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Abstract

A cyclic ordering of the points in a Mendelsohn triple system of order
v (or MTS(v)) is called a sequencing. A sequencing D is ℓ-good if there
does not exist a triple (x, y, z) in the MTS(v) such that

1. the three points x, y, and z occur (cyclically) in that order in D; and

2. {x, y, z} is a subset of ℓ cyclically consecutive points of D.

In this paper, we prove some upper bounds on ℓ for MTS(v) having ℓ-
good sequencings and we prove that any MTS(v) with v ≥ 7 has a 3-good
sequencing. We also determine the optimal sequencings of every MTS(v)
with v ≤ 10.

1 Introducton

There has been considerable recent interest in different kinds of block-avoiding
sequencings of Steiner triple systems (or STS(v)). See for example, [1, 2, 4, 5, 9].
A similar problem, in the setting of directed triple systems (or DTS(v)), was
introduced in [6]. In this paper, we initiate a study of sequencings of Mendelsohn
triple systems, or MTS(v).

A cyclic triple is an ordered triple (x, y, z), where x, y, z are distinct. This
triple contains the directed edges (or ordered pairs) (x, y), (y, z) and (z, x) (we
might also write these directed edges as xy, yz and zx, respectively). Note that
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(x, y, z), (y, z, x) and (z, x, y) are “equivalent” when considered as cyclic triples,
i.e., they all contain the same three directed edges. The cyclic triple (x, y, z)
can be depicted as follows:

x

y

z

Let X be a set of v points (or vertices) and let ~Kv denote the complete
directed graph on vertex set X . This graph has v(v − 1) directed edges. A
Mendelsohn triple system of order v (see [8]) is a pair (X, T ), where X is a
set of v points and T is a set of cyclic triples (or more simply, triples) whose

elements are members of X , such that every directed edge in ~Kv occurs in
exactly one triple in T . In graph-theoretic language, we are decomposing the
complete directed graph into directed cycles of length three.

We will abbreviate the phrase “Mendelsohn triple system of order v” to
MTS(v). It is well-known that an MTS(v) contains exactly v(v − 1)/3 triples,
and an MTS(v) exists if and only if v ≡ 0, 1 mod 3, v 6= 6. Various results on
MTS(v) can be found in [3].

Suppose (X, T ) is an MTS(v), where, for convenience, X = {1, . . . , v}. Sup-
pose we arrange the points in X in a directed cycle, say D = (i1 i2 · · · iv). We
will refer to such a directed cycle as a sequencing. Clearly, any cyclic shift of
the sequencing D is equivalent to D.

A cyclic ordering can be defined as a ternary relation as follows. Given
a sequencing D = (i1 i2 · · · iv), we first define the associated total ordering
i1 < i2 < · · · < iv. Then we define the induced ternary relation C(D) as follows

[x, y, z] ∈ C(D) if and only if x < y < z or y < z < x or z < x < y.

Observe that any cyclic shift of D gives rise to the same ternary relation.
This definition can be explained informally as follows: In order to determine

if a triple [x, y, z] ∈ C(D), we start at x and proceed around the directed cycle
D. Then [x, y, z] ∈ C(D) if and only if we encounter y before we encounter z.
From this, it is obvious that exactly one of [x, y, z] or [x, z, y] is in C(D).

We say that a cyclic triple T = (x, y, z) is contained in a sequencing D =
(i1 i2 · · · iv) if [x, y, z] ∈ C(D). For an integer ℓ ≥ 3, we say that the sequencing
D is ℓ-good if there does not exist a triple (x, y, z) ∈ T such that

1. (x, y, z) is contained in D, and

2. {x, y, z} is a subset of ℓ cyclically consecutive points of D.

Of course an ℓ-good sequencing is automatically κ-good for all κ such that
3 ≤ κ ≤ ℓ − 1.

