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Given k ≥ 1, the Fox–Kleitman conjecture from 2006 states that there exists a nonzero
integer b such that the 2k-variable linear Diophantine equation

k∑
i=1

(xi − yi) = b

is (2k − 1)-regular. This is best possible, since Fox and Kleitman showed that for all
b ≥ 1, this equation is not 2k-regular. While the conjecture has recently been settled for
all k ≥ 2, here we focus on the case k = 3 and determine the degree of regularity of
the corresponding equation for all b ≥ 1. In particular, this independently confirms the
conjecture for k = 3. We also briefly discuss the case k = 4.

1. Introduction

A Diophantine equation L is said to be n-regular, for some positive integer n, if for every n-coloring of N+ = {1, 2, . . .},
there is amonochromatic solution to L. Further, L is said to be regular if it is n-regular for all n ≥ 1. Of course, (n+1)-regularity
implies n-regularity. The degree of regularity of L, denoted as dor(L), is defined to be infinite if L is regular, or else, it is the
largest n such that L is n-regular [4]. Determining the degree of regularity of a given Diophantine equation is difficult in
general, even if it is linear.

In this paper, we focus on a particular linear equation proposed by Fox and Kleitman in [3]. Given positive integers k, b,
we shall denote by Lk(b) the 2k-variable Diophantine equation

k∑
i=1

(xi − yi) = b.

Fox and Kleitman [3] showed that this equation is never 2k-regular, i.e., that

dor(Lk(b)) ≤ 2k − 1 (1)

for all b ∈ N+. Moreover, they conjectured that this upper bound is best possible.
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Conjecture 1.1 ([3]). Let k ≥ 1. Then there exists an integer b ≥ 1, depending on k, such that dor(Lk(b)) = 2k − 1.

The case k = 2 of the conjecture was recently settled in [1], where it is shown that dor(L2(b)) = 3 for all b ≡ 0mod 6.
More generally, the authors determined dor(L2(b)) for all b ≥ 1, as follows:

Theorem 1.2 ([1]). For all positive integers b, we have

dor(L2(b)) =

{1 if b ≡ 1mod 2,
2 if b ≡ 2, 4mod 6,
3 if b ≡ 0mod 6.

A reduced 3-variable version of the 4-variable equation L2(b) had already been studied in [2]. Indeed, they considered the
equation x3 − x2 = x2 − x1 + b, which can be obtained from the equation (x1 − y1) + (x2 − y2) = b by setting y1 = y2 and
renaming the resulting three variables x1, x2, y2 as x1, x3, x2, respectively.

Finally, as pointed out by a referee, the conjecture has recently been fully settled, using sophisticatedmethods of additive
combinatorics [5].

1.1. The functions ν and f

We now introduce two functions ν, f : N+ → N+ which are somehow related to dor(Lk(b)). In particular, they will
provide nice reformulations of the above formulas for dor(L2(b)). For n ∈ N+, define

ν(n) = the smallest non-divisor of n,

i.e. the least integer m ≥ 2 such that m does not divide n. For instance, we have ν(n) = 2 if n is odd, and ν((p − 1)!) = p if p
is prime. Still for n ∈ N+, define

f (n) = the largest r such that r! divides n.

Thus for instance, we have f (n) = 1 if n is odd, and f (n) = 2 if and only if n is even and not divisible by 6, i.e. n ≡ 2, 4mod 6.
As is easily seen, Theorem 1.2 is equivalent to the formulas

dor(L2(b)) = min(3, f (b)) = min(3, ν(b) − 1) (2)

for all b ≥ 1. Our purpose in this paper is to similarly determine dor(L3(b)) for all b ≥ 1. Indeed, with the upper bound (1) in
mind, we shall establish the equality

dor(L3(b)) = min(5, f (b)) (3)

for all b ≥ 1. This implies dor(L3(5!)) = 5, thereby verifying the Fox–Kleitman conjecture for k = 3. Unfortunately, in
contrast with (2), there is no equality in general between dor(L3(b)) and min(5, ν(b) − 1). For b = 60 for instance, we shall
see that dor(L3(60)) = 3, whereas min(5, ν(60) − 1) = 5. However, the inequality

dor(Lk(b)) ≤ min(2k − 1, ν(b) − 1) (4)

always holds, as will be shown further down. Moreover, for fixed b ≥ 1, we shall prove that

dor(Lk(b)) = min(2k − 1, ν(b) − 1) = ν(b) − 1 (5)

for all sufficiently large k, in fact for all k ≥ b. As for the function f , can one expect, based on (2), (3) and (4), an equality or
at least an inequality between dor(Lk(b)) and min(2k − 1, f (b)) for k ≥ 4? Here again, the answer turns out to be negative.
Indeed, for k = 4, we shall establish the following values.

b dor(L4(b)) min(7, f (b))

12 4 3
720 = 6! 5 6

This indicates that the behavior of dor(Lk(b)) as a function of b, for fixed k ≥ 4, is much more tricky than what
formulas (2) and (3) for k ≤ 3 might lead one to expect. In the same vein, we shall show that if b is a positive integer
satisfying the Fox–Kleitman conjecture for k = 4, i.e. such that dor(L4(b)) = 7, then necessarily b must be divisible by
22

· 3 · 5 · 7 · 11 · 13 · 19 = 1141140. At the time of writing, we do not know whether dor(L4(b)) reaches 7 for b = 1141140.

1.2. Contents

In Section 2, we provide basic lemmas regarding the behavior of dor(Lk(b)). In Section 3 we introduce L-regular and
L-singular sets with respect to a Diophantine equation L, and we provide tools to determine such sets for the equation Lk(b).
In Section 4 we give a new proof of the above formula for dor(L2(b)). In Section 5 we determine dor(L3(b)) for all b ≥ 1, with
some computer assistance in the specific case b = 120, and we independently verify the Fox–Kleitman conjecture for k = 3.
In Section 6 we briefly discuss the case k = 4. Finally, in Section 7 we determine dor(Lk(b)) whenever k ≥ b.



