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Abstract In [W. Mader, Connectivity keeping paths in k-connected graphs, J. Graph Theory
65 (2010) 61-69.], Mader conjectured that for every positive integer k and every finite tree T'
with order m, every k-connected, finite graph G with §(G) > L%k‘J -+ m — 1 contains a subtree
T’ isomorphic to T' such that G — V(T") is k-connected. In the same paper, Mader proved
that the conjecture is true when 7T is a path. Diwan and Tholiya [A.A. Diwan, N.P. Tholiya,
Non-separating trees in connected graphs, Discrete Math. 309 (2009) 5235-5237.] verified the
conjecture when k£ = 1. In this paper, we will prove that Mader’s conjecture is true when T is
a star or double-star and k£ = 2.
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1 Introduction

In this paper, graph always means a finite, undirected graph without multiple edges and without
loops. For graph-theoretical terminologies and notation not defined here, we follow [I]. For a
graph G, the vertex set, the edge set, the minimum degree and the connectivity number of G are
denoted by V(G), E(G), 6(G) and k(G), respectively. The order of a graph G is the cardinality
of its vertex set, denoted by |G|. k and m always denote positive integers.

In 1972, Chartrand, Kaugars, and Lick proved the following well-known result.

Theorem 1.1. [2] Every k-connected graph G of minimum degree 5(G) > |3k has a vertez u
with k(G —u) > k.

Fujita and Kawarabayashi proved in [4] that every k-connected graph G with minimum
degree at least L%kj + 2 has an edge e such that G — V(e) is still k-connected. They conjectured
that there are similar results for the existence of connected subgraphs of prescribed order m > 3
keeping the connectivity.

Conjecture 1. [J] For all positive integers k,m, there is a (least) non-negative integer fi(m)
such that every k-connected graph G with §(G) > L%k‘J —1+ fr(m) contains a connected subgraph
W of exact order m such that G — V(W) is still k-connected.
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They also gave examples in [4] showing that fi(m) must be at least m for all positive integers
k,m. In [5], Mader proved that fi(m) exists and fx(m) = m holds for all k, m.

Theorem 1.2. [5] Every k-connected graph G with §(G) > |3k| +m — 1 for positive integers
k,m contains a path P of order m such that G — V(P) remains k-connected.

In the same paper, Mader [5] asked whether the result is true for any other tree T" instead
of a path, and gave the following conjecture.

Conjecture 2. [J] For every positive integer k and every finite tree T, there is a least non-
negative integer ti(T'), such that every k-connected, finite graph G with 6(G) > L%krj —1+t(T)
contains a subgraph T' = T with k(G — V(T")) > k.

Mader showed that t;(7) exists in [6].

Theorem 1.3. [6] Let G be a k-connected graph with 5(G) > 2(k — 1 +m)%? +m — 1 and let
T be a tree of order m for positive integers k,m. Then there is a tree T' C G isomorphic to T
such that G — V(T") remains k-connected.

Mader further conjectured that ¢(7") = |T|.

Conjecture 3. [5] For every positive integer k and every tree T, ti(T) = |T'| holds.

Theorem 1.2 showed that Conjecture 3 is true when 7' is a path. Diwan and Tholiya [3]
proved that the conjecture holds when k = 1. In the next section, we will verify that Conjecture
3 is true when T is a star and k = 2. It is proved in the last section that Conjecture 3 is true
when T is a double-star and k = 2.

A block of a graph G is a maximal connected subgraph of G that has no cut vertex. Note
that any block of a connected graph of order at least two is 2-connected or isomorphic to K.