The basic questions we address in this paper are as follows:

• Given a particular MTS(v), say (X, T ), what is the largest integer ℓ such
that (X, T ) has an ℓ-good sequencing?
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• Given a positive integer v ≡ 0, 1 mod 3, v 6= 6, what is the largest integer
ℓ such that

– there exists an MTS(v) that has an ℓ-good sequencing, or

– every MTS(v) has an ℓ-good sequencing?

Example 1.1. The triples (0, 1, 3) and (0, 3, 2), developed modulo 7, yield an

MTS(7). It is not hard to see that D = (0 1 2 3 4 5 6) is a 3-good sequencing

for this MTS(7). This follows because:

1. none of the seven triples obtained from (0, 3, 2) are contained in D, and

2. the seven triples obtained from (0, 1, 3) are contained in D, but none of

these triples is a subset of three cyclically consecutive points of D.

However, this sequencing is not 4-good, because each of the triples obtained from

(0, 1, 3) is a subset of four cyclically consecutive points of D.

The rest of this paper is organized as follows. In Section 2, we prove an
MTS(v) has an ℓ-good sequencing only if ℓ ≤ ⌊ v−1

2
⌋. In Section 3, we summarize

the results of computer searches we used to determine the optimal sequencings
of every MTS(v) with v ≤ 10. In Section 4, we prove that any MTS(v) with
v ≥ 7 has a 3-good sequencing. Finally, in Section 5, we conclude with a few
comments.

2 Necessary Conditions

Theorem 2.1. Suppose v is even. Then no MTS(v) has an ℓ-good sequencing

if ℓ ≥ v/2.

Proof. Without loss of generality, we assume the sequencing is

D = (0 1 · · · v − 1).

We will show that there is no MTS(v), say (X, T ), where X = {0, 1, . . . , v − 1}
and for which D is a v/2-good sequencing. In what follows, all arithmetic is
modulo v.

There must be a triple (0, 1, x) ∈ T , where x ∈ {2, . . . , v−1}. If 2 ≤ x < v/2,
then {0, 1, x} is a subset of the first v/2 points of D, namely, 0, 1, . . . , v/2 − 1.
Similarly, if 2 + v/2 ≤ x ≤ v − 1, then {0, 1, x} a subset of v/2 cyclically
consecutive points of D, namely, 2 + v/2, . . . , v − 1, 0, 1. Hence, x = v/2 or
x = 1 + v/2 and thus either

R0 =
(

0, 1,
v

2

)

or S0 =
(

0, 1, 1 +
v

2

)

is a triple in T .
Similarly, it follows for each i ∈ Zv that exactly one of

Ri =
(

i, i+ 1, i+
v

2

)

or Si =
(

i, i+ 1, i+ 1 +
v

2

)
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is a triple in T . Let R = {Ri : i ∈ Zv} and let S = {Si : i ∈ Zv}.
Suppose Ri ∈ T . This triple contains the ordered pair (i+v/2, i). The triple

Si−1+v/2 =
(

i− 1 +
v

2
, i+

v

2
, i
)

also contains the ordered pair (i + v/2, i), so Si−1+v/2 6∈ T . Then it must be
the case that Ri−1+v/2 ∈ T . Similarly, the triples Ri and

Si+v/2 =
(

i+
v

2
, i+ 1 +

v

2
, i+ 1

)

both contain the ordered pair (i+ 1, i+ v/2). Therefore Si+v/2 6∈ T and hence
Ri+v/2 ∈ T . In summary, if Ri ∈ T , then Ri−1+v/2 ∈ T and Ri+v/2 ∈ T .

Now, using the fact that Ri−1+v/2 ∈ T , we see that Ri−1+v/2+v/2 = Ri−1 ∈
T . Therefore, if Ri ∈ T , we have that Ri−1 ∈ T . From this, it follows easily
that R ⊆ T or S ⊆ T . We consider the following two cases.

Case 1 : R ⊆ T and S ∩ T = ∅.