2. Basic lemmas

We shall use the following notation from additive combinatorics. For subsets A, B of an abelian group G, we write
A + B = {a + b | a ∈ A, b ∈ B}, −A = {−a | a ∈ A} and kA = A + · · · + A, the k-fold sum of A with itself. Thus,
given a subset X ⊆ Z, we see that equation Lk(b) has a solution with all entries in X if and only if

b ∈ k(X − X).

(See also Remark 3.5.) This will be used throughout the paper. For instance, using this formulation, here is a brief explanation
for Fox and Kleitman’s upper bound (1) stating that Lk(b) is never 2k-regular. For integers a ≤ b, we shall denote by [a, b]
the integer interval consisting of all n ∈ Z such that a ≤ n ≤ b.

Lemma 2.1 ([3]). For all integers k, b ≥ 1, one has dor(Lk(b)) ≤ 2k − 1.

Proof. If b is not amultiple of k, then Lk(b) is not even k-regular by the independent Lemma 2.4 below. If b = kr with r ∈ N+,
we first 2k-color [1, 2b] as follows. The color class C1 is given by C1 = [1, r]. For 2 ≤ i ≤ 2k, the color class Ci is the translate
of C1 by (i−1)r , namely Ci = C1 + (i−1)r.We then extend this coloring to the whole ofN+ by 2b-periodicity, namely where
the color classes are Xi = Ci + 2bZ = Ci + 2krZ for all 1 ≤ i ≤ 2k.

We claim that b ̸∈ k(Xi − Xi) for all 1 ≤ i ≤ 2k. It suffices to check it for i = 1, since Xi − Xi is independent of i. Now
X1 − X1 = [−(r − 1), r − 1] + 2krZ, whence

k(X1 − X1) = [−k(r − 1), k(r − 1)] + 2krZ.

Therefore b ̸∈ k(X1 − X1), as claimed. It follows that Lk(b) is not 2k-regular. □

We now show that dor(Lk(b)) is monotone with respect to k.

Lemma 2.2. Let b, k1, k2 be positive integers such that k1 ≤ k2. Then

dor(Lk1 (b)) ≤ dor(Lk2 (b)).

Proof. Let n = dor(Lk1 (b)). We claim that Lk2 (b) is n-regular. Let c be an n-coloring of N+. Then there is a c-monochromatic
subset X ⊆ N+ such that b ∈ k1(X − X). Now k1(X − X) ⊆ k2(X − X) since 0 ∈ X − X and k1 ≤ k2. Hence b ∈ k2(X − X).
Therefore Lk2 (b) is n-regular, as claimed. □

Next, for fixed k, here are two basic lemmas about the behavior of dor(Lk(b)) as a function of b. The first one shows that
this function is monotone with respect to multiplication.

Lemma 2.3. Let b1, b2, k be positive integers such that b1 divides b2. Then

dor(Lk(b1)) ≤ dor(Lk(b2)).

Proof. By hypothesis, there is an integer t ∈ N+ such that b2 = tb1. Let r = dor(Lk(b1)). We now show that Lk(b2) is
r-regular. Let c be a r-coloring of N+. It suffices to establish the existence of a c-monochromatic solution of Lk(b2). Let c ′ be
the new r-coloring ofN+ defined by c ′(n) = c(tn) for all n ≥ 1. Since Lk(b1) is r-regular, there is a c ′-monochromatic solution
a1, . . . , ak, d1, . . . , dk in N+ of Lk(b1), i.e. satisfying

k∑
i=1

(ai − di) = b1.

Multiplying this equality by t , we get
k∑

i=1

(tai − tdi) = tb1 = b2. (6)

Since the ai’s, di’s are c ′-monochromatic, it follows by construction that the tai’s, tdi’s are c-monochromatic. Moreover, by
(6), they constitute a solution of Lk(b2). Hence r ≤ dor(Lk(b2)), as desired. □

On the other hand, here is an obvious upper bound on dor(Lk(b)).

Lemma 2.4. Let b,m be positive integers such that m does not divide b. Then dor(Lk(b)) ≤ m − 1.

Proof. It suffices to find an m-coloring of N+ for which there is no monochromatic solution of Lk(b). Consider the coloring
πm given by the classes modm. That is, the subset Xi ⊆ N+ of elements of color i, for 1 ≤ i ≤ m, is defined as Xi = i + m · N.
Then Xi − Xi ⊆ m · Z. Since b ̸≡ 0modm, it follows that b ̸∈ k(Xi − Xi). Hence equation Lk(b) admits no πm-monochromatic
solution, as desired. □



Proposition 2.5. Let b ≥ 1. Then dor(Lk(b)) ≤ min(2k − 1, ν(b) − 1).

Proof. We have dor(Lk(b)) ≤ 2k − 1 by Lemma 2.1, and dor(Lk(b)) ≤ ν(b) − 1 by Lemma 2.4 since ν(b) does not divide b. □

3. Equation-regular sets

We now introduce a notion of regularity for sets which is closely linked to the usual notion of partition-regularity for
Diophantine equations. This will turn out to be useful to determine, in some cases, the degree of regularity of the Fox–
Kleitman equation Lk(b).

Definition 3.1. Given a Diophantine equation L, or a system of such equations, we say that a set X ⊂ N+ is regular with
respect to L, or more shortly L-regular, if it contains a solution of L. We say that X is singular if X is not regular.

Here is an easy remark linking these notions of regularity.

Remark 3.2. Let L be a Diophantine equation. Then L is n-regular if and only if every partition of N+ into n parts admits an
L-regular part.

The notion of equation-regular sets moves the focus away from partitions and more towards those properties of a set
which will force it to contain a solution of a given Diophantine system L.

For instance, given k, b ≥ 1, we shall see that any sufficiently dense subset of a sufficiently large integer interval is
Lk(b)-regular. That is, for sets, density alone implies regularity. This will allow us to determine the degree of regularity of
Lk(b) in some instances, and in particular to independently verify the Fox–Kleitman conjecture for k = 3, aswell as to provide
a shorter proof of it for k = 2.