For a vertex subset U of a graph G, G[U] denotes the subgraph induced by U and G — U
is the subgraph induced by V(G) — U. The neighborhood Ng(U) of U is the set of vertices in
V(G) — U which are adjacent to some vertex in U. If U = {u}, we also use G — u and Ng(u)
for G — {u} and Ng({u}), respectively. The degree dg(u) of u is |[Ng(u)|. If H is a subgraph
of G, we often use H for V(H). For example, Ng(H), H NG and H N U mean Ng(V(H)),
V(H)NV(G) and V(H)NU, respectively. If there is no confusion, we always delete the subscript,
for example, d(u) for dg(u), N(u) for Ng(u), N(U) for Ng(U) and so on. A tree is a connected
graph without cycles. A star is a tree that has exact one vertex with degree greater than one.
A double-star is a tree that has exact two vertices with degree greater than one.

2 Connectivity keeping stars in 2-connected graphs

Theorem 2.1. Let G be a 2-connected graph with minimum degree 6(G) > m + 2, where m is
a positive integer. Then for a star T with order m, G contains a star T' isomorphic to T such
that G — V (T") is 2-connected.



Proof. If m < 3, then T is a path, and the Theorem holds by Theorem 1.2. Thus we assume
m > 4 in the following.

Since 0(G) > m + 2, there is a star 7" C G with 77 2 T. Assume V(T") = {u,v1, -+ ,Vm—1}
and E(T") = {uv;|]1 <i <m—1}. We say T" is a star rooted at u or with root u. Let G' = G—T".
Let B be a maximum block in G’ and let | be the number of components of G’ — B. If [ = 0,
then B = G’ is 2-connected. So we may assume that [ > 1. Let Hq,--- , H; be the components

of G’ — B with ‘Hﬂ > 2 ‘Hl’

Take such a star 7" so that

(P1) |B| is as large as possible,

(P2) (|Hyl,--- ,|H;|) is as large as possible in lexicographic order, subject to (P1).

We will complete the proof by a series of claims.

Claim 1. [N(H;) N B| <1 and |[N(H;)NV(T")| > 1 for each i € {1,--- ,1}.

Since B is a block of G', we have |N(H;)NB| < 1foreachi € {1,--- ,l}. By G is 2-connected,
IN(H;) NV (T")| > 1 for each i € {1,--- ,1}.

Claim 2. [ =1.

Assume [ > 2. By Claim 1, there is an edge th between 77 and Hy, where t € T and h € H;.
Choose a vertex x € H;. Since §(G) > m + 2 and |[N(H;) N B| < 1 (by Claim 1), we have
IN(z)\ (BUt)] >m+2—1—1=m. Thus we can choose a star 7" = T with root = such that
V(T")N (BUt) = (. But then either there is a larger block than B'in G —T", or G—T" — B

contains a larger component than Hy (H; Ut is contained in a component of G —T" — B), which
contradicts to (P1) or (P2).

Claim 3. [N(t)N B| <1 and |N(t) N Hy| > 2 for any vertex t € V(T").

Assume |N(t) N B| > 2. Choose a vertex x € Hy. Since 6(G) > m+2 and |[N(H;)NB| <1,
we have |[N(z)\ (BUt)| > m+2—1—1=m. Thus we can choose a star 7”7 = T with root
x such that V(T") N (BUt) = 0. But G — T” has a block containing B Ut as a subset, which
contradicts to (P1). Thus |N(¢t) N B| < 1 holds. By d(t) > m + 2 and |N(t) N B| < 1, we have
IN(t)NHy| =d(t)— INt)NB| - INt)NT'|>m+2—-1—(m—1)=2.

Claim 4. For any edge t1t2 € E(T"), |[N({t1,t2}) N B| < 1 holds.

By contradiction, assume |N ({¢1,t2})NB| > 2. Because |[N(t;)NB| < 1and |N(t2)NB| <1,
we can assume that there are two distinct vertices by, by € B such that t1b1,t2b9 € E(G). Choose
avertex z € Hy. Since 6(G) > m+2and |[N(H;)NB| < 1, we have [N (x)\(BU{t1,t2})| > m+2—
1—2 = m—1. Thus we can choose a star T" = T with root x such that V(T")N(BU{t1,t2}) = 0.
But then G — T"” has a block containing B U {t1,t2} as a subset, which contradicts to (P1).