The triples in R cover all ordered pairs having differences 1, v/2−1 and v/2,
where the difference of a pair (a, b) is (b− a) mod v. Now consider the ordered
pair (0, 2), which has difference 2. There must be a triple (0, 2, x) ∈ T .

If 3 ≤ x < v/2, then {0, 2, x} is a subset of the first v/2 points of D, namely,
0, 1, . . . , v/2−1. Similarly, if 3+v/2 ≤ x ≤ v−1, then {0, 2, x} is again a subset
of v/2 cyclically consecutive points of D, namely, 3 + v/2, . . . , v − 1, 0, 1, 2.

If x ∈ {v/2, 1 + v/2, 2 + v/2}, then we have have two pairs with difference
v/2− 1 or v/2, because

0−
v

2
=

v

2
,

1 +
v

2
− 2 =

v

2
− 1, and

2 +
v

2
− 2 =

v

2
.

Therefore, x = 1.
It follows in a similar manner that all the triples of the form (i, i+ 2, i+ 1)

are in T . But this is impossible because (0, 2, 1) and (1, 3, 2) both contain the
ordered pair (2, 1).

Case 2 : S ⊆ T and R∩ T = ∅.

The triples in S also cover all ordered pairs having differences 1, v/2−1 and
v/2. Therefore the proof is identical to case 1.

Now we turn to the case of odd v.

Theorem 2.2. Suppose v is odd. Then no MTS(v) has an ℓ-good sequencing

if ℓ ≥ (v + 1)/2.
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Proof. The proof is similar to that of Theorem 2.1. We assume the sequencing
is D = (0 1 · · · v−1). We will show that there is no MTS(v), say (X, T ), where
X = {0, 1, . . . , v − 1} and for which D is a (v + 1)/2-good sequencing. There
must be a triple (0, 1, x) ∈ T , where x ∈ {2, . . . , v−1}. If 2 ≤ x ≤ (v−1)/2, then
{0, 1, x} is a subset of the first (v+1)/2 points of D, namely, 0, 1, . . . , (v− 1)/2.
Similarly, if (v + 3)/2 ≤ x ≤ v − 1, then {0, 1, x} is a also a subset of (v + 1)/2
cyclically consecutive points of D, namely, (v + 3)/2, . . . , v − 1, 0, 1. Hence, it
must be the case that x = (v + 1)/2, i.e., (0, 1, (v + 1)/2) ∈ T .

An identical argument shows that T must contain all of the triples

(

i, i+ 1, i+
v + 1

2

)

,

where arithmetic is moduli v and 0 ≤ i ≤ v − 1. In particular, T contains the
triples

(

0, 1,
v + 1

2

)

and

(

v + 1

2
,
v + 3

2
, 1

)

.

But these two triples both contain the ordered pair (1, (v + 1)/2), so we have a
contradiction.

Combining Theorems 2.1 and 2.2, we obtain the following.

Corollary 2.3. If an MTS(v) has an ℓ-good sequencing, then ℓ ≤ ⌊ v−1

2
⌋.

3 Sequencings of MTS(v) for Small Values of v

We have determined the optimal sequencings for all MTS(v) with v ≤ 10. The
results are given in Table 1. This table lists the number of nonisomorphic
MTS(v) for each v, along with the number of designs that have 3-good and 4-
good sequencings. None of these designs have 5-good sequencings, by Corollary
2.3.

We present the three MTS(9) that have 4-good sequencings, as well as the
five MTS(10) that do not have have 4-good sequencings, in the Appendices.
Additional details can be found in the technical report [7].

