ON THE NUMBER OF RAINBOW SPANNING TREES IN EDGE-COLORED COMPLETE GRAPHS

HUNG-LIN FU, YUAN-HSUN LO, K. E. PERRY, AND C. A. RODGER

Abstract

A spanning tree of a properly edge-colored complete graph, K_{n}, is rainbow provided that each of its edges receives a distinct color. In 1996, Brualdi and Hollingsworth conjectured that if $K_{2 m}$ is properly $(2 m-1)$-edge-colored, then the edges of $K_{2 m}$ can be partitioned into m rainbow spanning trees except when $m=2$. By means of an explicit, constructive approach, in this paper we construct $\lfloor\sqrt{6 m+9} / 3\rfloor$ mutually edge-disjoint rainbow spanning trees for any positive value of m. Not only are the rainbow trees produced, but also some structure of each rainbow spanning tree is determined in the process. This improves upon best constructive result to date in the literature which produces exactly three rainbow trees.

1. Introduction

A spanning tree T of a connected graph G is an acyclic connected subgraph of G for which $V(T)=V(G)$. A proper k-edge-coloring of a graph G is a mapping from $E(G)$ into a set of colors, $\{1,2, \ldots, k\}$, such that adjacent edges of G receive distinct colors. The chromatic index $\chi^{\prime}(G)$ of a graph G is the minimum number k such that G is k-edge-colorable. It is well known that $\chi^{\prime}\left(K_{2 m}\right)=2 m-1$ and thus, if $K_{2 m}$ is properly $(2 m-1)$-edge-colored, each color appears at every vertex exactly once. All edge-colorings considered in this paper are proper.

A subgraph in an edge-colored graph is said to be rainbow (sometimes called multicolored or polychromatic) if all of its edges receive distinct colors. Observe that with any ($2 m-1$)-edge-coloring of $K_{2 m}$, it is not hard to find a rainbow spanning tree by taking the spanning star, S_{v}, with center $v \in V\left(K_{2 m}\right)$. Further, $K_{2 m}$ has $m(2 m-1)$ edges and it is well known that these edges can be partitioned into m spanning trees. This led Brualdi and Hollingsworth 5 to make the following conjecture in 1996.

Conjecture 1 (5). If $K_{2 m}$ is $(2 m-1)$-edge-colored, then the edges of $K_{2 m}$ can be partitioned into m rainbow spanning trees except when $m=2$.

Based on Brualdi and Hollingsworth's concept, the following related conjectures were proposed in 2002.

Conjecture 2 ([7], Constantine). $K_{2 m}$ can be edge-colored with $2 m-1$ colors in such a way that the edges can be partitioned into m isomorphic rainbow spanning trees except when $m=2$.

Conjecture 2 was proved to be true by Akbari, Alipour, Fu, and Lo in 2006 [2].
Conjecture 3 (7 , Constantine). If $K_{2 m}$ is $(2 m-1)$-edge-colored, then the edges of $K_{2 m}$ can be partitioned into m isomorphic rainbow spanning trees except when $m=2$.

Conjecture 4 ([12), Kaneko, Kano, Suzuki). Every properly colored K_{n} contains $\left\lfloor\frac{n}{2}\right\rfloor$ edge-disjoint isomorphic rainbow spanning trees.

[^0]Concerning Conjecture 1 in [5], Brualdi and Hollingsworth proved that every properly ($2 m-1$)-edge-colored $K_{2 m}$ has two edge-disjoint rainbow spanning trees for $m>2$, and in 2000, Krussel, Marshall, and Verrall [13] improved this result to three spanning trees. Kaneko, Kano, and Suzuki 12 then improved the previous result slightly by showing that three edge-disjoint rainbow spanning trees exist in any proper edge-coloring of $K_{2 m}$. Recently, Horn [10] showed that for m sufficiently large there is an $\epsilon>0$ such that every properly $(2 m-1)$-edge-colored $K_{2 m}$ has $\epsilon 2 m$ edge-disjoint rainbow spanning trees. And a recently submitted paper by Pokrovskiy and Sudakov [14] shows that every properly $(n-1)$-edge-colored K_{n} has $\frac{n}{9}$ edge-disjoint spanning rainbow trees.

Balogh, Liu, and Montgomery [4] have also recently submitted a result showing that every properly edge-colored K_{n} contains at least $\frac{n}{10^{12}}$ edge-disjoint rainbow spanning trees. They then use this result to show that any properly $(2 m-1)$-edge-colored $K_{2 m}$ contains linearly many edge-disjoint rainbow spanning trees.

Relaxing the restriction that the coloring be proper, Akbari and Alipour [1 were able to show that two edge-disjoint rainbow spanning trees exist in any edge-coloring of $K_{2 m}$ with each color class containing $\leq m$ edges. With the same assumption that the coloring be not necessarily proper and each color appears on at most m edges, Carraher, Hartke, and Horn 6] showed that if m is sufficiently large $(m \geq 500,000)$ then $K_{2 m}$ contains at least $\left\lfloor\frac{m}{500 \log (2 m)}\right\rfloor$ edge-disjoint rainbow spanning trees.

Essentially not much was done on Conjecture 3 until recently. In 2015 Fu and Lo [8] proved that three isomorphic rainbow spanning trees exist in any $(2 m-1)$-edge-colored $K_{2 m}, m \geq 14$ and in 2017, Pokrovskiy and Sudakov [14] proved the existence of $10^{-6} n$ edge-disjoint rainbow spanning t spiders in any properly edge-colored $K_{n}, 0.0007 n \leq t \leq 0.2 n$. Note that a t-spider is a tree obtained from a star by subdividing t of its edges once.

In this paper, we focus on Conjecture 1 by proving that in any $(2 m-1)$-edge-coloring of $K_{2 m}$, $m \geq 1$, there exist at least $\left\lfloor\frac{\sqrt{6 m+9}}{3}\right\rfloor$ mutually edge-disjoint rainbow spanning trees. Asymptotically, this is not as good as the bound in [6] or [10, but our result applies to all values of m and it is better until m is extremely large (over 5.7×10^{7} for the bound in (6). Instead of using the probabilistic method to prove the result, as was used in [6] and [10, we derive our bound by means of an explicit, constructive approach. So, not only do we actually produce the rainbow trees, but also some structure of each rainbow spanning tree is determined in the process. It should be noted that the best constructive result (before ours) is the one in the paper by Krussel, Marshall, and Verrall [13] which produces just three rainbow spanning trees, though the recent result by Pokrovskiy and Sudakov is stronger.

Here is our main result.
Theorem 1. Let $K_{2 m}$ be a properly $(2 m-1)$-edge-colored graph. Then there exist $\Omega_{m}=\left\lfloor\frac{\sqrt{6 m+9}}{3}\right\rfloor$ mutually edge-disjoint rainbow spanning trees, say $T_{1}, T_{2}, \ldots, T_{\Omega_{m}}$, with the following properties.
(i) Each tree has a designated distinct root.
(ii) The root of T_{1} has degree $(2 m-1)-2\left(\Omega_{m}-1\right)$ and has at least $(2 m-1)-4\left(\Omega_{m}-1\right)$ adjacent leaves.
(iii) For $2 \leq i \leq \Omega_{m}$, the root of T_{i} has degree $(2 m-1)-i-2\left(\Omega_{m}-i\right)$ and has at least $(2 m-1)-$ $2 i-4\left(\Omega_{m}-i\right)$ adjacent leaves.

It is worth mentioning here that the above conjectures will play important roles in certain applications if they are true. Notice that a rainbow spanning tree is orthogonal to the 1-factorization of $K_{2 m}$ (induced by any ($2 m-1$)-edge-coloring). An application of parallelisms of complete designs to population genetics data can be found in [3]. Parallelisms are also useful in partitioning consecutive positive integers into sets of equal size with equal power sums [11. In addition, the discussions of applying colored matchings and design parallelisms to parallel computing appeared in 9.

2. Proof of Theorem 1

We will use induction on the number of trees to prove this result. We can assume $m \geq 5$ since for $1 \leq m \leq 4, \Omega_{m}=1$ and the spanning star, S_{r}, in which $r \in V\left(K_{2 m}\right)$ and r is joined to every other vertex, is clearly a rainbow spanning tree of $K_{2 m}$. When the value of m is clear, it will cause no confusion to simply refer to Ω_{m} as Ω. It is worth noting that the following inductive proof can be used as a recursive construction to create Ω rainbow edge-disjoint spanning trees, $T_{1}, T_{2}, \ldots, T_{\Omega}$.

For $1 \leq \psi \leq \Omega$, the rainbow edge-disjoint spanning trees, $T_{1}, T_{2}, \ldots, T_{\psi}$, are constructed to satisfy the proposition $f(\psi)$, defined to be the conjunction of the following three degree and structural characteristics:

Each tree has a designated distinct root.

The root of T_{1} has degree $(2 m-1)-2(\psi-1)$ and has at least $(2 m-1)-4(\psi-1)$ adjacent leaves.