3.1. Block sums

We first need some basic notions to be used throughout the paper. Let A = (a1, a2, . . . , ar ) be a sequence of positive
integers.

• A block in A is any subsequence A′ of consecutive terms in A, i.e. of the form

A′
= (ai, ai+1, . . . , aj)

for some indices i, j such that 1 ≤ i ≤ j ≤ r .
• The empty subsequence of length 0 is also considered to be a block of A.
• We denote by σ (A) =

∑r
i=1ai the sum of the elements of A, and by µ(A) the average of A, i.e. µ(A) = σ (A)/r .

• Finally, we denote by bs(A) the set of signed block sums in A, i.e.

bs(A) = {±σ (A′) | A′ is a block in A}.

For instance, if A = (1, 10, 4), then bs(A) ∩ N = {0, 1, 4, 10, 11, 14, 15}. Note that 5 is not a block sum in A.
Note that if A′ is a block in A, then bs(A′) ⊆ bs(A). We will further discuss this property later on. Observe also that

A ⊆ bs(A).

3.2. The discrete derivative

We shall need a variant of the discrete derivative, associating to a subset X ⊂ Z of cardinality r + 1 a sequence of length
r , as follows:

Definition 3.3. Let X ⊂ Z be a finite subset of cardinality r + 1. Let the elements of X be x0 < x1 < · · · < xr . We associate
to X the sequence

∆X = (x1 − x0, x2 − x1, . . . , xr − xr−1)

of length r , and call ∆X the discrete derivative of X .

Of interest to us here is the fact that X − X can be read off from the signed block sums of ∆X .

Lemma 3.4. Let X ⊂ Z be a nonempty finite subset. Then

X − X = bs(∆X).



Proof. Let the elements of X be x0 < x1 < · · · < xr . Then

X − X = {xt − xs | 0 ≤ s, t ≤ r}.

Let now A = ∆X = (a1, . . . , ar ), where ai = xi − xi−1 for 1 ≤ i ≤ r . Then for indices s, t such that 0 ≤ s ≤ t ≤ r , we have

xt − xs =

t∑
i=s+1

(xi − xi−1) =

t∑
i=s+1

ai.

Thus xt − xs = σ (A′), where A′ is the block (as+1, . . . , at ) of A. Hence xt − xs ∈ bs(A)∩N for s ≤ t , and xt − xs ∈ −(bs(A)∩N)
if s ≥ t . The claim follows. □

3.3. Lk(b)-regular sets

We now turn to equation Lk(b) for given integers k, b ≥ 1. We first recall an informal observation made at the beginning
of Section 2.

Remark 3.5. Let L denote equation Lk(b) for some integers k, b ≥ 1. Let X ⊂ N+. Then X is regular with respect to L if and
only if b ∈ k(X − X).

Indeed, we have b ∈ k(X − X) if and only if there exist x1, . . . , xk, y1, . . . , yk ∈ X such that b =
∑k

i=1(xi − yi), which
therefore constitute a solution of L in X .

This allows us to express the Lk(b)-regularity of a set X in terms of the discrete derivative ∆X . The resulting lemma will
be tacitly used in the sequel.

Lemma 3.6. Let X ⊂ Z be a nonempty finite subset. Then X is regular with respect to equation Lk(b) if and only if b ∈ k bs(∆X).

Proof. Directly follows from the equality X − X = bs(∆X) of Lemma 3.4 together with Remark 3.5. □

3.4. Forbidden sequences and subsets

In the sequel, we will try to construct finite subsets X ⊂ Z which are singular with respect to Lk(b), with the purpose of
showing that it is hard to achieve if X is sufficiently dense in a suitable integer interval. Moreover, working with ∆X rather
than X is more convenient. This justifies the following terminology.

Definition 3.7. Let L denote equation Lk(b) for some integers k, b ≥ 1. Let A = (a1, . . . , ar ) be a sequence of positive integers.
We say that A is admissible (with respect to L) if b ̸∈ k bs(A). We say that A is forbidden if it is not admissible, i.e. if b ∈ k bs(A).

Remark 3.8. With respect to equation Lk(b), a subset X ⊂ N is regular if and only if its discrete derivative A = ∆X is forbidden.
Equivalently, X is singular if and only if ∆X is admissible.

The following result is the heart of our approach to evaluate the degree of regularity of the Fox–Kleitman equation Lk(b).
Recall that µ(A) denotes the average of the sequence A = (a1, . . . , ar ).

Proposition 3.9. Let L denote equation Lk(b) for some integers k, b ≥ 1. Let d ≥ 1. Assume that there exists an integer N ≥ 1
such that all positive integer sequences A of length N and average µ(A) ≤ d are forbidden with respect to L. Then L is d-regular.

Proof. Consider an arbitrary d-coloring of the integer interval [1, dN + 1]. By the pigeonhole principle, there exists a
monochromatic subset X ⊂ [1, dN + 1] of cardinality |X | = N + 1. Let A = ∆X . Then A is of length N . Let x0 = min X ,
xN = max X . Then xN − x0 = σ (A). Since X ⊂ [1, dN + 1], it follows that xN − x0 ≤ dN , whence µ(A) ≤ d. It follows from the
hypothesis that A is forbidden with respect to L, and hence that b ∈ k bs(A). Therefore b ∈ k(X − X), i.e. X is L-regular. Since
the d-coloring was arbitrary, it follows that L is d-regular, as claimed. □

We end this section by looking at ways to construct new forbidden sequences from a given one.

Definition 3.10. Let A = (a1, . . . , ar ) be a sequence of positive integers.
• An elementary contraction of A is any sequence A obtained by replacing a block A′ in A by its sum σ (A′). That is, if
A′

= (ai, . . . , aj) for some 1 ≤ i ≤ j ≤ r , then

A = (a1, . . . , ai−1, σ (A′), aj+1, . . . , ar ).

• A contraction of A is any sequence obtained from A by successive elementary contractions.

