under
the action of PΓL(2, q4) is of type LUϕ with ϕ ∈ ΓL(2, q4). Note that this
is not true if t > 4. In [14], Lunardon and Polverino construct a class of
maximum scattered linear sets:

Theorem 1.1 ([14]). Let q be a prime power, t ≥ 4 an integer, b ∈ Fqt such
that the norm Nqt/q(b) of b over Fq is distinct from one, and

U(b, t) = {(u, buq + uq
t−1

) : u ∈ Fqt}. (1)

If b 6= 0 then LU(b,t) is a maximum scattered Fq-linear set in PG(1, qt) and
if q > 3, then it is not of pseudoregulus type.

It can be directly seen that LU(0,t) is maximum scattered of pseudoreg-
ulus type. For t = 4, Theorem 1.1 can be extended to q = 3, as it can be
checked by using the package FinInG of GAP [3]. In the following t = 4 is
assumed. For all b ∈ Fq4 define

U(b) = U(b, 4) = {(x, bxq + xq
3

) : x ∈ Fq4}. (2)

In section 2 it is shown that Nq4/q(b) 6= 1 is a necessary condition to
obtain scattered linear sets of PG(1, q4) and the case Nq4/q(b) = 1 is dealt
with. In this case, LU(b) contains either one or q + 1 points of weight two,
and the remaining points have weight one.

The main result in section 3 is that if L is a maximum scattered linear
set in PG(1, q4), then L is projectively equivalent to LU(b) for some b ∈ Fq4

with Nq4/q(b) 6= 1 (cf. Theorem 3.4).

2



In section 4 the orbits of the Fq-linear sets of rank four in PG(1, q4)
of type LU(b), under the actions of both PGL(2, q4) and PΓL(2, q4), are

completely characterized. Such orbits only depend on the norm bq
2+1 of b

over Fq2 . In particular, PG(1, q4) contains precisely q(q − 1)/2 maximum
scattered linear sets up to projective equivalence (Theorem 4.5), one of them
is of pseudoregulus type, the others are as in Theorem 1.1.

2 Classification

This section is devoted to the classification of all LU(b) for b ∈ Fq4 , where
U(b) is as in (2).

Theorem 2.1. For b ∈ Fq4 the following holds.

1. If Nq4/q(b) 6= 1, then LU(b) is scattered.

2. If Nq4/q2(b) = 1, then LU(b) has a unique point with weight two, the
point 〈(1, 0)〉F

q4
, and all other with weight one.

3. If Nq4/q2(b) 6= 1 and Nq4/q(b) = 1, then LU(b) has q + 1 points with
weight two and all other with weight one.

Proof. Put fb(x) = bxq + xq
3

. For x ∈ F
∗

q4 the point Px := 〈(x, fb(x))〉F
q4

of LU(b) has weight more than one if and only if there exists y ∈ F
∗

q4 and

λ ∈ Fq4 \ Fq such that λ(x, fb(x)) = (y, fb(y)). This holds if and only if
y = λx and

λbxq + λxq
3

− λqbxq − λq
3

xq
3

= 0. (3)

For a given x the solutions in λ of (3) form an Fq-subspace whom rank
equals to the weight of the point Px. Since q-polynomials over Fq4 of rank
1 are of the form αTrq4/q(βx) ∈ Fq4 [x], it is clear that the kernel of the
Fq-linear map in the variable λ at the left-hand side of (3) has dimension
at most two and hence the weight of each point of LU(b) is at most two. If
(λ, x) is a solution of (3) for some λ ∈ Fq4 and x ∈ F

∗

q4 , then (λ′, x′) is also

a solution for each λ′ ∈ 〈1, λ〉Fq
and x′ ∈ 〈x〉F

q2
and hence for each µ ∈ F

∗

q2

if Px has weight two, then Pµx := 〈(µx, fb(µx)〉F
q4

has weight two as well.

Note that Pµx = 〈(1, µq−1(bxq−1 + xq
3−1))〉F

q4
and hence if Px 6= 〈(1, 0)〉F

q4

has weight two, then {Pµx : µ ∈ F
∗

q2} is a set of q + 1 distinct points with
weight 2.