Because |[N(Hy) N B| < 1 and G is 2-connected, we have |N(T") N B| > 1. The following
claim further shows that |N(7") N B| = 1.

Claim 5. [N(T")N B| = 1.

By contradiction, assume |N(T") N B| > 2. If N(u) N B # @, say N(u) N B = {u}, then we
have N({vy, -+ ,vm—1}) N B C {«'} by Claim 4. That is, N(T) N B = {'}, a contradiction.
Thus N(u) N B = . Assume, without loss of generality, that there are two distinct vertices w



and w' in B such that vyw,vow’ € E(G). If N(vs) N B = @ or |N(v3) N{vy,v2}| < 1, then we
can choose a star T” with order m and root vz such that V(T") N (B U {u,v1,v2}) = @. But
then B U {u,v1,v9} is contained in a block of G — T, contradicting to (P1). Thus we assume
vg is adjacent to a vertex y in B and is adjacent to both v; and vo. Without loss of generality,
assume ¥ is distinct from w. Then we can choose a star 7" with order m and root u such that
V(T")N (BU{vy,v3}) = @. But B U {v1,v3} is contained in a block of G —T"”, contradicting
o (P1). Thus |[N(T")n B| = 1.

By Claim 5, [N(T") N B| = 1. Assume N(T") N B = {w}. Since G is 2-connected, we have
IN(Hy)NB| > 1. By Claim 1, [N(H,)NB| = 1. Assume N(H;)NB = {z}. Let P be a shortest
path from z to w going through H; and 7”. Assume P := pips - - - pg—1pq, Where p1 = 2, p; = w
and p; € HyUT' for each i € {2,--- ,q—1}. Since P is a shortest path, |[N(p;) N P| = 2 for each
2<i<q—1. By NT')NB ={w} and N(H;)NB = {z}, N(p;) N B C {w, 2z} C V(P) for each
2 <i<g—1. Thus |N(p;)N(BUP)| = 2 and |[N(p;)N(V(G)\(BUP))| > m foreach 2 <i < g—1.
This implies G — B U P is not empty. For any vertex = in G — BU P, we have |[N(z) N P| < 3.
For otherwise, we can find a path P’ containing x from z to w going through H; and 7" shorter
than P, a contradiction. By §(G) > m+2, [N(x)N(G—BUP)| >m+2—3=m—1. Then we
can find a star 7" = T with root x such that 7”7 N (B U P) = . But then B U P is contained
in a block of G — T"”, a contradiction. The proof is thus complete. [

3 Connectivity keeping double-stars in 2-connected graphs

Lemma 3.1. Let G be a graph and T be a double-star with order m. If there is an edge e =
uwv € E(Q) such that |[N(u)\v| > [F] -1, |[N(v)\u| > m—3 and [N(u)UN (v)\{u,v}| > m—-2,
then there is a double-star T' C G isomorphic to T

Proof. By T is a double-star, m > 4. Assume the double-star T is constructed from an edge
e/ = u/v' by adding r leaves to v’ and s leaves to v/, where 1 < r < s and r + s = m — 2. Then
1<r<|%]—1and [F]-1<s<m—3. Since |[N(u) \v| > [F]|—1, [N(v) \ul >m —3 and
|N(u) UN(v)\ {u,v}| >m—2, we can find a double-star 7" = T in G with center-edge e = uv,
where u is adjacent to r leaves and v is adjacent to s leaves. [J

The main idea of the proof of Theorem 3.2 is similar to that of Theorem 2.1, with much
more complicated and different details.

Theorem 3.2. Let T be a double-star with order m and G be a 2-connected graph with minimum
degree 6(G) > m + 2. Then G contains a double-star T isomorphic to T such that G — V (T")
is 2-connected.

Proof. By T is a double-star, m > 4. If m = 4, then T is a path, and the Theorem holds by
Theorem 1.2. Thus we assume m > 5 in the following.

