Defective 2-colorings of planar graphs without 4-cycles and 5-cycles

Pongpat Sittitrai
Department of Mathematics, Faculty of Science, Khon Kaen University, 40002, Thailand E-mail address: arzakuraln@gmail.com
Kittikorn Nakprasit *
Department of Mathematics, Faculty of Science, Khon Kaen University, 40002, Thailand
E-mail address: kitnak@hotmail.com

Abstract

Let G be a graph without 4 -cycles and 5 -cycles. We show that the problem to determine whether G is $(0, k)$-colorable is NP-complete for each positive integer k. Moreover, we construct non- $(1, k)$-colorable planar graphs without 4 -cycles and 5 -cycles for each positive integer k. Finally, we prove that G is $\left(d_{1}, d_{2}\right)$-colorable where $\left(d_{1}, d_{2}\right)=(4,4),(3,5)$, and $(2,9)$.

1 Introduction

Let G be a graph with the vertex set $V(G)$ and the edge set $E(G)$. A k-vertex, a k^{+}vertex, and k^{-}-vertex are a vertex of degree k, at least k, and at most k, respectively. The similar notation is applied for faces. A $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$-face f is a face of degree k where all vertices on f have degree $d_{1}, d_{2}, \ldots, d_{k}$. If v is not on a 3 -face f but v is adjacent to some 3 -vertex on f, then we call f a pendant face of a vertex v and v is a pendant neighbor of a 3 -vertex v. A 3 -face (respectively, 2 -vertex) incident to a 2 -vertex (respectively, 3 -face) is called a bad 3-face (respectively, bad 2-vertex). Otherwise, it is a good 3-face (respectively, good 2-vertex).

[^0]A k-coloring c (not necessary proper) is a function $c: V(G) \rightarrow\{1, \ldots, k\}$. Define $V_{i}:=$ $\{v \in V(G): c(v)=i\}$. We call c a $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$-coloring if V_{i} is an empty set or the induced subgraph $G\left[V_{i}\right]$ has the maximum degree at most d_{i} for each $i \in\{1, \ldots, k\}$. A graph G is called $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$-colorable if G admits a $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$-coloring Thus the four color theorem [2], 3] can be restated as every planar graphs is ($0,0,0,0$)-colorable. For improper 3 -colorability of planar graph, Cowen, Cowen, and Woodall showed that every planar graph is $(2,2,2)$-colorable [10]. Eaton and Hull [11] proved that $(2,2,2)$-colorability is optimal by showing non- $(k, k, 1)$-colorable planar graphs for each k.

Grötzsch [12] showed that every planar graph without 3-cycles is $(0,0,0)$-colorable. The famous Steinberg's conjecture proposes that every planar graph without 4 -cycles and 5 -cycles is also $(0,0,0)$-colorable. Recently, this conjecture is disproved by Cohen-Addad et al [1]. One way to relax the conjecture is allowing some color classes to be improper. For every planar graph G without 4-cycles and 5 -cycles, Xu, Miao, and Wang [17] proved that G is $(1,1,0)$-colorable, and Chen et al. [8] proved that G is $(2,0,0)$-colorable.

Many papers investigate $\left(d_{1}, d_{2}\right)$-coloring of planar graphs in various settings. Montassier and Ochem [14] constructed planar graphs of girth 4 that are not (i, j)-colorable for each i, j. Borodin, Ivanova, Montassier, Ochem, and Raspaud [4] constructed planar graphs of girth 6 that are not $(0, k)$-colorable for each k. On the other hand, for every planar graph G of girth 5, Havet and Seren [13] showed that G is $(2,6)$-colorable and (4, 4)-colorable, and Choi and Raspaud [9] showed that G is $(3,5)$-colorable.

Let G be a graph with the vertex set $V(G)$ and the edge set $E(G)$. A graph G is called $\left(d_{1}, d_{2}, \ldots, d_{k}\right)$-colorable if $V(G)$ can be partitioned into sets $V_{1}, V_{2}, \ldots, V_{k}$ such that the induced subgraph $G\left[V_{i}\right]$ for $i \in[k]$ has the maximum degree at most d_{i}. Thus the four color theorem [2], [3] can be restated as every planar graphs is ($0,0,0,0$)-colorable. For improper 3colorability of planar graph, Cowen, Cowen, and Woodall showed that every planar graph is (2,2,2)-colorable [10]. Eaton and Hull [11] and Škrekovski [15] prove that (2, 2, 2)-colorability is optimal by showing non- $(k, k, 1)$-colorable planar graphs for each k.