For $2 \leq i \leq \psi$, The root of T_{i} has degree $(2 m-1)-i-2(\psi-i)$ and has at least $(2 m-1)-2 i-4(\psi-i)$ adjacent leaves.
In particular, note here that by (3), if $\psi>1$, then the root of T_{2} has degree $(2 m-1)-2-2(\psi-2)=$ $(2 m-1)-2(\psi-1)$ and at least $(2 m-1)-4-4(\psi-2)=(2 m-1)-4(\psi-1)$ adjacent leaves, sharing these characteristics with T_{1} (as stated in (2)).

We begin with some necessary notation. All vertices defined in what follows are in $V\left(K_{2 m}\right)$, the given edge-colored complete graph.

The proof proceeds inductively, producing a list of j edge-disjoint rainbow spanning trees from a list of $j-1$ edge-disjoint rainbow spanning trees; so for $1 \leq i \leq j \leq \Omega$, let T_{i}^{j} be the $i^{t h}$ rainbow spanning tree of the $j^{\text {th }}$ induction step and let r_{i} be the designated root of T_{i}^{j}. Notice that r_{i} is independent of j.

Suppose T is any spanning tree of the complete graph $K_{2 m}$ with root r containing vertices y, v, w, and v^{\prime}, where $r y$ and $r v$ are distinct pendant edges in T (so $y \neq v$ are leaves of T) and $y, v \notin\left\{w, v^{\prime}\right\}$ (note that w could equal v^{\prime}). Then define $T^{\prime}=T\left[r ; y, v ; w, v^{\prime}\right]$ to be the new graph formed from T with edges $r y$ and $r v$ removed and edges $y w$ and $v v^{\prime}$ added. Formally, $T^{\prime}=T\left[r ; y, v ; w, v^{\prime}\right]=$ $T-r y-r v+y w+v v^{\prime}$. We note here that T^{\prime} is also a spanning tree of $K_{2 m}$ because y and v are leaves in T, and thus adding edges $y w$ and $v v^{\prime}$ does not create a cycle in T^{\prime}.

Our inductive strategy will be to assume we have $k-1$ (where $1<k \leq \Omega$) edge-disjoint rainbow spanning trees with suitable characteristics satisfying proposition $f(k-1)$ that yield properties (1), (2), and (3) with $\psi=k-1$. From those trees we will construct k edge-disjoint rainbow spanning trees with suitable characteristics that allow properties (11), (2), and (3) to be eventually established when $\psi=k$, thus satisfying $f(k)$.

For this construction, given any T_{i}^{j-1} with root r_{i} and distinct pendant edges $r_{i} y_{i}^{j}$ and $r_{i} v_{i}^{j}$, we define T_{i}^{j} in the following way:

$$
\begin{equation*}
T_{i}^{j}=T_{i}^{j-1}\left[r_{i} ; y_{i}^{j}, v_{i}^{j} ; w_{i}^{j},\left(v^{\prime}\right)_{i}^{j}\right]=T_{i}^{j-1}-r_{i} y_{i}^{j}-r_{i} v_{i}^{j}+y_{i}^{j} w_{i}^{j}+v_{i}^{j}\left(v^{\prime}\right)_{i}^{j} \tag{4}
\end{equation*}
$$

The choice of the vertices defined in (4) will eventually be made precise, based on the discussion which follows.

When the value of j is clear, it will cause no confusion to refer to the vertices $y_{i}^{j}, v_{i}^{j} ; w_{i}^{j},\left(v^{\prime}\right)_{i}^{j}$ by omitting the superscript and instead writing $T_{i}^{j}=T_{i}^{j-1}\left[r_{i} ; y_{i}, v_{i} ; w_{i}, v_{i}^{\prime}\right]$. We now make the following remarks about the definition of T_{i}^{j} above. Recall that for $1 \leq i \leq j \leq \Omega, r_{i}$ is independent of j, and thus is the root of both T_{i}^{j-1} and T_{i}^{j}. The following is easily seen to be true.

If φ is any proper edge-coloring of $K_{2 m}$ and T_{i}^{j-1} is a rainbow spanning tree of $K_{2 m}$ with root r_{i} and distinct pendant edges $r_{i} y_{i}$ and $r_{i} v_{i}$, then T_{i}^{j} as defined in (4) is also a rainbow spanning tree of $K_{2 m}$ if $\varphi\left(r_{i} y_{i}\right)=\varphi\left(v_{i} v_{i}^{\prime}\right)$ and $\varphi\left(r_{i} v_{i}\right)=\varphi\left(y_{i} w_{i}\right)$.
Next, for $1 \leq i \leq j \leq \Omega$, let $L_{i}^{j}=\left\{x \mid x r_{i}\right.$ is a pendant edge in $\left.T_{i}^{j}\right\}$ (so x is a leaf adjacent to r_{i} in $\left.T_{i}^{j}\right)$. Define

$$
\begin{equation*}
L_{j}=\bigcap_{i=1}^{j} L_{i}^{j} \tag{6}
\end{equation*}
$$

Notice that if $x \in L_{j}$, then for $1 \leq i \leq j, x r_{i}$ is a pendant edge in T_{i}^{j}.
We now begin our inductive proof with induction parameter k. Specifically we will prove that for $1 \leq k \leq \Omega$ there exist k edge-disjoint rainbow spanning trees, $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k}^{k}$ satisfying the inductive parameter $f(k)$ (stated below as $f(k-1)$ in the inductive step).

Base Step. The case $k=1$ is seen to be true for all properly edge-colored complete graphs, $K_{2 m}$, by letting r_{1} be any vertex in $V\left(K_{2 m}\right)$ and defining $T_{1}^{1}=S_{r_{1}}$, the spanning star with root r_{1}. It is also clear that $S_{r_{1}}$ satisfies $f(1)$ since r_{1} has degree $2 m-1$ and has $2 m-1$ adjacent leaves, as required in (2). Property (3) is vacuously true.

Induction Step. Suppose that φ is a proper edge-coloring of $K_{2 m}$ and that for some k with $1<k \leq \Omega, K_{2 m}$ contains $k-1$ edge-disjoint rainbow spanning trees, $T_{1}^{k-1}, T_{2}^{k-1}, \ldots, T_{k-1}^{k-1}$, satisfying $f(k-1)$:
(1) r_{i} is the root of tree T_{i}^{k-1} and $r_{i} \neq r_{c}$ for $1 \leq i, c<k, i \neq c$,
(2) $d_{T_{1}^{k-1}}\left(r_{1}\right)=(2 m-1)-2(k-2)$ and r_{1} is adjacent to at least $(2 m-1)-4(k-2)$ leaves in T_{1}^{k-1}, and
(3) For $2 \leq i \leq k-1, d_{T_{i}^{k-1}}\left(r_{i}\right)=(2 m-1)-i-2(k-1-i)$ and r_{i} is adjacent to at least $(2 m-1)-2 i-4(k-1-i)$ leaves in T_{i}^{k}.
It thus remains to construct k edge-disjoint rainbow spanning trees satisfying $f(k)$.
We note here that $f(k-1)$ and the definition of L_{k-1} in (6) guarantee that a lower bound for $\left|L_{k-1}\right|$ can be obtained by starting with a set containing all $2 m$ vertices, then removing the $k-1$ roots of $T_{1}^{k-1}, T_{2}^{k-2}, \ldots, T_{k-1}^{k-1}$, the (at most $\left.4(k-2)\right)$ vertices in $V\left(T_{1}^{k-1} \backslash\left\{r_{1}\right\}\right)$ which are not leaves adjacent to r_{1}, and for $2 \leq i<k$, the (at most $2 i+4(k-1-i)$) vertices in $V\left(T_{i}^{k-1} \backslash\left\{r_{i}\right\}\right)$ which are not leaves adjacent to r_{i}. Formally,

$$
\begin{align*}
\left|L_{k-1}\right| & \geq 2 m-(k-1)-4(k-2)-\sum_{i=2}^{k-1}(2 i+4(k-1-i)) \tag{7}\\
& =2 m-(k-1)-4(k-2)-\left(3 k^{2}-11 k+10\right) \\
& =2 m-3 k^{2}+6 k-1 .
\end{align*}
$$

Knowing $\left|L_{k-1}\right|$ is useful because later (see (15)) we will show that if $\left|L_{k-1}\right|>6 k-5$, then from $T_{1}^{k-1}, T_{2}^{k-1}, \ldots, T_{k-1}^{k-1}$ we can construct k rainbow edge-disjoint spanning trees which satisfy proposition $f(k)$. As the reader might expect, it is from here that the bound on Ω is obtained: it actually follows that since $k \leq \Omega,\left|L_{k-1}\right|>6 k-5$.

First, select any two distinct vertices $r_{k}, w_{k}^{k} \in L_{k-1}$; since it will cause no confusion, we will write w_{k} for w_{k}^{k}. Set r_{k} equal to the root of the $k^{t h}$ tree, T_{k}^{k}. Later, $r_{k} w_{k}$ will be an edge removed from
T_{k}^{k}. For now, the two special vertices r_{k} and w_{k} play a role in the construction of T_{i}^{k} from T_{i}^{k-1} for $1 \leq i<k$. For convenience we explicitly state and observe the following

Since r_{k} and w_{k} are distinct vertices in L_{k-1} (defined in (6)), r_{k} and w_{k} are leaves adjacent to r_{i} for $1 \leq i<k$.
For the sake of clarity, having selected r_{k} and w_{k}, we now discuss how to construct the trees $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$ before returning to our discussion of the construction of T_{k}^{k} (though in actuality T_{k}^{k} is formed recursively as we are constructing $\left.T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}\right)$.

