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Abstract

A kernel by properly colored paths of an arc-colored digraph D is a set S of vertices

of D such that (i) no two vertices of S are connected by a properly colored directed

path in D, and (ii) every vertex outside S can reach S by a properly colored directed

path in D. In this paper, we conjecture that every arc-colored digraph with all cycles

properly colored has such a kernel and verify the conjecture for unicyclic digraphs,

semi-complete digraphs and bipartite tournaments, respectively. Moreover, weaker

conditions for the latter two classes of digraphs are given.

Keywords: kernel; kernel by monochromatic (properly colored, rainbow) paths

1 Introduction

All graphs (digraphs) considered in this paper are finite and simple, i.e., without loops or

multiple edges (arcs). For terminology and notation not defined here, we refer the reader

to Bang-Jensen and Gutin [1].

A path (cycle) in a digraph always means a directed path (cycle) and a k-cycle Ck

means a cycle of length k, where k ≥ 2 is an integer. For a digraph D, define its kernel

to be a set S of vertices of D such that (i) no two vertices of S are connected by an

arc in D, and (ii) every vertex outside S can reach S by an arc in D. This notion was

originally introduced by von Neumann and Morgenster [21] in 1944. Since it has many

applications in both cooperative games and logic (see [2, 3]), its existence has been the

focus of extensive study, both from the algorithmic perspective and the sufficient condition
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perspective. Among them, the following results are of special importance. For more results

on kernels, we refer the reader to the survey paper [4] by Boros and Gurvich.

Theorem 1 (Chvátal [6]). It is NP-complete to recognize whether a digraph has a kernel

or not.

Theorem 2 (Richardson [18], von Neumann and Morgenster [21]). Let D be a digraph.

Then the following statements hold:

(i) if D has no cycle, then D has a unique kernel;

(ii) if D has no odd cycle, then D has at least one kernel;

(iii) if D has no even cycle, then D has at most one kernel.

An arc uv ∈ A(D) is called symmetrical if vu ∈ A(D). For a cycle (u0, u1, . . . , uk−1, u0),

we call two arcs uiui+2 and ui+1ui+3 crossing consecutive, where addition is modulo k.

The following theorem has been proved.

Theorem 3 (Duchet [8], Duchet and Meyniel [9], Galeana-Sánchez and Neumann-Lara[12]).

A digraph D has a kernel if one of the following conditions holds:

(i) each cycle has a symmetrical arc;

(ii) each odd cycle has two crossing consecutive arcs;

(iii) each odd cycle has two chords whose heads are adjacent vertices.

It is worth noting that if we replace Condition (ii) in the definition of kernels by every

vertex outside S can reach S by an arc or a path of length 2, then such a vertex subset,

named quasi-kernel, always exists. This was proved by Chvátal and Lovász [7] in 1974.

Jacob and Meyniel [17] furthermore showed in 1996 that every digraph has either a kernel

or three quasi-kernels. For more results on quasi-kernels, see [5, 13, 16].

Let D be a digraph and m a positive integer. Call D an m-colored digraph if its arcs

are colored with at most m colors. Denote by c(uv) the color assigned to the arc uv. A

subdigraph H of an arc-colored digraph D is called monochromatic if all arcs of H receive

the same color, and is called rainbow if any two arcs of H receive two distinct colors. Define

a kernel by monochromatic paths (or an MP-kernel for short) of an arc-colored digraph

D to be a set S of vertices of D such that (i) no two vertices of S are connected by a

monochromatic path in D, and (ii) each vertex outside S can reach S by a monochromatic

path in D.

The concept of MP-kernels in an arc-colored digraph was introduced by Sands, Sauer

and Woodrow [19] in 1982. They showed that every 2-colored digraph has an MP-kernel.

In particular, as a corollary, they showed that every 2-colored tournament has a one-

vertex MP-kernel. Here note that each MP-kernel of an arc-colored tournament consists

of one vertex. They also proposed the problem that whether a 3-colored tournament

with no rainbow triangles has a one-vertex MP-kernel. This problem still remains open

and has attracted many authors to investigate sufficient conditions for the existence of

MP-kernels in arc-colored tournaments. Shen [20] showed in 1988 that for m ≥ 3 every

m-colored tournament with no rainbow triangles and no rainbow transitive triangles has a
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one-vertex MP-kernel, and also showed that the condition “with no rainbow triangles and

no rainbow transitive triangles” cannot be improved for m ≥ 5. In 2004, Galeana-Sánchez

and Rojas-Monroythe [14] showed, by constructing a family of counterexamples, that the

condition of Shen cannot be improved for m = 4, either. Galeana-Sánchez [10] showed in

1996 that every arc-colored tournament such that the arcs, with at most one exception,

of each cycle of length at most four are assigned the same color has a one-vertex MP-

kernel. Besides, Galeana-Sánchez and Rojas-Monroythe [15] showed in 2004 that every

arc-colored bipartite tournament with all 4-cycles monochromatic has an MP-kernel. For

more results on MP-kernels, we refer to the survey paper [11] by Galeana-Sánchez.

A subdigraph H of an arc-colored digraph D is called properly colored if any two

consecutive arcs of H receive distinct colors. Define a kernel by properly colored paths (or

a PCP-kernel for short) of an arc-colored digraph D to be a set S of vertices of D such

that (i) no two vertices of S are connected by a properly colored path in D, and (ii) each

vertex outside S can reach S by a properly colored path in D.

By the definitions of kernels, MP-kernels and PCP-kernels, one can see in some sense

that both MP-kernels and PCP-kernels generalize the concept of kernels in digraphs.

Observation 1. Let D = (V (D), A(D)) be a digraph. Then the following three statements

are equivalent.

(i) D has a kernel;

(ii) |A(D)|-colored D has an MP-kernel;

(iii) 1-colored D has a PCP-kernel.

In this paper we concentrate on providing some sufficient conditions for the existence

PCP-kernels in arc-colored digraphs. For convenience, we write “PC path” for “properly

colored path” in the following. Define the closure C (D) of an arc-colored digraph D to

be a digraph with vertex set V (C (D)) = V (D) and arc set A(C (D)) = {uv : there is a

PC (u, v)-path in D}. It is not difficult to see that the following simple (but useful) result

holds.

Observation 2. An arc-colored digraph D has a PCP-kernel if and only if C (D) has a

kernel.