Grötzsch [12] showed that every planar graph without 3 -cycles is $(0,0,0)$-colorable. The famous Steinberg's conjecture proposes that every planar graph without 4-cycles and 5 -cycles is also $(0,0,0)$-colorable. Recently, this conjecture is disproved by Cohen-Addad et al [1]. One way to relax the conjecture is allowing some color classes to be improper. For every planar graph G without 4-cycles and 5 -cycles, Xu, Miao, and Wang [17] proved that G is $(1,1,0)$-colorable, and Chen et al. [8] proved that G is $(2,0,0)$-colorable.

Many papers investigate $\left(d_{1}, d_{2}\right)$-coloring of planar graphs in various settings. For every
planar graph G of girth 5, Havet and Seren [13] showed that G is $(2,6)$-colorable and $(4,4)$ colorable, and Choi and Raspaud [9] showed that G is $(3,5)$-colorable. Borodin, Ivanova, Montassier, Ochem, and Raspaud [4] constructed planar graphs of girth 6 that are not ($0, k$)colorable for each k. Montassier and Ochem [14] constructed planar graphs of girth 4 that are not (i, j)-colorable for any i, j.

There are many papers [4, 6, 13, 7, 5, 14] that investigate $\left(d_{1}, d_{2}\right)$-colorability forgraphs with girth length of g for $g \geq 6$; see 14 for the rich history. For example, Borodin, Ivanova, Montassier, Ochem, and Raspaud [4 constructed a graph in g_{6} (and thus also in g_{5}) that is not $(0, k)$-colorable for any k. The question of determining if there exists a finite k where all graphs in g_{5} are ($1, k$)-colorable is not yet known and was explicitly asked in [14]. On the other hand, Borodin and Kostochka [6] and Havet and Sereni [13], respectively, proved results that imply graphs in g_{5} are $(2,6)$-colorable and $(4,4)$-colorable.

Let G be a graph without 4 -cycles and 5 -cycles. We show that the problem to determine whether G is $(0, k)$-colorable is NP-complete for each positive integer k. Moreover, we construct non- $(1, k)$-colorable planar graphs without 4 -cycles and 5 -cycles for each positive integer k. Finally, we prove that G is $\left(d_{1}, d_{2}\right)$-colorable where $\left(d_{1}, d_{2}\right)=(4,4),(3,5)$, and $(2,9)$.

2 NP-completeness of (0,k)-colorings

Theorem 1. [14] Let $g_{k, j}$ be the largest integer g such that there exists a planar graph of girth g that is not (k, j)-colorable. The problem to determine whether a planar graph with girth $g_{k, j}$ is (k, j)-colorable for $(k, j) \neq(0,0)$ is $N P$-complete.

Theorem 2. The problem to determine whether a planar graph without 4-cycles and 5-cycles is $(0, k)$-colorable is NP-complete for each positive integer k.

Proof. We use a reduction from the problem in Theorem 1 to prove that $(0, k)$-coloring for planar graph without 4 -cycles and 5 -cycles. From [14], $6 \leq g_{0,1} \leq 10$. Let G be a graph of girth $g_{0,1}$. Take $k-1$ copies of 3-cycles $v_{i} v_{i}^{\prime} v_{i}^{\prime \prime}(i=1, \ldots, k-1)$ for each vertex v of G. The graph H_{k} is obtained from G by identifying v_{i} (in a 3 -cycle $v_{i} v_{i}^{\prime} v_{i}^{\prime \prime}$) to v for each vertex v. The resulting graph H_{k} has neither 4-cycles nor 5 -cycles.

Suppose G has a $(0,1)$-coloring c. We extend a coloring to $c\left(v_{i}^{\prime}\right)=1$ and $c\left(v_{i}^{\prime \prime}\right)=2$ for each vertex v and each $i=1, \ldots, k-1$. One can see that c is a $(0, k)$-coloring of H_{k}. Suppose H_{k} has a $(0, k)$-coloring c. Consider $v \in V(G)$ with $c(v)=2$. By construction, v has at least
$k-1$ neighbors with the same color in $V\left(H_{k}\right)-V(G)$. Thus v has at most one neighbor with the same color in $V\left(H_{k}\right)-V(G)$. It follows that c with restriction to $V(G)$ is a $(0,1)$ coloring of G. Hence G is $(0,1)$-colorable if and only if H_{k} is $(0, k)$-colorable. This completes the proof.

3 Non-(1, k)-colorable planar graphs without 4-cycles and 5-cycles

We construct a non- $(1, k)$-colorable planar graph G without 4 -cycles and 5 -cycles. Consider the graph $H_{u, v}$ shown in Figure 1.