We noticed one particularly interesting fact concerning the five nonisomor-
phic MTS(10) that do not have a 4-good sequencing. If any triple is removed
from one of these five MTS(10), then the resulting “partial” MTS(10) having 29
triples turns out to have a 4-good sequencing (we verified this fact by computer).
So these MTS(10) “almost” have 4-good sequencings. In fact, we know from
these results that any “partial”MTS(10) having 29 triples has a 4-good sequenc-
ing. This is because such a partial MTS(10) can automatically be completed to
an MTS(10), and therefore any partial MTS(10) having 29 triples arises from
the deletion of a triple from an MTS(10). Clearly, if we delete a triple from an
MTS(10) that has a 4-good sequencing, then the resulting partial MTS(10) also
has a 4-good sequencing.
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Table 1: Sequencings of MTS(v) with v ≤ 10

Nonisomorphic ℓ-good sequencings
v MTS(v) ℓ = 3 ℓ = 4
3 1 0 0
4 1 0 0
6 0 0 0
7 3 3 0
9 18 18 3

10 143 143 138

4 Constructing 3-good Sequencings

Charlie Colbourn proved that any STS(v) has a 3-good sequencing. His method
is described in [4]; it is based on examining the triples that contain a particular
point x and then relabelling the points in a suitable way. We have adapted this
approach to obtain 3-good sequencings of MTS(v); however, it turned out to be
quite a bit more complicated to obtain the desired result for MTS(v) that it did
for STS(v).

Suppose (X, T ) is an MTS(v) and fix a particular point x ∈ X . Construct a
directed graph Gx on vertex set X \{x} as follows. For every triple (x, y, z) ∈ T
(or a cyclic rotation of this triple), include the directed edge (y, z) in Gx. It
is not hard to see that Gx consists of a vertex-disjoint union of one or more
directed cycles (note that some of these directed cycles could have length two).
Suppose the directed cycles are named C1, C2, . . . , Cs. We can construct a
(cyclic) sequencing Dx of X \ {x} by writing out the cycles C1, C2, . . . , Cs in
order. For each of the cycles Ci, we can arbitrarily pick any vertex in the cycle
as a starting point.

It is easy to see that no three cyclically consecutive vertices of the sequencing
Dx comprise a triple. Consider three consecutive vertices, say xi, xj and xk. At
least one of (xi, xj) or (xj , xk) is an edge in Gx. In the first case, (x, xi, xj) ∈ T
so (xi, xj , xk) 6∈ T , and in the second case, (x, xj , xk) ∈ T so again (xi, xj , xk) 6∈
T .

The difficulty is that, if we insert x into Dx in any position, the sequencing
is no longer 3-good. So we need to modify Dx at the same time that we insert
x. We illustrate how this can be done, in various situations, in the rest of this
section.

4.1 A Directed Cycle of Length at least Six

Let’s suppose that C1 is a directed cycle of length τ ≥ 6, say (1, 2, . . . , τ). This
means that the following five triples are in T :

(x, 1, 2) (x, 2, 3) (x, 3, 4) (x, 4, 5) (x, 5, 6).

6



Suppose that Dx = (1 2 · · · τ · · · v). Replace the four vertices 1 2 3 4 by
3 4 1 x 2, obtaining a sequencing D of X . Notice that v is the vertex preceding
3 in D. We check that there are no triples comprising three consecutive vertices
of the modified sequencing D:

(v, 3, 4) 6∈ T because (x, 3, 4) ∈ T
(3, 4, 1) 6∈ T because (x, 3, 4) ∈ T
(4, 1, x) 6∈ T because (x, 4, 5) ∈ T
(1, x, 2) 6∈ T because (x, 2, 3) ∈ T
(x, 2, 5) 6∈ T because (x, 2, 3) ∈ T
(2, 5, 6) 6∈ T because (x, 5, 6) ∈ T .

4.2 Two Directed Cycles, Each of Length at Least Three

Suppose that Gx contains two directed cycles of length at least three, say
(y, 3, 4, 5, . . . ) (note that it is possible that y = 5, if this cycle has length three)
and (1, 2, z, . . . ). We can assume that y 3 4 1 2 z are consecutive vertices in Dx.