Since §(G) > m + 2, there is a double-star 77 C G with 77 =2 T. Assume V(T') =
{u,v,ur, - ,up,v1,--- ,vs} and E(T") = {uv} U {uw;|l < ¢ < r} U {ovj|]l < j < s}, where
1<r<sandr+s=m—2 WesayT'is a double-star with center-edge uv. Let G' = G —T".
Let B be a maximum block in G’ and let [ be the number of components of G’ — B. If [ = 0,
then B = G’ is 2-connected. So we may assume that [ > 1. Let Hy,--- , H; be the components
of @ — B with |Hy| > --- > |H|.



Take such a double-star 7" so that
(P1) |B| is as large as possible,
(P2) (|Hyl,--- ,|H;|) is as large as possible in lexicographic order, subject to (P1).
We will complete the proof by a series of claims.
Claim 1. |[N(H;)NB| <1 and [N(H;)NT'| > 1 for each i € {1,--- ,1}.

Since B is a block of G’, we have |[N(H;)NB| < 1foreach i € {1,---,l}. By G is 2-connected,
IN(H;) N T'| > 1 for each i € {1,--- ,1}.

Claim 2. |H;| > 2 for each i € {1,--- ,l}.

This claim holds because |N(h;)NH;| = d(h;)— |N(hi)NT'|—=|N(h;)NB| > m+2—m—-1=1
for any vertex h; € H;, where 1 < i <.

Claim 3. [ = 1.

Assume [ > 2. By Claim 1, there is an edge th between 1" and Hy, wheret € T and h € H;.
By Claim 2, we can choose an edge xy € E(H;). Since §(G) > m+ 2 and |[N(H;) N B| <1 (by
Claim 1), we have |[N(z) \ (BU{y,t})| >m+2—-1—-2=m —1and |[N(y)\ (BU{z,t})| >
m+2—1—2=m—1. Thus, by Lemma 3.1, we can choose a double-star 7" = T with center-edge
xy such that V(T")N (BUt) = (). But then either there is a larger block than B in G — 1",
or G — T" — B contains a larger component than H; (Hy Ut is contained in a component of
G — T" — B), which contradicts to (P1) or (P2).

Claim 4. |[N(¢t) N B| <1 and |[N(t) N Hy| > 2 for any vertex ¢t € V(T”).

Assume [N (t)NB| > 2. Choose an edge xy € E(H;). Since 6(G) > m+2 and |[N(H;)NB| <
1, we have [N (z)\ (BU{y,t})| > m+2—1—-2=m—1and |[N(y)\(BU{z,t})| >m+2—-1-2 =
m — 1. Thus, by Lemma 3.1, we can choose a double-star T = T with center-edge xy such that
V(T")Nn (BUt) = 0. But then B Ut is contained in a block of G — 7", which contradicts to
(P1). Thus |N(¢t) N B| <1 holds for any vertex t € V(T"). By d(t) > m+2 and [N(t)NB| <1,
we have [N(t) N Hy| =d(t) — [INt)NB|— [INO)NT'|>m+2—-1—(m—1)=2.

Claim 5. For any edge tit2 € E(T"), |[N({t1,t2}) N B|] < 1 holds.

By contradiction, assume |N ({¢1,t2})NB| > 2. Because |[N(t;)NB| < 1and |N(t2)NB| <1,
we can assume that there are two distinct vertices by, by € B such that t1b1,t2b € E(G). Choose
an edge xy € E(Hy). Since 6(G) > m+2 and |[N(H1)NB| < 1, we have [N (z)\(BU{y, t1,t2})| >
m+2—1-3=m—2and |[N(y)\ (BU{x,t1,t2})| > m+2—1—-3 = m—2. Thus, by Lemma 3.1,
we can choose a double-star T = T with center-edge xy such that V(T") N (B U {t1,t2}) = 0.
But then G — T" has a block containing B U {t1,t2} as a subset, which contradicts to (P1).

