Stability in the Erdős–Gallai Theorem on cycles and paths, II*

Zoltán Füredi[†] Alexandr Kostochka[‡] Ruth Luo[§] Jacques Verstraëte[¶]

April 11, 2017

Abstract

The Erdős–Gallai Theorem states that for $k \geq 3$, any n-vertex graph with no cycle of length at least k has at most $\frac{1}{2}(k-1)(n-1)$ edges. A stronger version of the Erdős–Gallai Theorem was given by Kopylov: If G is a 2-connected n-vertex graph with no cycle of length at least k, then $e(G) \leq \max\{h(n,k,2),h(n,k,\lfloor\frac{k-1}{2}\rfloor)\}$, where $h(n,k,a) := \binom{k-a}{2} + a(n-k+a)$. Furthermore, Kopylov presented the two possible extremal graphs, one with h(n,k,2) edges and one with $h(n,k,\lfloor\frac{k-1}{2}\rfloor)$ edges.

In this paper, we complete a stability theorem which strengthens Kopylov's result. In particular, we show that for $k \geq 3$ odd and all $n \geq k$, every n-vertex 2-connected graph G with no cycle of length at least k is a subgraph of one of the two extremal graphs or $e(G) \leq \max\{h(n,k,3),h(n,k,\frac{k-3}{2})\}$. The upper bound for e(G) here is tight.

Mathematics Subject Classification: 05C35, 05C38.

Keywords: Turán problem, cycles, paths.

1 Introduction

One of the basic Turán-type problems is to determine the maximum number of edges in an n-vertex graph with no k-vertex path. Erdős and Gallai [3] in 1959 proved the following fundamental result on this problem.

Theorem 1.1 (Erdős and Gallai [3]). Fix $n, k \geq 2$. If G is an n-vertex graph that does not contain a path with k vertices, then $e(G) \leq \frac{1}{2}(k-2)n$.

When n is divisible by k-1, the bound is best possible. Indeed, the n-vertex graph whose every component is the complete graph K_{k-1} has $\frac{1}{2}(k-2)n$ edges and no k-vertex paths. Also, if H is an n-vertex graph without a k-vertex path P_k , then by adding to H a new vertex v adjacent to all vertices of H we obtain an (n+1)-vertex graph H' with e(H) + n edges that contains no cycle of length k+1 or longer. Then Theorem 1.1 follows from another theorem of Erdős and Gallai:

^{*}This paper started at SQuaRES meeting of the American Institute of Mathematics.

[†]Alfréd Rényi Institute of Mathematics, Hungary. E-mail: zfuredi@gmail.com. Research was supported in part by grant K116769 from the National Research, Development and Innovation Office NKFIH, by the Simons Foundation Collaboration Grant #317487, and by the European Research Council Advanced Investigators Grant 267195.

[‡]University of Illinois at Urbana–Champaign, Urbana, IL 61801 and Sobolev Institute of Mathematics, Novosibirsk 630090, Russia. E-mail: kostochk@math.uiuc.edu. Research of this author is supported in part by NSF grant DMS-1266016 and by grants 15-01-05867 and 16-01-00499 of the Russian Foundation for Basic Research.

[§]University of Illinois at Urbana-Champaign, Urbana, IL 61801. E-mail: ruthluo2@illinois.edu.

[¶]Department of Mathematics, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112, USA. E-mail: jverstra@math.ucsd.edu. Research supported by NSF Grant DMS-1101489.

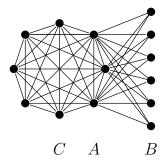


Figure 1: $H_{14,11,3}$.

Theorem 1.2 (Erdős and Gallai [3]). Fix $n, k \geq 3$. If G is an n-vertex graph that does not contain a cycle of length at least k, then $e(G) \leq \frac{1}{2}(k-1)(n-1)$.

The bound of this theorem is best possible for n-1 divisible by k-2. Indeed, any connected n-vertex graph in which every block is a K_{k-1} has $\frac{1}{2}(k-1)(n-1)$ edges and no cycles of length at least k. In the 1970's, some refinements and new proofs of Theorems 1.1 and 1.2 were obtained by Faudree and Schelp [4, 5], Lewin [9], Woodall [10], and Kopylov [8] – see [7] for more details. The strongest version was proved by Kopylov [8]. His result is stated in terms of the following graphs. Let $n \geq k$ and $1 \leq a < \frac{1}{2}k$. The n-vertex graph $H_{n,k,a}$ is as follows. The vertex set of $H_{n,k,a}$ is the union of three disjoint sets A, B, and C such that |A| = a, |B| = n - k + a and |C| = k - 2a, and the edge set of $H_{n,k,a}$ consists of all edges between A and B together with all edges in $A \cup C$ (Fig. 1 shows $H_{14,11,3}$). Let

$$h(n, k, a) := e(H_{n,k,a}) = {k-a \choose 2} + a(n-k+a).$$

For a graph G, let c(G) denote the length of a longest cycle in G. Observe that $c(H_{n,k,a}) < k$: Since $|A \cup C| = k - a$, any cycle D of at length at least k has at least a vertices in B. But as B is independent and 2a < k, D also has to contain at least k + 1 neighbors of the vertices in B, while only a vertices in A have neighbors in A. Kopylov [8] showed that the extremal 2-connected n-vertex graphs with no cycles of length at least k are $G = H_{n,k,2}$ and $G = H_{n,k,t}$: the first has more edges for small n, and the second — for large n.

Theorem 1.3 (Kopylov [8]). Let $n \ge k \ge 5$ and $t = \lfloor \frac{1}{2}(k-1) \rfloor$. If G is an n-vertex 2-connected graph with c(G) < k, then

$$e(G) \le \max\{h(n,k,2),h(n,k,t)\} \tag{1}$$

with equality only if $G = H_{n,k,2}$ or $G = H_{n,k,t}$.