$H_{u, v}$

Figure 1.

A non- $(k, 1)$-colorable planar graph G without 4 -cycles and 5 -cycles The vertices a, b, c, and d cannot receive the same color 1 . Now, we construct the graph S_{z} as follows. Let z be a vertex and $x_{1} x_{2} x_{3}$ be a path. Take $2 k+1$ copies $H_{u_{i}, v_{j}}$ of $H_{u, v}$ with $1 \leq i \leq 2 k+1$ and $1 \leq j \leq 3$. Identify every u_{i} with z and identify v_{j} with x_{j}. Finally, we obtain G from three copies $S_{z_{1}}, S_{z_{1}}$, and $S_{z_{3}}$ by adding the edges $z_{1} z_{2}$ and $z_{2} z_{3}$. In every $(1, k)$-coloring of G, the path $z_{1} z_{2} z_{3}$ contains a vertex z with color 2 . In the copy of S_{z} corresponding to z, the path $x_{1} x_{2} x_{3}$ contains a vertex x with color 2 . Since each of z and x has at most k neighbors colored 2, one of $2 k+1$ copies of $H_{u, v}$ between z and x, does not contain a neighbor of z and x colored 2 . This copy is not $(1, k)$-colorable, and thus G is not $(1, k)$-colorable.

4 Helpful Tools

Now, we investigate $\left(d_{1}, d_{2}\right)$ such that G is $\left(d_{1}, d_{2}\right)$-colorable for every graph G without 4 -cycles and 5 -cycles. From two previous sections, we have that $d_{1}, d_{2} \geq 2$. First, we present useful proposition and lemmas about a minimal planar graph G that is not $\left(d_{1}, d_{2}\right)$-colorable where $d_{1} \leq d_{2}$.

Proposition 1. (a) Each vertex v of G is a 2^{+}-vertex.
(b) If v is a k-vertex has α incident 3-faces, β adjacent good 2-vertices, and γ pendant 3 -faces, then $\alpha \leq\left\lfloor\frac{k}{2}\right\rfloor$ and $2 \beta+\alpha+\gamma \leq k$

Lemma 2. [9] Let G be $\left(d_{1}, d_{2}\right)$-colorable where $d_{1} \leq d_{2}$.
(a) If v is a 3^{-}-vertex, then at least two neighbors of v are $\left(d_{1}+2\right)^{+}$-vertices one of which is a $\left(d_{2}+2\right)^{+}$-vertex.
(b) If v is a $\left(d_{1}+d_{2}+1\right)^{-}$-vertex, then at least one neighbor of v is a $\left(d_{1}+2\right)^{+}$-vertex.

Lemma 3. If a 2-vertex v is on a bad 3-face f, then the other face g which is incident to v is a 7^{+}-face.

Proof. Suppose that a face g is a 6^{-}-face. Let a face $f=u v w$. By condition of G, a face g is neither 4,5 -face nor 3 -face, otherwise G contains C_{4}. Now we suppose a face g is a 6 -face and let $g=u_{1} u_{2} u_{3} u v w$. Since u is adjacent to w, there is a 5 -cycle $=u_{1} u_{2} u_{3} u w$, a contradiction.

Lemma 4. Let f be a k-face where $k \geq 7$. Then, f has at most $k-6$ incident bad 2 -vertices.

Proof. By proof of Lemma 3, if a face f is incident to m bad 2-vertices, then there is a cycle C_{k-m} since we can add some edge to f to obtain a new cycle that has the length least than a face f.

Lemma 5. Let (u, v, w) be a bad 3-face f where $d(u)=2$. Then at least one of following statements is true.
(S1) A vertex v is a $\left(d_{1}+3\right)^{+}$-vertex which has at least two $\left(d_{2}+2\right)$-neighbors.
(S2) A vertex w is a $\left(d_{2}+3\right)^{+}$-vertex which has at least two $\left(d_{1}+2\right)$-neighbors.
(S3) A vertex v or a vertex w is a $\left(d_{1}+d_{2}+2\right)^{+}$-vertex.