The function fb(x) is not Fq2-linear and hence the maximum field of
linearity of LU(b) is Fq. It follows (cf. [7, Proposition 2.2])) that LU(b) has
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at least one point with weight one, say 〈(x0, fb(x0))〉F
q4
. Then the line of

AG(2, q4) with equation x0Y = fb(x0)X meets the graph of fb(x), that is,
{(x, fb(x)) : x ∈ Fq4}, in exactly q points. It follows from [1, 2], see also [6],
that the number of directions determined by fb(x) is at least q3 + 1, and
hence also |LU(b)| ≥ q3 + 1. Denote by w1 and w2 the number of points of
LU(b) with weight one and two, respectively. Then

w1 + w2 = |LU(b)| ≥ q3 + 1, (4)

w1(q − 1) + w2(q
2 − 1) = q4 − 1. (5)

Subtracting (4) (q − 1)-times from (5) gives w2(q
2 − q) ≤ q3 − q and hence

w2 ≤ q + 1. At this point it is clear that in LU(b) there is either one point
with weight two, the point 〈(1, 0)〉F

q4
, or there are exactly q+1 of them and

〈(1, 0)〉F
q4

is not one of them.

If Nq4/q(b) 6= 1, then Theorem 1.1 states that LU(b) is scattered. We
show that 〈(1, 0)〉q4 has weight two if and only if Nq4/q2(b) = 1. Note that
the weight of this point is the dimension of the kernel of fb(x). If fb(x) = 0
for some x ∈ F

∗

q4 , then b = −xq
3−q and hence, by taking (q2 + 1)-th powers

at both sides, Nq4/q2(b) = 1. On the other hand, if Nq4/q2(b) = 1, then

b = wq
2−1 for some w ∈ F

∗

q4 . Let ε be a non-zero element of Fq4 such that

εq
2

+ ε = 0. Then it is easy to check that the kernel of fb(x) is 〈(εw)
q3〉F

q2

which has dimension two over Fq and hence 〈(1, 0)〉q4 has weight two.
It remains to prove that if Nq4/q(b) = 1 and Nq4/q2(b) 6= 1, then there

is at least one point (hence precisely q + 1 points) of weight two. After
rearranging in (3), we obtain

(λ− λq)q
3−1 = bxq−q

3

. (6)

By taking (q2 + 1)-th powers on both sides we can eliminate x, obtaining

(λ− λq)(q
3
−1)(q2+1) = (λ− λq)(q−1)(q2+1) = bq

2+1. (7)

It is clear that we can find λ ∈ Fq4 \ Fq satisfying (7) if and only if there
exists ǫ ∈ F

∗

q4 such that

(λ− λq)q
3−1/b = ǫq

2−1. (8)

Then x ∈ 〈ǫq〉F
q2

with y = λx satisfies our initial conditions in (3).
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Now use Nq4/q(b) = 1 and put b = µq−1 for some µ ∈ F
∗

q4 . Then (7) can
be written as

(

λ− λq

µ

)(q−1)(q2+1)

= 1. (9)

We can solve (9) if and only if there exists δ ∈ F
∗

q4 such that

(

λ− λq

µ

)q−1

= δq
2
−1, (10)

or, equivalently,
〈

λ− λq

µ

〉

Fq

= 〈δq+1〉Fq
. (11)

Now we will continue in PG(Fq4 ,Fq) = PG(3, q). At the left-hand side of
(11) we can see a point of the hyperplane Hµ defined as

Hµ = {〈z〉Fq
: Trq4/q(µz) = 0},

while on the right-hand side we can see a point of the elliptic quadric Q
defined as

Q = {〈z〉Fq
: z(q−1)(q2+1) = 1}.

For a proof that Q is an elliptic quadric see [5, Theorem 3.2]. Since Q∩Hµ 6=
∅ it follows that we can always find λ ∈ Fq4 \ Fq satisfying (8) and hence
LU(b) is not scattered.