2 Main results

2.1 A previous result

Recently, three of the present authors proved in [6] a stability version of Theorems 1.2 and 1.3 for n-vertex 2-connected graphs with $n \geq 3k/2$, but the problem remained open for n < 3k/2 when $k \geq 9$. The main result of [6] was the following:

Theorem 2.1 (Füredi, Kostochka, Verstraëte [6]). Let $t \ge 2$ and $n \ge 3t$ and $k \in \{2t+1, 2t+2\}$. Let G be a 2-connected n-vertex graph c(G) < k. Then $e(G) \le h(n, k, t-1)$ unless

- (a) $k = 2t + 1, k \neq 7, \text{ and } G \subseteq H_{n,k,t} \text{ or }$
- (b) k = 2t + 2 or k = 7, and G A is a star forest for some $A \subseteq V(G)$ of size at most t.

Note that

$$h(n,k,t) - h(n,k,t-1) = \begin{cases} n-t-3 & \text{if } k = 2t+1, \\ n-t-5 & \text{if } k = 2t+2. \end{cases}$$

The paper [6] also describes the 2-connected n-vertex graphs with $c(G) < k \le 8$ for all $n \ge k$.

2.2 The essence of the main result

Together with [6], this paper gives a full description of the 2-connected n-vertex graphs with c(G) < k and 'many' edges for all k and n. Our main result is:

Theorem 2.2. Let $t \ge 4$ and $k \in \{2t+1, 2t+2\}$, so that $k \ge 9$. If G is a 2-connected graph on $n \ge k$ vertices and c(G) < k, then either $e(G) \le \max\{h(n, k, t-1), h(n, k, 3)\}$ or

- (a) k = 2t + 1 and $G \subseteq H_{n,k,t}$ or
- (b) k = 2t + 2 and G A is a star forest for some $A \subseteq V(G)$ of size at most t.
- (c) $G \subseteq H_{n,k,2}$.

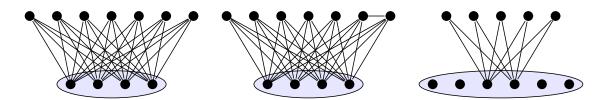


Figure 2: $H_{n,k,t}(k=2t+1), H_{n,k,t}(k=2t+2), H_{n,k,2}$; ovals denote complete subgraphs of order t, t, and k-2 respectively.

Note that the case n < k is trivial and the case $k \le 8$ was fully resolved in [6].

2.3 A more detailed form of the main result

In order to prove Theorem 2.2, we need a more detailed description of graphs satisfying (b) in the theorem that do not contain 'long' cycles.

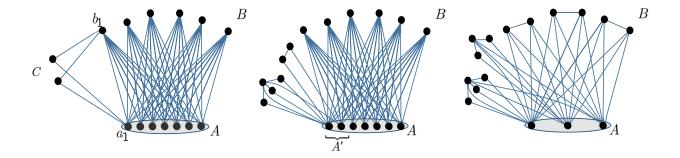


Figure 3: Classes $\mathcal{G}_2(n,k)$, $\mathcal{G}_3(n,k)$ and $\mathcal{G}_4(n,10)$.

Let $\mathcal{G}_1(n,k) = \{H_{n,k,t}, H_{n,k,2}\}$. Each $G \in \mathcal{G}_2(n,k)$ is defined by a partition $V(G) = A \cup B \cup C$ and two vertices $a_1 \in A$, $b_1 \in B$ such that |A| = t, $G[A] = K_t$, G[B] is the empty graph, G(A,B) is a complete bipartite graph, and $N(c) = \{a_1,b_1\}$ for every $c \in C$. Every member of $G \in \mathcal{G}_3(n,k)$ is defined by a partition $V(G) = A \cup B \cup J$ such that |A| = t, $G[A] = K_t$, G(A,B) is a complete bipartite graph, and

- G[J] has more than one component,
- all components of G[J] are stars with at least two vertices each,
- there is a 2-element subset A' of A such that $N(J) \cap (A \cup B) = A'$,
- for every component S of G[J] with at least 3 vertices, all leaves of S have degree 2 in G and are adjacent to the same vertex a(S) in A'.

The class $\mathcal{G}_4(n,k)$ is empty unless k=10. Each graph $H \in \mathcal{G}_4(n,10)$ has a 3-vertex set A such that $H[A]=K_3$ and H-A is a star forest such that if a component S of H-A has more than two vertices then all its leaves have degree 2 in H and are adjacent to the same vertex a(S) in A. These classes are illustrated below:

We can refine Theorem 2.2 in terms of the classes $\mathcal{G}_i(n,k)$ as follows:

Theorem 2.3. (Main Theorem) Let $k \geq 9$, $n \geq k$ and $t = \lfloor \frac{1}{2}(k-1) \rfloor$. Let G be an n-vertex 2-connected graph with no cycle of length at least k. Then $e(G) \leq \max\{h(n, k, t-1), h(n, k, 3)\}$ or G is a subgraph of a graph in G(n, k), where

- (1) if k is odd, then $G(n,k) = G_1(n,k) = \{H_{n,k,t}, H_{n,k,2}\};$
- (2) if k is even and $k \neq 10$, then $\mathcal{G}(n,k) = \mathcal{G}_1(n,k) \cup \mathcal{G}_2(n,k) \cup \mathcal{G}_3(n,k)$;
- (3) if k = 10, then $\mathcal{G}(n, k) = \mathcal{G}_1(n, 10) \cup \mathcal{G}_2(n, 10) \cup \mathcal{G}_3(n, 10) \cup \mathcal{G}_4(n, 10)$.

Since every graph in $\mathcal{G}_2(n,k) \cup \mathcal{G}_3(n,k)$ and many graphs in $\mathcal{G}_4(n,k)$ have a separating set of size 2 (see Fig. 3), the theorem implies the following simpler statement for 3-connected graphs:

Corollary 2.4. Let $k \in \{2t+1, 2t+2\}$ where $k \ge 9$. If G is a 3-connected graph on $n \ge k$ vertices and c(G) < k, then either $e(G) \le \max\{h(n, k, t-1), h(n, k, 3)\}$ or $G \subseteq H_{n,k,t}$ or k = 10 and G is a subgraph of some graph $H \in \mathcal{G}_4(n, 10)$ such that each component of H - A has at most 2 vertices.