For instance, let A = (1, 2, 3, 4). Then (3, 3, 4), (6, 4) and (3, 7) are contractions of A, the first two ones being elementary.



Definition 3.11. Let A = (a1, . . . , ar ) be a sequence of positive integers. Aminor of A is either a block A′ in A or a contraction
A of A.

We now show that if a sequence A has a forbidden minor, then A itself is forbidden.

Proposition 3.12. Let L denote equation Lk(b) for some integers k, b ≥ 1. Let A be a finite sequence of positive integers, and let
B be a minor of A. If B is forbidden with respect to L, then A also is.

Proof. We have b ∈ k bs(B) by hypothesis. Therefore, to prove that A is forbidden, it suffices to show that bs(B) ⊆ bs(A). This
inclusion clearly holds if B is a block in A, since any block sum in B is a block sum in A. If now B is an elementary contraction
of A, then again, any block sum in B is a block sum in A. Therefore, the same holds if B is obtained from A by successive
elementary contractions. □

Here is another condition forcing a sequence A to be forbidden.

Proposition 3.13. Let L denote equation Lk(b) for some integers k, b ≥ 1, and let A be a finite sequence of positive integers.
If bs(A) contains a subset Z such that b ∈ k (Z ∪ −Z), then A is forbidden with respect to L.

Proof. If Z ⊆ bs(A), then (Z ∪ −Z) ⊆ bs(A) since bs(A) = −bs(A). Therefore k (Z ∪ −Z) ⊆ k bs(A). The hypothesis on b then
implies b ∈ k bs(A), and we are done. □

Observe finally that if A = (a1, . . . , ar ) is forbiddenwith respect to Lk(b), then so is the reverse sequence A′
= (ar , . . . , a1).

Indeed, A and A′ have identical block sums, i.e. bs(A) = bs(A′). Hence, when looking for admissible or forbidden sequences,
we only need do it up to reversal.

4. The case k = 2

As an illustration of the method, we provide here a proof of the Fox–Kleitman conjecture for k = 2, and more generally
of Theorem 1.2, which is shorter than the ones given in [1,5]. The key tool is Proposition 3.9.

Proposition 4.1. Let L denote equation L2(2). Every positive integer sequence A of length 1 and average µ(A) ≤ 2 is forbidden
with respect to L.

Proof. The only sequences to consider areA = (a)with a ∈ {1, 2}. Then bs(A) = {0, a, −a} and 2 bs(A) = {0, a, 2a, −a, −2a}.
Hence 2 ∈ 2 bs(A) in either case, showing that A is forbidden. □

Corollary 4.2. We have dor(L2(2)) = 2.

Proof. Propositions 3.9 and 4.1 imply that L2(2) is 2-regular, i.e. dor(L2(2)) ≥ 2. Since ν(2) = 3, the reverse inequality follows
from the bound dor(Lk(b)) ≤ min(2k − 1, ν(b) − 1) of Proposition 2.5. □

Proposition 4.3. Let L denote equation L2(6). Every positive integer sequence A of length 6 and average µ(A) ≤ 3 is forbidden
with respect to L2(6).

Proof. In length 1, the sequences (3) and (6) are clearly forbidden.
Therefore, by Proposition 3.12, any sequence admitting either (3) or (6) as a minor is forbidden. Let us now look at

forbidden minors of length 2.
• The sequences A = (1, a) with 2 ≤ a ≤ 7 are forbidden. This is clear if a ∈ {2, 3, 6} by the above. If 4 ≤ a ≤ 5, then

1, 5 ∈ bs(A), hence 6 ∈ 2 bs(A). Finally, if a = 7, then 6 = −1 + 7 ∈ 2 bs(A).
• The sequences A = (2, a) with a ∈ {2, 3, 4, 6, 8} are forbidden. This is clear if a ∈ {3, 6} by the above. If a = 2 or 4, then

2, 4 ∈ bs(A), hence 6 ∈ 2 bs(A). Finally, if a = 8, then 6 = −2 + 8 ∈ bs(A).
Claim. If A = (a1, a2, a3) is admissible and if µ(A) ≤ 3, then A = (2, 5, 2).

Indeed, we have σ (A) ≤ 9 by hypothesis. Let x = min A. Then x ≤ 3. As A is admissible, it cannot contain 3 for otherwise
(3) would be a forbidden minor. Hence x ≤ 2.

Assume x = 1. Since (1, 1, 1) is forbidden, because (3) is a minor of it, there can be at most two 1’s in A. Let a ∈ A with
a ̸= 1. We may assume that (1, a) or (a, 1) is a block in A. As A is admissible, we must have a ≥ 8 by the length 2 case above,
whence σ (A) ≥ 10. But this is impossible since σ (A) ≤ 9 by assumption.

Hence x = 2. Let (2, a) or (a, 2) be a block in A. Since A is admissible, then a ≥ 5 by the length 2 case, whence
σ (A) ≥ 2 + 2 + a ≥ 9. But since σ (A) ≤ 9, we must have a = 5 and A = (2, 5, 2). This settles the claim.
Claim. Let A = (a1, . . . , a6) such that µ(A) ≤ 3. Then A is forbidden.

Indeed, assume for a contradiction that A is admissible. Then every block in A is admissible, and in particular so are its
two halves A1 = (a1, a2, a3), A2 = (a4, a5, a6). Since µ(A) ≤ 3, we have µ(Ai) ≤ 3 for some i ∈ {1, 2}, say µ(A1) ≤ 3 up



to renumbering. But since A1 is admissible, we must have A1 = (2, 5, 2) by the above claim, and in particular µ(A1) = 3.
Therefore µ(A2) ≤ 3 as well, whence A2 = A1 by the same argument as for A1. Hence A = (2, 5, 2, 2, 5, 2). But this sequence
cannot be admissible, since it contains the forbidden minor (2, 2). This contradiction establishes the claim, and the proof is
complete. □

Corollary 4.4. We have dor(L2(6)) = 3.