For $1 \leq i<k$, we will find suitable vertices v_{i}^{k}, w_{i}^{k}, and $v_{i}^{k^{\prime}}$, which for convenience we refer to as v_{i}, w_{i}, and v_{i}^{\prime} respectively, and define T_{i}^{k} in the following way:

$$
\begin{align*}
& T_{i}^{k}=T_{i}^{k-1}\left[r_{i} ; r_{k}, v_{i} ; w_{i}, v_{i}^{\prime}\right] \\
& \text { where } \varphi\left(r_{i} r_{k}\right)=\varphi\left(v_{i} v_{i}^{\prime}\right) \text { and } \varphi\left(r_{i} v_{i}\right)=\varphi\left(r_{k} w_{i}\right) \tag{9}
\end{align*}
$$

It is clear by (5) that for $1 \leq i<k$, since T_{i}^{k-1} is a rainbow spanning tree of $K_{2 m}$, if v_{i} is chosen so that $v_{i} r_{i}$ is a pendant edge in T_{i}^{k-1} with $v_{i} \neq r_{k}$, then T_{i}^{k} is also a rainbow spanning tree of $K_{2 m}$ (recall from (8) that $r_{k} \in L_{k-1}$, so by (6) $r_{k} r_{i}$ is a pendant edge in T_{i}^{k-1}).

Further, since $r_{k}, w_{k} \in L_{k-1}$, it is clear from (9) that (1) $r_{k}, v_{i} \notin L_{k}$, and (2) all leaves adjacent to r_{i} in T_{i}^{k} are leaves adjacent to r_{i} in T_{i}^{k-1}.

$$
\begin{equation*}
\text { Therefore }\left|L_{k}\right|<\left|L_{k-1}\right| \text {. } \tag{10}
\end{equation*}
$$

By the induction hypothesis, the trees $T_{1}^{k-1}, T_{2}^{k-1}, \ldots, T_{k-1}^{k-1}$ satisfy $f(k-1)$. We now show that the trees $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$ satisfy properties (11), (21), and (3) of $f(k)$. We will construct a T_{k}^{k} below in (12) and together, $T_{1}^{k}, \ldots, T_{k-1}^{k}, T_{k}^{k}$ will be a collection of trees satisfying $f(k)$.

First, clearly (11) is satisfied. Further, for $1 \leq i<k$, when T_{i}^{k} is formed from T_{i}^{k-1} (see (9)), it can easily be seen that the degree of r_{i} is decreased by 2 and the number of leaves adjacent to r_{i} is decreased by at most 4 .
(i.) T_{1}^{k}

By our induction hypothesis, we have that $d_{T_{1}^{k-1}}\left(r_{1}\right)=(2 m-1)-2(k-2)$ and that r_{1} is adjacent to at least $(2 m-1)-4(k-2)$ leaves in T_{1}^{k-1}. From (9) we have that $d_{T_{1}^{k}}\left(r_{1}\right)=d_{T_{1}^{k-1}}\left(r_{1}\right)-2=(2 m-1)-2(k-2)-2=(2 m-1)-2(k-1)$ and that r_{1} is adjacent to at least $(2 m-1)-4(k-2)-4=(2 m-1)-4(k-1)$ leaves in T_{1}^{k}. So (2) of $f(k)$ is satisfied.
(ii.) $T_{i}^{k}, 2 \leq i<k$

By our induction hypothesis, we have that $d_{T_{i}^{k-1}}\left(r_{i}\right)=(2 m-1)-i-2(k-1-i)$ and that r_{i} is adjacent to at least $(2 m-1)-2 i-4(k-1-i)$ leaves in T_{i}^{k}. From (9) we have that $d_{T_{i}^{k}}\left(r_{i}\right)=d_{T_{i}^{k-1}}\left(r_{i}\right)-2=(2 m-1)-i-2(k-1-i)-2=(2 m-1)-i-2(k-i)$ and that r_{i} is adjacent to at least $(2 m-1)-2 i-4(k-1-i)-4=(2 m-1)-2 i-4(k-i)$ leaves in T_{i}^{k}. So (3) of $f(k)$ is satisfied when $2 \leq i<k$.
Lastly, we can observe that once v_{i} is selected, vertices w_{i} and v_{i}^{\prime} are determined by the required property from (9) that $\varphi\left(r_{i} r_{k}\right)=\varphi\left(v_{i} v_{i}^{\prime}\right)$ and $\varphi\left(r_{i} v_{i}\right)=\varphi\left(r_{k} w_{i}\right)$.

It remains to ensure that the trees, $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$, are all edge-disjoint. This is also proved using the induction hypothesis that $T_{1}^{k-1}, T_{2}^{k-1}, \ldots, T_{k-1}^{k-1}$ are all edge-disjoint.

Now, while forming the rainbow edge-disjoint spanning trees, $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$, we simultaneously construct the $k^{t h}$ rainbow spanning tree, T_{k}^{k}, from a sequence of inductively defined graphs, $T_{k}^{k}(1), T_{k}^{k}(2), \ldots, T_{k}^{k}(k)=T_{k}^{k}$ where $T_{k}^{k}(1)=S_{r_{k}}$ and at the $i^{\text {th }}$ induction step, the formation of $T_{k}^{k}(i)$ depends on the choice of v_{i} used in the construction of T_{i}^{k}. For $2 \leq i \leq k$ define

$$
\begin{align*}
& T_{k}^{k}(i)=T_{k}^{k}(i-1)-r_{k} w_{i}+w_{i} w_{i}^{\prime} \tag{11}\\
& \text { where } \varphi\left(w_{1} w_{1}^{\prime}\right)=\varphi\left(r_{k} w_{k}\right) \text { and } \varphi\left(w_{i} w_{i}^{\prime}\right)=\varphi\left(r_{k} w_{i-1}\right) \text { for } 2 \leq i \leq k .
\end{align*}
$$

Note that for $1 \leq i \leq k-1$, the choice of v_{i} determines $T_{k}^{k}(i)$; the formation of $T_{k}^{k}(k)$ is dictated by $T_{k}^{k}(k-1)$ since w_{k}^{\prime} is determined by requiring that $\varphi\left(w_{k} w_{k}^{\prime}\right)=\varphi\left(r_{k} w_{k-1}\right)$. It is worth explicitly stating that

$$
\begin{align*}
& T_{k}^{k}=T_{k}^{k}(k)=S_{r_{k}}-r_{k} w_{1}-\ldots-r_{k} w_{k}+w_{1} w_{1}^{\prime}+\ldots+w_{k} w_{k}^{\prime} \\
& \text { where } \varphi\left(w_{1} w_{1}^{\prime}\right)=\varphi\left(r_{k} w_{k}\right) \text { and } \varphi\left(w_{c} w_{c}^{\prime}\right)=\varphi\left(r_{k} w_{c-1}\right) \text { for } 2 \leq c \leq k \tag{12}
\end{align*}
$$

Observe that T_{k}^{k} is a rainbow graph since each edge removed from $S_{r_{k}}$ is replaced by a corresponding edge of the same color. Also, one can easily see that T_{k}^{k} has $2 m-1$ edges; $d_{T_{k}^{k}}\left(r_{k}\right)=(2 m-1)-k$ since $r_{k} \notin\left\{w_{1}^{\prime}, w_{2}^{\prime}, \ldots, w_{k}^{\prime}\right\}$; and r_{k} has at least $(2 m-1)-2 k$ adjacent leaves. Therefore, condition (3) of $f(k)$ is satisfied. So it remains to show that T_{k}^{k} is acyclic and contains no edges in the trees T_{i}^{k} for $1 \leq i \leq k-1$.