Proof. Assume c is a $\left(d_{1}, d_{2}\right)$-coloring in $G-u$. If two neighbors of u share the same color, then we can color u by $\{1,2\}-\{c(v)\}$. So $c(v) \neq c(w)$. By symmetry let $c(v)=1$ and
$c(w)=2$. By Lemma 2, we have a vertex v is a $\left(d_{1}+2\right)^{+}$and a vertex w is a $\left(d_{2}+2\right)^{+}$. Then v has d_{1} neighbors of color 1 to forbid u from being colored by 1 and w has d_{2} neighbors of color 2 to forbid u from being colored by 2 . Next, to avoid recoloring v by 2 and w by 1 . Then v has one neighbor with color 2 which has d_{2} neighbors of color 2 or v has d_{2} neighbors with color 2 . Otherwise, w has one neighbor with color 1 which has d_{1} neighbors of color 1 or w has d_{1} neighbors with color 1 .

5 (4, 4)-coloring

Theorem 3. If G is a planar graph without cycles of length 4 or 5 , then G is (4, 4)-colorable.

Proof. Suppose that G is a minimal counterexample. The discharging process is as follows. Let the initial charge of a vertex u in G be $\mu(u)=2 d(u)-6$ and the initial charge of a face f in G be $\mu(f)=d(f)-6$. Then by Euler's formula $|V(G)|-|E(G)|+|F(G)|=2$ and by the Handshaking lemma, we have

$$
\sum_{u \in V(G)} \mu(u)+\sum_{f \in F(G)} \mu(f)=-12 .
$$

Now, we establish a new charge $\mu^{*}(x)$ for all $x \in V(G) \cup F(G)$ by transferring charge from one element to another and the summation of new charge $\mu^{*}(x)$ remains -12 . If the final charge $\mu^{*}(x) \geq 0$ for all $x \in V(G) \cup F(G)$, then we get a contradiction and the prove is completed.

The discharging rules are
(R1) Every 6^{+}-vertex sends charge 1 to each adjacent good 2-vertex.
(R2) Every 6^{+}-vertex sends charge 2 to each incident 3 -face.
(R3) Every 6^{+}-vertex sends charge 1 to each adjacent pendant 3 -face.
(R4) Every 7^{+}-face sends charge 1 to each incident bad 2-vertex.
(R5) Every 4 -vertex or 5 -vertex sends charge 1 to each incident 3 -face.
(R6) Every bad 3-face sends charge 1 to each incident 2-vertex.
It remains to show that resulting $\mu^{*}(x) \geq 0$ for all $x \in V(G) \cup F(G)$.
It is evident that $\mu^{*}(x)=\mu(x)=0$ if x is a 3 -vertex or a 6 -face.
Now, let v be a k-vertex.
For $k=2$, a vertex v has two 6^{+}-neighbors by Lemma 2, If v is a good 2-vertex, then $\mu^{*}(v) \geq \mu(v)+2 \cdot 1=0$ by (R1). If v is a bad 2 -vertex, then v is incident to a 7^{+}-face by Lemma 3. Thus $\mu^{*}(v) \geq \mu(v)+1+1=0$ by (R4) and (R6).

For $k=4,5$, by Proposition 1 (b), a vertex v is incident to at most two 3-faces. By (R5), $\mu^{*}(v) \geq \mu(v)-2 \cdot 1 \geq 0$.

Consider $k=6^{+}$. Let v have α incident 3 -faces, β adjacent good 2 -vertices, and γ pendant 3 -faces. By Proposition 1 (b), we have $2 \alpha+\beta+\gamma \leq d(v)$. Moreover, $\mu(v)=2 d(v)-6 \geq d(v)$ if $d(v) \geq 6$. Thus, by (R1), (R2), and (R3), we have $\mu^{*}(v)=\mu(v)-(2 \alpha+\beta+\gamma) \geq 0$.

Now let f be a k-face.
For $k=7^{+}$, by Lemma 4, a k-face f has at most $k-6$ incident bad 2 -vertices. By (R4), $\mu^{*}(f)=\mu(f)-(k-6) \cdot 1=0$.

Consider $k=3$. If f is a bad 3-face, then we have $f=\left(2,6^{+}, 6^{+}\right)$-face by Lemma 2, Then by (R2) and (R6), $\mu^{*}(f) \geq \mu(f)+2 \cdot 2-1=0$. Now, It remains to consider a good 3 -face. If f is incident to a 4^{+}-vertex and a 6^{+}-vertex, then $\mu^{*}(f) \geq \mu(f)+2+1 \geq 0$ by (R2) and (R5). If f is a $\left(3,3,6^{+}\right)$-face, then the pendant neighbor of a 3 -vertex is a 6^{+}-vertex by Lemma 2. Thus $\mu^{*}(f) \geq \mu(f)+2+1+1 \leq 0$ by (R2) and (R3). Finally, if f is a $\left(4^{+}, 4^{+}, 4^{+}\right)$-face, then $\mu^{*}(f) \geq \mu(f)+3 \cdot 1 \leq 0$ by (R5).