3 The proof idea

3.1 Small dense subgraphs

First we define some more graph classes. For a graph F and a nonnegative integer s, we denote by $\mathcal{K}^{-s}(F)$ the family of graphs obtained from F by deleting at most s edges.

Let $F_0 = F_0(t)$ denote the complete bipartite graph $K_{t,t+1}$ with partite sets A and B where |A| = t and |B| = t+1. Let $\mathcal{F}_0 = \mathcal{K}^{-t+3}(F_0)$, i.e., the family of subgraphs of $K_{t,t+1}$ with at least t(t+1)-t+3 edges.

Let $F_1 = F_1(t)$ denote the complete bipartite graph $K_{t,t+2}$ with partite sets A and B where |A| = t and |B| = t+2. Let $\mathcal{F}_1 = \mathcal{K}^{-t+4}(F_1)$, i.e., the family of subgraphs of $K_{t,t+2}$ with at least t(t+2)-t+4 edges.

Let \mathcal{F}_2 denote the family of graphs obtained from a graph in $\mathcal{K}^{-t+4}(F_1)$ by subdividing an edge a_1b_1 with a new vertex c_1 , where $a_1 \in A$ and $b_1 \in B$. Note that any member $H \in \mathcal{F}_2$ has at least |A||B| - (t-3) edges between A and B and the pair a_1b_1 is not an edge.

Let $F_3 = F_3(t,t')$ denote the complete bipartite graph $K_{t,t'}$ with partite sets A and B where |A| = t and |B| = t'. Take a graph from $\mathcal{K}^{-t+4}(F_3)$, select two non-empty subsets $A_1, A_2 \subseteq A$ with $|A_1 \cup A_2| \geq 3$ such that $A_1 \cap A_2 = \emptyset$ if $\min\{|A_1|, |A_2|\} = 1$, add two vertices c_1 and c_2 , join them to each other and add the edges from c_i to the elements of A_i , (i = 1, 2). The class of obtained graphs is denoted by $\mathcal{F}(A, B, A_1, A_2)$. The family \mathcal{F}_3 consists of these graphs when |A| = |B| = t, $|A_1| = |A_2| = 2$ and $A_1 \cap A_2 = \emptyset$. In particular, $\mathcal{F}_3(4)$ consists of exactly one graph, call it $F_3(4)$.

Graph F_4 has vertex set $A \cup B$, where $A = \{a_1, a_2, a_3\}$ and $B := \{b_1, b_2, \dots, b_6\}$ are disjoint. Its edges are the edges of the complete bipartite graph K(A, B) and three extra edges b_1b_2 , b_3b_4 , and b_5b_6 (see Fig. 4 below). Define F'_4 as the (only) member of $\mathcal{F}(A, B, A_1, A_2)$ such that |A| = |B| = t = 4, $A_1 = A_2$, and $|A_i| = 3$. Let $\mathcal{F}_4 := \{F_4, F'_4\}$, which is defined only for t = 4.

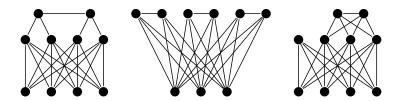


Figure 4: Graphs $F_3(4)$, F_4 , and F'_4 .

Define
$$\mathcal{F}(k) := \left\{ \begin{array}{ll} \mathcal{F}_0, & \text{if } k \text{ is odd,} \\ \mathcal{F}_1 \cup \cdots \cup \mathcal{F}_4, & \text{if } k \text{ is even.} \end{array} \right.$$

3.2 Proof idea

For our proof, it will be easier to use the stronger induction assumption that the graphs in question contain certain dense graphs from $\mathcal{F}(k)$. We will prove the following slightly stronger version of Theorem 2.3 which also implies Theorem 2.2.

Theorem 2.3' Let $t \ge 4$, $k \in \{2t+1, 2t+2\}$, and $n \ge k$. Let G be an n-vertex 2-connected graph with no cycle of length at least k. Then $e(G) \le \max\{h(n, k, t-1), h(n, k, 3)\}$ or

- (a) $G \subseteq H_{n,k,2}$, or
- (b) G is contained in a graph in $\mathcal{G}(n,k) \{H_{n,k,2}\}$, and G contains a subgraph $H \in \mathcal{F}(k)$.

The method of the proof is a variation of that of [6]. Also, when n is close to k, we use Kopylov's disintegration method. We take an n-vertex graph G satisfying the hypothesis of Theorem 2.3', and iteratively contract edges in a certain way so that each intermediate graph still satisfies the hypothesis. We consider the final graph of this process G_m on m vertices and show that G_m satisfies Theorem 2.3'. Two results from [6] will be instrumental. The first is:

Lemma 3.1 (Main lemma on contraction [6]). Let $k \geq 9$ and suppose F and F' are 2-connected graphs such that F = F'/xy and c(F') < k. If F contains a subgraph $H \in \mathcal{F}(k)$, then F' also contains a subgraph $H' \in \mathcal{F}(k)$.