Proof. Propositions 3.9 and 4.3 imply dor(L2(6)) ≥ 3. The reverse inequality follows from Proposition 2.5 using ν(6) = 4. □

Note that this equality alone settles the Fox–Kleitman conjecture for k = 2. We are now ready to prove Theorem 1.2 in
the following reformulation.

Theorem 4.5. We have dor(L2(b)) = min(3, ν(b) − 1) for all b ≥ 1.

Proof. If ν(b) = 2, then b is odd, whence dor(L2(b)) = 1 by Lemma 2.4. If ν(b) = 3, then b is even but not divisible by 3. Since
dor(L2(2)) = 2 and since 2 divides b, it follows from Lemma 2.3 that dor(L2(b)) ≥ 2. The reverse inequality follows from
Lemma 2.4. Finally, if ν(b) ≥ 4, then 6 divides b. Again, since dor(L2(6)) = 3, it follows that dor(L2(b)) = 3 by Lemmas 2.1
and 2.3. □

5. The case k = 3

Our purpose here is to determine dor(L3(b)) for all b ≥ 1 and, in the process, independently settle the Fox–Kleitman
conjecture for k = 3. The development is self-contained, except for b = 120 where we need to rely on some computer
calculations.

The determination of dor(L3(b)) is achieved in Theorem 5.11. We start with the more challenging case b ≡ 0mod 4,
treated in the next three sections.

5.1. On equation L3(b) when b ≡ 4mod 8

Let L denote equation L3(b) for some b ≡ 4mod 8. Our present purpose is to prove that L is not 4-regular. We shall work
with the group G = Z/8Z. Quite naturally, we shall say that a subset X ⊆ G is regular if b ∈ 3 (X − X), singular otherwise.
We start by partitioning G into four singular subsets of cardinality 2.

Lemma 5.1. The four subsets {0, 1}, {2, 3}, {4, 5}, {6, 7} of G = Z/8Z constitute a partition of G into singular subsets.

Proof. Let X = {0, 1} ⊂ G. Then X − X = {−1, 0, 1}, whence

3(X − X) = {−3,−2, −1, 0, 1, 2, 3} = G \ {4}.

Thus X is L-singular, as claimed. Since the property of being L-singular is stable under translation, the three translates X + t
with t ∈ {2, 4, 6} are also singular. □

Proposition 5.2. If b ̸≡ 0mod 8, then equation L3(b) is not 4-regular, i.e. dor(L3(b)) ≤ 3.

Proof. First, if b ̸≡ 0mod 4, i.e. if ν(b) ≤ 4, then dor(L3(b)) ≤ 3 by Lemma 2.4. Assume now b ≡ 4mod 8, the last remaining
case. The subset X = {0, 1} + 8Z satisfies b ̸∈ 3(X − X), since in the quotient group G = Z/8Z, we have b = 4 ̸∈ 3(X − X)
as seen in the above lemma. Said otherwise, the subset X ⊂ Z is singular with respect to equation L3(b). This property
remaining true under translation, the subsets X + t with t ∈ {0, 2, 4, 6} constitute a partition of Z into four L3(b)-singular
sets. This implies dor(L3(b)) ≤ 3 as stated. □

5.2. On equation L3(24)

Let L denote equation L3(24). Our aim here is to prove that L is 4-regular. During research on this paper, our first proof of
this followed the same line of reasoning as above, using Proposition 3.9 as the key ingredient. Indeed, the 4-regularity of L
directly follows from that tool applied to the following statement.

Proposition 5.3. Let L denote equation L3(24). Every positive integer sequence A of length 8 and average µ(A) ≤ 4 is forbidden
with respect to L.

Now, our detailed proof of this proposition is several pages long. In its place, we shall present here an alternate shorter
proof of the 4-regularity of Lwith a slightly different andmore ad-hoc approach.We startwith a lemma on L-singular subsets
of [0, 32] which are constant mod 4, i.e. contained in a single class a + 4N for some integer a.



Lemma 5.4. Let S ⊂ [0, 32] be an L-singular subset of cardinality at least 3 which is constant mod 4. Then S is constant mod 16.

Proof. We may assume |S| = 3, since if the statement is valid in that particular case, its validity automatically extends to
the general case |S| ≥ 3. Let A = ∆S = (δ1, δ2) be the discrete derivative of S. We have δ1 + δ2 ≤ 32 since S ⊂ [0, 32], and
δ1, δ2 ∈ {4, 8, 12, 16, 20, 24, 28} since S is constant mod 4. We must show that δ1 = δ2 = 16. Since S is singular, we have
24 ̸∈ 3 bs(A). Note that bs(A) = ±{0, δ1, δ2, δ1 + δ2}.

Let j ∈ {1, 2}. Since 3 bs(A) contains ±{3δj, 2δj, δj} and does not contain 24, it follows that δj ̸∈ {8, 12, 24}. Further, we
may assume δ1 ≤ δ2. This is achieved by replacing S by S ′

= 32 − S if necessary, and noting that S ′ is singular if and only if
S is, since S ′

− S ′
= S − S. It follows that δ1 ≤ 16.

Let us now show that δ1 ̸= 4. For assume, on the contrary, that δ1 = 4. Each possible value of δ2 ∈ {4, 16, 20, 28} is then
excluded by the following table, which in each case would explicitly write 24 as an element of 3 bs(A), in contradiction with
the hypothesis. For that, it suffices to note that 3 bs(A) contains 3(δ1 + δ2), 2δ1 + δ2, δ1 + δ2 + 0 and δ2 − δ1 + 0.

δ2 24 =

4 3(4 + 4)
16 4 + 4 + 16
20 4 + 20 + 0
28 28 − 4 + 0

It follows that δ1 = 16, whence δ2 = 16 as well, since δ1 ≤ δ2 and δ1 + δ2 ≤ 32. □

This lemma will be used below in conjunction with the following obvious remark.

Remark 5.5. The only subset B ⊂ [0, 32] of cardinality at least 3 which is constant mod 16 is B = {0, 16, 32} of cardinality 3.