2 Main results

We first consider the computational complexity of finding a PCP-kernel in an arc-colored

digraph.

Proposition 1. It is NP-hard to recognize whether an arc-colored digraph has a PCP-

kernel or not.

Proof. Let D be a digraph and V ∗ a set of vertices with V ∗ ∩ V (D) = ∅. Let D′ be

the digraph with V (D′) = V (D) ∪ V ∗ and A(D′) = A(D) ∪ {uv : u ∈ V ∗, v ∈ V (D)},

i.e., adding a set V ∗ of new vertices to D together with all possible arcs from V ∗ to
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V (D). We can always choose a V ∗ with |{uv : u ∈ V ∗, v ∈ V (D)}| ≥ m. Color D′ by

using m colors in such a way that the subdigraph D is monochromatic and the arc set

{uv : u ∈ V ∗, v ∈ V (D)} is m-colored. It is not difficult to see that the m-colored D′ has

a PCP-kernel if and only if D has a kernel. By Theorem 1 the computational complexity

of the latter problem is NP-complete. The desired result then follows directly.

Now we present the following result.

Proposition 2. An arc-colored digraph D has a PCP-kernel if one of the following con-

ditions holds:

(i) D has no cycle;

(ii) the coloring of D is proper (consecutive arcs receive distinct colors);

(iii) D is properly-connected (each vertex can reach all other vertices by a PC path).

Proof. Note that C (D) has a cycle if and only if D has a cycle. The statement (i) therefore

follows directly from Theorem 2 (i) and Observation 2. Assume that the coloring of D

is proper. If D is strongly connected, then each vertex forms a PCP-kernel. If D is not

strongly connected, then the set of sinks is a PCP-kernel. If D is properly-connected, then

by the definition of PCP-kernels each vertex forms a PCP-kernel.

By Proposition 2 (i), every arc-colored digraph containing no cycle has a PCP-kernel.

It is natural to ask what is the analogous answer for a digraph D containing cycles. For

the simplest case, i.e., D is a cycle, we get the following result.

Theorem 4. An arc-colored cycle has a PCP-kernel if and only if it is not a monochro-

matic odd cycle.

Call a digraph unicyclic if it contains exactly one cycle. Note that every cycle is

unicyclic. For general arc-colored unicyclic digraphs, furthermore, for general digraphs

containing cycles, a number of examples (see for example the arc-colored digraphs in

Figures 1 and 3) show that additional conditions are needed to guarantee the existence of

PCP-kernels. But what kind of conditions do we need? By Proposition 2 (ii) and (iii), if

the coloring is proper or “close” to proper (roughly speaking), then it has a PCP-kernel.

By Proposition 2 (i), the existence of cycles influences the existence of PCP-kernels. This

yields a natural question to ask whether the condition “all cycles are properly colored”

suffices or not. Based on this consideration, we propose the following conjecture.

Conjecture 1. Every arc-colored digraph with all cycles properly colored has a PCP-

kernel.

Remark 1. If Conjecture 1 is true, then it is best possible in view of the two arc-colored

digraphs in Figure 1, in which solid arcs, dotted arcs and dashed arcs represent arcs colored

by three distinct colors respectively. It is not difficult to check that neither of them has

a PCP-kernel. For any even integer n ≥ 6 (resp. odd integer n ≥ 7), the sharpness of

Conjecture 1 can be shown by replacing the path (v6, v1, v2) (resp. (u9, u1, u2)) of the left
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digraph (resp. the right digraph) by a monochromatic path of length n − 4 (resp. length

n− 7) using the color assigned to the previous short path. One can check that neither of

the two new constructed digraphs has a PCP-kernel.

v1

v2 v3

v4

v5v6

u1

u2 u3

u4
u5

u6
u7

u8u9

Figure 1: Two arc-colored digraphs with no PCP-kernels.

A digraph D is semi-complete if for every two vertices there exists at least one arc

between them. A tournament (bipartite tournament) is an orientation of a complete graph

(complete bipartite graph). Note that each tournament is semi-complete. Theorem 4

shows that Conjecture 1 holds for cycles. We will also show that Conjecture 1 holds for

general unicyclic digraphs, semi-complete digraphs and bipartite tournaments. In fact, for

the latter two classes of digraphs, weaker conditions have been obtained, respectively.

Theorem 5. Every arc-colored unicyclic digraph with the unique cycle properly colored

has a PCP-kernel.

Remark 2. We see from the two unicyclic arc-colored digraphs in Figure 1 that the

condition “the unique cycle is properly colored” cannot be dropped in Theorem 5.

Note that every two vertices in a semi-complete digraph are adjacent and thus every

PCP-kernel in such a digraph consists of one vertex. We obtain the following result whose

proof idea is similar to that in [20].

Theorem 6. Every arc-colored semi-complete digraph with no monochromatic triangles

has a vertex v such that all other vertices can reach v by a PC path of length at most 3.

Corollary 1. Every arc-colored semi-complete digraph with no monochromatic triangles

has a PCP-kernel.

Remark 3. The condition “with no monochromatic triangles” in Theorem 6 and Corollary

1 cannot be dropped. Recall that every tournament is semi-complete and one can verify

that the 2-colored tournament shown in Figure 2 has no PCP-kernels and no vertex defined

in Theorem 6, in which solid arcs and dotted arcs represent arcs colored by two distinct

colors, respectively. Larger m-colored tournaments containing no PCP-kernel for general

m can be constructed by adding new vertices together with new colors to the new added

arcs such that T ∗ has no outneighbors in the set of new added vertices.
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v1

v2

v3 v4

Figure 2: A 2-colored tournament with no PCP-kernels.

Theorem 7. Every arc-colored bipartite tournament D = (X,Y ;A) with (i) all 4-cycles

and 6-cycles properly colored, or (ii) min{|X|, |Y |} ≤ 2, has a PCP-kernel.

