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Maximum matchings in regular graphs

Dong Ye ∗

Abstract

It was conjectured by Mkrtchyan, Petrosyan, and Vardanyan that every graph G with ∆(G)−

δ(G) ≤ 1 has a maximum matching M such that any two M -unsaturated vertices do not share

a neighbor. In this note, we confirm the conjecture for all k-regular simple graphs and also

k-regular multigraphs with k ≤ 4.

1 Introduction

Graphs considered in this paper may have multi-edges, but no loops. A graph without multi-edges

is called a simple graph. A matching Mof a graph G is a set of independent edges. A vertex is

M -saturated if it is incident with an edge of M , and M -unsaturated otherwise. A matching M is

said to be maximum if for any other matching M ′, |M | ≥ |M ′|. A matching M is perfect if it covers

all vertices of G. If G has a perfect matching, the every maximum matching is a perfect matching.

The maximum and minimum degrees of a graph G are denoted by ∆(G) and δ(G), respectively.

Mkrtchyan, Petrosyan and Vardanyan [4, 5] made the following conjecture.

Conjecture 1.1 (Mkrtchyan et. al. [4, 5]). Let G be a graph with ∆(G)−δ(G) ≤ 1. Then G contains

a maximum matching M such that any two M -unsaturated vertices do not share a neighbor.

This conjecture is verified for subcubic graphs (i.e. ∆(G) = 3) by Mkrtchyan, Petrosyan and

Vardanyan [4]. Later, Picouleau [7] find a counterexample to the conjecture, which is a bipartite

simple graph with δ(G) = 4 and ∆(G) = 5. Petrosyan [6] constructs counterexamples to the

conjecture for all k-regular graphs with k ≥ 7 and for graphs G with ∆(G)−δ(G) = 1 and ∆(G) ≥ 4.

Note that, most of counterexamples of Conjecture 1.1 for graphs G with ∆(G)−δ(G) = 1 are simple,

but all k-regular graphs with k ≥ 7 given by Petrosyan [6] have multi-edges. As affirmative answer

to Conjecture 1.1 is known only for graphs with ∆(G) ≤ 3, Mkrtchyan et. al [4] asked whether the

conjecture holds for any k-regular graphs with k ≥ 4.

In this note, we consider the conjecture for both k-regular simple graphs and k-regular graphs

with multi-edges. First we show that Conjecture 1.1 does hold for all k-regular simple graphs.

Theorem 1.2. Let G be a k-regular simple graph. Then G has a maximum matching M such that

any two M -unsaturated vertices do not share a neighbor.

Further, we show that Conjecture 1.1 holds for k-regular graphs with multi-edges for k ≤ 4.
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Theorem 1.3. Let G be a k-regular graph with k ≤ 4. Then G has a maximum matching M such

that any two M -unsaturated vertices do not share a neighbor.

Our results together with examples given by Petrosyan [6] leave Conjecture 1.1 unkown for 5 and

6-regular graphs with multi-edges.

2 Preliminaries

Let G be a graph and v be a vertex of G. The neighborhood of v is set of all vertices adjacent to v,

denoted by N(v). The degree of v is dG(v) = |N(v)|. If there is no confusion, we use d(v) instead.

For X ⊆ V (G), let δ(X) := min{d(v)|v ∈ X} and ∆(X) := max{d(v)|v ∈ X}. The neighborhood

of X is defined as N(X) := {y|y is a neighbor of a vertex x ∈ X}. For two subsets X1 and X2 of

V (G), use [X1, X2] to denote the all edges with one endvertex in X1 and another endvertex in X2.

For two subgraphs G1 and G2 of G, the symmetric difference of G1 ⊕ G2 is defined as a subgraph

with vertex set V (G1) ∪ V (G2) and edge set (E(G1) ∪ E(G2))\(E(G1) ∩ E(G2)).

A matching of a graph G is a near-perfect matching if it covers all vertices except one. If a

graph G has a near perfect matching, then G has odd number of vertices. A graph is factor-critical

if, for any vertex v, the subgraph G\{v} has a perfect matching. Every maximum matching of a

factor-critical graph is a near-perfect matching.