This lemma shows that if G_m contains a subgraph $H \in \mathcal{F}(k)$, then the original graph G also contains a subgraph in $\mathcal{F}(k)$. The second result (proved in Subsection 4.5 of [6]) is:

Lemma 3.2 ([6]). Let $k \geq 9$, and let G be a 2-connected graph with c(G) < k and e(G) > h(n, k, t-1). If G contains a subgraph $H \in \mathcal{F}(k)$, then G is a subgraph of a graph in $\mathcal{G}(n, k) - \{H_{n,k,2}\}$. \square

We will split the proof into the cases of small n and large n. The following observations can be obtained by simple calculations (for $t \ge 4$):

	k	$h(n,k,3) \ge h(n,k,t-1)$	$h(n,k,2) \ge h(n,k,t-1)$
ſ	2t + 1	If and only if $n \le k + (t-5)/2$	If and only if $n \le k + t/2 - 1$
	2t + 2	If and only if $n \le k + (t-3)/2$	If and only if $n \leq k + t/2$

In the case of large n we will contract an edge such that the new graph still has more than h(n-1,k,t-1) edges. In order to apply induction, we also need the number of edges to be greater than h(n-1,k,3). To guarantee this, we pick the cutoffs for the two cases $n \le k + (t-1)/2$ and n > k + (t-1)/2 (therefore n-1 > k + (t-3)/2).

4 Tools

4.1 Classical theorems

Theorem 4.1 (Erdős [2]). Let $d \ge 1$ and n > 2d be integers, and

$$\ell_{n,d} = \max\left\{ \binom{n-d}{2} + d^2, \binom{\lceil \frac{n+1}{2} \rceil}{2} + \lfloor \frac{n-1}{2} \rfloor^2 \right\}.$$

Then every n-vertex graph G with $\delta(G) \geq d$ and $e(G) > \ell_{n,d}$ is hamiltonian.

Theorem 4.2 (Chvátal [1]). Let $n \geq 3$ and G be an n-vertex graph with vertex degrees $d_1 \leq d_2 \leq \ldots \leq d_n$. If G is not hamiltonian, then there is some i < n/2 such that $d_i \leq i$ and $d_{n-i} < n-i$. \square

Theorem 4.3 (Kopylov [8]). If G is 2-connected and P is an x, y-path of ℓ vertices, then $c(G) \ge \min\{\ell, d(x, P) + d(y, P)\}$.

4.2 Claims on contractions

A helpful tool will be the following lemma from [6] on contraction.

Lemma 4.4 ([6]). Let $n \geq 4$ and let G be an n-vertex 2-connected graph. For every $v \in V(G)$, there exists $w \in N(v)$ such that G/vw is 2-connected.

For an edge xy in a graph H, let $T_H(xy)$ denote the number of triangles containing xy. Let $T(H) = \min\{T_H(xy) : xy \in E(H)\}$. When we contract an edge uv in a graph H, the degree of every $x \in V(H) - u - v$ either does not change or decreases by 1. Also the degree of u * v in H/uv is at least $\max\{d_H(u), d_H(v)\} - 1$. Thus

$$d_{H/uv}(w) \ge d_H(w) - 1$$
 for any $w \in V(H)$ and $uv \in E(H)$. Also $d_{H/uv}(u * v) \ge d_H(u) - 1$. (2)

Similarly,

$$T(H/uv) \ge T(H) - 1$$
 for every graph H and $uv \in E(H)$. (3)

We will use the following analog of Lemma 3.3 in [6].

Lemma 4.5. Let h be a positive integer. Suppose a 2-connected graph G is obtained from a 2-connected graph G' by contracting edge xy into x * y chosen using the following rules:

- (i) one of x, y, say x is a vertex of the minimum degree in G';
- (ii) $T_{G'}(xy)$ is the minimum among the edges xu incident with x such that G'/xu is 2-connected. (Such edges exist by Lemma 4.4). If G has at least h vertices of degree at most h, then either $G' = K_{h+2}$ or
- (a) G' also has a vertex of degree at most h, and
- (b) G' has at least h+1 vertices of degree at most h+1.

Proof. Since G is 2-connected, $h \ge 2$. Let $V_{\le s}(H)$ denote the set of vertices of degree at most s in H. Then by (2), each $v \in V_{\le h}(G) - x * y$ is also in $V_{\le h+1}(G')$. Moreover, then by (i),

$$x \in V_{\leq h+1}(G'). \tag{4}$$

Thus if $x * y \notin V_{\leq h}(G)$, then (b) follows. But if $x * y \in V_{\leq h}(G)$, then by (2), also $y \in V_{\leq h+1}(G')$. So, again (b) holds.

If $V_{\leq h-1}(G) \neq \emptyset$, then (a) holds by (2). So, if (a) does not hold, then

each
$$v \in V_{\leq h}(G) - x * y$$
 has degree $h + 1$ in G' and is adjacent to both x and y in G' . (5)

Case 1: $|V_{\leq h}(G) - x * y| \geq h$. Then by (4), $d_{G'}(x) = h+1$. This in turn yields $N_{G'}(x) = V_{\leq h}(G) + y$. Since G' is 2-connected, each $v \in V_{\leq h}(G) - x * y$ is not a cut vertex. Furthermore, $\{x, v\}$ is not a cut set. If it was, because y is a common neighbor of all neighbors of x, all neighbors of x must be in the same component as y in G' - x - v. It follows that

for every
$$v \in V_{\leq h}(G) - x * y$$
, G'/vx is 2-connected. (6)

If $uv \notin E(G)$ for some $u, v \in V_{\leq h}(G)$, then by (6) and (i), we would contract the edge xu rather

than xy. Thus $G'[V_{\leq h}(G) \cup \{x,y\}] = K_{h+2}$ and so either $G' = K_{h+2}$ or y is a cut vertex in G', as claimed.

Case 2: $|V_{\leq h}(G) - x * y| = h - 1$. Then $x * y \in V_{\leq h}(G)$. This means $d_{G'}(x) = d_{G'}(y) = h + 1$ and $N_{G'}[x] = N_{G'}[y]$. So by (5), there is $z \in V(G)$ such that $N_{G'}[x] = N_{G'}[y] = V_{\leq h}(G) \cup \{x, y, z\}$. Again (6) holds (for the same reason that $N_{G'}[x] \subseteq N_{G'}[y]$). Thus similarly $vu \in E(G')$ for every $v \in V_{\leq h}(G) - x * y$ and every $u \in V_{\leq h}(G) + z$. Hence $G'[V_{\leq h}(G) \cup \{x, y, z\}] = K_{h+2}$ and either $G' = K_{h+2}$ or z is a cut vertex in G', as claimed.