For future reference, it is worth gathering two observations just made into one:

For $1 \leq i<k$, once v_{i} is chosen, T_{i}^{k} and $T_{k}^{k}(i)$ are completely determined by the constructions described in (9) and (11) respectively.
Due to the fact highlighted above in (13), our strategy will be to select a suitable v_{i} and construct T_{i}^{k} from T_{i}^{k-1}, while simultaneously constructing $T_{k}^{k}(i)$ from $T_{k}^{k}(i-1)$. In doing so, we restrict the choices for each v_{i} in order to achieve the following three properties:
(C1) The edges in $T_{a}^{k}, 1 \leq a<i$ do not appear in T_{i}^{k},
(C2) The edges in T_{k}^{k} do not appear in $T_{i}^{k}, 1 \leq i<k$, and
(C3) T_{k}^{k} is acyclic
To that end, we let

$$
\begin{equation*}
L_{k-1}^{*}=L_{k-1} \backslash\left\{r_{k}, w_{k}\right\} \tag{14}
\end{equation*}
$$

and let v_{i} be any vertex for which the following properties are satisfied (so by (13), this choice completes the formation of T_{i}^{k} and $T_{k}^{k}(i)$ for $\left.1 \leq i<k\right)$:
(R1) $v_{i} \in L_{k-1}^{*}$,
(R2) For $1 \leq c<k, c \neq i, \varphi\left(v_{i} r_{c}\right) \neq \varphi\left(r_{i} r_{k}\right)$,
(R3) For $1 \leq a<i, \varphi\left(v_{i} r_{i}\right) \neq \varphi\left(r_{a} v_{a}\right)$,
(R4) For $i<b<k, \varphi\left(v_{i} r_{i}\right) \neq \varphi\left(r_{k} r_{b}\right)$,
(R5) $\varphi\left(v_{i} r_{i}\right) \neq \varphi\left(r_{k} w_{k}\right)$,
(R6) For $1 \leq a<i, \varphi\left(v_{i} r_{i}\right) \neq \varphi\left(r_{k} w_{a}^{\prime}\right)$,
(R7) For $2 \leq i<k, \varphi\left(v_{i} r_{i}\right) \neq \varphi\left(r_{k} \alpha\right)$, where α is the vertex such that $\varphi\left(w_{k} \alpha\right)=\varphi\left(r_{k} w_{i-1}\right)$,
(R8) For $i=1$ and for $1 \leq c<k, \varphi\left(v_{1} r_{1}\right) \neq \varphi\left(r_{k} \alpha\right)$, for each vertex α incident with the edge of color $\varphi\left(r_{k} w_{k}\right)$ in T_{c}^{k-1},
(R9) For $2 \leq i<k, 1 \leq a<i$, and for $i \leq b<k, \varphi\left(v_{i} r_{i}\right) \neq \varphi\left(r_{k} \alpha\right)$, for each vertex α incident with the edge of color $\varphi\left(r_{k} w_{i-1}\right)$ in T_{a}^{k} and in T_{b}^{k-1},
(R10) For $1 \leq i<k, \varphi\left(v_{i} w_{k}\right) \neq \varphi\left(r_{i} r_{k}\right)$,
(R11) For $1 \leq d \leq k-2, \varphi\left(v_{k-1} r_{k-1}\right) \neq \varphi\left(w_{k} r_{d}\right)$.
From the observation in (7), we know that $\left|L_{k-1}^{*}\right| \geq 2 m-3 k^{2}+6 k-3$.
As i increases, the number of vertices eliminated in each item increases or is constant, except for (R4) and (R8). However, we observe here that the number eliminated in items (R3) and (R4) is $(i-1)+(k-i-1)=(k-2)$, a constant, and the number eliminated in (R8) and (R9) is $2 i$, which is maximized when $i=k-1$. Therefore, an upper bound for the number of vertices eliminated through
items (R2) - (R11) as candidates for v_{i} is achieved when $i=k-1$. When $i=k-1$, the number of vertices eliminated by (R2), (R3), ..., (R11) is $(k-2),(k-2), 0,1,(k-2), 1,0,2(k-1), 1,(k-2)$ respectively, the sum of which is $6 k-7$. Now, since the induction hypothesis includes the condition $k \leq \Omega$, we can observe the following.

First, from $f(\Omega)$ and the definition of $L_{\Omega-1}$, we can follow the same steps as we did in (7) to see that $\left|L_{\Omega-1}\right| \geq 2 m-3 \Omega^{2}+6 \Omega-1$ and further, that $\left|L_{\Omega-1}^{*}\right| \geq 2 m-3 \Omega^{2}+6 \Omega-3$. Now, since by the induction hypothesis $k \leq \Omega$ and by (10) and (14), $\left|L_{i-1}^{*}\right|>\left|L_{i}^{*}\right|$ for $2 \leq i \leq k-1$, we have the following by our choice of Ω :

$$
\begin{equation*}
\left|L_{k-1}^{*}\right| \geq\left|L_{\Omega-1}^{*}\right| \geq 2 m-3 \Omega^{2}+6 \Omega-3>6 \Omega-7 \geq 6 k-7 \tag{15}
\end{equation*}
$$

Therefore, since $\left|L_{k-1}^{*}\right|>6 k-7$, such a vertex v_{i} meeting the restrictions in (R1) - (R11) exists. The following cases show that this choice of v_{i} ensures that (C1), (C2), and (C3) hold.

2.1. Case 1. (C1) Edges in $T_{a}^{k}, 1 \leq a<i$ do not appear in T_{i}^{k}.

First, by the induction hypothesis we know that the trees $T_{1}^{k-1}, T_{2}^{k-1}, \ldots, T_{k-1}^{k-1}$ are all rainbow edgedisjoint and spanning. Inductively, we also assume for some i with $2 \leq i<k$ the trees $T_{1}^{k}, T_{2}^{k}, \ldots, T_{i-1}^{k}$ are edge-disjoint rainbow spanning trees as well. By (9), regardless of the choice of v_{i}, the only edges in $T_{i}^{k}(1 \leq i<k)$ that are not in T_{i}^{k-1} are $v_{i} v_{i}^{\prime}$ and $r_{k} w_{i}$. Thus, if we can prove that the edges in $\left(E\left(T_{i}^{k-1}\right) \backslash\left\{r_{i} v_{i}, r_{i} r_{k}\right\}\right) \cup\left\{v_{i} v_{i}^{\prime}, r_{k} w_{i}\right\}$ are not in $T_{a}^{k}, 1 \leq a<i$, we will have shown that the trees $T_{1}^{k}, T_{2}^{k}, \ldots, T_{i}^{k}$ are all edge-disjoint rainbow and spanning; so by induction, $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$ are edge-disjoint rainbow spanning trees.

To that end, for the remainder of Case 1 suppose that $2 \leq i<k, 1 \leq a<i$, and $i<b<k$ and define the following sets of edges.
(1) $E_{\text {old }}\left(T_{a}^{k}\right)=\left\{x y \mid x y \in E\left(T_{a}^{k-1}\right) \cap E\left(T_{a}^{k}\right)\right\}$
(2) $E_{\text {new }}\left(T_{a}^{k}\right)=E\left(T_{a}^{k}\right) \backslash E\left(T_{a}^{k-1}\right)=\left\{v_{a} v_{a}^{\prime}, r_{k} w_{a}\right\}$
(3) $E_{\text {old }}\left(T_{i}^{k}\right)=\left\{x y \mid x y \in E\left(T_{i}^{k-1}\right) \cap E\left(T_{i}^{k}\right)\right\}$
(4) $E_{\text {new }}\left(T_{i}^{k}\right)=E\left(T_{i}^{k}\right) \backslash E\left(T_{i}^{k-1}\right)=\left\{v_{i} v_{i}^{\prime}, r_{k} w_{i}\right\}$

Observe that by (9), $E_{\text {old }}\left(T_{a}^{k}\right) \cap E_{\text {new }}\left(T_{a}^{k}\right)=\emptyset$ and $E\left(T_{a}^{k}\right)=E_{\text {old }}\left(T_{a}^{k}\right) \cup E_{\text {new }}\left(T_{a}^{k}\right)$. Similarly, $E_{\text {old }}\left(T_{i}^{k}\right) \cap E_{\text {new }}\left(T_{i}^{k}\right)=\emptyset$ and $E\left(T_{i}^{k}\right)=E_{\text {old }}\left(T_{i}^{k}\right) \cup E_{\text {new }}\left(T_{i}^{k}\right)$.

Since the trees $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$ are formed sequentially, it is clearly necessary to prohibit edges $v_{i} v_{i}^{\prime}$ and $r_{k} w_{i}$ from appearing in T_{a}^{k}. It is also very useful to prohibit edges $v_{i} v_{i}^{\prime}$ and $r_{k} w_{i}$ from appearing in T_{b}^{k-1}.

Consequently, when v_{i} was selected to satisfy (R1) - (R11) it was done in such a way that ensures $E_{\text {new }}\left(T_{i}^{k}\right) \cap\left(E\left(T_{a}^{k}\right) \cup E\left(T_{b}^{k-1}\right)=\emptyset\right.$ and $E_{\text {old }}\left(T_{i}^{k}\right) \cap\left(E\left(T_{a}^{k}\right) \cup E\left(T_{b}^{k-1}\right)=\emptyset\right.$. To prove this, six cases are considered:
(P1) $v_{i} v_{i}^{\prime}, r_{k} w_{i} \notin E_{\text {old }}\left(T_{a}^{k}\right)$,
(P2) $v_{i} v_{i}^{\prime}, r_{k} w_{i} \notin E_{\text {new }}\left(T_{a}^{k}\right)$,
(P3) $v_{i} v_{i}^{\prime}, r_{k} w_{i} \notin E\left(T_{b}^{k-1}\right)$,
(P4) $E_{\text {old }}\left(T_{i}^{k}\right) \cap E_{\text {old }}\left(T_{a}^{k}\right)=\emptyset$,
(P5) $E_{\text {old }}\left(T_{i}^{k}\right) \cap E_{\text {new }}\left(T_{a}^{k}\right)=\emptyset$,
(P6) $E_{\text {old }}\left(T_{i}^{k}\right) \cap E\left(T_{b}^{k-1}\right)=\emptyset$.
It is clear that if properties (P 1) - (P 6) are satisfied, then T_{i}^{k} is edge-disjoint from the trees, T_{a}^{k} and T_{b}^{k-1}. We consider edges $v_{i} v_{i}^{\prime}$ and $r_{k} w_{i}$ in turn for properties (P 1$)-(\mathrm{P} 3)$, then address properties (P4) - (P6).