Remark 2.2. The linear sets in Theorem 2.1 are of sizes q3 + q2 + q + 1,
q3+q2+1, or q3+1. The linear set associated with {(x,Trq4/q(x)) : x ∈ Fq4}
is of size q3+1 as well. As it turns out from [4] the projective line PG(1, q4)
also contains Fq-linear sets of size q3 + q2 − q + 1.

3 The canonical form

In this section L denotes a maximum scattered Fq-linear set in PG(1, q4),
not of pseudoregulus type. In particular, this implies q > 2. By [15], L is
a projection pℓ(Σ), where the vertex ℓ is a line and Σ is a q-order canonical
subgeometry1 in PG(3, q4), with ℓ ∩ Σ = ∅. The axis of the projection

1Let PG(V,Fqt) = PG(n− 1, qt), let U be an n-dimensional Fq-vector subspace of V ,
and Σ = {〈u〉F

qt
: u ∈ U \ {0}}. If 〈Σ〉 = PG(n − 1, qt), then Σ is a (q-order) canonical

subgeometry of PG(n − 1, qt). Here and in the following, angle brackets 〈−〉 without a
subscript denote projective span in PG(n− 1, qt), that is, PG(3, q4) in our case.
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is immaterial and can be chosen by convenience. Let σ be a generator of
the subgroup of order four of PΓL(4, q4) fixing pointwise Σ. Let M be a
k-dimensional subspace of PG(3, q4). We say that M is a subspace of Σ
if M ∩ Σ is a k-dimensional subpsace of Σ, which happens exactly when
Mσ =M .

Proposition 3.1. Let Σ′ be the unique q2-order canonical subgeometry of
PG(3, q4) containing Σ, that is, the set of all points fixed by σ2. Then the
intersection of ℓ and Σ′ is empty.

Proof. Assume the contrary, that is, there exists a point P in ℓ ∩ Σ′. Then
P σ

2

= P , the subspace ℓP = 〈P,P σ〉 is a line, and satisfies ℓσP = ℓP , whence
ℓP is a line of Σ. This implies that pℓ(ℓP ) is a point, and L is not scattered.

Let K and K′ be the Klein quadrics representing – via the Plücker em-
bedding ℘ – the lines of Σ and Σ′. In order to precisely define ℘, take
coordinates in PG(3, q4) such that Σ (resp. Σ′) is the set of all points with
coordinates rational over Fq (resp. Fq2), and define the image r℘ of any line
r through minors of order two in the usual way. Then K = K′ ∩PG(5, q) by
considering PG(5, q) as a subset of PG(5, q2). The only nontrivial element
of the subgroup of PΓL(6, q2) fixing PG(5, q) pointwise is

τ : 〈(x0, x1, x2, x3, x4, x5)〉F
q2

7→ 〈(xq0, x
q
1, x

q
2, x

q
3, x

q
4, x

q
5)〉Fq2

. (12)

Then Kτ
2 = K2, and σ℘ = ℘τ .

Proposition 3.2. Let S be a solid in PG(5, q2) such that (i) S ∩ K′ ∼=
Q−(3, q2), (ii) S ∩ K = ∅. Then S ∩ Sτ ∩ K′ is a set of two distinct points
forming an orbit of τ .

Proof. If dim(S ∩ Sτ ) ≥ 2, then S ∩ Sτ contains a plane of PG(5, q). Each
plane of PG(5, q) meets K in at least one point of PG(5, q), contradicting
(ii). Then r = S ∩ Sτ is a line fixed by τ , so it is a line of PG(5, q). This r
is external to the Klein quadric K by (ii), hence it meets K′ in two points.
Since both of K′ and r are fixed by τ the assertion follows.

Proposition 3.3. There is a line r in PG(3, q4), such that r and rσ are
skew lines both meeting ℓ, and rσ

2

= r.

