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POINCARÉ POLYNOMIAL OF ELLIPTIC

ARRANGEMENTS IS NOT A SPECIALIZATION OF THE

TUTTE POLYNOMIAL

ROBERTO PAGARIA

Abstract. The Poincaré polynomial of the complement of an arrange-
ments in a non compact group is a specialization of the G-Tutte poly-
nomial associated with the arrangement. In this article we show two
unimodular elliptic arrangements (built up from two graphs) with the
same Tutte polynomial, having different Betti numbers.

1. Introduction

Let A ∈ M(k, n;Z) be an integer matrix and let G be a group of the form
H × (S1)p × Rq, where H is a finite abelian group. Each column α of A
defines a morphism from Gk to G given by

(g1, . . . , gk) 7→ α1g1 + α2g2 + · · ·+ αkgk.

We call Hi ⊂ Gk the kernel of the map defined by the ith-column of A. The
complement of the arrangement A in G is the topological space

M(A;G) = Gk \
n⋃

i=1

Hi.

When G = R2 ≃ C we obtain the classical definition of hyperplane ar-

rangements. If G = S1 × R ≃ C∗ the arrangement is called toric. We are
mainly interested in the case G = S1 × S1 ≃ E (an elliptic curve), this
arrangements is called elliptic arrangement.

There are several combinatorial objects associated with an arrangement:
for instance, the poset of layers, the arithmetic matroid ([2, 3]) and the G-
Tutte polynomial ([7, 6, 8]). Given a subset S of [n] = {1, 2, . . . , n} we call
layer any connected component of the intersection

⋂
i∈S Hi. The poset of

layers is the set of all layers ordered by reverse inclusion. The arithmetic

matroid is the triple ([n], rk,mG) associated with toric, hyperplanes or ellip-
tic arrangements, where rk(S) and mG(S) are, respectively, the codimension
and the number of connected components of

⋂
i∈S Hi. The G-Tutte poly-

nomial is a generalization of the arithmetic Tutte polynomial and of the
classical Tutte polynomial; it is defined by

TG
A (x, y)

def
=

∑

S⊆[n]

mG(S)(x− 1)rk[n]−rk(S)(y − 1)|S|−rk(S).

Recently, a formula for the Poincaré polynomial of M(A;G) was found by
Liu, Tran and Yoshinaga [6] when G is not compact, i.e. q > 0. This formula
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involves the G-characteristic polynomial χG
A(t), which is a specialization of

the G-Tutte polynomial:

χG
A(t) = (−1)rk[n]tk−rk[n]TG

A (1− t, 0).

When G is not compact, the Poincaré polynomial of M(A;G) is

PM(A;G) = (−tp+q−1)kχG
A

(
−

PG(t)

tp+q−1

)
,

where PG(t) = mG(∅)(t + 1)p is the Poincaré polynomial of the group G.
The formula

e(M(A;G)) = (−1)(p+q)kχG
A((−1)p+qe(G))

for the Euler characteristic holds for all groups G (e(G) is the euler charac-
teristic of G), see [1, 6].

We focus on the “smallest” compact group G = S1×S1, the case G = S1

being trivial. From now on, we denote the two-dimensional compact torus
S1 × S1 by E. In this case, Bibby [1] and Dupont [5] have given a model
of the cohomology ring H•(M(A;E);Q), provided by the second page of
the Serre spectral sequence for the inclusion M(A;E) →֒ Ek. As shown
in [9], this model is combinatorial, i.e. can be defined from the arithmetic
matroid ([n], rk,mE). Thus the Betti numbers are implicitly codified in
the arithmetic matroid, but there is no explicit formula that allows their
calculation. We will show that these Betti number are independent from
the arithmetic Tutte polynomial, exhibiting an example.

2. The model for cohomology

We recall the model developed by Dupont [5] and Bibby [1] for the coho-
mology ring in the particular case of graphic elliptic arrangements.

Let Ek+1/E ≃ Ek be the quotient of Ek+1 by the diagonal action of
E. Given a finite graph G = ([k + 1], E), undirected and without loops or
multiple edges, we can define an arrangement AG in Ek+1/E given by the
divisors

He = Hi,j
def
= {g ∈ Ek+1/E | gi = gj},

for each edge e = (i, j) ∈ E . We fix arbitrarily a spanning forest T of G and
an orientation of G.

