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Abstract

It was proved in [Y.-Q. Feng, C. H. Li and J.-X. Zhou, Symmetric cubic graphs
with solvable automorphism groups, European J. Combin. 45 (2015), 1-11] that a
cubic symmetric graph with a solvable automorphism group is either a Cayley graph
or a 2-regular graph of type 22, that is, a graph with no automorphism of order 2
interchanging two adjacent vertices. In this paper an infinite family of non-Cayley
cubic 2-regular graphs of type 22 with a solvable automorphism group is constructed.
The smallest graph in this family has order 6174.
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1 Introduction

Throughout this paper, all groups are finite and all graphs are finite, undirected and
simple. Let G be a permutation group on a set Ω and let α ∈ Ω. We let Gα denote
the stabilizer of α in G, that is, the subgroup of G fixing the point α. The group G is
semiregular on Ω if Gα = 1 for any α ∈ Ω, and regular if G is transitive and semiregular.
We let Zn, Z

∗
n and Sn denote the cyclic group of order n, the multiplicative group of units

of Zn and the symmetric group of degree n, respectively.
For a graph Γ, we denote its vertex set, edge set and automorphism group by V (Γ),

E(Γ) and Aut(Γ), respectively. For a non-negative integer s, an s-arc in a graph Γ is
an ordered (s + 1)-tuple (v0, . . . , vs) of vertices of Γ such that vi−1 is adjacent to vi for
1 ≤ i ≤ s, and vi−1 6= vi+1 for 1 ≤ i < s. Note that a 0-arc is just a vertex. A graph Γ is
(G, s)-arc-transitive or (G, s)-regular for G ≤ Aut(Γ), if G is transitive or regular on the

∗Corresponding author. E-mails: yqfeng@bjtu.edu.cn, klavdija.kutnar@upr.si, dragan.marusic@upr.si,
dwyang@bjtu.edu.cn

1

http://arxiv.org/abs/1607.02618v1


set of s-arcs of Γ, respectively, and we also say that G is s-arc-transitive or s-regular on Γ.
In particular, G is regular if it is 0-regular. A graph Γ is s-arc-transitive or s-regular if it
is (Aut(Γ), s)-arc-transitive or (Aut(Γ), s)-regular, respectively. Note that 0-arc-transitive
and 1-arc-transitive correspond to the terms vertex-transitive and symmetric, respectively.

Vertex stabilizers of connected cubic symmetric graphs were determined in [4]. Taking
into account the possible isomorphism types for the pair consisting of a vertex-stabilizer
and an edge-stabilizer, the full automorphism groups of connected cubic symmetric graphs
fall into seven classes (see [3]). In particular, for a connected cubic (G, 2)-regular graph,
if G has an involution flipping an edge, then it is said to be of type 21; otherwise, it is of
type 22. Graphs of type 22 are extremely rare; there are only nine graphs of type 22 in
Conder’s list of all cubic symmetric graphs up to order 10, 000 [2].

Many cubic symmetric graphs are Cayley graphs, but there are also examples of non-
Cayley graphs among them, such as the Petersen graph and the Coxeter graph. For
convenience such graphs will be referred to as VNC-graphs. Many publications have
investigated VNC-graphs from different perspectives. For example, a lot of constructions
of VNC-graphs come as a result of the search for non-Cayley numbers, that is, numbers
for which a VNC-graph of that order exists (see, for example, [8, 11, 12, 13, 14, 16]).

The problem of classifying VNC-graphs of small valencies, in particular cubic graphs,
has received a considerable attention (see, for example, [17]). Recently, Feng, Li and
Zhou [5] proved that a connected cubic symmetric VNC-graph, admitting a solvable arc-
transitive group of automorphisms, is of type 22, and that further such a graph must be
a regular cover of the complete bipartite graph K3,3 (see Section 3 for the definition of
regular covers). From Conder’s list [2], the smallest such graph has order 6174. In fact,
to the best of our knowledge, this graph was the only known graph of this kind prior to
our construction given in this paper. It is worth mentioning that the family contains a
subfamily of symmetric elementary abelian covers of the Pappus graph of order 18, which
was overlooked in [15].