Proof. Let Σ and Σ′ be as in Proposition 3.1. Since ℓ ∩ Σ′ = ∅, ℓ defines a
regular (Desarguesian) spread F of Σ′. The lines of F are all lines 〈P,P σ

2

〉∩
Σ′ where P ∈ ℓ. The image F℘ under the Plücker embedding of F is an
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elliptic quadric S ∩ K′ ∼= Q−(3, q2) in PG(5, q2), S a solid. Since L is
scattered, there is no line of F fixed by σ, whence S ∩ K = ∅. Then the
assertion follows from Proposition 3.2.

Theorem 3.4. Any maximum scattered linear Fq-linear set in PG(1, q4) is
projectively equivalent to LU(b) for some b ∈ Fq4, Nq4/q(b) 6= 1.

Proof. The set LU(0) is a linear set of pseudoregulus type. Now assume that
L = pℓ(Σ) is maximum scattered, not of pseudoregulus type. Coordinates
X0,X1,X2,X3 in PG(3, q4) can be chosen such that

Σ = {〈(u, uq, uq
2

, uq
3

)〉F
q4

: u ∈ F
∗

q4}, (13)

and a generator of the subgroup of PΓL(4, q4) fixing Σ pointwise is

σ : 〈(x0, x1, x2, x3)〉F
q4

7→ 〈(xq3, x
q
0, x

q
1, x

q
2)〉Fq4

. (14)

Define C = ℓ∩r, where r is as in Proposition 3.3. The points C and Cσ
2

lie on
r, as well as the points Cσ and Cσ

3

lie on rσ. By Proposition 3.1, C 6= Cσ
2

and Cσ 6= Cσ
3

. This implies ℓ ⊂ 〈C,Cσ, Cσ
3

〉, and 〈C,Cσ, Cσ
2

, Cσ
3

〉 =
PG(3, q4). Since the stabilizer of Σ in PGL(4, q4) acts transitively on the
points C of PG(3, q4) such that 〈C,Cσ , Cσ

2

, Cσ
3

〉 = PG(3, q4) [4, Proposi-
tion 3.1], it may be assumed that C = 〈(0, 0, 1, 0)〉F

q4
, whence

ℓ = 〈(0, 0, 1, 0), (0, a, 0,−b)〉F
q4
,

for some a, b ∈ Fq4 , not both of them zero. If a = 0, then L is of pseu-
doregulus type [9, Theorem 2.3], so a = 1 may be assumed. For any point
Pu = 〈(u, uq, uq

2

, uq
3

)〉F
q4

in Σ, the plane containing ℓ and Pu has coor-

dinates [uq
3

+ buq,−bu, 0,−u], and this leads to the desired form for the
coordinates of L.

4 Orbits

Analogously to the definition of the ΓL-class of linear sets (cf. Definition 2.4
in [7]) we define the GL-class, which will be needed to study PGL(2, q4)-
equivalence. Note that for any scattered Fq-linear set the maximum field of
linearity is Fq.

Definition 4.1. Let LU be an Fq-linear set of PG(1, qt) of rank t with
maximum field of linearity Fq. We say that LU is of ΓL-class s [resp.

7



GL-class s] if s is the largest integer such that there exist Fq-subspaces U1,
U2, . . ., Us of F

2
qt with LUi

= LU for i ∈ {1, 2, . . . , s} and there is no

ϕ ∈ ΓL(2, qt) [resp. ϕ ∈ GL(2, qt)] such that Ui = Uϕj for each i 6= j,
i, j ∈ {1, 2, . . . , s}.

The first part of the following result is [7, Theorem 4.5], while the second
part follows from its proof. We briefly summarize the main steps of the proof
from [7].

Theorem 4.2. [7, Theorem 4.5] Each Fq-linear set of rank four in
PG(1, q4), with maximum field of linearity Fq, is of ΓL-class one. More
precisely, if LU = LV for some 4 dimensional Fq-subspaces U , V of F

2
q4,

then there exists ϕ ∈ ΓL(2, q4) such that Uϕ = V . Also, ϕ can be chosen
such that it has companion automorphism either the identity, or x 7→ xq

2

.