Consider the external algebra Λ over the rationals on the generators
{ωe, xt, yt}e∈E

t∈T
. We set the bi-degree of ωe to be (1, 0) and the one of xt

and yt to be (0, 1). For the sake of an easier notation we define for each
oriented edge e = i → j the element xe =

∑
f∈γ(e) ǫ(e, f)xf , where γ(e) is

the unique path from i to j in T and ǫ(e, f) is 1 if the arc f is oriented
as in the path γ(e), −1 otherwise. Consider the homogeneous ideal I ⊂ Λ
generated by the elements ωexe, ωeye and

l∑

i=0

(−1)iωe0ωe1 . . . ω̂ei . . . ωel ,

for every cycle C = (e0, e1, . . . , el) of G. We call E2(AG) the quotient Λ/I.
Finally, we define the differential d2 : E2(AG) → E2(AG) on the generators
by d2(ωe) = xeye and d2(xe) = d2(ye) = 0. This is well defined since



POINCARÉ POLYNOMIAL OF ELLIPTIC ARRANGEMENTS 3

Figure 1. The graph G1 on the left and G2 on the right

d2(I) ⊆ I. The model (E2(AG),d2) coincides with the second page of the
Leray spectral sequence and the cohomology of the second page (i.e. the third
one) is the cohomology ring of M(AG ;E) with rational coefficients. The
bi-gradation of the third page corresponds to the bi-gradation given by the
mixed Hodge structure (and the total degree). Let e(a, b) be the dimension of
the homogeneous subspace of bi-degree (a, b) of the third page. The number
e(a, b) coincides with the dimension of the subspace of Ha+b(M(AG ;E)) of
weight a+ 2b (see [4, 4 pg 81]).

Since the elliptic arrangement AG is unimodular, i.e. every subset of divi-
sors has connected intersection, the G-Tutte polynomial TE

AG
coincides with

the classical Tutte polynomial TG associated with the graph G. In particular

the dimension of Ea,b
2 (AG)can be easily calculated from

∑

a,b

dimEa,b
2 (AG)t

asb = TG

(
1 +

(1 + t)2

s
, 0

)
sk.

Thus, the Hodge polynomial evaluated in (−1, u) is

∑

n


∑

m≥0

(−1)me(n − 2m,m)


un = TG

(
1−

(1 + u)2

u2
, 0

)
(−u2)k,

and the Euler characteristic of M(AG ;E) is (−1)kTG(1, 0), as shown in [1].

3. The example

Consider the two graphs G1 and G2 in fig. 1 and the corresponding graphic
elliptic arrangements A1 and A2. These graphs appeared for the first time
in [10]. They share the same Tutte polynomial, which is the following

T (x, y) = x7 + 4x6 + x5y + 9x5 + 6x4y + 3x3y2 + x2y3 + 13x4 + 13x3y+

+7x2y2 + 3xy3 + y4 + 12x3 + 15x2y + 9xy2+

+3y3 + 7x2 + 9xy + 4y2 + 2x+ 2y.

Using SAGE [11], we have computed the mixed Hodge numbers of M(A1)
and of M(A2) and reported them in Tables 1 and 2. For this computation
we have used the code available here1; the calculation of the Hodge number
e(4, 2) has taken more than 2 days with a CPU of 2.2GHz and about 32 GB

1http://poisson.phc.dm.unipi.it/~pagaria/Graphic_Elliptic_Arr.txt

http://poisson.phc.dm.unipi.it/~pagaria/Graphic_Elliptic_Arr.txt
http://poisson.phc.dm.unipi.it/~pagaria/Graphic_Elliptic_Arr.txt
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Table 1. The Hodge numbers of M(A1)

0 4
0 6 26
0 4 45 74
0 8 54 154 116
0 6 60 200 259 94
0 2 29 144 302 224 41
1 14 80 234 358 260 77 8

In position (i, j) there is the dimension of the subgroup of
weight i+ 2j in H i+j(M(A1;E)).

Table 2. The Hodge numbers of M(A2)

0 4
0 6 26
0 6 45 74
0 10 69 162 116
0 6 59 202 271 100
0 2 30 150 301 224 38
1 14 80 234 359 266 77 8

In position (i, j) there is the dimension of the subgroup of
weight i+ 2j in H i+j(M(A2;E)).

of RAM. Some Hodge numbers have being calculated using the following
formula

∑

n



∑

m≥0

(−1)me(n − 2m,m)


 un = 1 + 14u+ 80u2 + 232u3 + 329u4+

+ 122u5 − 165u6 − 24u7 + 164u8 − 56u9 − 71u10 + 68u11 − 26u12 + 4u13.

The Poincaré polynomials of M(A1) and M(A2) are different:

PM(A1;E)(t) = 1 + 14t+ 82t2 + 269t3 + 570t4 + 820t5 + 765t6 + 363t7,

PM(A2;E)(t) = 1 + 14t+ 82t2 + 270t3 + 578t4 + 844t5 + 785t6 + 366t7.

The Euler characteristic of M(A1;E) and of M(A2;E) are both equal to
−48.

Acknowledgements. The server, used for computations, has been ac-
quired thanks to the support of the University of Pisa, within the call
“Bando per il cofinanziamento dell’acquisto di medio/grandi attrezzature
scientifiche 2016”.
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