The following five triples are in T :

(x, 1, 2) (x, 2, z) (x, y, 3) (x, 3, 4) (x, 4, 5).

Delete the two consecutive vertices 4 1 from Dx and replace them by 1 x 4,
obtaining a sequencing D of X . We check that there are no triples comprising
three consecutive vertices of the modified sequencing D:

(y, 3, 1) 6∈ T because (y, 3, x) ∈ T
(3, 1, x) 6∈ T because (x, 3, 4) ∈ T
(1, x, 4) 6∈ T because (x, 4, 5) ∈ T
(x, 4, 2) 6∈ T because (x, 4, 5) ∈ T
(4, 2, z) 6∈ T because (x, 2, z) ∈ T .

4.3 Two Directed Cycles of Length Two

Suppose that v ≥ 7 and there are two directed cycles in Gx having length two,
say (1, 2) and (3, 4). We assume that 3 4 1 2 are consecutive vertices in Dx.
The following four triples are in T :

(x, 1, 2) (x, 2, 1) (x, 3, 4) (x, 4, 3).

Choose z ≥ 5 such that (4, 2, z) 6∈ T and choose y ≥ 5 such that (3, 1, y) 6∈ T
and y 6= z. We also require that

• y and z are in different directed cycles in Gx, or

• if Gx contains only three directed cycles, then y immediately precedes z
in a directed cycle in Gx (this can be done if v ≥ 7).

7



Then we can assume that y immediately precedes 3 in Dx and z immediately
follows 2 in Dx. Now, delete the two consecutive vertices 1 4 from Dx and
replace them by 4 1 x, obtaining a sequencing D of X .

We check that there are no triples comprising three consecutive vertices of
the modified sequencing D:

(y, 3, 1) 6∈ T by the choice of y
(3, 1, x) 6∈ T because (x, 3, 4) ∈ T
(1, x, 4) 6∈ T because (x, 4, 3) ∈ T
(x, 4, 2) 6∈ T because (x, 4, 3) ∈ T
(4, 2, z) 6∈ T by the choice of z.

4.4 Two Directed Cycles, One of Length Two

Suppose that v ≥ 6 and Gx consists of exactly two directed cycles, one of length
two, say (1, 2), and one of length v − 2, say (3, 4, . . . , v). This implies that the
following triples are in T :

(x, 1, 2) (x, 2, 1) (x, 3, 4) (x, 4, 5) (x, 5, 6) (x, v − 1, v) (x, v, 3).

We assume that Dx = (1 2 3 4 · · · v − 1 v).
Now, if (5, 4, 2) ∈ T , then (5, 4, 1) 6∈ T . Therefore by interchanging 1 and 2

if necessary, we can assume that (5, 4, 2) 6∈ T .
Replace the four vertices 1 2 3 4 in Dx by 3 1 x 4 2 to construct the

sequencing D, so We check that there are no triples comprising three consecutive
vertices of the sequencing D:

(v − 1, v, 3) 6∈ T because (x, v − 1, v) ∈ T
(v, 3, 1) 6∈ T because (x, v, 3) ∈ T
(3, 1, x) 6∈ T because (x, 3, 4) ∈ T
(1, x, 4) 6∈ T because (x, 4, 5) ∈ T
(x, 4, 2) 6∈ T because (x, 4, 5) ∈ T
(4, 2, 5) 6∈ T by assumption
(2, 5, 6) 6∈ T because (x, 5, 6) ∈ T .

4.5 The Main Theorem

We can now show that the four cases we have considered cover all possibilities.
Suppose that v ≥ 7 and we classify Gx according to the number of directed
cycles of length two that it contains.

• If Gx has at least two directed cycles of length two, use the construction
in Section 4.3.