4.3 A property of graphs in $\mathcal{F}(k)$

A useful feature of graphs in $\mathcal{F}(k)$ is the following.

Lemma 4.6. Let $k \geq 9$ and $n \geq k$. Let F be an n-vertex graph contained in $H_{n,k,t}$ with e(F) > h(n,k,t-1). Then F contains a graph in $\mathcal{F}(k)$.

Proof. Assume the sets A, B, C to be as in the definition of $H_{n,k,t}$. We will use induction on n.

Case 1: k = 2t + 1. If n = k, then $F \in \mathcal{K}^{-t+3}(H_{k,k,t})$ because h(k,k,t) - h(k,k,t-1) - 1 = t - 3. Thus, since $H_{k,k,t} \supseteq F_0(t)$, F contains a subgraph in \mathcal{F}_0 . Suppose now the lemma holds for all $k \le n' < n$. If $\delta(F) \ge t$, then each $v \in V(F) - A$ is adjacent to every $u \in A$. Hence F contains $K_{t,n-t}$. If $\delta(F) < t$, then since A is dominating and n > 2t, there is $v \in V(F) - A$ with $d_F(v) \le t - 1$. Then $F - v \subseteq H_{n-1,k,t}$, and we are done by induction.

Case 2: k = 2t + 2. Let $C = \{c_1, c_2\}$. If n = k then as in Case 1,

$$e(H_{k,k,t}) - e(F) \le h(k,k,t) - h(k,k,t-1) - 1 = t - 4,$$

i.e., $F \in \mathcal{K}^{-t+4}(H_{k,k,t})$. Since $F_1(t) \subseteq H_{k,k,t}$, F contains a subgraph in \mathcal{F}_1 . Suppose now the lemma holds for all $k \leq n' < n$. If $\delta(F) < t$, then there is $v \in V(F) - A$ with $d_F(v) \leq t - 1$. Then $F - v \subseteq H_{n-1,k,t}$, and we are done by induction.

Finally, suppose $\delta(F) \geq t$. So, each $v \in B$ is adjacent to every $u \in A$ and each of c_1, c_2 has at least t-1 neighbors in A. Since $|B \cup \{c_1\}| \geq n-t-1 \geq t+2$, F contains a member of $\mathcal{K}^{-1}(F_1(t))$. Thus F contains a member of \mathcal{F}_1 unless t=4, n=2t+3 and c_1 has a nonneighbor $x \in A$. But then $c_1c_2 \in E(F)$, and so F contains either $F_3(4)$ or F_4' .

5 Proof of Theorem 2.3'

5.1 Contraction procedure

If n > k, we iteratively construct a sequence of graphs $G_n, G_{n-1}, ... G_m$ where $|V(G_j)| = j$. In [6], the following **Basic Procedure** (BP) was used:

At the beginning of each round, for some $j: k \leq j \leq n$, we have a j-vertex 2-connected graph G_j with $e(G_j) > h(j, k, t-1)$.

- (BP1) If j = k, then we stop.
- (BP2) If there is an edge uv with $T_{G_j}(uv) \leq t-2$ such that G_j/uv is 2-connected, choose one such edge so that
 - (i) $T_{G_i}(uv)$ is minimum, and subject to this
 - (ii) uv is incident to a vertex of minimum possible degree. Then obtain G_{i-1} by contracting uv.
- (BP3) If (BP2) does not hold, $j \geq k + t 1$ and there is $xy \in E(G_j)$ such that $G_j x y$ has at least 3 components and one of the components, say H_1 is a K_{t-1} , then let $G_{j-t+1} = G_j V(H_1)$.
- (BP4) If neither (BP2) nor (BP3) occurs, then we stop.

Remark 5.1. By definition, (BP3) applies only when $j \ge k+t-1$. As observed in [6], if $j \le 3t-2$, then a j-vertex graph G_j with a 2-vertex set $\{x,y\}$ separating the graph into at least 3 components cannot have $T_{G_j}(uv) \ge t-1$ for every edge uv. It also was calculated there that if $3t-1 \le j \le 3t$, then any j-vertex graph G' with such 2-vertex set $\{x,y\}$ and $T_{G'}(uv) \ge t-1$ for every edge uv has at most h(j,k,t-1) edges and so cannot be G_j .

In this paper, we also use a quite similar **Modified Basic Procedure** (MBP): start with a 2-connected, n-vertex graph $G = G_n$ with e(G) > h(n, k, t - 1) and c(G) < k. Then

- (MBP0) if $\delta(G_i) \geq t$, then apply the rules (BP1)–(BP4) of (BP) given above;
- (MBP1) if $\delta(G_i) \leq t 1$ and j = k, then stop;
- (MBP2) otherwise, pick a vertex v of smallest degree, contract an edge vu with the minimum $T_{G_j}(vu)$ among the edges vu such that G_j/vu is 2-connected, and set $G_{j-1} = G_j/uv$.

5.2 Proof of Theorem 2.3' for the case $n \le k + (t-1)/2$

Apply to G the Modified Basic Procedure (MBP) starting from $G_n = G$. By Remark 1, (BP3) was never applied, since k + (t-1)/2 < k+t-1. Therefore at every step, we only contracted an edge. Denote by G_m the terminating graph of (MBP). Then G_j is 2-connected and $c(G_j) \le c(G) < k$ for each $m \le j \le n$. By construction, after each contraction, we lose at most t-1 edges. It follows that $e(G_m) > h(m, k, t-1)$.

If m > k, then the same argument as in [6] gives us the following structural result:

Lemma 5.1 ([6]). Let $m > k \ge 9$ and $n \ge k$.

- If $k \neq 10$, then $G_m \subseteq H_{m,k,t}$.
- If k = 10, then $G_m \subseteq H_{m,k,t}$ or $G_m \supseteq F_4$.