Claim 6. For any 3-path tytots in T, [N ({t1,t2,t3}) N B| < 1 holds.

By contradiction, assume |N({t1,%2,t3}) N B| > 2. Then we have |N(t2) N B| = 0. For
otherwise, if [N (t2) N B| = 1, then we have |N({t1,t2,t3}) N B| <1 by |[N({t1,t2})NB| <1 and
IN({t2,t3}) N B| < 1, a contradiction. Because |[N(¢t;) N B| < 1 and |N(t3) N B| < 1, we can
assume that there are two distinct vertices by, b3 € B such that t1b1,t3b3 € E(G). Choose any
edge xy € E(H;). Since 6(G) > m+2 and |N(H;)NB| < 1, we have |N(z)\ (BU{y, t1,te,t3})| >
m+2—1-4=m—-3> [F]—1(Bym >5) and [N (y)\(BU{z,t1,t2,3})| > m+2—-1-4 = m—3.



If IN(2)\(BU{y, t1,t2,t3})| > m—3or |N(y)\(BU{z, t1,t2,t3})| > m—3, then by Lemma 3.1,
we can choose a double-star 7" = T with center-edge xy such that V(T”)N(BU{ty,t2,t3}) = 0.
But then G — T" has a block containing B U {t1,t2,t3} as a subset, which contradicts to (P1).
Thus we assume [N (z) \ (B U{y,t1,t2,t3})] = m — 3 and [N (y) \ (B U {z,t1,t2,t3})| = m — 3,
which imply |[N(z) N B| = 1 and |[N(y) N B| = 1. Since |[N(H;) N B| < 1, we can assume
N(z)N B = N(y)N B = {z}. Without loss of generality, assume z # b;.

If N(z)\y # N(y) \ z, then |[N(z) UN(y) \ (BU {x,y,t1,t2,t3})| > m — 2. So we can
choose a double-star 7" = T with center-edge xy disjoint from B U {t1,t2,t3}. But then G —T"
contains a larger block than B, a contradiction. Thus N(z) \ y = N(y) \ . Because we choose
the edge xy in H; arbitrarily, we conclude that H; is a complete graph and each vertex not in
Hy is adjacent to all vertices in H; if it is adjacent to one vertex in Hy. In particular, every
vertex t in T” is adjacent to all vertices in H; by Claim 4 and the vertex z in B is adjacent to
all vertices in Hj.

Let t4hy be an edge of graph G, where t4 € V(T") \ {t1,t2,t3} and hy € V(Hy). Let hy be
a vertex in Hj distinct from hy. Then t1hy,h1z € E(G). Thus we can choose a double-star
T" = T with center-edge t4hy4 disjoint from B U {t;,h1}. But then B U {t1,h1} is contained in
a block of G — T”, contradicting to (P1).

Because |[N(Hy) N B| < 1 and G is 2-connected, we have |[N(T") N B| > 1. The following
claim further shows that |N(7") N B| = 1.

Claim 7. [N(T")N B| = 1.

By contradiction, assume |N(T") N B| > 2. If N(u) N B # O, say N(u) N B = {u'}, then
we have N({u1,- - ,u,,v}) N B C {v'} by Claim 5 and N({vy,---,vs}) N B C {«'} by Claim
6. That is, N(T") N B = {u'}, a contradiction. Thus N(u) N B = (). Similarly, we have
N@w)NnB = . Since |[N({u1,--- ,u,})NB| <1and [N({vy, - ,vs})NB|] <1 (By Claim 6), we
have |N(T") N B| = 2. Assume, without loss of generality, that there are two distinct vertices w
and w’ in B such that ujw,nw’ € E(G).