We are now ready to prove the main result of this section.

Theorem 5.6. Let L denote equation L3(24). Every subset X ⊂ [0, 32] of cardinality |X | = 9 is regular with respect to L.

Proof. Let X ⊂ [0, 32] be such that |X | = 9. Assume for a contradiction that X is singular. Let us partition X according to the
class mod 4:

X = X0 ∪ X1 ∪ X2 ∪ X3,

where Xi = X ∩ (i + 4N) for all 0 ≤ i ≤ 3. There are several steps.
Step 1. Since subsets of singular sets are singular, and since X is singular, it follows that Xi is singular for all 0 ≤ i ≤ 3.
Step 2.We claim that X0 = {0, 16, 32} and that |Xj| = 2 for 1 ≤ j ≤ 3. Indeed, since

9 = |X | = |X0| + |X1| + |X2| + |X3|, (7)

there is some index 0 ≤ i ≤ 3 for which |Xi| ≥ 3. As Xi is singular and constant mod 4, it follows from Lemma 5.4 that
Xi = B = {0, 16, 32}. Thus i = 0 and X0 = {0, 16, 32} as claimed. Further, it now follows from (7) that

|X1| = |X2| = |X3| = 2.

Step 3. Taking the discrete derivative of X1, X2, X3, let ∆Xj = (δj) for j = 1, 2, 3. Since the Xj’s are positive and constant mod
4, it follows that δj ∈ 4N+. Moreover, since 0 < δj < 32 for 1 ≤ j ≤ 3, we have

δj ∈ {4, 8, 12, 16, 20, 24, 28}.

Step 4. We claim that δ1 = δ2 = δ3 = 16. Indeed, let j ∈ {1, 2, 3}. Since X is singular, we have 24 ̸∈ 3 (X − X). On the other
hand, since X ∋ 0 and X ⊃ Xj, we have 3 (X − X) ⊇ {3δj, 2δj, δj}. Hence δj ̸∈ {8, 12, 24}. Further, since

24 = 4 + 4 + 16 = 20 + 20 − 16 = 28 + 28 − 32

and since X − X ⊇ {±16,−32, δj}, it follows that δj ̸∈ {4, 20, 28}. Hence δj = 16, as claimed.
Step 5. For j ∈ {1, 2, 3} and z ∈ N, let us denote

Yj(z) = {4z + j, 4z + j + 16}.

Since Xj is of class j mod 4 and since δj = 16, we have Xj = Yj(aj) for some aj ∈ N. Further, since Xj ⊂ [0, 32], we have
aj ∈ {0, 1, 2, 3}.
Step 6. Thus X depends on the three parameters a1, a2, a3. We shall then write

X = X(a1, a2, a3) = X0 ∪ Y1(a1) ∪ Y2(a2) ∪ Y3(a3).

Since 0 ≤ aj ≤ 3 for j ∈ {1, 2, 3}, there are 64 cases to consider. Our task is to show that X(a1, a2, a3) is regular in each one,
thereby leading to a contradiction and concluding the proof of the theorem. Fortunately, it turns out that only 8 cases need
to be considered.



Step 7. To start with, we may assume a2 ∈ {0, 2}. Indeed, for any subset Z ⊆ [0, 32], denote Z ′
= 32 − Z as in the proof of

the preceding lemma. Then Z ′
⊆ [0, 32] and Z ′ is singular if and only if Z is. Now note that for 0 ≤ a ≤ 3, we have

Y2(a)′ = Y2(3 − a)

as easily verified. In particular, we have Y2(1)′ = Y2(2) and Y2(3)′ = Y2(0). The claim follows by replacing X by X ′ if a2 is odd.
This reduces the number of cases to consider from 64 to 32.
Step 8.We now see that it suffices to consider the 8 cases given by (a2, a3) ∈ {0, 2} × {0, 1, 2, 3}, the value of the parameter
a1 being irrelevant. Indeed, for the 8 listed cases, the following table shows that X = X(a1, a2, a3) is regular by explicitly
writing 24 as an element of 3 (X − X).

(a2, a3) X2 ∪ X3 = Y2(a2) ∪ Y3(a3) 24 =

(0, 0) {2, 18, 3, 19} (18 − 0) + (3 − 0) + (3 − 0)
(0, 1) {2, 18, 7, 23} (23 − 2) + (7 − 2) + (0 − 2)
(0, 2) {2, 18, 11, 27} (11 − 0) + (11 − 0) + (2 − 0)
(0, 3) {2, 18, 15, 31} (15 − 2) + (15 − 2) + (0 − 2)
(2, 0) {10, 26, 3, 19} (10 − 3) + (10 − 3) + (10 − 0)
(2, 1) {10, 26, 7, 23} (10 − 0) + (7 − 0) + (7 − 0)
(2, 2) {10, 26, 11, 27} (27 − 10) + (27 − 10) + (0 − 10)
(2, 3) {10, 26, 15, 31} (15 − 0) + (15 − 0) + (10 − 16)

These contradictions conclude the proof of the theorem. □

Corollary 5.7. We have dor(L3(24)) = 4.

Proof. Consider an arbitrary 4-coloring of the integer interval [0, 32]. Since that interval has cardinality 33, one of the
color classes contains a subset X of cardinality 9. By the theorem, X is regular, and hence contains a solution to L, which is
monochromatic by construction. This implies dor(L3(24)) ≥ 4. The reverse inequality follows from Lemma 2.4 and the fact
that 5 does not divide 24. □

5.3. On equation L3(120)

We establish here that equation L3(120) is 5-regular, thereby independently settling the Fox–Kleitman conjecture for
k = 3. We give two different proofs. They both require some computer calculations, but of a very different nature. Here is
the first approach.

Proposition 5.8. Let X = −Y ∪ {0} ∪ Y , where

Y = [1, 30] ∪ 5 · [7, 20] ∪ (110 + 10 · [0, 5]) ∪ (220 + 60 · [0, 4])
= {1, . . . , 30} ∪ {35, 40, . . . , 100} ∪ {110, 120, . . . , 160} ∪ {220, 280, . . . , 460}.