Remark 4. The conditions in Theorem 7 cannot be dropped in view of the 3-colored

bipartite tournament D6 = (X,Y ;A) shown in Figure 3, in which solid arcs, dotted arcs

and dashed arcs represent arcs colored by three distinct colors, respectively. One can see

that min{|X|, |Y |} = 3 and D6 contains neither PC 4-cycles nor PC 6-cycles. One can

also see that the closure C (D6) of D6 is semi-complete, in which the new added arcs are

represented by thick dashed lines. Note that a semi-complete digraph has a kernel if and

only if it has a vertex v such that all other vertices can reach v by an arc. One can see that

C (D6) does not contain such a vertex, so by Observation 2 we get that D6 has no PCP-

kernels. Furthermore, we can construct infinite family of bipartite tournaments which can

show that the conditions in Theorem 7 cannot be dropped. Let Dn−6 be an arbitrary

m-colored bipartite tournament with n > 6. Define D to be the union of D6 and Dn−6 as

follows: take all possible arcs between Dn−6 and D6 going from Dn−6 to D6 and denote

this set of arcs by A∗, let V (D) = V (D6)∪ V (Dn−6) and A(D) = A(D6)∪A(Dn−6)∪A∗,

let the colors on Dn−6 and D6 remain the same and let the coloring of A∗ be arbitrary.

Then D has no PCP-kernel since the proposition that D has a PCP-kernel implies that

D6 has a PCP-kernel.

x1 x2 x3

y1 y2 y3

x1 x2 x3

y1 y2 y3

Figure 3: A 3-colored bipartite tournament D6 and its closure C (D6).
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In the rest of the paper, we always use H1−H2 to denote H1−V (H2) for two digraphs

H1 and H2; if H2 consists of a single vertex v, then we denote H1−{v} by H1−v. For two

vertices u and v, if uv is an arc then we say u dominates v and sometimes write u → v.

3 Proofs of Theorem 4 and Theorem 5

Proof of Theorem 4. The necessity of Theorem 4 follows from the fact that each odd

cycle has no kernel. For the sufficiency, it is equivalent to show that (i) every arc-colored

odd cycle with at least two colors has a PCP-kernel and (ii) every arc-colored even cycle

has a PCP-kernel. We prove the result by constructing such a kernel S.

Let C = (v0, . . . , vn−1, v0) be an arc-colored cycle and assume w.l.o.g. that the

vertices are located in a clockwise direction. If C is an monochromatic even cycle,

then we can let S = {v0, v2, . . . , vn−2}. Now assume that C is an arc-colored cycle

with at least two colors. If the coloring is proper, then clearly each vertex forms a

PCP-kernel. Now assume that the coloring is not proper and assume w.l.o.g. that

P1 = (vn1
, vn1+1, . . . , vn′

1
= vn−1) is a monochromatic path of maximum length (which

is at least two). Put vn′
1
−2, vn′

1
−4, . . . , vn′

1
−2t1 into S, where t1 is the largest integer such

that n′
1−2t1 ≥ n1. Here, note that since C is neither a monochromatic odd cycle nor a PC

cycle, we have n1 ∈ {0, 1, . . . , n− 3} and n′
1− 2t1 = n1 or n1+1. Afterwards, we consider,

in a counter-clockwise direction, the first appeared maximal monochromatic path of length

at least two in C − P1, say P2 = (vn2
, vn2+1, . . . , vn′

2
). Now put vn′

2
−2, vn′

2
−4, . . . , vn′

2
−2t2

into S, where t2 is the largest integer such that n′
2−2t2 ≥ n2. Continue this procedure un-

til there is no monochromatic path of length at least two and let Pr = (vnr
, vnr+1, . . . , vn′

r
)

be the last appeared maximal monochromatic path of length at least two. It follows that

S =

r⋃

i=1

{vn′
i
−2, vn′

i
−4, . . . , vn′

i
−2ti}, S = V (C)\S = S

′
∪ S

′′
,

where

S
′
=

r⋃

i=1

{vn′
i
−3, vn′

i
−5, . . . , vn′

i
−2ti+1},

S
′′
=

r⋃

i=1

{vn′
i
−2ti−1, vn′

i
−2ti−2, . . . , vn′

i+1
, vn′

i+1
−1},

nr+1 = n1, n
′
r+1 = n′

1 = n − 1 and addition is modulo n. It is not difficult to check

that no two vertices of S are connected by a PC path in C. For each 1 ≤ i ≤ r, one

can also verify that each vertex in {vn′
i
−3, vn′

i
−5, . . . , vn′

i
−2ti+1} can reach some vertex in

{vn′
i
−2, vn′

i
−4, . . . , vn′

i
−2ti+2} by a PC path of length one, and each vertex in {vn′

i
−2ti−1,

vn′
i
−2ti−2, . . . , vn′

i+1
, vn′

i+1
−1} can reach vn′

i
−2ti by a PC path; in other words, every vertex

outside S can reach S by a PC path in C. Therefore, the set S is a PCP-kernel of C.

Proof of Theorem 5. Let D be an arc-colored unicyclic digraph with a PC cycle C.

Note that the cycle C must be an induced cycle since otherwise two cycles will appear.
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Note also that each vertex of C forms a PCP-kernel of C. If D is strongly connected, then

D is a cycle and the desired result follows directly. Now assume that D is not strongly

connected. Then there exist strongly connected components D1, . . . ,Dk, k ≥ 2, of D such

that there is no arc from Di to Dj for any i > j. Let Di be the component containing the

cycle C. One can see that Di = C. One can also see that each Dj 6= Di is a single vertex,

since otherwise another cycle will appear. We distinguish two cases and show the result

by constructing a PCP-kernel S.

If i = k, then let v be an arbitrary vertex of Dk = C and we put v into S. Let

j1 ∈ {1, . . . , k − 1} be the largest integer such that there is no PC (Dj1 , v)-path. Put

Dj1 into S. Let j2 ∈ {1, . . . , j1 − 1} be the largest integer such that there is no PC

(Dj2 , {v,Dj1})-path. Put Dj2 into S. Continue this procedure until all the remaining

vertices in V (C)\S can reach S by a PC path. Let Djr be the last vertex putting into S.

The terminal vertex set S = {v,Dj1 , . . . ,Djr} is clearly a PCP-kernel.

If i 6= k, then D contains at least one sink and we put all sinks, say v1, . . . , vp, into

S. By similar procedure above we can put, step by step, the vertices Dj1 , . . . ,Djt with

jt > i into S. Let U ⊆ V (Di) be the set of vertices which cannot reach the current

S = {v1, . . . , vp,Dj1 , . . . ,Djt} by a PC path. If U 6= ∅, then put an arbitrary vertex of U

(instead of all vertices of U) into S and continue the procedure. If U = ∅, then jt+1 < i

and we can use the same procedure above to get a PCP-kernel S.