2.1.1. Properties (P1) and (P3) for $v_{i} v_{i}^{\prime}$.

Since $E_{\text {old }}\left(T_{a}^{k}\right) \subset E\left(T_{a}^{k-1}\right)$, we can prove $v_{i} v_{i}^{\prime}$ is not an edge in $E_{\text {old }}\left(T_{a}^{k}\right)$ or T_{b}^{k-1} by showing that $v_{i} v_{i}^{\prime} \notin E\left(T_{c}^{k-1}\right)$ for $1 \leq c<k, c \neq i$.

Recall from (R1) and (14) that because $v_{i} \in L_{k-1}^{*}, v_{i}$ is a leaf adjacent to the root r_{c} in T_{c}^{k-1}. Therefore, to show that $v_{i} v_{i}^{\prime} \notin E\left(T_{c}^{k-1}\right)$, we need only prove that $v_{i}^{\prime} \neq r_{c}$. The following argument shows that (R2) guarantees this property.

Suppose to the contrary that $v_{i}^{\prime}=r_{c}$. Then $v_{i} v_{i}^{\prime}=v_{i} r_{c}$ and by (9), $\varphi\left(v_{i} r_{c}\right)=\varphi\left(v_{i} v_{i}^{\prime}\right)=\varphi\left(r_{i} r_{k}\right)$, contradicting (R2). It follows that $v_{i}^{\prime} \neq r_{c}$ so $v_{i} v_{i}^{\prime} \notin E\left(T_{c}^{k-1}\right)$, as required.

2.1.2. Property (P2) for $v_{i} v_{i}^{\prime}$.

Recall that $E_{\text {new }}\left(T_{a}^{k}\right)=\left\{v_{a} v_{a}^{\prime}, r_{k} w_{a}\right\}$. Thus, to prove that $v_{i} v_{i}^{\prime} \notin E_{\text {new }}\left(T_{a}^{k}\right)$ for $1 \leq a<i$, we need only show that $v_{i} v_{i}^{\prime} \neq v_{a} v_{a}^{\prime}$ and $v_{i} v_{i}^{\prime} \neq r_{k} w_{a}$. We consider each in turn.
(i.) $v_{i} v_{i}^{\prime} \neq v_{a} v_{a}^{\prime}$

By (9), we have that $\varphi\left(v_{i} v_{i}^{\prime}\right)=\varphi\left(r_{i} r_{k}\right)$ and $\varphi\left(v_{a} v_{a}^{\prime}\right)=\varphi\left(r_{a} r_{k}\right)$. But, by property (1) of $f(\psi)$ when $\psi=k-1$ we know $r_{i} \neq r_{a}$ and so $\varphi\left(r_{i} r_{k}\right) \neq \varphi\left(r_{a} r_{k}\right)$. It follows that $\varphi\left(v_{i} v_{i}^{\prime}\right) \neq \varphi\left(v_{a} v_{a}^{\prime}\right)$ and, therefore, $v_{i} v_{i}^{\prime} \neq v_{a} v_{a}^{\prime}$.
(ii.) $v_{i} v_{i}^{\prime} \neq r_{k} w_{a}$

Assume that $v_{i} v_{i}^{\prime}=r_{k} w_{a}$ and recall from (14) that because $v_{i} \in L_{k-1}^{*}, v_{i} \neq r_{k}$. Therefore, $v_{i}=w_{a}$. By (9), $\varphi\left(v_{i} v_{i}^{\prime}\right)=\varphi\left(r_{k} r_{i}\right)$, so since we are assuming that $v_{i} v_{i}^{\prime}=r_{k} w_{a}$, clearly $\varphi\left(r_{k} r_{i}\right)=\varphi\left(r_{k} w_{a}\right)$ and so $w_{a}=r_{i}=v_{i}$. But because $v_{i} \in L_{k-1}^{*}, v_{i} \neq r_{i}$ and this is a contradiction.
Combining the above two arguments, it is clear that $v_{i} v_{i}^{\prime} \notin E_{\text {new }}\left(T_{a}^{k}\right)$, as required.

2.1.3. Property (P1) for $r_{k} w_{i}$.

Recall from (6) that $r_{k} \in L_{k-1}$, so $r_{k} r_{a}$ is a pendant edge in T_{a}^{k-1} with leaf r_{k}. Therefore, from (9) it is clear that $r_{k} r_{a} \notin E\left(T_{a}^{k}\right)$ since it is removed from T_{a}^{k-1} in forming T_{a}^{k}. So r_{k} is not incident with any edges in $E_{\text {old }}\left(T_{a}^{k}\right)$ and thus, $r_{k} w_{i}$ cannot be an edge in $E_{\text {old }}\left(T_{a}^{k}\right)$, as required.

2.1.4. Property (P2) for $r_{k} w_{i}$.

Recall that $E_{\text {new }}\left(T_{a}^{k}\right)=\left\{v_{a} v_{a}^{\prime}, r_{k} w_{a}\right\}$. To show that $r_{k} w_{k} \notin E_{\text {new }}\left(T_{a}^{k}\right)$, we prove that $r_{k} w_{i} \neq r_{k} w_{a}$ and $r_{k} w_{i} \neq v_{a} v_{a}^{\prime}$ for $1 \leq a<i$. We consider each in turn.
(i.) $r_{k} w_{i} \neq r_{k} w_{a}$

To show that $r_{k} w_{i} \neq r_{k} w_{a}$, we need only show that $w_{i} \neq w_{a}$.
By (9) we have that $\varphi\left(r_{k} w_{i}\right)=\varphi\left(r_{i} v_{i}\right)$ and $\varphi\left(r_{k} w_{a}\right)=\varphi\left(r_{a} v_{a}\right)$. So if $r_{k} w_{i}=r_{k} w_{a}$, then $\varphi\left(v_{i} r_{i}\right)=\varphi\left(r_{a} v_{a}\right)$, contradicting (R3). Therefore, $r_{k} w_{i} \neq r_{k} w_{a}$, as required.
(ii.) $r_{k} w_{i} \neq v_{a} v_{a}^{\prime}$

Assume that $r_{k} w_{i}=v_{a} v_{a}^{\prime}$. Recall from (14) that because $v_{a} \in L_{k-1}^{*}, v_{a} \neq r_{k}$. Therefore, $v_{a}=w_{i}$. By (9), $\varphi\left(v_{a} v_{a}^{\prime}\right)=\varphi\left(r_{a} r_{k}\right)$, so since we are assuming that $r_{k} w_{i}=v_{a} v_{a}^{\prime}$, then $\varphi\left(r_{k} w_{i}\right)=\varphi\left(r_{k} r_{a}\right)$ and it follows that $r_{a}=w_{i}=v_{a}$. But this is a contradiction because $v_{a} \in L_{k-1}^{*}$ so by (14), $v_{a} \neq r_{a}$.
Combining the above two arguments, it is clear that $r_{k} w_{i} \notin E_{\text {new }}\left(T_{a}^{k}\right)$, as required.

2.1.5. Property (P3) for $r_{k} w_{i}$.

Recall that by (8), because r_{k} was chosen to be in L_{k-1}, r_{k} is a leaf adjacent to the root of T_{b}^{k-1}, $i<b<k$. Thus, to show $r_{k} w_{i} \notin E\left(T_{b}^{k-1}\right)$, we need only prove that $w_{i} \neq r_{b}$.

By (9), we have that $\varphi\left(r_{k} w_{i}\right)=\varphi\left(v_{i} r_{i}\right)$. So if $w_{i}=r_{b}$, then $r_{k} w_{i}=r_{k} r_{b}$ and $\varphi\left(v_{i} r_{i}\right)=\varphi\left(r_{k} r_{b}\right)$, contradicting (R4). Therefore, $r_{k} w_{i} \notin E\left(T_{b}^{k-1}\right)$, as required.
2.1.6. Properties (P4), (P5), and (P6).