If k = 10 and $G_m \supseteq F_4$, then G_m contains a subgraph in $\mathcal{F}(k)$. Otherwise, by Lemma 4.6, again G_m has a subgraph in $\mathcal{F}(k)$. Next, undo the contractions that were used in (MBP). At every step for $m \le j \le n$, by Lemma 3.1, G_j contains some subgraph $H' \in \mathcal{F}(k)$. In particular, $G = G_n$ contains such a subgraph. Thus by Lemma 3.2, we get our result. So, below we assume

$$m = k. (7)$$

Since $c(G_k) < k$, G_k does not have a hamiltonian cycle. Denote the vertex degrees of G_k $d_1 \le d_2 \le ... \le d_k$. By Theorem 4.2, there exists some $2 \le i \le t$ such that $d_i \le i$ and $d_{k-i} < k-i$. Let $r = r(G_k)$ be the smallest such i.

Because G_k has r vertices of degree at most r, similarly to [2],

$$e(G_k) \le r^2 + \binom{k-r}{2}.$$

For k = 2t + 1, $r^2 + {k-r \choose 2} > h(n, k, t-1)$ only when r = t or r < (t+4)/3, and for k = 2t + 2, when r = t or r < (t+6)/3. If r = t, then repeating the argument in [6] yields:

Lemma 5.2 ([6]). If $r(G_k) = t$ then $G_k \subseteq H_{k,k,t}$.

Then by Lemma 4.6, Lemma 3.1, and Lemma 3.2, $G \subseteq H_{n,k,t}$ and contains some subgraph in $\mathcal{F}(k)$. So we may assume that

if
$$k = 2t + 1$$
 then $r < (t + 4)/3$, and if $k = 2t + 2$ then $r < (t + 6)/3$. (8)

Our next goal is to show that G contains a large "core", i.e., a subgraph with large minimum degree. For this, we recall the notion of disintegration used by Kopylov [8].

Definition: For a natural number α and a graph G, the α -disintegration of a graph G is the process of iteratively removing from G the vertices with degree at most α until the resulting graph has minimum degree at least $\alpha + 1$. This resulting subgraph $H = H(G, \alpha)$ will be called the α -core of G. It is well known that $H(G, \alpha)$ is unique and does not depend on the order of vertex deletion.

Claim 5.3. The t-core H(G,t) of G is not empty.

Proof of Claim 5.3: We may assume that for all $m \leq j < n$, graph G_j was obtained from G_{j+1} by contracting edge $x_j y_j$, where $d_{G_{j+1}}(x_j) \leq d_{G_{j+1}}(y_j)$. By Rule (MBP2), $d_{G_{j+1}}(x_j) = \delta(G_{j+1})$, provided that $\delta(G_{j+1}) \leq t - 1$.

By definition, $|V_{\leq r}(G_k)| \geq r$. So by Lemma 4.5 (applied several times), for each $k+1 \leq j \leq k+t-r$, because each G_j is not a complete graph (otherwise it would have a hamiltonian cycle),

$$\delta(G_j) \le j - k + r - 1 \text{ and } |V_{\le j - k + r}(G_j)| \ge j - k + r.$$
 (9)

To show that

$$\delta(G_j) \le t - 1 \text{ for all } k \le j \le n,$$
 (10)

by (9) and (8), it is enough to observe that

$$\delta(G_j) \le j - k + r - 1 \le (n - k) + r - 1 \le \frac{t - 1}{2} + \frac{t + 6}{3} - 1 = \frac{5t + 3}{6} < t.$$

We will apply a version of t-disintegration in which we first manually remove a sequence of vertices and count the number of edges they cover. By (10) and (MBP2), $d_{G_n}(x_{n-1}) = \delta(G_n) \leq n - k + r - 1$. Let $v_n := x_{n-1}$. Then $G - v_n$ is a subgraph of G_{n-1} . If $x_{n-2} \neq x_{n-1} * y_{n-1}$ in G_{n-1} , then let $v_{n-1} := x_{n-2}$, otherwise let $v_{n-1} := y_{n-1}$. In both cases, $d_{G-v_n}(v_{n-1}) \leq n - k + r - 2$. We continue

in this way until j = k: each time we delete from $G - v_n - \ldots - v_{j+1}$ the unique survived vertex v_j that was in the preimage of x_{j-1} when we obtained G_{j-1} from G_j . Graph $G - v_n - \ldots - v_{k+1}$ has $r \geq 2$ vertices of degree at most r. We additionally delete 2 such vertices v_k and v_{k-1} . Altogether, we have lost at most $(r + n - k - 1) + (r + n - k - 2) + \ldots + r + 2r$ edges in the deletions.

Finally, apply t-disintegration to the remaining graph on $k-2 \in \{2t-1, 2t\}$ vertices. Suppose that the resulting graph is empty.

Case 1: n = k. Then

$$e(G) \le r + r + t(2t - 1 - t) + {t \choose 2},$$

where r+r edges are from v_k and v_{k-1} , and after deleting v_k and v_{k-1} , every vertex deleted removes at most t edges, until we reach the final t vertices which altogether span at most $\binom{t}{2}$ edges.

For k = 2t + 1,

$$h(k,k,t-1) - e(G) \ge \binom{2t+1-(t-1)}{2} + (t-1)^2 - \left[r+r+t(2t-1-t) + \binom{t}{2}\right] = t+2-2r,$$

which is nonnegative for r < (t+3)/3. Therefore $e(G) \le h(k, k, t-1)$, a contradiction.

Similarly, if k = 2t + 2,

$$e(G) \le r + r + t(2t - t) + {t \choose 2}$$
, and

$$h(k,k,t-1) - e(G) \ge \binom{2t+2-(t-1)}{2} + (t-1)^2 - [r+r+t(2t-t) + \binom{t}{2}] = t+4-2r,$$

which is nonnegative when r < (t+6)/3.