Since $\mu^{*}(x) \geq 0$ for all $x \in V(G) \cup F(G)$, this completes the proof.

6 (3, 5)-coloring

Theorem 4. If G is a planar graph without cycles of length 4 or 5 , then G is (3,5)-colorable.

Proof. Suppose that G is a minimal counterexample. The discharging process is as follows. Let the initial charge of a vertex u in G be $\mu(u)=2 d(u)-6$ and the initial charge of a face f in G be $\mu(f)=d(f)-6$. Then by Euler's formula $|V(G)|-|E(G)|+F(G)=2$ and by the Handshaking lemma, we have

$$
\sum_{u \in V(G)} \mu(u)+\sum_{f \in F(G)} \mu(f)=-12 .
$$

Now, we establish a new charge $\mu^{*}(x)$ for all $x \in V(G) \cup F(G)$ by transferring charge from one element to another and the summation of new charge $\mu^{*}(x)$ remains -12 . If the final charge $\mu^{*}(x) \geq 0$ for all $x \in V(G) \cup F(G)$, then we get a contradiction and the prove is completed.

The discharging rules are
(R1) Every 5-vertex sends charge $\frac{4}{5}$ to each adjacent good 2-vertex.
(R2) Every 5 -vertex sends charge $\frac{8}{5}$ to each incident 3 -face.
(R3) Every 5 -vertex sends charge $\frac{4}{5}$ to each adjacent pendant 3 -face.
(R4) Every 6-vertex sends charge 1 to eeach adjacent good 2-vertex.
(R5) Every 6 -vertex or 7 -vertex sends charge 2 to each incident 3 -face.
(R6) Every 6-vertex sends charge 1 to each adjacent pendant 3-face.
(R7) Every 7^{+}-vertex sends charge $\frac{6}{5}$ to each adjacent good 2 -vertex.
(R8) Every 8^{+}-vertex sends charge $\frac{12}{5}$ to each incident 3 -face.
(R9) Every 7^{+}-vertex sends charge $\frac{6}{5}$ to each adjacent pendant 3 -face.
(R10) Every 7^{+}-face sends charge 1 to each incident bad 2-vertex.
(R11) Every 4-vertex sends charge 1 to each incident 3 -face.
(R12) Every bad 3 -face sends charge 1 to each incident 2-vertex.
Next, we show that the final charge $\mu^{*}(u)$ is nonnegative.
It is evident that $\mu^{*}(x)=\mu(x)=0$ if x is a 3 -vertex or a 6 -face.
Now, let v be a k-vertex.
For $k=2$, a vertex v has two 5^{+}-neighbors one of which is a 7^{+}-neighbor by Lemma 2. If v is a good 2-vertex, then $\mu^{*}(v) \geq \mu(v)+\frac{4}{5}+\frac{6}{5}=0$ by (R1) and (R7). If v is a bad 2-vertex, then v is incident to a 7^{+}-face by Lemma 3. Thus $\mu^{*}(v) \geq \mu(v)+1+1=0$ by (R10) and (R12).

For $k=4$, by Proposition 1 (b), a vertex v is incident to at most two 3 -faces. By (R11), $\mu^{*}(v) \geq \mu(v)-2 \cdot 1 \geq 0$.

Consider $k=5$. Let v have α incident 3 -faces, β adjacent good 2 -vertices, and γ pendant 3 -faces. By Proposition (b), $2 \alpha+\beta+\gamma \leq d(v)$. Moreover, we have $\frac{8}{5} \alpha+\frac{4}{5} \beta+\frac{4}{5} \gamma=$ $\frac{4}{5}(2 \alpha+\beta+\gamma) \leq \frac{4}{5} d(v)$ and $\mu(v)=2 d(v)-6=\frac{4}{5} d(v)$ if $d(v)=5$. Thus by (R1), (R2), and (R3), we have $\mu^{*}(v)=\mu(v)-\left(\frac{8}{5} \alpha+\frac{4}{5} \beta+\frac{4}{5} \gamma\right) \geq 0$.

Consider $k=6$. Let v have α incident 3 -faces, β adjacent good 2 -vertices, and γ pendant 3 -faces. By Proposition 1 (b), we have $2 \alpha+\beta+\gamma \leq d(v)$. Moreover, $\mu(v)=2 d(v)-6=d(v)$ if $d(v)=6$. Thus, by (R4), (R5), and (R6), we have $\mu^{*}(v)=\mu(v)-(2 \alpha+\beta+\gamma)=0$.