We consider each property, (P4), (P5), and (P6), in turn.
(i.) Property (P4)

By our induction hypothesis, the trees, $T_{1}^{k-1}, T_{2}^{k-1}, \ldots, T_{k-1}^{k-1}$ are all edge disjoint. So (P4) follows because $E_{\text {old }}\left(T_{i}^{k}\right) \subset E\left(T_{i}^{k-1}\right)$ and $E_{\text {old }}\left(T_{a}^{k}\right) \subset E\left(T_{a}^{k-1}\right)$.
(ii.) Property (P5)

Since $a<i$, from (P3) (replacing i with a), it follows that $\left\{v_{a} v_{a}^{\prime}, r_{k} w_{a}\right\} \cap E\left(T_{c}^{k-1}\right)=\emptyset$, for $a<c<k$. In particular, since $i>a$, it follows that $E_{\text {new }}\left(T_{a}^{k}\right) \cap E\left(T_{i}^{k-1}\right)=\emptyset$. And lastly, since $E_{\text {old }}\left(T_{i}^{k}\right) \subset E\left(T_{i}^{k-1}\right)$, we have that $E_{\text {old }}\left(T_{i}^{k}\right) \cap E_{\text {new }}\left(T_{a}^{k}\right)=\emptyset$.
(iii.) Property (P6)

Again, by our induction hypothesis, the trees, $T_{1}^{k-1}, T_{2}^{k-1}, \ldots, T_{k-1}^{k-1}$ are all edge-disjoint. It follows that $E_{\text {old }}\left(T_{i}^{k}\right) \cap E\left(T_{b}^{k-1}\right)=\emptyset$ because $E_{\text {old }}\left(T_{i}^{k}\right) \subset E\left(T_{i}^{k-1}\right)$.
Therefore, properties (P4) - (P6) hold for $E_{\text {old }}\left(T_{i}^{k}\right)$.
The above Sections 2.1.1-2.1.6 ensure that properties (P1) - (P6) hold. As stated above, since these six properties hold, the trees $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$ are all edge-disjoint and further, from (9), are also rainbow and spanning.

2.2. Case 2. (C2) Edges in T_{k}^{k} do not appear in T_{i}^{k}.

Recall from (11) that T_{k}^{k} is defined by a sequence, $T_{k}^{k}(1), T_{k}^{k}(2), \ldots, T_{k}^{k}(k)$, and from (13) that at the $i^{\text {th }}$ induction step, $T_{k}^{k}(i)$ was determined by the choice of v_{i}. For the remainder of Case 2, suppose that $1 \leq i<k, 1 \leq a<i$, and $i<b<k$.

In order to prevent edges in T_{k}^{k} from also appearing in T_{i}^{k}, we will now show that T_{i}^{k} has been constructed in such a way that $T_{k}^{k}(i)$ and T_{k}^{k} satisfy the following properties:
(P7) $E\left(T_{k}^{k}(i)\right) \cap E\left(T_{a}^{k}\right)=\emptyset$
(P8) $E\left(T_{k}^{k}(i)\right) \cap E\left(T_{b}^{k-1}\right)=\left\{r_{k} r_{b}\right\}$
(P9) $E\left(T_{k}^{k}(i)\right) \cap E_{\text {old }}\left(T_{i}^{k}\right)=\emptyset$
(P10) $E\left(T_{k}^{k}(i)\right) \cap E_{\text {new }}\left(T_{i}^{k}\right)=\emptyset$
$(\mathrm{P} 11) w_{k} w_{k}^{\prime} \notin E\left(T_{i}^{k}\right)$
We note here that by (9), when T_{b}^{k} was constructed from T_{b}^{k-1}, edge $r_{k} r_{b}$ was removed, so it does not appear in T_{b}^{k}. Therefore, it is not necessary to prevent $r_{k} r_{b}$ from being an edge in $T_{k}^{k}(i)$ nor T_{k}^{k}.

Proving the above five properties will be done inductively. We show in the base step that $T_{k}^{k}(1)$ satisfies properties (P7) - (P10) with $i=1$, and then show that for $2 \leq i<k, T_{k}^{k}(i)$ satisfies the same four properties before finally proving property (P11).

The following preliminary result will be useful in proving properties (P7) - (P11).

2.2.1. Preliminary Result: $w_{i} \neq w_{k}$.

Recall from (8) that $w_{k} \in L_{k-1}$ was selected with r_{k} before any of the rainbow spanning trees $T_{1}^{k-1}, T_{2}^{k-1}, \ldots, T_{k-1}^{k-1}$ were revised. It will be useful to show that the vertices $w_{i} \in T_{i}^{k}, 1 \leq i<k$, cannot equal w_{k}.

From (9), we have that $\varphi\left(v_{i} r_{i}\right)=\varphi\left(r_{k} w_{i}\right)$. So if $w_{i}=w_{k}$, then $\varphi\left(v_{i} r_{i}\right)=\varphi\left(r_{k} w_{k}\right)$ contradicting (R5). Therefore, $w_{i} \neq w_{k}$.

2.2.2. Base Step: $i=1$.

Observe that for $2 \leq b<k, E\left(S_{r_{k}}\right) \cap E\left(T_{b}^{k-1}\right)=\left\{r_{k} r_{b}\right\}$ and $E\left(S_{r_{k}}\right) \cap E_{o l d}\left(T_{1}^{k}\right)=\emptyset$ since by (9), $r_{k} r_{1}$ is removed from T_{1}^{k-1} when forming T_{1}^{k}. Further, it is clear from (11) that the only edge in $T_{k}^{k}(1)$ that is not in $S_{r_{k}}$ is $w_{1} w_{1}^{\prime}$.
(i.) (P7)

Since $i=1$, there do not exist any such trees T_{a}^{k} since $1 \leq a<i$ and so property (P7) is vacuously true.
(ii.) (P8) and (P9)

First, recall that $E_{\text {old }}\left(T_{1}^{k}\right) \subset E\left(T_{1}^{k-1}\right)$. To establish properties (P8) and (P9), we show that $w_{1} w_{1}^{\prime} \notin E\left(T_{c}^{k-1}\right)$ for $1 \leq c<k$.

Suppose to the contrary that $w_{1} w_{1}^{\prime} \in E\left(T_{c}^{k-1}\right)$. Recall from (11) that $\varphi\left(w_{1} w_{1}^{\prime}\right)=$ $\varphi\left(r_{k} w_{k}\right)$. So if $w_{1} w_{1}^{\prime} \in E\left(T_{c}^{k-1}\right)$, then w_{1} is a vertex incident to the edge of color $\varphi\left(r_{k} w_{k}\right)$ in T_{c}^{k-1}. But this is impossible since from (9) we have that $\varphi\left(v_{1} r_{1}\right)=\varphi\left(r_{k} w_{1}\right)$ and from (R8) that $\varphi\left(v_{1} r_{1}\right) \neq \varphi\left(r_{k} \alpha\right)$, where α is a vertex incident to the edge of color $\varphi\left(r_{k} w_{k}\right)$ in T_{c}^{k-1}. Therefore, $w_{1} w_{1}^{\prime} \notin E\left(T_{c}^{k-1}\right)$ and $T_{k}^{k}(1)$ satisfies properties (P8) and (P9).
(iii.) (P10)

Recall that $E_{\text {new }}\left(T_{i}^{k}\right)=\left\{v_{i} v_{i}^{\prime}, r_{k} w_{i}\right\}$. To establish (P10) for $T_{k}^{k}(1)$, we need only show that $w_{1} w_{1}^{\prime} \neq v_{1} v_{1}^{\prime}$ and $w_{1} w_{1}^{\prime} \neq r_{k} w_{1}$. We consider each in turn.
(a.) $w_{1} w_{1}^{\prime} \neq v_{1} v_{1}^{\prime}$

Recall from (9) that $\varphi\left(v_{1} v_{1}^{\prime}\right)=\varphi\left(r_{k} r_{1}\right)$ and from (11) that $\varphi\left(w_{1} w_{1}^{\prime}\right)=\varphi\left(r_{k} w_{k}\right)$. So if $w_{1} w_{1}^{\prime}=v_{1} v_{1}^{\prime}$, then $\varphi\left(r_{k} w_{k}\right)=\varphi\left(r_{k} r_{1}\right)$ and so $w_{k}=r_{1}$. But this is not possible because by (8) $w_{k} \in L_{k-1}$ and so $w_{k} \neq r_{1}$. Therefore, $w_{1} w_{1}^{\prime} \neq v_{1} v_{1}^{\prime}$.
(b.) $w_{1} w_{1}^{\prime} \neq r_{k} w_{1}$

Recall from (11) that $\varphi\left(w_{1} w_{1}^{\prime}\right)=\varphi\left(r_{k} w_{k}\right)$. So if $w_{1} w_{1}^{\prime}=r_{k} w_{1}$, then $\varphi\left(r_{k} w_{k}\right)=\varphi\left(r_{k} w_{1}\right)$ and so $w_{k}=w_{1}$, contradicting the result in Section 2.2.1. Thus, $w_{1} w_{1}^{\prime} \neq r_{k} w_{1}$.
Therefore, property (P10) holds for $T_{k}^{k}(1)$ and we have established our base step.

2.2.3. Property (P7) for $2 \leq i<k$.

From (11), it is clear that the only edge in $T_{k}^{k}(i)$ that differs from $T_{k}^{k}(i-1)$ is $w_{i} w_{i}^{\prime}$. Therefore, since by induction we have that $T_{k}^{k}(i-1)$ satisfies (P7), in order to prove property (P7) is satisfied for $T_{k}^{k}(i)$, we need only show that $w_{i} w_{i}^{\prime}$ is not an edge in $T_{a}^{k}, 1 \leq a<i$.