4 Proof of Theorem 6

For convenience, in this proof, call a vertex v good if all other vertices can reach v by a

PC path of length at most 3. One can see that it suffices to consider the tournament case.

Let T be an m-colored tournament, where m is a positive integer. For m = 1, note that

each monochromatic tournament with no monochromatic triangles is transitive, then the

unique sink is a good vertex. So we may assume that m ≥ 2 and T is an arc-colored

tournament with at least two colors. We prove the result by induction on |V (T )|.

Since each arc-colored transitive triangle and each non-monochromatic triangle has a

good vertex, the result holds for |V (T )| = 3. Now assume that T is a minimum coun-

terexample with |V (T )| = k ≥ 4. It follows that each m-colored tournament with no

monochromatic triangles and with order less than k has a good vertex. So for each vertex

v of T the subtournament T − v has a good vertex. Denote by v∗ the good vertex of

T − v corresponding to the given coloring of T . Then v∗ → v, since otherwise v∗ is a good

vertex of T . For two distinct vertices u and v, we claim that u∗ 6= v∗. If not, then by the

definition of u∗ there exist a PC (v, u∗)-path in T − u and a PC (u, u∗)-path in T − v. It

follows immediately that there exist a PC (v, u∗)-path and a PC (u, u∗)-path in T . Thus,

u∗ is a good vertex of T , a contradiction.

Now consider the subdigraph H induced on the arc set {v∗v : v ∈ V (T )}. Since each

vertex of H has both indegree and outdegree one, then H consists of vertex-disjoint cycles.

If H has at least two cycles, then by induction hypothesis the induced subtournament on
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each cycle has a good vertex, which is obviously a good vertex of T , a contradiction. So

H consists of one cycle.

Let H = (v0, v1, . . . , vn−1, v0). By the choices of the arcs, there exists no PC (vi, vi−1)-

path of length at most 3 in T , addition is modulo n in this proof. Consider the three

vertices v0, v1, v2, if v2 → v0, then since there exists no monochromatic triangle we have

either (v2, v0, v1) is PC (v2, v1)-path of length 2 or (v1, v2, v0) is a PC (v1, v0)-path of length

2, a contradiction. So v0 → v2. In fact, one can see from the simple proof that vi → vi+2

for any vi ∈ V (T ).

Let s be the minimum integer such that vs → v0 and v0 → vi for any i ≤ s−1. Such an

integer s exists by the fact that vn−1 → v0. We may assume that vi → vj for any 1 ≤ i <

j ≤ s. Since there exists no PC (vs, vs−1)-path of length 2, we have c(vsv0) = c(v0vs−1),

say c(vsv0) = c(v0vs−1) = 1. By assumption, there exists no monochromatic triangle,

we have c(vs−1vs) 6= c(vsv0). Since there exists no PC (vs−1, vs−2)-path of length 3, we

have c(v0vs−2) = c(vsv0) = 1. Since (v0, vs−2, vs, v0) is not a monochromatic triangle,

we have c(vs−2vs) 6= 1. Similarly, we can show that c(v0vi) = 1 and c(vivs) 6= 1 for any

1 ≤ i ≤ s − 1. This implies that c(v1vs) 6= c(vsv0) = 1 and a PC (v1, v0)-path (v1, vs, v0)

of length 2 appears, a contradiction.

5 Proof of Theorem 7

Proof of Theorem 7 (i). For the 1-colored case, by Observation 1, it suffices to consider

the existence of a kernel. We claim that either X or Y is a kernel. If X is not a kernel, then

there exists y ∈ Y such that each vertex of X is an inneighbor of y, implying that Y is a

kernel. So every 1-colored bipartite tournament has a PCP-kernel (not necessary to satisfy

the required condition). In the following we assume m ≥ 2 and consider PCP-kernels in

m-colored bipartite tournaments with at least two colors.

We write u ∼ v if u → v or v → u. It is not difficult to verify, see also in [15], that the

following lemma holds. We need to keep in mind of this lemma in the forthcoming proof.

Lemma 1 (Galeana-Sánchez and Rojas-Monroy [15]). Let D be an arc-colored bipartite

tournament. Then

(i) for each directed walk (u0, u1, . . . , uk) in D we have ui ∼ uj iff j − i ≡ 1 (mod 2);

(ii) every closed directed walk of length at most 6 is a cycle in D.

For two vertices u and v in D, denote by dist(u, v) the distance from u to v. The

following lemma will play a key role in the proof.

Lemma 2. If there exists a PC (u, v)-path but exists no PC (v, u)-path in D, then

dist(u, v) ≤ 2.

Proof. Let P = (u0, u1, . . . , uk) be a shortest PC (u, v)-path, where u = u0 and v = uk.

The result holds clearly for k ≤ 2. Now let k ≥ 3 and assume the opposite that each

(u, v)-path has length at least 3.
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Claim 1. There exists no arc from {u0, u1, . . . , uk−3} to uk.

Proof. The statement holds directly for k ≤ 4. Assume that k ≥ 5. Let i∗ = min{i : ui →

uk, 0 ≤ i ≤ k − 3}. Then i∗ ∈ {u2, u3, . . . , uk−3} and uk → ui∗−2. Now (uk, ui∗−2, ui∗−1,

ui∗ , uk) is a 4-cycle and by assumption it is properly colored. So c(ui∗−1ui∗) 6= c(ui∗uk)

and u0Pui∗uk is a PC (u, v)-path of length less than k, a contradiction.

Claim 2. There exists i ∈ {0, 1, . . . , k − 3} such that ui → ui+3.

Proof. Assume the opposite that ui+3 → ui for each i ∈ {0, 1, . . . , k − 3}. If k is odd,

then u0 ∼ uk and either there exists a (u, v)-path of length 1 or there exists a PC (v, u)-

path of length 1, a contradiction. So k is even. Recall that k ≥ 3. If k = 4, then

(u0, u1, u2, u3, u0) and (u1, u2, u3, u4, u1) are PC 4-cycles. So (u4, u1, u2, u3, u0) is a PC

(v, u)-path, a contradiction. If k = 6, then u5 → u0 since otherwise (u0, u5, u6) is a (u, v)-

path of length 2. Now (u3, u4, u5, u6, u3) is a PC 4-cycle and u0Pu5u0 is a PC 6-cycle.