We first show that any vertex x in {uy,--- ,u,,v1, -+ ,vs} \ {u1,v1} has no neighbors in
B. By contradiction, assume there is a vertex in {uq,--- ,uy,v1, -+ ,vs} \ {u1,v1}, say v; for
some j € {2,---,s} (the case u; for some i € {2,--- ,r} can be proved similarly), such that

N(vj) N B = {w'}. If v; is adjacent to u (or w;), then for any edge vv’ (v' is a neighbor
of v in Hy), we have |[N(v) \ (B U {u,u1,v;,v'})] > m+2—-4 =m—2 (or [N(v) \ (BU
{ur,v;,v'} )| >m+2-3=m—1) and [N(V')\ (BU{u,v,u1,v;})| >m+2—-1—-4=m—3 (or
IN(W)\ (BU{v,u1,v;})] >m+2—-1—-3=m—2). By Lemma 3.1, we can find a double-star
T" = T with center-edge vv’ such that T” is disjoint from B U {u,u1,v;} (or B U {u,v;}).
But then G — T” contains a larger block than B, a contradiction. Thus neither u nor u; is
adjacent to v;. Choose a neighbor v} of v; in Hy. Since [N(v;) \ (B U {u,v,u1,v1,v}})| >
m+2—-1-3=m-2and [N(vj)\ (BU{u,v,u1,v1,v})| >m+2-1-5=m—4> 3| -1
(By m > 5), we can find a double-star 7" = T" with center-edge v;v; such that 7" is disjoint
from B U {u,v,u1,v1}. But then G —T"” contains a larger block than B, a contradiction. Thus
we have N({uy, - ,up,v1, - ,0s} \ {ur,v1}) N B =0.

Let vovy € E(G), where v}, is a neighbor of vy in Hy. Since 6(G) > m+2 and N(v2)NB = O,
we have |N (v2) \ (BU{u,v,u1,v1,v5})| > m+2—5=m—3 and |[N(v})\ (BU{u,v,u1,v1,v2})| >
m+2-1-5=m-4>|2] -1 By m>5). If [N(v2) \ (BU{u,v,u,v1,v5})| > m — 2,



then, by Lemma 3.1, we can find a double-star 7”7 = T with center-edge vovf such that 7"
avoids BU {u,v,u1,v1}. But then G—T" contains a larger block than B, a contradiction. Thus
assume |N(v2) \ (B U {u,v,u;,v1,v4})| = m — 3, which implies vy is adjacent to both u; and
v1. For the edge uv, we can verify that |[N(u) \ (BU{v,u1,v1,v2})] >m+2—4=m—2 and
IN(v) \ (BU{u,ui,vi,v2})] > m+2—4=m—2. By Lemma 3.1, we can find a double-star
T" = T with center-edge uv such that 7" avoids B U {uy,v1,v2}. But then B U {uy,v1,v9} is
contained in a block of G —T", contradicting to (P1). Thus Claim 7 holds.

By Claim 7, [N(T") " B| = 1. Assume N(7") N B = {w}. Since G is 2-connected, we
have |N(H;) N B| = 1 by Claim 1. Let N(H;) N B = {z}. Let P be a shortest path from
z to w going through H; and T”. Assume P := pips---pg—1pq, Where p; = z, p, = w and
pi € HHUT' for each i € {2,--- ,q — 1}. Since P is a shortest path, N(p;) N P = {pi—1,pi+1}
for 2 <i < g—1. Because 6(G) > m+ 2 and N(p;) N B C {w,z} C P for each 2 <1 < ¢q—1,
we know p; has at least m neighbors not in B U P, that is, G — B U P is not empty. For any
vertex = in G — BU P, we have |[N(z) N P| < 3. For otherwise, we can find a path P’ containing
x from z to w going through H; and T” shorter than P, a contradiction. By 6(G) > m + 2,
IN(z)N(G—BUP)| >m+2—-3 = m—1. Choose an edge zy in G — BU P. Since
IN(x)\(BUPUy)| >m+2—-4=m—2and |[N(y) \(BUPUz)| >m+2—4=m—2, we can
find a double-star T” = T with center-edge xy such that 7" N (BU P) = @. But then BU P is
contained in a block of G — T", a contradiction. The proof is thus complete. [
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