To that end, suppose to the contrary that $w_{i} w_{i}^{\prime} \in E\left(T_{a}^{k}\right)$. Recall from (11) that $\varphi\left(w_{i} w_{i}^{\prime}\right)=$ $\varphi\left(r_{k} w_{i-1}\right)$. So if $w_{i} w_{i}^{\prime} \in E\left(T_{a}^{k}\right)$, then w_{i} is a vertex incident to the edge of color $\varphi\left(r_{k} w_{i-1}\right)$ in T_{a}^{k}. But this is impossible since from (9) we have that $\varphi\left(v_{i} r_{i}\right)=\varphi\left(r_{k} w_{i}\right)$ and from (R9) that $\varphi\left(v_{i} r_{i}\right) \neq \varphi\left(r_{k} \alpha\right)$, where α is a vertex incident to the edge of color $\varphi\left(r_{k} w_{i-1}\right)$ in T_{a}^{k}. Therefore, $w_{i} w_{i}^{\prime} \notin E\left(T_{a}^{k}\right)$ and $T_{k}^{k}(i)$ satisfies property (P7).

2.2.4. Properties (P8) and (P9) for $2 \leq i<k$.

Observe again that $E_{\text {old }}\left(T_{i}^{k}\right) \subset E\left(T_{i}^{k-1}\right)$. As in Section 2.2.3, to prove properties (P8) and (P9) for $T_{k}^{k}(i)$, we can show that $w_{i} w_{i}^{\prime} \notin E\left(T_{d}^{k-1}\right), i \leq d<k$.

For $i \leq d<k$, property (R9), which guarantees $\varphi\left(v_{i} r_{i}\right) \neq \varphi\left(r_{k} \alpha\right)$, where α is a vertex incident to the edge of color $\varphi\left(r_{k} w_{i-1}\right)$ in T_{d}^{k-1}, ensures $w_{i} w_{i}^{\prime} \notin E\left(T_{d}^{k-1}\right)$, thus ensuring that (P8) and (P9) hold for $T_{k}^{k}(i)$. The argument has been omitted here due to its similarity to the argument used above for (P7) in Section 2.2.3.

2.2.5. Property (P10) for $2 \leq i<k$.

To prove (P 10) for $T_{k}^{k}(i)$, we need only show that $w_{i} w_{i}^{\prime} \neq v_{i} v_{i}^{\prime}$ and $w_{i} w_{i}^{\prime} \neq r_{k} w_{i}$. We consider each in turn.
(i.) $w_{i} w_{i}^{\prime} \neq v_{i} v_{i}^{\prime}$

Recall from (9) that $\varphi\left(v_{i} v_{i}^{\prime}\right)=\varphi\left(r_{k} r_{i}\right)$ and from (11) that $\varphi\left(w_{i} w_{i}^{\prime}\right)=\varphi\left(r_{k} w_{i-1}\right)$. If $w_{i} w_{i}^{\prime}=$ $v_{i} v_{i}^{\prime}$, then $\varphi\left(r_{k} w_{i-1}\right)=\varphi\left(r_{k} r_{i}\right)$ and so $w_{i-1}=r_{i}$. But $r_{k} r_{i} \in E\left(T_{i}^{k-1}\right)$ and $r_{k} w_{i-1} \in$ $E\left(T_{i-1}^{k}\right)$; so if $w_{i-1}=r_{i}$, this contradicts property (P3) in the $i-1^{t h}$ induction step, which in particular (i.e. when $b=i$) ensures that $r_{k} w_{i-1} \notin E\left(T_{i}^{k-1}\right)$. Therefore, $w_{i} w_{i}^{\prime} \neq v_{i} v_{i}^{\prime}$, as required.
(ii.) $w_{i} w_{i}^{\prime} \neq r_{k} w_{i}$

Recall from (11) that $\varphi\left(w_{i} w_{i}^{\prime}\right)=\varphi\left(r_{k} w_{i-1}\right)$. If $w_{i} w_{i}^{\prime}=r_{k} w_{i}$, then $\varphi\left(r_{k} w_{i-1}\right)=\varphi\left(r_{k} w_{i}\right)$ and so $w_{i-1}=w_{i}$. However, this is impossible by the result in Section 2.1.4 which, in particular, proved that $r_{k} w_{i} \neq r_{k} w_{a}$ for $1 \leq a<i$. Thus, $w_{i} w_{i}^{\prime} \neq r_{k} w_{i}$.
Therefore, property (P10) holds for $T_{k}^{k}(i)$, as required.

2.2.6. Property (P11) for $w_{k} w_{k}^{\prime}$.

The above sections of Case 2 ensure that the rainbow spanning trees $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$ and the rainbow spanning graph, $T_{k}^{k}(k-1)$ are all edge-disjoint. Thus, it remains to show that $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$ and T_{k}^{k} are all edge-disjoint. As above, recall from (11) that the only edge in T_{k}^{k} that differs from $T_{k}^{k}(k-1)$ is $w_{k} w_{k}^{\prime}$. Therefore, showing property (P11) holds will prove that $T_{1}^{k}, T_{2}^{k}, \ldots T_{k-1}^{k}$ and T_{k}^{k} are edge-disjoint.

First, observe from (8) that since $w_{k} \in L_{k-1}, w_{k}$ is a leaf adjacent to the root r_{i} in T_{i}^{k-1} for $1 \leq i<k$. So if $w_{k} w_{k}^{\prime} \in E\left(T_{i}^{k}\right), w_{k} w_{k}^{\prime}=w_{i} r_{k}, v_{i} v_{i}^{\prime}$, or $w_{k} r_{i}$. We consider each in turn.
(i.) $w_{k} w_{k}^{\prime} \neq w_{i} r_{k}$

From (8) we know that $w_{k} \neq r_{k}$. So if $w_{k} w_{k}^{\prime}=w_{i} r_{k}$, then $w_{k}=w_{i}$, contradicting the preliminary result in Section 2.2.1. Therefore, $w_{k} w_{k}^{\prime} \neq w_{i} r_{k}$, as required.
(ii.) $w_{k} w_{k}^{\prime} \neq v_{i} v_{i}^{\prime}$

Recall from (14) that since $v_{i} \in L_{k-1}^{*}, v_{i} \neq w_{k}$. So if $w_{k} w_{k}^{\prime}=v_{i} v_{i}^{\prime}$, then $w_{k}=v_{i}^{\prime}$. From (9) we know that $\varphi\left(v_{i} v_{i}^{\prime}\right)=\varphi\left(r_{i} r_{k}\right)$, so if $w_{k}=v_{i}^{\prime}$, then $\varphi\left(v_{i} w_{k}\right)=\varphi\left(r_{i} r_{k}\right)$, contradicting (R10). Therefore, $w_{k} w_{k}^{\prime} \neq v_{i} v_{i}^{\prime}$, as required.
(iii.) $w_{k} w_{k}^{\prime} \neq w_{k} r_{i}$

Recall from (11) that $\varphi\left(w_{k} w_{k}^{\prime}\right)=\varphi\left(r_{k} w_{k-1}\right)$ and suppose that $w_{k} w_{k}^{\prime}=w_{k} r_{i}$. First observe that $i \neq k-1$ since $r_{k} w_{k-1} \in E\left(T_{k-1}^{k}\right)$ and we know from (8) and Section 2.2.1] that $w_{k} \neq r_{k}$ and $w_{k} \neq w_{k-1}$.

Now, for $1 \leq i \leq k-2$, if $w_{k} w_{k}^{\prime}=w_{k} r_{i}$ then $r_{i}=w_{k}^{\prime}$. But from (9) and (11) if $r_{i}=w_{k}^{\prime}$ then $\varphi\left(w_{k} w_{k}^{\prime}\right)=\varphi\left(r_{k} w_{k-1}\right)=\varphi\left(v_{k-1} r_{k-1}\right)=\varphi\left(w_{k} r_{i}\right)$, contradicting (R11). Therefore, $w_{k} w_{k}^{\prime} \neq w_{k} r_{i}$, as required.
It follows that $w_{k} w_{k}^{\prime} \notin E\left(T_{i}^{k}\right), 1 \leq i<k$.
The above Sections 2.2.1-2.2.6 ensure that the trees $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$ and the graph T_{k}^{k} are all edge-disjoint. Further, from (9) it is clear that $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$ are all rainbow spanning trees and from (12) that T_{k}^{k} is a spanning rainbow graph (since for every leaf, $w_{c}, 1 \leq c \leq k$, which is adjacent to r_{k} and for which $r_{k} w_{c}$ is removed from T_{k}^{k}, there exists w_{c}^{\prime} such that the edge $w_{c} w_{c}^{\prime}$ is added to T_{k}^{k} and edge $w_{d} w_{d}^{\prime}$ in T_{k}^{k} such that $\varphi\left(w_{d} w_{d}^{\prime}\right)=\varphi\left(r_{k} w_{c}\right)$, where $d \equiv c+1 \bmod k$.)