• If Gx has exactly one directed cycle of length two, then either

– Gx contains at least two directed cycles of length at least three, in
which case we can use the construction in Section 4.2, or

8



– Gx consists of exactly two directed cycles, one of length two and one
of length at least five, so we can use the construction in Section 4.4.

• If Gx has no directed cycles of length two, then either

– Gx contains at least two directed cycles of length at least three, in
which case we can use the construction in Section 4.2, or

– Gx consists of a single directed cycle of length at least seven, so we
can use the construction in Section 4.1.

Therefore, we have the following result.

Theorem 4.1. Any MTS(v) with v ≥ 7 has a 3-good sequencing.

5 Comments

Recent papers have considered ℓ-good sequencings for STS(v), DTS(v) and
MTS(v) (however, we should note that the definition of ℓ-good sequencing is
slightly different in each case). It is interesting to compare the results obtained
for these three types of triple systems.

• For STS(v), [9] establishes that an ℓ-good sequencing exists only if ℓ ≤
(v + 2)/3. But there are only a few small examples known where this
bound is met with equality. In fact, it is currently unknown if there is an
infinite class of STS(v) that have (cv)-good sequencings, for any positive
constant c. Proving this for c ≈ 1/2 would be the best possible result
in light of current knowledge, but it would still be of interest if we could
establish this result for some smaller value of c, say c = 1/4. It is also
known that every STS(v) has a 3-good sequencing (see [4]); every STS(v)
with v > 71 has a 4-good sequencing (see [4]); and every STS(v) with
v ≥ ℓ6/16 has an ℓ-good sequencing (see [9]).

• For DTS(v) (i.e., directed triple systems of order v), it is possible that
a v-good sequencing exists. In fact, there is a DTS(v) having a v-good
sequencing for all permissible values of v (see [6]). It is also shown in [6]
that there is a DTS(v) that does not have a v-good sequencing, for all
v ≡ 0, 1 mod 3, v ≥ 7.

• In this paper, we showed that ℓ ≤ ⌊ v−1

2
⌋ is a necessary condition for the

existence of an ℓ-good sequencing of an MTS(v). We showed that this
bound is met with equality for v = 7, 9, 10 and we also proved that every
MTS(v) has a 3-good sequencing.
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A The three MTS(9) that have 4-good sequenc-

ings

M91.1

(0, 2, 1) (0, 1, 6) (0, 3, 2) (0, 7, 3) (0, 4, 7) (0, 8, 4) (0, 6, 5) (0, 5, 8)
(1, 2, 7) (1, 3, 6) (1, 8, 3) (1, 5, 4) (1, 4, 8) (1, 7, 5) (2, 3, 8) (2, 4, 6)
(2, 6, 4) (2, 5, 7) (2, 8, 5) (3, 4, 5) (3, 7, 4) (3, 5, 6) (6, 7, 8) (6, 8, 7)

Lexicographic least 4-good sequencing : 023471856

Number of 4-good sequencings found: 18

M93.1

(0, 2, 1) (0, 1, 3) (0, 6, 2) (0, 3, 8) (0, 4, 6) (0, 7, 4) (0, 5, 7) (0, 8, 5)
(1, 2, 7) (1, 8, 3) (1, 6, 4) (1, 4, 8) (1, 5, 6) (1, 7, 5) (2, 6, 3) (2, 3, 7)
(2, 4, 5) (2, 8, 4) (2, 5, 8) (3, 5, 4) (3, 4, 7) (3, 6, 5) (6, 7, 8) (6, 8, 7)

Lexicographic least 4-good sequencing : 047563812

Number of 4-good sequencings found: 36

M97.1
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(0, 1, 2) (0, 2, 1) (0, 6, 3) (0, 3, 8) (0, 4, 6) (0, 7, 4) (0, 5, 7) (0, 8, 5)
(1, 3, 6) (1, 7, 3) (1, 4, 7) (1, 8, 4) (1, 6, 5) (1, 5, 8) (2, 3, 7) (2, 8, 3)
(2, 6, 4) (2, 4, 8) (2, 5, 6) (2, 7, 5) (3, 4, 5) (3, 5, 4) (6, 7, 8) (6, 8, 7)