Thus, u6u3Pu5u0 is a PC (v, u)-path, a contradiction. If k = 8, then u7 → u0 and u8 → u1

since otherwise either (u0, u7, u8) or (u0, u1, u8) is a (u, v)-path of length 2. Besides, we

have u5 → u0 since otherwise (u0, u5, u6, u7, u0) and (u5, u6, u7, u8, u5) are PC 4-cycles

and (u8, u5, u6, u7, u0) is a PC (v, u)-path. We also can show that u8 → u3. If not, then

(u3, u8, u1, u2, u3) is a PC 4-cycle and (u0, u1, u2, u3, u8) is a PC (u, v)-path of length less

than k, a contradiction. Then there exist two PC 6-cycles (u0, u1, u2, u3, u4, u5, u0) and

(u3, u4, u5, u6, u7, u8, u3). It follows that u8u3Pu5u0 is a PC (v, u)-path, a contradiction.

So from now on assume that k ≥ 10.

We claim first that uk → uk−5. If not, then (uk, uk−3, uk−6, uk−5, uk) is a PC 4-

cycle and thus u0Puk−5uk is a PC (u, v)-path of length less than k, a contradiction.

We also claim that uk−3 → uk−8. If not, then since (uk−9, uk−8, uk−3, uk−6, uk−9) and

(uk−8, uk−3, uk−2, uk−1, uk, uk−5, uk−8) are PC cycles we have c(uk−9uk−8) 6= c(uk−8uk−3)

and c(uk−8uk−3) 6= c(uk−3uk−2). It follows that u0Puk−8uk−3Puk is a PC (u, v)-path of

length less than k, a contradiction.

Recall that ui+3 → ui for each i ∈ {0, 1, . . . , k − 3} and all 4-cycles and 6-cycles are

properly colored. Thus,

ukuk−5Puk−3uk−8uk−7uk−10 · · · uk−2iuk−2i−1uk−2i+2 · · · u0

is a PC (v, u)-path, contradicting the assumption in Lemma 2.

Let i be the minimum integer in {0, 1, . . . , k − 3} such that ui → ui+3 and let j∗ =

max{j : ui → uj , i + 3 ≤ j ≤ k}. By Claim 1, we have j∗ 6= k. If j∗ = k − 1, then

i 6= 0; otherwise, (u0, uk−1, uk) is a (u0, uk)-path of length 2. By Claim 1, we also have

uk → ui−1. Since (ui−1, ui, uk−1, uk, ui−1) is a PC 4-cycle, we get that u0Puiuk−1uk is a

PC (u0, uk)-path of length less than k, a contradiction. So we have j∗ ≤ k − 2.

By the choice of j∗, we have uj∗+2 → ui and (ui, uj∗ , uj∗+1, uj∗+2, ui) is a PC 4-cycle.

Hence c(uiuj∗) 6= c(uj∗uj∗+1). If i = 0, then u0uj∗Puk is a PC (u0, uk)-path of length less

than k, a contradiction. So i ≥ 1.
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By the minimality of i we have ui+2 → ui−1. Since ui ∼ uj∗ , we have ui+2 ∼

uj∗+2. If uj∗+2 → ui+2, then (uj∗+2, ui+2, ui−1, ui, uj∗ , uj∗+1, uj∗+2) is a PC 6-cycle and

u0Puiuj∗Puk is a PC (u0, uk)-path of length less than k, a contradiction. So ui+2 → uj∗+2.

If j∗ ≤ k − 4, then by the choice of j∗ we have uj∗+4 → ui. Now (ui, ui+1, ui+2, uj∗+2,

uj∗+3, uj∗+4, ui) is a PC 6-cycle and u0Pui+2uj∗+2Puk is a PC (u0, uk)-path of length less

than k, a contradiction. So j∗ ∈ {k−2, k−3}. If j∗ = k−2, then (ui, ui+1, ui+2, uj∗+2, ui) is

a PC 4-cycle and u0Pui+2uj∗+2 is a PC (u0, uk)-path of length less than k, a contradiction.

So j∗ = k − 3 and uj∗+3 = uk.

Now we claim that ui+1 → uk. If not, then (ui+1, ui+2, uj∗+2, uk, ui+1) is a PC 4-cycle

and u0Pui+2uj∗+2uk is a PC (u0, uk)-path of length less than k, a contradiction. We

may also claim that ui−1 → uk. If not, then (ui−1, ui, ui+1, uk, ui−1) is a PC 4-cycle and

u0Pui+1uk is a PC (u0, uk)-path of length less than k, a contradiction. Similarly, we can

show that ui−s → uk for any odd s with 1 ≤ s ≤ i. Clearly, there will be a (u, v)-path of

length at most 2.

The proof of Lemma 2 is complete.

In view of Theorem 3 (i), it suffices to show that every cycle of C (D) has a symmetrical

arc. Assume the opposite that there exists a cycle C in C (D) containing no symmetrical

arc and denote it by

C = (u0, u1, . . . , ul, u0).

We will get a contradiction by showing that C has a symmetrical arc. Here we distinguish

two cases.

Case 1. l = 2.

Since a bipartite tournament contains no odd cycle, there exists an arc of C in

A(C (D))\A(D), say u0u1. By Lemma 2, there exists a (u0, u1)-path of length 2 in D,

say (u0, x0, u1).

If u1u2, u2u0 ∈ A(D), then (u0, x0, u1, u2, u0) is a (properly colored) 4-cycle in D and

u1u0 ∈ C (D). This implies that C has a symmetrical arc u0u1, a contradiction.

If |{u1u2, u2u0}∩A(D)| = 1, then by Lemma 2 and Lemma 1 (ii) there will be a 5-cycle

which contradicts the well-known fact that a bipartite tournament contains no odd cycle.

Now let u1u2, u2u0 /∈ A(D). Then by Lemma 2, there exist a (u1, u2)-path of length 2

and a (u2, u0)-path of length 2 in D, say (u1, x1, u2) and (u2, x2, u0). By Lemma 1 (ii) and

our assumption we get that (u0, x0, u1, x1, u2, x2, u0) is a PC 6-cycle. This implies that

each arc in C is a symmetrical arc, a contradiction.

Case 2. l ≥ 3.

In view of Lemma 2, there exists a (ui, ui+1)-path of length at most 2 for each 0 ≤ i ≤ l

in D, where ul+1 = u0. Let Pi be the shortest (ui, ui+1)-path in D and let C∗ = ∪l
i=0Pi.