Consider $k=7$. If v is not incident to a 3 -face, then we have $\mu^{*}(v)=\mu(v)-6 \cdot \frac{6}{5} \geq 0$ by Lemma 2, (R7), and (R9). If v is incident to one 3-face, then we have $\mu^{*}(v)=\mu(v)-$ $\left(2+5 \cdot \frac{6}{5}\right)=0$ by (R5), (R7), and (R9). If v is incident to two 3 -faces, then we have $\mu^{*}(v)=\mu(v)-\left(2 \cdot 2+3 \cdot \frac{6}{5}\right) \geq 0$ by (R5), (R7), and (R9). Finally, if v is incident to three 3 -faces, then we have $\mu^{*}(v)=\mu(v)-\left(3 \cdot 2+\frac{6}{5}\right) \geq 0$ by (R5), (R7) and (R9).

Consider $k=8^{+}$. Let v have α incident 3 -faces, β adjacent good 2-vertices, and γ pendant 3-faces. By Proposition 1 (b), $2 \alpha+\beta+\gamma \leq d(v)$. Moreover, we have $\frac{12}{5} \alpha+\frac{6}{5} \beta+\frac{6}{5} \gamma=$
$\frac{6}{5}(2 \alpha+\beta+\gamma) \leq \frac{6}{5} d(v)$ and $\mu(v)=2 d(v)-6 \geq \frac{6}{5} d(v)$ if $d(v) \geq 8$. Thus by (R7), (R8), and (R9), we have $\mu^{*}(v)=\mu(v)-\left(\frac{12}{5} \alpha+\frac{6}{5} \beta+\frac{6}{5} \gamma\right) \geq 0$.

Now let f be a k-face.
For, $k=7^{+}$. By Lemma 4, a k-face f has at most $k-6$ incident bad 2 -vertices. By (R11), $\mu^{*}(f)=\mu(f)-(k-6) \cdot 1=0$.

Consider $k=3$. If f is a bad 3 -face, then we have f is $\mathrm{a}\left(2,6^{+}, 6^{+}\right)$-face or f is a $\left(2,5^{+}, 8^{+}\right)$by Lemma 5. Then by (R2), (R5), (R8), and (R12), $\mu^{*}(f) \geq \mu(f)+2 \cdot 2-1=0$ or $\mu^{*}(f) \geq \mu(f)+\frac{8}{5}+\frac{12}{5}-1=0$. Now, it remains to consider a good 3 -face. If f is incident to a 4^{+}-vertex and a 6^{+}-vertex, then $\mu^{*}(f) \geq \mu(f)+2+1 \geq 0$ by (R5) and (R11). If f is a $\left(3,3,7^{+}\right)$-face, then the pendant neighbor of a 3 -vertex is a 5^{+}-vertex by Lemma 2 Thus $\mu^{*}(f) \geq \mu(f)+2 \cdot \frac{4}{5}+2 \geq 0$ by (R3) and (R5). If f is a $\left(3,3,5^{+}\right)$-face, then the pendant neighbor of a 3 -vertex is a 7^{+}-vertex by Lemma 2. Thus $\mu^{*}(f) \geq \mu(f)+2 \cdot \frac{6}{5}+\frac{8}{5} \geq 0$ by (R2) and (R7). Finally, if f is a $\left(4^{+}, 4^{+}, 4^{+}\right)$-face, then $\mu^{*}(f) \geq \mu(f)+3 \cdot 1 \leq 0$ by (R11).

Since $\mu^{*}(x) \geq 0$ for all $x \in V(G) \cup F(G)$, this completes the proof.

7 (2,9)-coloring

Theorem 5. If G is a planar graph without cycles of length 4 or 5 , then G is $(2,9)$-colorable.

Proof. Suppose that G is a minimal counterexample. The discharging process is as follows. Let the initial charge of a vertex u in G be $\mu(u)=2 d(u)-6$ and the initial charge of a face f in G be $\mu(f)=d(f)-6$. Then by Euler's formula $|V(G)|-|E(G)|+F(G)=2$ and by the Handshaking lemma, we have

$$
\sum_{u \in V(G)} \mu(u)+\sum_{f \in F(G)} \mu(f)=-12 .
$$

Now, we establish a new charge $\mu^{*}(x)$ for all $x \in V(G) \cup F(G)$ by transferring charge from one element to another and the summation of new charge $\mu^{*}(x)$ remains -12 . If the final charge $\mu^{*}(x) \geq 0$ for all $x \in V(G) \cup F(G)$, then we get a contradiction and the prove is completed.