Lexicographic least 4-good sequencing : 031485726

Number of 4-good sequencings found: 324

B The five MTS(10) that do not have 4-good se-

quencings

M10116.1

(0, 1, 8) (0, 9, 1) (0, 5, 2) (0, 2, 7) (0, 4, 3) (0, 3, 6)
(0, 7, 4) (0, 6, 5) (0, 8, 9) (1, 2, 3) (1, 3, 2) (1, 4, 5)
(1, 5, 4) (1, 6, 7) (1, 7, 6) (1, 9, 8) (2, 6, 4) (2, 4, 8)
(2, 5, 9) (2, 8, 6) (2, 9, 7) (3, 4, 9) (3, 7, 5) (3, 5, 8)
(3, 9, 6) (3, 8, 7) (4, 6, 8) (4, 7, 9) (5, 6, 9) (5, 7, 8)

M10116.2

(0, 1, 8) (0, 9, 1) (0, 5, 2) (0, 2, 7) (0, 4, 3) (0, 3, 6)
(0, 7, 4) (0, 6, 5) (0, 8, 9) (1, 2, 3) (1, 3, 2) (1, 4, 5)
(1, 5, 4) (1, 6, 7) (1, 7, 6) (1, 9, 8) (2, 6, 4) (2, 4, 8)
(2, 5, 9) (2, 8, 6) (2, 9, 7) (3, 4, 9) (3, 5, 7) (3, 8, 5)
(3, 9, 6) (3, 7, 8) (4, 6, 8) (4, 7, 9) (5, 6, 9) (5, 8, 7)

M10118.1

(0, 1, 8) (0, 9, 1) (0, 4, 2) (0, 2, 7) (0, 5, 3) (0, 3, 6)
(0, 7, 4) (0, 6, 5) (0, 8, 9) (1, 2, 3) (1, 3, 2) (1, 4, 5)
(1, 5, 4) (1, 6, 7) (1, 7, 6) (1, 9, 8) (2, 4, 6) (2, 8, 5)
(2, 5, 9) (2, 6, 8) (2, 9, 7) (3, 8, 4) (3, 4, 9) (3, 5, 7)
(3, 9, 6) (3, 7, 8) (4, 8, 6) (4, 7, 9) (5, 6, 9) (5, 8, 7)

M10134.1

(0, 1, 8) (0, 9, 1) (0, 5, 2) (0, 2, 7) (0, 4, 3) (0, 3, 6)
(0, 6, 4) (0, 7, 5) (0, 8, 9) (1, 2, 3) (1, 3, 2) (1, 4, 5)
(1, 5, 4) (1, 6, 7) (1, 7, 6) (1, 9, 8) (2, 4, 8) (2, 8, 4)
(2, 5, 7) (2, 6, 9) (2, 9, 6) (3, 4, 6) (3, 5, 9) (3, 9, 5)
(3, 7, 8) (3, 8, 7) (4, 7, 9) (4, 9, 7) (5, 6, 8) (5, 8, 6)

M10134.2

(0, 1, 8) (0, 9, 1) (0, 2, 5) (0, 7, 2) (0, 4, 3) (0, 3, 6)
(0, 6, 4) (0, 5, 7) (0, 8, 9) (1, 2, 3) (1, 3, 2) (1, 4, 5)
(1, 5, 4) (1, 6, 7) (1, 7, 6) (1, 9, 8) (2, 4, 8) (2, 8, 4)
(2, 7, 5) (2, 6, 9) (2, 9, 6) (3, 4, 6) (3, 5, 9) (3, 9, 5)
(3, 7, 8) (3, 8, 7) (4, 7, 9) (4, 9, 7) (5, 6, 8) (5, 8, 6)
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