Then C∗ is a closed directed walk in D. For convenience, denote this closed walk by

C∗ = (x0, x1, . . . , xs, x0),
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where x0 = u0 and s ≥ l.

If x3x0 ∈ A(D), then (x0, x1, x2, x3, x0) is a PC 4-cycle and x1x0, x2x0 ∈ A(C (D)).

Note that either x0x1 ∈ A(C) or x0x2 ∈ A(C). This implies that C has a symmetrical

arc, a contradiction. Similarly, if x0xs−2 ∈ A(D), then we can show that either xsx0 or

xs−1x0 is a symmetrical arc of C, a contradiction.

Now assume that x0x3, xs−2x0 ∈ A(D). Let i be the minimum integer such that

x0xi, xi+2x0 ∈ A(D). Then (x0, xi, xi+1, xi+2, x0) is a PC 4-cycle inD and xi+1xi, xi+2xi ∈

A(C (D)). If xi ∈ V (C), then {xixi+1, xixi+2}∩A(C) 6= ∅ and thus either xi+1xi or xi+2xi

is a symmetrical arc in C, a contradiction. So xi /∈ V (C) and xi−1xi+1 ∈ A(C). By

the choice of i, we have x0xi−2 ∈ A(D). Then (u0, ui−2, ui−1, ui, ui+1, ui+2, u0) is a PC

6-cycle and there exists a PC (xi+1, xi−1)-path. So xi−1xi+1 is a symmetrical arc in C, a

contradiction.

Proof of Theorem 7 (ii). If min{|X|, |Y |} = 1, then D has no cycle and the result

follows from Proposition 2 (i). So we can assume w.l.o.g. that |X| = min{|X|, |Y |} = 2.

By contradiction, suppose the opposite that D has no PCP-kernel. By Proposition 2 we

can assume that D has a cycle. It is not difficult to check that if y ∈ Y is a source then

D has a PCP-kernel if and only if D− y has a PCP-kernel. So we assume also that D has

no source in Y . Let X = {x1, x2} and let

Y0 = {y ∈ Y : x1 → y, x2 → y},

Y1 = {y ∈ Y \Y0 : there exists a PC (y, Y0)-path in D},

Y2 = Y \(Y0 ∪ Y1).

If Y2 = ∅, then Y0 is a PCP-kernel. So we assume that Y2 6= ∅. Two vertices v1 and

v2 are called contractible if for any vertices u and w we have v1 → u iff v2 → u, w → v1

iff w → v2, and c(v1u) = c(v2u), c(wv1) = c(wv2) whenever v1u, v2u,wv1, wv2 ∈ A(D).

Recall that all digraphs we consider here are simple, that is, contain no loops. So there

exists no arc between any two contractible vertices. We now show the following claim.

Lemma 3. Let v1, v2 be two contractible vertices in an arc-colored digraph D′. Then D′

has a PCP-kernel if and only if D′ − v2 has a PCP-kernel.

Proof. For the necessity, let S be a PCP-kernel of D′. If {v1, v2} ⊆ S, then by the

definition of contractible vertices S\v2 is a PCP-kernel of D′ − v2. If v2 ∈ S and v1 /∈ S,

then S ∪ {v1} is a PCP-kernel of D′ − v2. If {v1, v2} ∩ S = ∅, then S is also a PCP-kernel

of D′ − v2. For the sufficiency, let S′ be a PCP-kernel of D′ − v2. If v1 /∈ S′, then S′ is

a PCP-kernel of D′. Now assume that v1 ∈ S′. If there exists a PC (v2, v1)-path, then

S′ is a PCP-kernel of D′. Otherwise, there exists no PC (v1, v2)-path and S′ ∪ {v2} is a

PCP-kernel of D′.

Now we assume that D does not contain two contractible vertices and distinguish two

cases in the following.
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Case 1. Y0 6= ∅.

Since D has no source in Y , each vertex in Y \Y0 has one outneighbor and one inneigh-

bor in {x1, x2}. For a vertex x ∈ X which has at least one inneighbor in Y2, since there

exists no PC path from Y2 to Y0, we have c(xy′0) = c(xy′′0 ) for any y′0, y
′′
0 ∈ Y0; otherwise,

for each y ∈ Y2 with y → x there exists y0 ∈ Y0 with c(yx) 6= c(xy0), which yields a

PC path (y, x, y0) from Y2 to Y0, a contradiction. For convenience, denote by c(xY0) the

common color assigned for the arcs from x to Y0. By the definition of Y2, the following

claim holds.

Claim 1. For two vertices y′, y′′ ∈ Y2, if {y
′, y′′} → x for some x ∈ X, then c(y′x) =

c(y′′x) = c(xY0).

Let S′ be a maximal subset of Y2 such that no two vertices of S′ are connected by a

PC path. If S′ = Y2, then Y0 ∪ S′ is a PCP-kernel. Assume that S′ 6= Y2. Let

R = {y ∈ Y2\S
′: there exists no PC (y, S′)-path in D}.

If R = ∅, then Y0 ∪ S′ is a PCP-kernel. So assume that R 6= ∅. Let r be an arbitrary

vertex in R. Then by the definitions of S′ and R, there exists a PC (s′, r)-path for some

s′ ∈ S′.

Claim 2. Every PC (s′, r)-path has length 2.

Proof. By contradiction, assume w.l.o.g. that there exists a PC (s′, r)-path of length

4, say (s′, x1, y, x2, r), where y ∈ Y \Y0. Since s′ /∈ Y1, we have c(s′x1) = c(x1Y0) and

c(yx2) = c(x2Y0). We show that there exists a PC (z, r)-path for any z ∈ Y2 − {s′, r}.

If z = y, then (z, x2, r) is a desired path. Now let z 6= y. Since z /∈ Y0, we have either

z → x1 or z → x2. If z → x1, then since z ∈ Y2 we have c(zx1) = c(x1Y0) = c(s′x1) and

(z, x1, y, x2, r) is a desired path. If z → x2, then similarly c(zx2) = c(x2Y0) = c(yx2) and

(z, x2, r) is a desired path. It follows that Y0 ∪ {r} is a PCP-kernel, a contradiction.

Now we can assume w.l.o.g. that (s′, x1, r) is a PC (s′, r)-path. Remark that c(s′x1) 6=

c(x1r) and, by Claim 1, each vertex y ∈ Y2 with y → x1 can reach r by a PC path (y, x1, r).