Let D be the set of all vertices of a graph G which are not covered by at least one maximum

matching, and A, the set of all vertices in V (G) −D adjacent to at least one vertex in D. Denote

C = V (G) − A −D. The graph induced by all vertices in D (resp. A and C) is denoted by G[D]

(resp. G[A] and G[C]). The following theorem characterizes the structures of maximum matchings

of graphs, which is due to Gallai [2] and Edmonds [1].

Theorem 2.1 (Gallai-Edmonds Structure Theorem, Theorem 3.2.1 in [3]). Let G be a graph, and

A, D and C are defined as above. Then:

(1) the components of the subgraph induced by D are factor-critical;

(2) the subgraph induced by C has a perfect matching;

(3) if M is a maximum matching of G, it contains a near-perfect matching of each component of

G[D], a perfect matching of G[C] and matches all vertices of A with vertices in distinct components

of G[D].

Contract every component of G[D] to a vertex and let B be the set of all these vertices. Then

the graph obtained from G\C by contracting all components of G[D] to a vertex and deleting all

generated loops is a bipartite graph, denoted by G(A,B). Because every component of G[D] is

factor-critical, a maximum matching of G(A,B) is corresponding to a maximum matching of G,

and vice versa. Before processing to prove our main results, we need some results for maximum

matchings of bipartite graphs G(A,B).

Theorem 2.2 (Hall’s Theorem, Theorem 1.13 in [3]). Let G(A,B) be a bipartite graph. If |N(S)| ≥

|S| for any S ⊆ A, then G has a matching M covering all vertices of A.

The following techincal lemma is needed in proof of our main results.

Lemma 2.3. Let G(A,B) be a bipartite graph such that every maximum matching of G(A,B) covers

all vertices of A. Let W ⊆ B such that δ(W ) ≥ ∆(A). Then G(A,B) has a maximum matching M

covering all vertices of W .
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Proof. Let M be a maximum matching of G(A,B) such that the number of vertices of W covered

by M is maximum. If M covers all vertices of W , the lemma follows. So assume that there exists

an M -unsaturated vertex x ∈ W .

For any U ⊆ W , we have δ(U) ≥ δ(W ) and N(U) ⊂ A. Further,

δ(W )|U | ≤ δ(U)|U | ≤ |[U,N(U)]| ≤
∑

v∈N(U)

d(v) ≤ ∆(A)|N(U)|.

It follows that |N(U)| ≥ |U | because δ(W ) ≥ ∆(A). By applying Hall’s Theorem on the subgraph

induced by W and N(W ), it follows that G has a matching M ′ covering all vertices of W .

Let M ⊕M ′ be the symmetric difference of M and M ′. Every component of M ⊕M ′ is either a

path or a cycle. Since x is not covered by M but is covered by M ′, it follows that x is an end-vertex

of some path-component P of M ⊕M ′. Let y be another end-vertex of P . Note that every vertex

of A is covered by an edge of M and every vertex of W is covered by an edge of M ′. So y ∈ B\W .

Then let M ′′ = M ⊕ P . Then M ′′ is a maximum matching of G which covers x and all vertices

covered by M except y. Note that y ∈ B\W and x ∈ W . Hence M ′′ covers more vertices of W than

M , a contradiction to the maximality of the number of vertices of W covered by M . This completes

the proof.

3 Proof of main results

Let G be a k-regular graph. Without loss of generality, assume that G is connected. Otherwise,

we consider each connected component of G. Let M be a maximum matching of G. If |M | ≥

(|V (G)| − 1)/2, then G has at most one M -unsaturated vertex. Theorem 1.2 and Theorem 1.3 hold

automatically. So in the following, assume |M | < (|V (G)| − 1)/2. So k ≥ 3.