2 Preliminaries

Let G be a group and let M ≤ G. A subgroup N of G is a normal complement of M
in G if N EG, N ∩M = 1, and NM = G. A normal complement of a Sylow p-subgroup
is called the normal p-complement in G, that is, a normal p-complement in G is a normal
Hall p′-subgroup of G. The following proposition comes from [1, (39.2)].

Proposition 2.1 Let G be a group. If p is the smallest prime divisor of the order |G|
and G has cyclic Sylow p-subgroups, then G has a normal p-complement.

From [3, Theorem 5.1], we have the following proposition.

Proposition 2.2 Let Γ be a connected cubic (G, s)-regular graph. Then the following

hold.
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(1) If G has an arc-transitive subgroup of type 22, then s = 2 or 3;

(2) If G is of type 22, then G has no 1-regular subgroup.

Let Γ be a graph, and let K ≤ Aut(Γ). The quotient graph ΓK of Γ relative to K is
defined as the graph with vertices the orbits of K on V (Γ), with two orbits being adjacent
if there is an edge in Γ between those two orbits. In view of [9, Theorem 9], we have the
following proposition.

Proposition 2.3 Let Γ be a connected cubic (G, s)-regular graph for s ≥ 1, and let NEG.
If N has more than two orbits on V (Γ), then N is semiregular and the quotient graph ΓN

is a cubic (G/N, s)-regular graph with N as the kernel of G acting on V (ΓN).

A connected cubic (G, s)-regular graph is said to be G-basic, if G has no non-trivial
normal subgroups with more than two orbits on V (Γ). By [5, Theorem 1.1], we have the
following proposition.

Proposition 2.4 Let G be solvable and let Γ be a connected cubic (G, 3)-regular graph.

If Γ is G-basic, then Γ ∼= K3,3 and G ∼= S2
3 ⋊ Z2.

3 Main result

We first construct connected cubic 2-regular graphs as regular covers of K3,3.

Construction: Let n be an integer such that n ≥ 7 and that the equation x2+x+1 = 0
has a solution r in Zn. Then r is an element of order 3 in Z

∗
n, and, by [6, Lemma 3.3],

the prime decomposition of n is 3tqe11 · · · qess with t ≤ 1, s ≥ 1, ei ≥ 1 and 3
∣∣ (qi − 1) for

1 ≤ i ≤ s. In particular, n is odd. Let K = 〈a, b, c, h | an = bn = cn = h3 = [a, b] = [a, c] =
[b, c] = 1, ah = ar, bh = br, ch = cr〉 be a group. Then K ∼= Z

3
n ⋊ Z3 and K has odd order

3n3. Denote by V (K3,3) = {u,v,w,x,y, z} the vertex set of K3,3 such that the vertices
from the set {u,v,w} are adjacent to the vertices from the set {x,y, z}, see Figure 1. The
graph NCG18n3 is defined to have the vertex set V (NCG18n3) = V (K3,3)×K and edge set

E(NCG18n3) = {{(u, g), (x, g)}, {(u, g), (y, g)}, {(u, g), (z, g)}, {(v, g), (x, gh−1b)},
{(v, g), (y, g)}, {(v, g), (z, gh)}, {(w, g), (x, gh−1a)}, {(w, g), (y, ghc)},
{(w, g), (z, g)} | g ∈ K}.

Clearly, NCG18n3 is a bipartite graph.

Theorem 3.1 The graph NCG18n3 is a connected cubic symmetric non-Cayley graph and

its automorphism group is solvable and of type 22.