Case 2: $k < n \le k + (t-1)/2$. Then for k = 2t + 1,

$$e(G) \le \left[(r+n-k-1) + (r+n-k-2) + \ldots + r \right] + 2r + t(2t-1-t) + {t \choose 2}$$

$$\le \left[(t-1) + (t-1) + \ldots + (t-1) \right] + h(k,k,t-1)$$

$$= (t-1)(n-k) + h(k,k,t-1)$$

$$= h(n,k,t-1),$$

where the last inequality holds because $r + n - k - 1 \le t - 1$.

Similarly, for k = 2t + 2,

$$e(G) \le \left[(r+n-k-1) + (r+n-k-2) + \dots + r \right] + 2r + t(2t-t) + {t \choose 2}$$

$$\le (n-k)(t-1) + h(k,k,t-1)$$

$$= h(n,k,t-1).$$

This contradiction completes the proof of Claim 5.3.

For the rest of the proof of Theorem 2.3', we will follow the method of Kopylov in [8] to show that $G \subseteq H_{n,k,2}$. Let G^* be the k-closure of G. That is, add edges to G until adding any additional

edges creates a cycle of length at least k. In particular, for any non-edge xy of G^* , there is an (x, y)-path in G^* with at least k - 1 edges.

Because G has a nonempty t-core, and G^* contains G as a subgraph, G^* also has a nonempty t-core (which contains the t-core of G). Let $H = H(G^*, t)$ denote the t-core of G^* . We will show that

$$H$$
 is a complete graph. (11)

Indeed, suppose there exists a nonedge in H. Choose a longest path P of G^* whose terminal vertices $x \in V(H)$ and $y \in V(H)$ are nonadjacent. By the maximality of P, every neighbor of x in H is in P, similar for y. Hence $d_P(x) + d_P(y) = d_H(x) + d_H(y) \ge 2(t+1) \ge k$, and also |P| = k-1 (edges). By Kopylov' Theorem 4.3, G^* must have a cycle of length at least k, a contradiction.

Therefore H is a complete subgraph of G^* . Let $\ell = |V(H)|$. Because every vertex in H has degree at least t+1, $\ell \geq t+2$. Furthermore, if $\ell \geq k-1$, then G^* has a clique K of size at least k-1. Because G^* is 2-connected, we can extend a (k-1)-cycle of K to include at least one vertex in $G^* - H'$, giving us a cycle of length at least k. It follows that

$$t + 2 \le \ell \le k - 2,\tag{12}$$

and therefore $k-\ell \le t$. Apply a weaker $(k-\ell)$ -disintegration to G^* , and denote by H' the resulting graph. By construction, $H \subseteq H'$.

Case 1: There exists $v \in V(H') - V(H)$. Since $v \notin V(H)$, there exists a nonedge between a vertex in H and a vertex in H' - H. Pick a longest path P with terminal vertices $x \in V(H')$ and $y \in V(H)$. Then $d_P(x) + d_P(y) \ge (k - \ell + 1) + (\ell - 1) = k$, and therefore $c(G^*) \ge k$.

Case 2: H = H'. Then

$$e(G^*) \le \binom{\ell}{2} + (n-\ell)(k-\ell) = h(n,k,k-\ell).$$

If $3 \leq (k - \ell) \leq t - 1$, then $e(G) \leq \max\{h(n, k, 3), h(n, k, t - 1)\}$, so by (12), $k - \ell = 2$, and H is the complete graph with k - 2 vertices. Let $D = V(G^*) - V(H)$. If there is an edge xy in $G^*[D]$, then because G^* is 2-connected, there exist two vertex-disjoint paths, P_1 and P_2 , from $\{x, y\}$ to H such that P_1 and P_2 only intersect $\{x, y\} \cup H$ at the beginning and end of the paths. Let a and b be the terminal vertices of P_1 and P_2 respectively that lie in H. Let P be any (a, b)-hamiltonian path of H. Then $P_1 \cup P \cup P_2 + xy$ is a cycle of length at least k in G^* , a contradiction.

Therefore D is an independent set, and since G^* is 2-connected, each vertex of D has degree 2. Suppose there exists $u, v \in D$ where $N(u) \neq N(v)$. Let $N(u) = \{a, b\}, N(v) = \{c, d\}$ where it is possible that b = c. Then we can find a cycle C of H that covers V(H) which contains edges ab and cd. Then C - ab - cd + ua + ub + vc + vd is a cycle of length k in G^* . Thus for every $v \in D$, $N(v) = \{a, b\}$ for some $a, b \in H$. I.e., $G^* = H_{n,k,2}$, and thus $G \subseteq H_{n,k,2}$.

5.3 Proof of Theorem 2.3' for all n

We use induction on n with the base case $n \le k + (t-1)/2$. Suppose $n \ge k + t/2$ and for all $k \le n' < n$, Theorem 2.3' holds. Let G be a 2-connected graph G with n vertices such that

$$e(G) > \max\{h(n, k, t - 1), h(n, k, 3)\} \text{ and } c(G) < k.$$
 (13)

Apply one step of (BP). If (BP4) was applied (so neither (BP2) nor (BP3) applies to G), then $G_m = G$ (with G_m defined as in the previous case). By Lemmas 5.1, 4.6, and 3.2, the theorem holds.

Therefore we may assume that either (BP2) or (BP3) was applied. Let G^- be the resulting graph. Then $c(G^-) < k$, and G^- is 2-connected.

Claim 5.4.

$$e(G^{-}) > \max\{h(|V(G^{-})|, k, t-1), h(|V(G^{-})|, k, 3)\}.$$
(14)

Proof. If (BP2) was applied, i.e., $G^- = G/uv$ for some edge uv, then

$$e(G^{-}) \ge e(G) - (t-1) > h(n-1, k, t-1) \ge h(n-1, k, 3),$$

so (14) holds. Therefore we may assume that (BP3) was applied to obtain G^- . Then $n \ge k + t - 1$ and $e(G) - e(G^-) = {t+1 \choose 2} - 1$. So by (13),

$$e(G^{-}) > h(n, k, t - 1) - {t+1 \choose 2} + 1.$$
 (15)

The right hand side of (15) equals $h(n-(t-1),k,t-1)+t^2/2-5t/2+2$ which is at least h(n-(t-1),k,t-1) for $t \ge 4$, proving the first part of (14).