Let

Q = {y ∈ Y2\r : x1 → y}.

If Q = ∅, then Y0 ∪ {r} is a PCP-kernel, a contradiction. So assume that Q 6= ∅.

Claim 3. There exists no PC (r,Q)-path.

Proof. Assume the opposite that there exists a PC (r,Q)-path, say (r, x2, y, x1, q), for some

q ∈ Q. Then c(yx1) = c(x1Y0) since otherwise (r, x2, y, x1, y0) is a PC (r, y0)-path for each

y0 ∈ Y0, contradicting that r ∈ Y2. Now we show that Y0 ∪ {q} is a PCP-kernel. Since

Q ∪ {r} ⊆ Y2, we have c(qx2) = c(rx2) = c(x2Y0) for each q ∈ Q. So (q′, x2, y, x1, q) is a

PC (q′, q) path for each q′ ∈ Q\q. For each y′ ∈ Y2\Q, note that y′ → x1, since y
′ ∈ Y2, we
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have c(y′x1) = c(x1Y0) = c(yx1). Then (y′, x1, q) is a PC (y′, q)-path. It therefore follows

that Y0 ∪ {q} is a PCP-kernel.

Claim 4. There exists no PC path connecting two vertices of Q.

Proof. By symmetry, assume that (q′, x2, y, x1, q
′′) is a PC path for some two vertices

q′, q′′ ∈ Q. Note that y 6= r, otherwise, there exists a PC (r,Q)-path (y, x1, q
′′), contra-

dicting Claim 3. Since c(rx2) = c(q′x2), we get that (r, x2, y, x1, q
′′) a PC (r, q′′)-path, a

contradiction.

Let Q′ ⊆ Q be the set of vertices which cannot reach r by a PC path. By Claims 3 and

4, no two vertices of Q′ ∪ {r} are connected by a PC path. It follows that Y0 ∪Q′ ∪ {r} is

a PCP-kernel, a contradiction.

Case 2. Y0 = ∅.

Recall that D has no source in Y . By the assumption we have that every vertex in Y

has one outneighbor and one inneighbor in {x1, x2}. Let

Y ′ = {y ∈ Y : x1 → y, y → x2}, Y ′′ = Y \Y ′ = {y ∈ Y : x2 → y, y → x1},

Y ∗ = {y ∈ Y ′ : c(x1y) 6= c(yx2)}, Y ∗∗ = {y ∈ Y ′′ : c(x2y) 6= c(yx1)}.

In the following proof we need to keep in mind that each vertex in Y ′ can reach x2 by a PC

path and each vertex in Y ′′ can reach x1 by a PC path. If Y ∗∪Y ∗∗ = ∅, i.e., there exists no

PC path connecting x1 and x2, then clearly {x1, x2} is a PCP-kernel. Now let Y ∗∪Y ∗∗ 6= ∅

and assume w.o.l.g. that Y ∗ 6= ∅. If there exist y′1, y
′
2 ∈ Y ∗ with c(x1y

′
1) 6= c(x1y

′
2), then

since each vertex in Y ′′ can reach x2 by a PC path passing through either {x1, y
′
1} or

{x1, y
′
2} we get that {x2} is a PCP-kernel. So we can assume that c(x1y

′) = α for each

y′ ∈ Y ∗. Let

Y ′
α = {y ∈ Y ′ : c(x1y) = c(yx2) = α}, Y ′′

α = {y ∈ Y ′′ : c(x2y) = c(yx1) = α}.

We now claim that Y ∗∗ 6= ∅. Assume the opposite that Y ∗∗ = ∅. If Y ′′
α = ∅, then since

each vertex in Y ′′ can reach x2 by a PC path passing through x1 and an arbitrary vertex

in Y ∗ we get that {x2} is a PCP-kernel. If Y ′′
α 6= ∅ and Y ′

α = ∅, then since each vertex in

Y ′ can reach Y ′′
α by a PC path passing through x2, and each vertex in Y ′′\Y ′′

α can reach

Y ′′
α by a PC path passing through x1 together with an arbitrary vertex in Y ∗ and x2, we

can get that Y ′′
α is a PCP-kernel. If Y ′′

α 6= ∅ and Y ′
α 6= ∅, then by a similar analysis and

the observation that no two vertices of Y ′
α ∪ Y ′′

α are connected by a PC path we have that

Y ′
α ∪ Y ′′

α is a PCP-kernel. So Y ∗∗ 6= ∅.

If there exist y′′1 , y
′′
2 ∈ Y ∗∗ with c(x2y

′′
1) 6= c(x2y

′′
2), then similar to the analysis for

Y ∗ we have that {x1} is a PCP-kernel. Thus, we can assume that c(x2y
′′) = β for each

y′′ ∈ Y ∗∗. For the sake of a better presentation, define the following vertex sets, see also in
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Figure 5 in which a vertex encircled may represent a set of vertices, and solid arcs, dotted

arcs, dashed arcs represent respectively the arcs colored by α, β and a color not in {α, β}.

Y ′
β = {y ∈ Y ′ : c(x1y) = c(yx2) = β}, Y ′′

β = {y ∈ Y ′′ : c(x2y) = c(yx1) = β},

Y ′
γ = {y ∈ Y ′ : c(x1y) = c(yx2) /∈ {α, β}}, Y ′′

γ = {y ∈ Y ′′ : c(x2y) = c(yx1) /∈ {α, β}},

Y ′
αβ = {y ∈ Y ′ : c(x1y) = α, c(yx2) = β}, Y ′

αγ = {y ∈ Y ′ : c(x1y) = α, c(yx2) /∈ {α, β}},

Y ′′
βα = {y ∈ Y ′′ : c(x2y) = β, c(yx1) = α}, Y ′

βγ = {y ∈ Y ′′ : c(x2y) = β, c(yx1) /∈ {α, β}}.

x1

x2

Y ′
γ Y ′

αγ Y ′
αβ Y ′

β Y ′
α Y ′′

α
Y ′′
β Y ′′

βα Y ′′
βγ Y ′′

γ

Figure 4: An arc-colored bipartite tournament with no sink and no source.

SinceD contains no two contractible vertices, we have |Y ′
α|, |Y

′
β |, |Y

′
αβ |, |Y

′′
α |, |Y

′′
β |, |Y

′
βα| ≤

1. Note that no two vertices of Y ′′
α ∪ Y ′′

βα are connected by a PC path in D and also the

following holds.