To prove Theorem 3.1, we need to introduce the voltage graph. Let Γ be a connected
graph and K a group. Assign to each arc (u, v) of Γ a voltage φ(u, v) such that φ(u, v) ∈ K
and φ(u, v) = φ(v, u)−1, where φ : Γ 7→ K is a voltage assignment of Γ. Let Γ ×φ K
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Figure 1: The complete bipartite graph K3,3 with a voltage assignment φ.

be the voltage graph obtained from φ in the following way: V (Γ) × K is its vertex set
and {{(u, a), (v, aφ(u, v))} | {u, v} ∈ E(Γ), a ∈ K} is its edge set. Now, Γ ×φ K is
a regular cover (or a K-cover) of Γ, and the graph Γ is a base graph. Moreover, the
quotient graph (Γ×φ K)K is isomorphic to Γ, and Γ×φ K is connected if and only if the
voltages on the arcs generate the voltage groupK. The projection onto the first coordinate
π : Γ×φ K 7→ Γ is a regular K-covering projection, where the group K acts semiregularly
via a left multiplication on itself. Clearly, π induces an isomorphism π̄ from the quotient
graph (Γ ×φ K)K to Γ. We say that an automorphism α of Γ lifts to an automorphism
α̃ of Γ ×φ K if α̃π = πα. In this case, α̃ is a lift of α. In particular, K is the lift of the
identify group of Aut(Γ), and if an automorphism α ∈ Aut(Γ) has a lift α̃, then Kα̃ are
all lifts of α. Let F = NAut(Γ×φK)(K), the normalizer of K in Aut(Γ×φ K), and let L be
the largest subgroup of Aut(Γ) that can be lifted. Since K E F , each automorphism α̃ in
F induces an automorphism of (Γ×φK)K and hence an automorphism α of Γ via π̄, so α̃
is a lift of α. On the other hand, it is easy to check that the lifts of each automorphism in
L map orbits to orbits of K, and so normalize K. Therefore, there exists an epimorphism
ψ from F to L with kernel K, and thus F/K ∼= L. For an extensive treatment of regular
covering we refer the reader to [10].

The problem whether an automorphism α of Γ lifts can be grasped in terms of voltages
as follows. Observe that a voltage assignment on arcs extends to a voltage assignment on
walks in a natural way. For α ∈ Aut(Γ), we define a function ᾱ from the set of voltages
on fundamental closed walks based at a fixed vertex v in V (Γ) to the voltage group K by
(φ(C))ᾱ = φ(Cα), where C ranges over all fundamental closed walks at v, and φ(C) and
φ(Cα) are the voltages of C and Cα, respectively. The next proposition is a special case
of [10, Theorem 4.2].

Proposition 3.2 If π : Γ×φK 7→ Γ is a connected regular K-covering, then an automor-

phism α of Γ lifts if and only if ᾱ extends to an automorphism of K.

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1: By Construction, NCG18n3 is the voltage graph K3,3 ×φ K
with the voltage assignment φ as depicted in Figure 1. Let P : NCG18n3 7→ K3,3 be the
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covering projection. Let A = Aut(NCG18n3) and F = NA(K). Then L = F/K is the
largest subgroup of Aut(K3,3), which can be lifted along P.

Denote by i1i2 · · · is the cycle having the consecutively adjacent vertices i1, i2, . . . , is.
There are four fundamental closed walks based at the vertex u in K3,3, that is, uyvz,
uzwx, uyvx and uzwy, which are generated by the four cotree arcs (v, z), (w, x), (v, x),
and (w, y), respectively. Since 〈φ(v, z), φ(w,x), φ(v,x), φ(w,y)〉 = 〈h, h−1a, h−1b, hc〉 =
K, the graph NCG18n3 is connected.

Define four permutations on V (K3,3) as follows:

α1 = (uvw), α2 = (xyz), β = (ux)(vy)(wz), δ = (vywz)(ux).