2.3. Case 3. (C3) Preventing cycles from appearing in T_{k}^{k}.

Properties (C1) and (C2) in the previous sections guarantee that the rainbow spanning trees $T_{1}^{k}, T_{2}^{k}, \ldots, T_{k-1}^{k}$ and the rainbow spanning graph T_{k}^{k} are all edge-disjoint. Thus, it remains to prove that T_{k}^{k} is acyclic and, therefore, a tree. This is proved inductively, showing that for $1 \leq i \leq k$, $T_{k}^{k}(i)$ is acyclic. //

For our base step, we let $T_{k}^{k}(0)=S_{r_{k}}$ and observe that this graph is clearly acyclic.
Recall from (11) that for $1 \leq i \leq k, T_{k}^{k}(i)=T_{k}^{k}(i-1)-r_{k} w_{i}+w_{i} w_{i}^{\prime}$. Therefore, since by induction we have that $T_{k}^{k}(i-1)$ is acyclic, in order to prove $T_{k}^{k}(i)$ is acyclic, we need only show that adding $w_{i} w_{i}^{\prime}$ to $T_{k}^{k}(i-1)-r_{k} w_{i}$ does not create a cycle. Let $T_{k}^{k}(i-1)^{*}=T_{k}^{k}(i-1)-r_{k} w_{i}$.

Now, from (11) observe that all of the edges in $T_{k}^{k}(i-1)$ are of the form $r_{k} x, r_{k} w_{a}^{\prime}$, and $w_{a} w_{a}^{\prime}$, where $1 \leq a<i$ and $x \in V\left(K_{2 m}\right) \backslash\left(\left\{\bigcup_{a=1}^{i-1} w_{a}, w_{a}^{\prime}\right\} \cup\left\{r_{k}\right\}\right)$. Thus, $w_{i} \in\left\{r_{k}, x, w_{a}, w_{a}^{\prime}\right\}$. We now show that $w_{i}=x$ and, further, that since $w_{i}=x, T_{k}^{k}(i)$ is acyclic. //

In showing that $w_{i}=x$, we first consider the case where $1 \leq i<k$ and then the case where $i=k$ before then showing $T_{k}^{k}(i)$ is acyclic for $1 \leq i \leq k$.
(i.) $w_{i}=x, 1 \leq i<k$

First observe that $w_{i} \neq r_{k}$ since $r_{k} w_{i}$ is an edge in T_{i}^{k}. Also, $w_{i} \neq w_{a}$ (this property is established by (R3) and was discussed in Section 2.1.4). Lastly, recall from (9) that
$\varphi\left(v_{i} r_{i}\right)=\varphi\left(r_{k} w_{i}\right)$. So if $w_{i}=w_{a}^{\prime}$ then $\varphi\left(v_{i} r_{i}\right)=\varphi\left(r_{k} w_{a}^{\prime}\right)$, contradicting (R6). Therefore, $w_{i} \neq w_{a}^{\prime}$ and it follows that $w_{i}=x$.
(ii.) $w_{k}=x$

Begin by observing that $w_{k} \neq r_{k}$ (since by (8) w_{k} and r_{k} were chosen to be distinct vertices) and, for $1 \leq i<k, w_{k} \neq w_{i}$ (this property was established by (R5) and discussed in Section 2.2.1). The following argument shows $w_{k} \neq w_{i}^{\prime}$.

First, observe that $w_{k} \neq w_{1}^{\prime}$ since $\varphi\left(w_{1} w_{1}^{\prime}\right)=\varphi\left(r_{k} w_{k}\right)$, so if $w_{k}=w_{1}^{\prime}$ then $w_{1}=r_{k}$, which we know from (9) cannot be the case.

Now, for $2 \leq i<k$, let $\alpha \in V\left(K_{2 m}\right)$ be the vertex such that $\varphi\left(w_{k} \alpha\right)=\varphi\left(r_{k} w_{i-1}\right)$ and recall from (12) that $\varphi\left(w_{i} w_{i}^{\prime}\right)=\varphi\left(r_{k} w_{i-1}\right)$. Suppose that $w_{k}=w_{i}^{\prime}$. Then since $\varphi\left(w_{k} \alpha\right)=$ $\varphi\left(r_{k} w_{i-1}\right)=\varphi\left(w_{i} w_{i}^{\prime}\right)=\varphi\left(w_{i} w_{k}\right), \alpha$ must equal w_{i}. But from (9), we have that $\varphi\left(v_{i} r_{i}\right)=$ $\varphi\left(r_{k} w_{i}\right)$, so if $w_{i}=\alpha$ then $\varphi\left(v_{i} r_{i}\right)=\varphi\left(r_{k} \alpha\right)$, contradicting (R7) which ensures that $\varphi\left(v_{i} r_{i}\right) \neq$ $\varphi\left(r_{k} \alpha\right)$, where α is the vertex such that $\varphi\left(w_{k} \alpha\right)=\varphi\left(r_{k} w_{i-1}\right)$. Therefore, $w_{k} \neq w_{i}^{\prime}, 2 \leq i<k$.

Combining the above arguments, it is clear that $w_{k}=x$.
(iii.) $T_{k}^{k}(i)$ is acyclic, $1 \leq i \leq k$

Observe that since $w_{i}=x, w_{i} \in V\left(K_{2 m}\right) \backslash\left(\left\{\bigcup_{a=1}^{i-1} w_{a}, w_{a}^{\prime}\right\} \cup\left\{r_{k}\right\}\right)$ and w_{i} is a leaf adjacent to r_{k} in $T_{k}^{k}(i-1)$. Now, in order for $w_{i} w_{i}^{\prime}$ to create a cycle in $T_{k}^{k}(i)$, there would have to exist a path from w_{i} to w_{i}^{\prime} in $T_{k}^{k}(i-1)^{*}$. But, as we just observed, w_{i} is a leaf in $T_{k}^{k}(i-1)$ and since $T_{k}^{k}(i-1)^{*}=T_{k}^{k}(i-1)-r_{k} w_{i}, w_{i}$ is an isolated vertex in $T_{k}^{k}(i-1)^{*}$ so it follows that no such path exists. Therefore, $T_{k}^{k}(i)$ is acyclic, as required.

The above three arguments show that T_{k}^{k} is acyclic, thus completing the proof of the theorem.

References

[1] S. Akbari, A. Alipour, Multicolored Trees in complete graphs, J. Graph Theory, 54, (2007), 221-232.
[2] S. Akbari, A. Alipour, H.-L. Fu and Y.-H. Lo, Multicolored parallelism of isomorphic spanning trees, SIAM J. Discrete Math., 20(2006), No. 3, 564-567.
[3] D. Banks, G. Constantine, A. Merriwether and R. LaFrance, Nonparametric inference on mtDNA mismatches, J. Nonparametre. Statist., 11(1999), 215-232.
[4] J. Balogh, H. Liu and R. Montgomery, Rainbow spanning trees in properly colored complete graphs, arXiv:1704.07200, (2017).
[5] R. A. Brualdi and S. Hollingsworth, Multicolored trees in complete graphs, J. Combin. Theory Ser. B, 68 (1996), No. 2, 310-313.
[6] J. Carraher, S. Hartke, and P. Horn, Edge-disjoint rainbow spanning trees in complete graphs, European J. Combin., 57(2016), 71-84.
[7] G. M. Constantine, Multicolored parallelisms of isomorphic spanning trees, Discrete Math. Theor. Comput. Sci., 5(2002), No. 1, 121-125.
[8] H.-L. Fu and Y.-H. Lo, Multicolored isomorphic spanning trees in complete graphs, Ars Combin., 122(2015), 423-430.
[9] F. Harary, Parallel concepts in graph theory, Math. Comput. Modeling, 18(1993), 101-105.
[10] P. Horn, Rainbow spanning trees in complete graphs colored by one-factorizations, preprint, (2013).
[11] M. Jacroux, On the construction of sets of integers with equal power sums, J. Number Theory, 52(1995), No. 1, 35-42.
[12] A. Kaneko, M. Kano, and K. Suzuki, Three edge-disjoint Multicolored Spanning Trees in Complete Graphs, preprint, (2002).
[13] J. Krussel, S. Marshall and H. Verrall, Spanning Trees Orthogonal to One-Factorizations of $K_{2 n}$, Ars Combin., 57(2000), 77-82.
[14] A. Pokrovskiy and B. Sudakov, Linearly many rainbow trees in properly edge-coloured complete graphs, arXiv:1703.07301v2, (2017).

Department of Applied Mathematics, National Chiao Tung University, Hsinchu 300, Taiwan
E-mail address, Hung-Lin Fu: hlfu@math.nctu.edu.tw
School of Mathematical Science, Xiamen University, Xiamen, 361005, PRC
E-mail address, Yuan-Hsun Lo: yhlo0830@gmail.com
Department of Mathematics and Statistics, Auburn University, Auburn, Alabama 36849, United States E-mail address, K. E. Perry: kep0024@auburn.edu

Department of Mathematics and Statistics, Auburn University, Auburn, Alabama 36849, United States E-mail address, C. A. Rodger: rodgec1@auburn.edu

[^0]: Date: September 11, 2018.
 2010 Mathematics Subject Classification. 05C05, 05C15, 05C70.
 Key words and phrases. edge-coloring, complete graph, rainbow spanning tree.