By Gallai-Edmonds Structure Theorem, V (G) can be partitioned into three parts C, A and

D such that every maximum matching of G matches all vertices of A with vertices in distinct

components of G[D]. Let c(D) be the number of components of G[D]. Then |M | = |C|/2 + (|D| −

c(D))/2 + |A| by Gallai-Edmonds Structure Theorem. So

|C|/2 + (|D| − c(D))/2 + |A| = |M | < (|V (G)| − 1)/2 = (|C|+ |A|+ |D| − 1)/2.

It follows that c(D) ≥ 2 + |A|.

Let Q1, Q2, ..., Qc(D) be all components of G[D]. Let [Qi, A] (resp. [D,A]) be the set of all edges

joining a vertex of Qi (resp. D) and a vertex of A. Note that

c(D)
∑

i=1

|[Qi, A]| = |[D,A]| ≤ k|A|

because G is k-regular. Let G/Qi be the graph obtained by contracting Qi and deleting all loops.

Note that Qi is factor-critical and hence has odd number of vertices, and G/Qi has even number of

vertices of odd degree. So the degree of the new vertex of G/Qi corresponding to Qi has the same

parity as k. It follows that

|[Qi, A]| ≡ k (mod 2).

In the following, we always assume that |[Qi, A]| ≥ |[Qj , A]| for i ≤ j. Then there exists an integer

t < |A| such that |[Qi, A]| < k for any i ≥ t. A vertex v of Qi is good if all neighbors of v are

contained in Qi.
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Proof of Theorem 1.2. Since G is a simple graph, for each Qi, we have

k|V (Qi)| − |[Qi, A]|

2
≤

(

|V (Qi)|

2

)

.

Note that |[Qi, A]| < k if i ≥ t. It follows that |V (Qi)| > k for i ≥ t. So at least one vertex of Qi

with i ≥ t has no neighbors in A. Hence every component of Qi with i ≥ t contains a good vertex.

Choose a good vertex vi from each Qi with i ≥ t and let X be the set of all chosen good vertices vi.

Then any two vertices of X do not share a neighbor because Qi ∩Qj = ∅ if i 6= j.

Contract all components Qi into a vertex qi, and let B = {qi|i = 1, 2, ..., c(D)}. Let G(A,B)

be the bipartite graph with bipartition A and B, and all edges in [D,A] of G. Let W := {qi|qi ∈

B and dH(qi) ≥ k}, the set of vertices corresponding to such Qi with |[Qi, A]| ≥ k (i.e, i < t). By

Gallai-Edmonds Structure Theorem, every maximum matching of G(A,B) covers all vertices of A.

By Lemma 2.3, G(A,B) has a maximum matching M covering all vertices of W and all vertices

of A. In the graph G, M is a matching which covers all vertices of A, and a vertex from every Qi

with i < t, and a vertex from some Qj with j ≥ t. For each Qi, let Mi be a near-perfect matching

covering all vertices except the vertex covered by M or the good vertex vi if the component Qi has

no vertex covered by M .

By Gallai-Edmonds Structure Theorem, G[C] has a perfect matching MC . Let M
′ be the union

of M , MC and all Mi’s. Then M ′ is a maximum matching of G. So all M ′-unsaturated vertices

belong to X . So any two M ′-unsaturated vertices do not share a neighbor. This completes the

proof.

Now we are going to prove Theorem 1.3.

Proof of Theorem 1.3. Let G be a k-regular graph with multi-edges and k ≤ 4. Note that,

|[Qi, A]| ≥ k if i < t and |[Qi, A]| < k if i ≥ t. Since |[Qi, A]| ≡ k (mod 2), it follows that

|[Qi, A]| = k − 2 for i ≥ t. Hence Qi for i ≥ t is not a singleton. Further, Qi with i ≥ t has at least

three vertices because Qi is factor-critical. So every component Qi for i ≥ t has a good vertex vi.

A similar argument as above shows that G has a maximum matching M ′ which covers all vertices

of G except some good vertices from different components Qi’s of D. Since any two good vertices

from different Qi and Qj do not share a neighbor, the theorem follows.
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