It is easy to check that Aut(K3,3) = 〈α1, α2, β, δ〉 ∼= (S3 × S3) ⋊ Z2, and 〈α1, α2, δ〉 ∼=
(Z3 ×Z3)⋊Z4 is 2-regular. Clearly, each involution in 〈α1, α2, δ〉 fixes the bipartite parts
of K3,3, and then the subgroup 〈α1, α2, δ〉 is of type 22 and contains no regular subgroup.
Since αδ

1 = α2 and αδ
2 = α−1

1 , we have that 〈α1, α2, δ〉 has no normal subgroup of order 3.
Under α1, α2, β and δ, each walk of K3,3 is mapped to a walk of the same length. We

list all these walks and their voltages in Table 1, in which C denotes a fundamental closed
walk of K3,3 based at the vertex u and φ(C) denotes the voltage on C.

C φ(C) Cα1 φ(Cα1) Cα2 φ(Cα2)
uyvz h vywz hc−r uzvx hb

uzwx h−1a vzux h−1b−r uxwy h−1a−r2c

uyvx h−1b vywx h−1arb−rc−r2 uzvy h−1

uzwy hc vzuy h uxwz ha−r

C φ(C) Cβ φ(Cβ) Cδ φ(Cδ)

uyvz h xvyw h−1ab−r2c−r xwyv ha−rbcr
2

uzwx h−1a xwzu ha−r xvzu h−1b−r2

uyvx h−1b xvyu hb−r xwyu h−1a−r2c

uzwy hc xwzv h−1a−r2b xvzw hab−r

Table 1: Fundamental walks and their images with corresponding voltages.

Let ᾱ1 be the map defined by φ(C)ᾱ1 = φ(Cα1), where C ranges over the four funda-
mental closed walks of K3,3 based at the vertex u. Similarly, we can define ᾱ2, β̄ and δ̄.
Recall that r2 + r + 1 = 0 (mod n). The following equations will be used frequently:

[a, b] = [a, c] = [b, c] = 1, ah = har, bh = hbr, ch = hcr.

By Table 1, one may easily check that ᾱ1, ᾱ2 and δ̄ extend to three automorphisms of
K induced by a 7→ b−rc−1, b 7→ arb−rcr, c 7→ cr, h 7→ hc−r; a 7→ a−r2br

2

c, b 7→ br
2

,
c 7→ a−rb−1, h 7→ hb; and a 7→ a−1cr, b 7→ arbr

2

c−r2 , c 7→ a−r2br
2

c−r2, h 7→ ha−rbcr
2

,
respectively. Hence, by Proposition 3.2, α1, α2 and δ lift.

Suppose β̄ extends to an automorphism of K, say β∗. By Table 1, hβ
∗

= h−1ab−r2c−r

and (h−1a)β
∗

= ha−r. Thus aβ
∗

= (h · h−1a)β
∗

= hβ
∗

· (h−1a)β
∗

= h−1ab−r2c−r · ha−r =

b−1c−r2 and (aβ
∗

)h
β∗

= (b−1c−r2)h
−1ab−r2c−r

= b−r2c−r. Since ah = ar, we have (aβ
∗

)h
β∗

=

5



(ah)β
∗

= (aβ
∗

)r, that is, b−r2c−r = (b−1c−r2)r = b−rc−1. Hence −r = −1 and r = 1. It
follows that 3 = 0 (mod n) because r2 + r + 1 = 0 (mod n), contradicting n ≥ 7.

By Proposition 3.2, we can conclude that β does not lift. Since α1, α2, δ lift and
|Aut(K3,3) : 〈α1, α2, δ〉| = 2, the largest lifted group is L = 〈α1, α2, δ〉. Since F/K = L
and L is 2-regular, NCG18n3 is (F, 2)-regular and F is solvable.

Suppose F is of type 21. Then F has an involution g reversing an edge in NCG18n3 ,
and thus gK is an involution in F/K reversing an edge in (NCG18n3)K = K3,3, which is
impossible because L is of type 22. Thus F is of type 22.