Proof. Assume LU = LV . We may assume 〈(0, 1)〉F
q4

/∈ LU . Then U =

Uf = {(x, f(x)) : x ∈ Fq4} and V = Vg = {(x, g(x)) : x ∈ Fq4} for some
q-polynomials f and g over Fq4 . By [7, Proposition 4.2], either g(x) =

f(λx)/λ, or g(x) = f̂(λx)/λ for some λ ∈ F
∗

q4 , where here f̂ denotes the

adjoint map of f with respect to the bilinear form < x, y >:= Trq4/q(xy).
The Fq4-linear map v 7→ λv maps Ug to one of Uf , or Uf̂ . In the proof of [7,

Theorem 4.5], a κ ∈ ΓL(2, q4) with companion automorphism the identity,
or x 7→ xq

2

is determined such that Uκf = Uf̂ .

Theorem 4.3. For any b ∈ Fq4 , LU(b) is of GL-class one.

Proof. By Theorem 4.2, if LU(b) = LV , then there exists ϕ ∈ ΓL(2, q4) such

that U(b)ϕ = V and the companion automorphism of ϕ is x 7→ xq
2

, or the
identity. In order to prove the statement it is enough to show that U(b) and
U(b)q

2

= {(xq
2

, yq
2

) : (x, y) ∈ U(b)} lie on the same orbit of GL(2, q4). If
b = 0, then U(b) = U(b)q

2

. If b 6= 0, then for any u ∈ Fq4 ,

(

bq
3

0

0 bq
2

)

(

u

buq + uq
3

)

=





bquq
2

b
(

bquq
2

)q
+
(

bquq
2

)q3





q2

=

(

v

bvq + vq
3

)q2

,

with v = bquq
2

.

Corollary 4.4. Let b, c ∈ Fq4. The linear sets LU(b) and LU(c) are projec-
tively equivalent if and only if U(b) and U(c) are in the same orbit under
the action of GL(2, q4).
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Proof. The “if” part is obvious, so assume that Lκ̃U(b) = LU(c) where κ ∈

GL(2, q4). Then LU(b)κ = LU(c) and by Theorem 4.3 there is κ′ ∈ GL(2, q4)

such that U(b)κκ
′

= U(c).

It follows that in order to classify the Fq-linear sets LU(b) up to PGL(2, q4)
and PΓL(2, q4)-equivalence, it is enough to determine the orbits of the sub-
spaces U(b) under the actions of ΓL(2, q4) and GL(2, q4).

Theorem 4.5. Let q be a power of a prime p.

(i) For any b, c ∈ Fq4 , LU(b) and LU(c) are equivalent up to an element of

PΓL(2, q4) if and only if cq
2+1 = b±p

s(q2+1) for some integer s ≥ 0.

(ii) For any b, c ∈ Fq4, the linear sets LU(b) and LU(c) are projectively

equivalent if and only if cq
2+1 = bq

2+1 or cq
2+1 = b−q(q

2+1).

(iii) All linear sets described in 2. of Theorem 2.1 are projectively equiva-
lent.

(iv) There are precisely q(q−1)/2 distinct linear sets up to projective equiv-
alence in the family described in 1. of Theorem 2.1, and these are the
only maximum scattered linear sets of PG(1, q4).

(v) There are precisely q distinct linear sets up to projective equivalence in
the family described in 3. of Theorem 2.1.

Proof. Take b ∈ F
∗

q4 . If LU(b) is not scattered, then it clearly cannot be

equivalent to LU(0) (the scattered linear set of pseudoregulus type), while if
LU(b) is scattered, then it follows from Theorem 1.1 (and from a computer
search when q = 3) that U(b) and U(0) yield projectively inequivalent linear
sets. Since the automorphic collineations (x, y) 7→ (xp

s

, yp
s

) fix U(0), it also
follows that LU(0) and LU(b) lie on different orbits of PΓL(2, q4). Thus (i)
and (ii) are true when one of b or c is zero, so from now on we may assume
b 6= 0 and c 6= 0.