We now show that also $e(G^-) > h(n - (t - 1), k, 3)$. Indeed, for k = 2t + 1,

$$e(G^{-}) - h(n - (t - 1), k, 3) > {t + 2 \choose 2} + (t - 1)(n - t - 2) - {t + 1 \choose 2} + 1$$
$$- \left[{2t - 2 \choose 2} + 3(n - (t - 1) - (2t - 2)) \right] \ge 0 \text{ when } n \ge 3t.$$

Similarly, for k = 2t + 2,

$$e(G^{-}) - h(n - (t - 1), k, 3) > {t + 3 \choose 2} + (t - 1)(n - t - 3) - {t + 1 \choose 2} + 1$$
$$- \left[{2t - 1 \choose 2} + 3(n - (t - 1) - (2t - 1)) \right] > 0 \text{ when } n \ge 3t + 1.$$

Thus if $n \ge 3t + 1$, then (14) is proved. But if $n \in \{3t - 1, 3t\}$ then by Remark 5.1, no graph to which (BP3) applied may have more than h(n, k, t - 1) edges.

By (14), we may apply induction to G^- . So G^- satisfies either (a) $G^- \subseteq H_{|V(G^-)|,n,2}$, or (b) G^- is contained in a graph in $\mathcal{G}(n,k) - H_{|V(G^-)|,k,2}$ and contains a subgraph $H \in \mathcal{F}(k)$. Suppose first

that G^- satisfies (b). If (BP3) was applied to obtain G^- from G, then because G^- contains a subgraph $H \in \mathcal{F}(k)$ and $G^- \subseteq G$, G also contains H. If (BP2) was applied, then by Lemma 3.1, G contains a subgraph $H' \in \mathcal{F}(k)$. In either case, Lemma 3.2 implies that G is a subgraph of a graph in $\mathcal{G}(n,k) - H_{n,k,2}$.

So we may assume that (a) holds, that is, G^- is a subgraph of $H_{|V(G^-)|,n,2}$. Because $\delta(G^-) \leq 2$, $\delta(G) \leq 3$, and so G has edges in at most $2 \leq t-2$ triangles. Therefore (BP2) was applied to obtain G^- , where $G/uv = G^-$. Let D be an independent set of vertices of G^- of size (n-1) - (k-2) with $N(D) = \{a, b\}$ for some $a, b \in V(G^-)$. Since $T_{G^-}(xa), T_{G^-}(xb) \leq 1$ for every $x \in D$, we have that $T_G(uv) \leq 2$ with equality only if T(G) = 2 where $T(G) = \min_{xu \in E(G)} T_G(xy)$.

We want to show that $T_G(uv) \leq 1$. If not, suppose first that $u * v \in D \subseteq V(G^-)$. Then there exists $x \in D - u * v$, and x and u * v are not adjacent in G^- . Therefore x was not in a triangle with u and v in G, and hence $T_G(xa) = T_{G^-}(xa) \leq 1$, so the edge xa should have been contracted instead. Otherwise if $u * v \notin D$, at least one of $\{a,b\}$, say a, is not u * v. If T(G) = 2, then for every $x \in D \subseteq V(G)$, $T_G(xa) = 2$, therefore each such edge xa was in a triangle with uv in G. Then $T_G(uv) \geq |D| = (n-1) - (k-2) \geq k + t/2 - 1 - k + 2 \geq 3$, a contradiction.

Thus $T_G(uv) \le 1$ and $e(G) \le 2 + e(G^-) \le 2 + h(n-1,k,2) = h(n,k,2)$. But for $n \ge k + t/2$, we have $h(n,k,t-1) \ge h(n,k,2)$, a contradiction.

Acknowledgment. The authors thank Zoltán Király for helpful comments.

References

- [1] V. Chvátal, On Hamilton's ideals. J. Combinatorial Theory Ser. B 12 (1972), 163–168.
- [2] P. Erdős, Remarks on a paper of Pósa, Magyar Tud. Akad. Mat. Kutató Int. Közl. 7 (1962), 227–229.
- [3] P. Erdős and T. Gallai, On maximal paths and circuits of graphs, Acta Math. Acad. Sci. Hungar. 10 (1959), 337–356.
- [4] R. J. Faudree and R. H. Schelp, Ramsey type results, Infinite and Finite Sets, Colloq. Math. J. Bolyai 10, (ed. A. Hajnal et al.), North-Holland, Amsterdam, 1975, pp. 657–665.
- [5] R. J. Faudree and R. H. Schelp, Path Ramsey numbers in multicolorings, J. Combin. Theory Ser. B 19 (1975), 150–160.
- [6] Z. Füredi, A. Kostochka, and J. Verstraëte. Stability in the Erdős–Gallai Theorem on cycles and paths, JCTB 121 (2016), 197–228.
- [7] Z. Füredi and M. Simonovits, The history of degenerate (bipartite) extremal graph problems, Bolyai Math. Studies **25** pp. 169–264, Erdős Centennial (L. Lovász, I. Ruzsa, and V. T. Sós, Eds.) Springer, 2013. Also see: arXiv:1306.5167.
- [8] G. N. Kopylov, Maximal paths and cycles in a graph, Dokl. Akad. Nauk SSSR **234** (1977), 19–21. (English translation: Soviet Math. Dokl. **18** (1977), no. 3, 593–596.)

- [9] M. Lewin, On maximal circuits in directed graphs. J. Combinatorial Theory Ser. B $\bf 18$ (1975), 175–179.
- [10] D. R. Woodall, Maximal circuits of graphs I, Acta Math. Acad. Sci. Hungar. 28 (1976), 77–80.