To complete the proof we need to show that F = A and that NCG18n3 is not a Cayley
graph. We first prove that F has no regular subgroup. Suppose, on the contrary, that
F has a regular subgroup R on V (NCG18n3). Then R has order twice an odd integer.
Since NCG18n3 is bipartite, R has an involution g interchanging the two bipartite parts
of NCG18n3 . Since F/K ∼= 〈α1, α2, δ〉 ∼= (Z3 × Z3) ⋊ Z4 and K has the odd order 3n3,
the Sylow 2-subgroups of F are isomorphic to Z4. By Proposition 2.1, F has a normal
Hall 2′-subgroup H , which has two orbits as the two bipartite parts of NCG18n3 with
vertex stabilizer isomorphic to Z3. Then H〈g〉 is a 1-regular subgroup of F , contrary to
Proposition 2.2 (2). Hence F has no regular subgroup on V (NCG18n3).

Finally, suppose that A 6= F . Since A has an arc-transitive proper subgroup F of type
22, by Proposition 2.2 (1), the group A is 3-regular. This implies that |A : F | = 2 and
F E A. Since A/F ∼= Z2 and F is solvable, A is solvable.

Let H be a maximal normal subgroup of A having at least three orbits on V (NCG18n3).
By Proposition 2.3, H is semiregular and the quotient graph (NCG18n3)H is (A/H, 3)-
regular. By the maximality of H , (NCG18n3)H is A/H-basic. Since A/H is solvable,
Proposition 2.4 implies that (NCG18n3)H ∼= K3,3 and A/H ∼= S2

3 ⋊ Z2. It follows that
|H| = |V (NCG18n3)|/6 = |K|. Since |A : F | = 2 and |H/H ∩ F | = |HF/F |

∣∣ |A/F |, we
have |H/H ∩ F | = 1 or 2, and since |H| is odd, |H/H ∩ F | = 1, that is , H ≤ F .

Recall that F = NA(K). Since A 6= F , the subgroup K is not normal in A, and thus
H 6= K. Since HEF , we have H ∩KEF and 1 6= HK/KEF/K. Since |K| = |H| is odd
and L = F/K ∼= Z

2
3 ⋊ Z4, the quotient group HK/K is a non-trivial 3-group, and since

L has no normal subgroup of order 3, we have HK/K ∼= Z
2
3. It follows that |H ∩ K| =

|H||K|
|HK|

= 1
9
|K| and thus |H ∩K| = 1

54
|V (NCG18n3)| since |V (NCG18n3)| = 6|K|. Since F

is 2-regular on NCG18n3 and H ∩K E F , Proposition 2.3 implies that the quotient graph
(NCG18n3)H∩K is a connected cubic (F/H ∩ K, 2)-regular graph of order 54. Moreover,
since F has no regular subgroup, F/H∩K has no regular subgroup on V ((NCG18n3)H∩K).
However, by [2] there is only one connected cubic symmetric graph of order 54, the graph
F54, which is 2-regular, of girth 6, and, by [7, Theorem 1.1], a Cayley graph. It follows
that (NCG18n3)H∩K

∼= F54 and F/H ∩K = Aut((NCG18n3)H∩K), so that F/H ∩K has a
regular subgroup, a contradiction.

Thus A = F is solvable, of type 22 and has no regular subgroup. In other words, Γ is
non-Cayley as claimed. This completes the proof.

Remark: By the proof of Theorem 3.1, KEAut(NCG18n3). When n is a prime p, that is,
K ∼= Z

3
p ⋊ Z3 with 3

∣∣ (p− 1), the group K has a characteristic Sylow p-subgroup P and
P ∼= Z

3
p. Thus P E Aut(NCG18p3). Clearly, P has more than two orbits on V (NCG18p3).
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By Proposition 2.3, (NCG18p3)P is a connected cubic symmetric graph of order 18. By [2],
up to isomorphism, there is only one connected cubic symmetric graph of order 18, that
is, the Pappus graph. Hence NCG18p3 is a connected 2-regular Z

3
p-cover of the Pappus

graph with 3
∣∣ (p− 1). These graphs were overlooked in [15, Theorem 3.1].
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