The discharging rules are
(R1) Every k-vertex for $4 \leq k \leq 10$ sends charge $\frac{1}{2}$ to each adjacent good 2-vertex.
(R2) Every 4-vertex sends charge 1 to each incident 3-face.
(R3) Every k-vertex for $4 \leq k \leq 10$ sends $\frac{1}{2}$ to each adjacent pendant 3 -face.
(R4) Every k-vertex for $5 \leq k \leq 10$ sends charge $\frac{3}{2}$ to each incident 3-face.
(R5) Every 11-vertex sends charge $\frac{5}{2}$ to each incident 3 -face.
(R6) Every 11^{+}-vertex sends charge $\frac{3}{2}$ to each adjacent good 2-vertex.
(R7) Every 12^{+}-vertex sends charge 3 to each incident 3 -face.
(R8) Every 11^{+}-vertex sends charge $\frac{3}{2}$ to each adjacent pendant 3 -face.
(R9) Every 7^{+}-face sends charge 1 to each incident bad 2-vertex.
(R10) Every bad 3-face sends charge 1 to each incident 2-vertex.
Next, we show that the final charge $\mu^{*}(u)$ is nonnegative.
It is evident that $\mu^{*}(x)=\mu(x)=0$ if x is a 3 -vertex or a 6 -face.
Now, let v be a k-vertex.
For $k=2$, a vertex v has two 4^{+}-neighbors one of which is a 11^{+}-neighbor by Lemma 2. If v is a good 2-vertex, then $\mu^{*}(v) \geq \mu(v)+\frac{1}{2}+\frac{3}{2}=0$ by (R1) and (R6). If v is a bad 2-vertex, then v is incident to a 7^{+}-face by Lemma 3. Thus $\mu^{*}(v) \geq \mu(v)+1+1=0$ by (R9) and (R10).

Consider $k=4$. Let v have α incident 3 -faces, β adjacent good 2 -vertices, and γ pendant 3 -faces. By Proposition 1 (b), $2 \alpha+\beta+\gamma \leq d(v)$. Moreover, we have $\alpha+\frac{1}{2} \beta+\frac{1}{2} \gamma=$ $\frac{1}{2}(2 \alpha+\beta+\gamma) \leq \frac{1}{2} d(v)$ and $\mu(v)=2 d(v)-6=\frac{1}{2} d(v)$ if $d(v)=4$. Thus by (R1), (R2), and (R3), we have $\mu^{*}(v)=\mu(v)-\left(\alpha+\frac{1}{2} \beta+\frac{1}{2} \gamma\right) \geq 0$.

Consider k for $5 \leq k \leq 10$. By (R1), (R3), and (R4), we show only the case that v has $\left\lfloor\frac{d(v)}{2}\right\rfloor$ incident 3 -faces because this case has final charge less than the other cases. Consider $\frac{3}{2} \frac{d(v)}{2} \leq 2 d(v)-6$, then we have $d(v) \geq 5$ because two times charge in (R1) or (R3) is less than charge in (R4). Thus we have $\mu^{*}(v) \geq 0$.

Consider $k=11$. By (R5), (R6), and (R8), we show only the case that v is not incident to 3 -face because this case has final charge less than the other cases. we have $\mu^{*}(v)=$ $16-10\left(\frac{3}{2}\right) \geq 0$. If there is one 3 -face, then $\mu^{*}(v)=16-\left(9\left(\frac{3}{2}\right)+\frac{5}{2}\right)=0$.

Now let f be a k-face.
For $k=7^{+}$. By Lemma 4, a k-face f has at most $k-6$ incident bad 2-vertices. By (R9), $\mu^{*}(f)=\mu(f)-(k-6) \cdot 1=0$.