Then |X | = 111 and, for every 5-coloring of X, there is a monochromatic solution of equation L3(120) in X.

Proof. By translating this coloring problem as a Boolean satisfiability problem and then feeding it to a SAT solver. The solver
march reached the conclusion in about 20 s on a standard desktop computer. The set X itself was discovered through a
patient and delicate computer-aided purification process using march. □

Corollary 5.9. We have dor(L3(120)) = 5.

Proof. Proposition 5.8 implies that L3(120) is 5-regular, i.e. dor(L3(120)) ≥ 5. The reverse inequality follows from
Lemma 2.1. □

Our second proof of the 5-regularity of L3(120) uses Proposition 3.9. Here is the precise statement.

Theorem 5.10. Every positive integer sequence A of length 80 and average µ(A) ≤ 5 is forbidden with respect to L3(120).
Moreover, 80 is minimal with respect to that property.

Proof. The first part of this result has been obtained by exhaustive computer search. Combined with Proposition 3.9, it
directly implies Corollary 5.9.

The fact that length 80 is minimal for the stated property is witnessed by the following instances. First, for 1 ≤ r ≤ 39,
the sequence

(1, . . . , 1  
r

)



is admissible and of average 1. Next, let

A(r) = (1, . . . , 1  
r

, 121 + 2r, 1, . . . , 1  
r

)

of length 2r + 1. Then A(r) is admissible for all r ≤ 39, and it is of average µ(A(r)) ≤ 5 for all r ≥ 20. Since any block of an
admissible sequence is admissible, we get admissible sequences of average at most 5 and of any length 41 ≤ l ≤ 79. Finally,
an admissible sequence of length 40 and average exactly 5 is provided by the sequence A(20) with the last 1 removed. □

5.4. On dor(L3(b)) for all b

We are now in a position to determine dor(L3(b)) for all b ≥ 1. Recall that f (b) is the largest integer r such that r! divides b.

Theorem 5.11. We have dor(L3(b)) = min(5, f (b)) for all b ≥ 1.

Proof. If f (b) = 1, then b is odd, whence dor(L3(b)) = 1 by Lemma 2.4. If f (b) = 2, then b is even but not divisible by
3. Hence ν(b) = 3 and dor(L2(b)) = 2 by Theorem 4.5. Therefore dor(L3(b)) ≥ 2 by Lemma 2.2. The reverse inequality
follows from Lemma 2.4. If f (b) = 3, then b is divisible by 6, but not by 24 and hence not by 8. Then dor(L2(b)) = 3 by
Theorem 4.5, yielding dor(L3(b)) ≥ 3 by Lemma 2.2. The reverse inequality is provided by Proposition 5.2, which applies
here since b ̸≡ 0mod 8. If f (b) = 4, then b is divisible by 24, but not by 120 and hence not by 5. The inequality dor(L3(b)) ≥ 4
follows from Corollary 5.7 and Lemma 2.3, while the reverse one follows from Lemma 2.4. Finally, if f (b) ≥ 5, then b is a
multiple of 120, whence dor(L3(b)) ≥ 5 by Corollary 5.9 and Lemma 2.3. The reverse inequality follows from Lemma 2.1. □

6. The case k = 4

On the basis of Theorems 4.5 and 5.11 determining dor(Lk(b)) for k = 2 and k = 3, respectively, one is led to think that
dor(L4(b)) might follow a similar pattern and coincide with min(7, f (b)), where again f (b) denotes the largest integer r such
that r! divides b. However, it turns out that this is far from being the case, as shown in the next three sections.

We start with the case b = 12, for which f (12) = 3 but where dor(L4(12)) turns out to be equal to 4.

6.1. On equation L4(12)

We show here that equation L4(12) is 4-regular.

Proposition 6.1. Let L denote equation L4(12). Every positive integer sequence A of length 3 and average µ(A) ≤ 4 is forbidden
with respect to L4(12).

Proof. In length 1, the sequences (3), (4), (6) and (12) are all forbidden. Indeed, let A = (a) with a ∈ {3, 4, 6, 12}, and let
t = 12/a ≤ 4. Since 12 = ta, we have

12 ∈ t A ⊆ t bs(A) ⊆ 4 bs(A),

where the last inclusion derives from 0 ∈ bs(A). Thus (a) is indeed forbidden with respect to L4(12).
By Proposition 3.12, any sequence admitting either (3), (4), (6) or (12) as aminor is forbidden. Let us now look at forbidden

minors of length 2.
• The sequences A = (1, a) with 2 ≤ a ≤ 12 are forbidden. This is clear if 2 ≤ a ≤ 6 by the above. If a = 7, then

14 ∈ 2 bs(A), whence 12 = −1 − 1 + 14 ∈ 4 bs(A). If 8 ≤ a ≤ 9, then 9 ∈ bs(A), whence 12 = 1 + 1 + 1 + 9 ∈ 4 bs(A). If
a = 10, then 12 = 1 + 1 + 10 ∈ 4 bs(A). And finally, if 11 ≤ a ≤ 12, then (12) is a forbidden minor of A.

• The sequences A = (2, a) with 2 ≤ a ≤ 8 are forbidden. Indeed, if 2 ≤ a ≤ 4, then either (3) or (4) is a forbiddenminor.
If a = 5, then 12 = 2 + 5 + 5 ∈ 4 bs(A). If a = 6, then (6) is a forbidden minor. If a = 7, then 12 = −2 + 7 + 7 ∈ 4 bs(A).
And finally, if a = 8, then 12 = 2 + 2 + 8 ∈ 4 bs(A).

Let now A = (a1, a2, a3), and assumeµ(A) ≤ 4, i.e. σ (A) ≤ 12. Let x = min A. Then x ≤ 4. If x = 3 or 4, then A is forbidden.
Assume now x ≤ 2.