Y ∗ = Y ′
αβ ∪ Y ′

αγ 6= ∅, Y ∗∗ = Y ′′
βα ∪ Y ′

βγ 6= ∅,

Y ′ = Y ′
α ∪ Y ′

β ∪ Y ′
γ ∪ Y ′

αβ ∪ Y ′
αγ , Y ′′ = Y ′′

α ∪ Y ′′
β ∪ Y ′′

γ ∪ Y ′′
βα ∪ Y ′

βγ .

We distinguish two subcases.

Subcase 2.1. α = β.

It follows that Y ′
αβ = Y ′′

βα = ∅ and Y ′
αγ = Y ∗ 6= ∅. If Y ′′

α = ∅, then each vertex in

Y ′′ can reach x2 by a PC path passing through x1 and an arbitrary vertex in Y ′
αγ , which

implies that {x2} is a PCP-kernel. If Y ′′
α 6= ∅, then since each vertex in Y ′\Y ′

α can reach

Y ′′
α by a PC path passing through x2, and each vertex in Y ′′\Y ′′

α can reach Y ′′
α by a PC

path passing through x1 together with an arbitrary vertex in Y ′
αγ and x2, together with

the observation that no two vertices in Y ′
α ∪ Y ′′

α are connected by a PC path, we can get

that Y ′
α ∪ Y ′′

α is a PCP-kernel.
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Subcase 2.2. α 6= β.

If Y ′′
α = Y ′′

βα = ∅, then since Y ′
αβ ∪ Y ′

αγ 6= ∅ we get that each vertex in Y ′′ can reach

x2 by a PC path passing through x1 and an arbitrary vertex in Y ′
αβ ∪ Y ′

αγ . It follows that

{x2} is a PCP-kernel.

If Y ′′
α 6= ∅ and Y ′′

βα 6= ∅, then each vertex in Y ′ can reach Y ′′
α ∪Y ′′

βα by a PC path passing

through x2, and each vertex in Y ′′\(Y ′′
α ∪Y ′′

βα) can reach Y ′′
α by a PC path passing through

x1, an arbitrary vertex in Y ′
αβ ∪ Y ′

αγ and x2. Recall that no two vertices of Y ′′
α ∪ Y ′′

βα are

connected by a PC path in D. So Y ′′
α ∪ Y ′′

βα is a PCP-kernel.

If Y ′′
α 6= ∅ and Y ′′

βα = ∅, then we can show that either Y ′′
α or Y ′

α ∪ Y ′′
α is a PCP-kernel.

If Y ′
α = ∅, then each vertex in Y ′ can reach Y ′′

α by a PC path passing through x2, and

each vertex in Y ′′\Y ′′
α can reach Y ′′

α by a PC path passing through x1, an arbitrary vertex

in Y ′
αβ ∪ Y ′

αγ and x2. It follows that Y ′′
α is a PCP-kernel. If Y ′

α 6= ∅, noting that no two

vertices of Y ′
α ∪ Y ′′

α are connected by a PC path, then we can similarly show that Y ′
α ∪ Y ′′

α

is a PCP-kernel.

Now assume that Y ′′
α = ∅ and Y ′′

βα 6= ∅. If Y ′
β = Y ′

αβ = ∅, then Y ′
αγ = Y ∗ 6= ∅, each

vertex in Y ′′\Y ′′
βα can reach Y ′′

βα by a PC path passing through x1, an arbitrary vertex in

Y ′
αγ and x2, and clearly every vertex in Y ′ can reach Y ′′

βα by a PC path passing through x2.

It follows that Y ′′
βα is a PCP-kernel. If Y ′

β = ∅ and Y ′
αβ 6= ∅, then each vertex in Y ′′\Y ′′

αβ

can reach Y ′
αβ by a PC path passing through x1 and each vertex in Y ′\Y ′

αβ can reach Y ′′
βα

by a PC path passing through x2. Recall that no two vertices of Y ′
αβ ∪ Y ′′

βα are connected

by a PC path. Then Y ′
αβ ∪ Y ′′

βα is a PCP-kernel. If Y ′
β 6= ∅ and Y ′

αβ 6= ∅, noting that no

two vertices of Y ′
β ∪ Y ′

αβ are connected by a PC path, then since each vertex in Y ′′ can

reach Y ′
β ∪ Y ′

αβ by a PC path passing through x1 and each vertex in Y ′\(Y ′
β ∪ Y ′

αβ) can

reach Y ′
β ∪Y ′

αβ by a PC path passing through x2, Y
′′
βα and x1, we can obtain that Y ′

β ∪Y ′
αβ

is a PCP-kernel. Now let Y ′
β 6= ∅ and Y ′

αβ = ∅. If Y ′′
β = ∅, then since each vertex in Y ′\Y ′

β

can reach Y ′
β by a PC path passing through x2, Y

′′
βα, x1, and each vertex in Y ′′ can reach

Y ′
β by a PC path passing through x1, we can get that Y ′

β is a PCP-kernel. If Y ′′
β 6= ∅, then

by observing that no two vertices of Y ′
β ∪Y ′′

β are connected by a PC path we can similarly

show that Y ′
β ∪ Y ′′

β is a PCP-kernel.

6 An extension

Recall that an arc-colored digraph is rainbow if any two arcs receive two distinct colors.

Another interesting topic deserving further consideration is the existence of a kernel by

rainbow paths in an arc-colored digraph D, which is defined, similar to the definition of

MP-kernels or PCP-kernels, as a set S of vertices of D such that (i) no two vertices of S

are connected by a rainbow path in D, and (ii) every vertex outside S can reach S by a

rainbow path in D. Similar to the proof of Proposition 1, we can get the computational

complexity of finding a kernel by rainbow paths in an arc-colored digraph.

Proposition 3. It is NP-hard to recognize whether an arc-colored digraph has a kernel by

rainbow paths or not.
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Proof. Let D and D′ be defined as in Proposition 1. Color D′ by using m colors in such a

way that the subdigraph D is monochromatic and the arc set {uv : u ∈ V ∗, v ∈ V (D)} is

m-colored. Then one can see that the m-colored D′ has a kernel by rainbow paths if and

only if D has a kernel. By Theorem 1 the desired result holds.
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