The sets LU(b) and LU(c) are equivalent up to elements of PΓL(2, q4) if

and only for some ψ = pk, k ∈ N and some A,B,C,D ∈ Fq4 such that
AD −BC 6= 0 the following holds:

{(

A B
C D

)(

uψ

bψuψq + uψq
3

)

: u ∈ Fq4

}

=

{(

v

cvq + vq
3

)

: v ∈ Fq4

}

. (15)

Furthermore, by Corollary 4.4, LU(b) and LU(c) are projectively equivalent
if, and only if, (15) has a solution with ψ = 1. This leads to a polynomial in
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uψ of degree at most q3 which is identically zero. Equating its coefficients
to zero,



















Aq
3

−D = 0

Bqbψqc+Bq3 = 0
Aqc−Dbψ = 0

Bqc+Bq3bψq
3

− C = 0.

(16)

Assume that LU(b) and LU(c) are in the same orbit of PΓL(2, q4), and
take ψ = 1 in case they are also projectively equivalent. If D 6= 0, then
the first and third equations imply bψ = Dq2−1c and so cq

2+1 = bψ(q
2+1).

If D = 0, then BC 6= 0; from the second equation, (bψqc)q
2+1 = 1, hence

cq
2+1 = b−ψq(q

2+1). This proves the only if parts of (i) and (ii).
Conversely, if cq

2+1 = bp
s(q2+1) for some s ∈ N, then bp

s

c−1 = δq
2
−1

for some δ ∈ F
∗

q4 . The quadruple A = δq, B = C = 0, D = δ with

ψ = ps is a solution of (16) with AD − BC 6= 0. This proves the if part
of (i) when cq

2+1 = bp
s(q2+1) and the if part of (ii) when cq

2+1 = bq
2+1. If

bq
2+1 = cq

2+1 = 1, i.e. when U(b) and U(c) define linear sets described in
2. of Theorem 2.1, then the above condition holds, thus (iii) follows. From
now on we may assume bq

2+1 6= 1 and cq
2+1 6= 1.

Assume cq
2+1 = b−p

s(q2+1) for some s ∈ N, i.e. bp
s

c = εq
2−1 for some

ε ∈ F
∗

q4 . Define ψ = psq3. A ρ ∈ F
∗

q4 exists such that ρq
2−1 = −1. Take

A = D = 0, B = (ρε)q
3

, C = ερc(1 − bp
s(q2+1)). If C = 0, then bq

2+1 = 1,
a contradiction. So AD − BC 6= 0 and (16) has a solution. If ps = q, then
ψ = 1, hence in this case LU(b) and LU(c) are projectively equivalent. This
finishes the proofs of (i) and (ii).

Now we prove (iv). Note that Nq4/q(b) = (bq
2+1)q+1 for any b ∈ Fq,

therefore, LU(b) is a maximum scattered Fq-linear set not of pseudoregulus

type if, and only if, bq
2+1 is an element of the set

S = {x ∈ F
∗

q2 : x
q+1 6= 1}.

The orbits of point sets of type LU(b), b 6= 0, under the action of PGL(2, q4)
are as many as the pairs {x, x−q} of elements in S. Since all such pairs are
made of distinct elements, adding one for the linear set of pseudoregulus
type, one obtains

1 +
q2 − q − 2

2
=
q(q − 1)

2
.

Finally we prove (v). LU(b) is an Fq-linear set described in 3. of Theorem

2.1 if, and only if, bq
2+1 is an element of the set

Z = {x ∈ Fq2 \ {1} : x
q+1 = 1}.

10



The orbits of point sets of this type under the action of PGL(2, q4) are as
many as the pairs {x, x−q} of elements in Z. Since for each x ∈ Z we have
x = x−q, this number is q.

Remark 4.6. The number of orbits of maximum scattered linear sets under
the action of PΓL(2, q4) depends on the exponent e in q = pe. A general
formula is not provided here. For e = 1 each orbit which does not arise
from the linear set of pseudoregulus type is related to two or four norms
over Fq2, according to whether Nq4/q2(b) ∈ Fq \ {0, 1,−1} or not. This leads
(including now the linear set of pseudoregulus type) to a total number of
(q2 − 1)/4 orbits for odd q.
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