Let y, z be the other two members of A. We may assume that y is a neighbor of x in A, so that either (x, y) or (y, x) is a
block in A. We have x ≤ y, z by hypothesis.

If x = 2, then y ≤ 8 since σ (A) ≤ 12, whence A is forbidden since (2, y) or (y, 2) is a forbidden minor as seen above.
Finally, if x = 1, then y ≤ 10 since σ (A) ≤ 12, whence A is forbidden since (1, y) or (y, 1) is a forbidden minor.
In all cases, we conclude that A is forbidden, as claimed. □

Corollary 6.2. We have dor(L4(12)) = 4.

Proof. Follows from Lemma 2.4 and from Proposition 3.9 applied to the above statement. □



6.2. On equation L4(6!)

Our second instance of discrepancy between dor(L4(b)) and min(7, f (b)) is for b = 6! = 720. The equality f (6!) = 6 is
obvious.

Theorem 6.3. We have dor(L4(6!)) = 5.

Proof. Let L denote equation L4(6!). On the one hand, by successively applying Corollary 5.9, Lemmas 2.2 and 2.3, we have

5 = dor(L3(5!)) ≤ dor(L4(5!)) ≤ dor(L4(6!)).

It remains to showdor(L4(6!)) < 6. For that, it suffices to exhibit a partition ofZ into 6 subsetswhich are singularwith respect
to L. Denote X0 = {0, 1} + 11Z, and Xi = X0 + 2i for 1 ≤ i ≤ 4, and finally X5 = {10} + 11Z. The sets X0, X1, X2, X3, X4, X5
constitute a partition of Z. We claim that they are all L-singular. To this end, it suffices to show that X0 is L-singular, since
the other five sets are either translates of X0 or subsets thereof.

Thus, it remains to show that 720 ̸∈ 4(X0 − X0). To do this, let us apply the canonical morphism from Z to the quotient
group G = Z/11Z. Let X = {0, 1} ⊂ G. Then X0 is mapped to X , and 720 is mapped to 5 since 720 = 11 · 65 + 5. It remains
to show that 5 ̸∈ 4(X − X) in G. But this is obvious, since X − X = {−1, 0, 1} and hence 4(X − X) = {−4,−3, . . . , 3, 4}. □

6.3. Is dor(L4(b)) = 7 realizable?

That the answer to this question is positive is precisely the Fox–Kleitman conjecture for k = 4. We show here, quite
surprisingly, that any integer b which would satisfy dor(L4(b)) = 7 must be much bigger than 7! = 5040. This is our
third instance of discrepancy between dor(L4(b)) and min(7, f (b)). For b = 18! for instance, we have f (18!) = 18 and so
min(7, f (18!)) = 7, whereas the following result implies dor(L4(18!)) < 7.

Theorem 6.4. If b ̸≡ 0mod 3 · 4 · 5 · 7 · 11 · 13 · 19, then dor(L4(b)) < 7.

Proof. To start with, if b ̸≡ 0mod 3 × 4 × 5 × 7 then ν(b) ≤ 7, and Proposition 2.5 implies dor(L4(b)) < 7. In order to treat
the remaining prime factors 11, 13 and 19, we proceed as in the proof of Theorem 6.3.

First, let p ∈ {11, 13}. Let X0 = {0, 1} + pZ, and consider its image X = {0, 1} in the quotient group G = Z/pZ. Then
4(X − X) = {−4, −3, . . . , 3, 4} ̸= G. For instance, 5 ̸∈ 4(X − X). Let b ∈ N+ such that b ̸≡ 0mod p. Since b is invertible
mod p, there exists c ∈ N+ such that bc ≡ 5mod p. Then bc ̸∈ 4(X0 − X0), since 5 ̸∈ 4(X − X) in G. Hence X0 is singular with
respect to L4(bc). The same is true for its translates t + X0 with t ∈ {2, 4, 6, 8, 10, 12}. It follows that equation L4(bc) is not
7-regular. By Lemma 2.3, we get

dor(L4(b)) ≤ dor(L4(bc)) < 7.

Assume now p = 19. The proof proceeds in an analogous way, except that here we need consider X0 = {0, 1, 2}+pZ and
its image X = {0, 1, 2} in the quotient groupG = Z/pZ. Then 4(X−X) = {−8,−7, . . . , 7, 8} ̸= G. For instance, 9 ̸∈ 4(X−X).
Let b ∈ N+ such that b ̸≡ 0mod p. Since b is invertible mod p, there exists c ∈ N+ such that bc ≡ 9mod p. Hence X0 is
singular with respect to L4(bc), and the same is true for its translates t + X0 with t ∈ {3, 6, 9, 12, 15, 18}. It follows that
equation L4(bc) is not 7-regular, and by Lemma 2.3 again we conclude dor(L4(b)) < 7. □

The arguments in the above proof cannot be extended to prime factors greater than 19. We may thus ask whether the
equality dor(L4(19!)) = 7 might hold. For the time being, we can neither prove nor disprove it.

7. The case k ≥ b

While for k ≥ 1 fixed, it looks hard to determine dor(Lk(b)) as a function of b, we now show that, for b ≥ 1 fixed, it is easy
to determine dor(Lk(b)) for all sufficiently large k, in fact for all k ≥ b. The answer again involves the function ν.

Proposition 7.1. Let b ≥ 1. Then, for all k ≥ b, we have dor(Lk(b)) = ν(b) − 1.

Proof. Let m = ν(b). We have dor(Lk(b)) ≤ m − 1 by Proposition 2.5. For the reverse inequality, we shall invoke
Proposition 3.9 at N = 1. So let A = (a) be any positive integer sequence of length 1 and average µ(A) ≤ m − 1. Thus
a ≤ m − 1, whence a divides b by definition ofm = ν(b). We then have

b = (b/a)a ∈ (b/a) bs(A) ⊆ k bs(A)

since b/a ≤ k, whence A is forbidden with respect to Lk(b). It then follows from Proposition 3.9 that Lk(b) is (m − 1)-regular,
i.e. dor(Lk(b)) ≥ m − 1. □
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