Consider $k=3$. If f is a bad 3 -face, then we have f is $\mathrm{a}\left(2,4^{+}, 12^{+}\right)$-face or f is a $\left(2,5^{+}, 11^{+}\right)$by Lemma 5. Then by (R2), (R4), (R5), and (R7), $\mu^{*}(f) \geq \mu(f)+1+3-1=0$ or $\mu^{*}(f) \geq \mu(f)+\frac{3}{2}+\frac{5}{2}-1=0$. Now, it remains to consider a good 3 -face. Consider f is incident to exactly one 3 -vertex. If f is not incident to a 11^{+}-vertex, then pendant neighbor of a 3 -vertex is a 11^{+}-vertex by Lemma 2. Thus $\mu^{*}(f) \geq \mu(f)+2 \cdot \frac{1}{2}+\frac{3}{2} \geq 0$ by (R2) and (R8). If f is incident to a 4^{+}-vertex and a 11^{+}-vertex, then $\mu^{*}(f) \geq \mu(f)+\frac{1}{2}+\frac{5}{2} \geq 0$
by (R2) and (R5). If f is a $\left(3,3,11^{+}\right)$-face, then the pendant neighbor of a 3 -vertex is a 4^{+}-vertex by Lemma 2. Thus $\mu^{*}(f) \geq \mu(f)+2 \cdot \frac{1}{2}+\frac{5}{2} \geq 0$ by (R3) and (R5). If f is a $\left(3,3,4^{+}\right)$-face, then the pendant neighbor of a 3 -vertex is a 11^{+}-vertex by Lemma 2. Thus $\mu^{*}(f) \geq \mu(f)+2 \cdot \frac{3}{2}+1 \geq 0$ by (R2) and (R8). Finally, if f is a $\left(4^{+}, 4^{+}, 4^{+}\right)$-face, then $\mu^{*}(f) \geq \mu(f)+3 \cdot 1 \geq 0$ by (R2).

Since $\mu^{*}(x) \geq 0$ for all $x \in V(G) \cup F(G)$, this completes the proof.

References

[1] V. Cohen-Addad, M. Hebdige, D. Král, Z. Li, E. Salgado, Steinberg's Conjecture is false, Journal of Combinatorial Theory, Series B, Available online 26 July 2016.
[2] K. Appel, W. Haken, Every planar map is four colorable. I. Discharging, Illinois J. Math. 21(3)(1977) 429-490.
[3] K. Appel, W. Haken, J. Koch, Every planar map is four colorable. II. Reducibility, Illinois J. Math. 21(3)(1977) 491-561.
[4] O.V. Borodin, A.O. Ivanova, M. Montassier, P. Ochem, A. Raspaud, Vertex decompositions of sparse graphs into an edgeless subgraph and a subgraph of maximum degree at most k, J. Graph Theory 65 (2010) 83-93.
[5] O.V. Borodin, A.V. Kostochka, Vertex decompositions of sparse graphs into an independent set and a subgraph of maximum degree at most 1, Sibirsk. Mat. Zh. 52 (5) (2011) 1004-1010.
[6] O.V. Borodin, A.V. Kostochka, Defective 2-colorings of sparse graphs, J. Combin. Theory Ser. B 104 (2014) 72-80
[7] O.V. Borodin, A. Kostochka, M. Yancey, On 1-improper 2-coloring of sparse graphs, Discrete Math. 313 (22) (2013) 2638-2649.
[8] M. Chen, Y. Wang, P. Liu, J. Xu, Planar graphs without cycles of length 4 or 5 are (2, 0, 0)-colorable, Discrete Math. 339 (2016), 661-667.
[9] I. Choi and A. Raspaud, Planar graphs with minimum cycle length at least 5 are $(3,5)$ colorable, Discrete Math. 338(4) (2015), 661-667.
[10] L.J. Cowen, R.H. Cowen, D.R. Woodall, Defective colorings of graphs in surfaces: partitions into subgraphs of bounded valency, J. Graph Theory 10 (1986) 187-195.
[11] N. Eaton, T. Hull, Defective list colorings of planar graphs, Bull. Inst. Combin. Appl. 25 (1999) 9-87.
[12] H. Grötzsch, Zur Theorie der diskreten Gebilde. VII. Ein Dreifarbensatz für dreikreisfreie Netze auf der Kugel. (in German) Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg. Math.-Nat. Reihe 8 1958/1959 109-120.
[13] F. Havet, J.-S. Sereni, Improper choosability of graphs and maximum average degree, J. Graph Theory 52 (2006) 181-199.
[14] M. Montassier and P. Ochem, Near-colorings: non-colorable graphs and NPcompleteness, Electron. J. Combin. 22(1) (2015), Paper 1.57, 13, 2015.
[15] R. Škrekovski, List improper colourings of planar graphs, Combin. Probab. Comput. 8 (3) (1999) 293-299.
[16] R. Steinberg, The state of the three color problem. Quo Vadis, graph theory? Ann. Discrete Math. 55 (1993) 211-248.
[17] L. Xu, Z. Miao, Y. Wang, Every planar graph with cycles of length neither 4 nor 5 is (1, 1, 0)-colorable, J. Comb. Optim. 28 (2014) 774-786.

[^0]: *Corresponding Author

