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Vertex properties of maximum scattered linear
sets of PG(1, qn)

Corrado Zanella and Ferdinando Zullo ∗

Abstract

In this paper we investigate the geometric properties of the config-
uration consisting of a subspace Γ and a canonical subgeometry Σ in
PG(n−1, qn), with Γ∩Σ = ∅. The idea motivating is that such prop-
erties are reflected in the algebraic structure of the linear set which
is projection of Σ from the vertex Γ. In particular we deal with the
maximum scattered linear sets of the line PG(1, qn) found by Lunar-
don and Polverino in [27] and recently generalized by Sheekey in [37].
Our aim is to characterize this family by means of the properties of
the vertex of the projection as done by Csajbók and the first author
of this paper for linear sets of pseudoregulus type. With reference to
such properties, we construct new examples of scattered linear sets in
PG(1, q6), yielding also to new examples of MRD-codes in F

6×6
q with

left idealiser isomorphic to Fq6 .

AMS subject classification: 51E20, 05B25, 51E22

Keywords: Linear set, linearized polynomial, q-polynomial, finite projec-
tive line, subgeometry, scattered linear set

1 Introduction

Let Λ = PG(W,Fqn) = PG(1, qn), where W is a vector space of dimension 2
over Fqn . A point set L of Λ is said to be an Fq-linear set of Λ of rank ρ if it

∗The research was supported by the Italian National Group for Algebraic and Geometric
Structures and their Applications (GNSAGA - INdAM).
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is defined by the non-zero vectors of a ρ-dimensional Fq-vector subspace U
of W , i.e.

L = LU = {〈u〉Fqn
: u ∈ U \ {0}}.

Two linear sets LU and LW of PG(1, qn) are said to be PΓL-equivalent if
there is an element φ in PΓL(2, qn) such that Lφ

U = LW . It may happen that
two Fq–linear sets LU and LW of PG(1, qn) are PΓL-equivalent even if the
Fq-vector subspaces U and W are not in the same orbit of ΓL(2, qn) (see [12]
and [5] for further details).

Lunardon and Polverino in [28] (see also [26]) show that every linear set
is a projection of a canonical subgeometry, where a canonical subgeometry
in PG(m− 1, qn) is a linear set L of rank m such that 〈L〉 = PG(m− 1, qn)
(1). In particular, by [28, Theorems 1 and 2] (adapted to the projective line
case), for each Fq-linear set LU of the projective line Λ = PG(1, qn) of rank n
there exist a canonical subgeometry Σ ∼= PG(n−1, q) of Σ∗ = PG(n−1, qn),
and an (n− 3)-subspace Γ of Σ∗ disjoint from Σ and from Λ such that

LU = pΓ,Λ(Σ) = {〈Γ, P 〉 ∩ Λ: P ∈ Σ}.

We call Γ and Λ the vertex (or center) and the axis of the projection, re-
spectively.

In this paper we focus on maximum scattered Fq-linear sets of PG(1, qn),
that is, Fq-linear sets of rank n in PG(1, qn) of size (qn − 1)/(q − 1). In this
case, we also say that the related Fq-subspace is maximum scattered. Recall
that the weight of a point P = 〈u〉Fqn

is wLU
(P ) = dimFq

(U ∩ 〈u〉Fqn
). A

linear set LU is scattered if and only if each of its points has weight one.
If 〈(0, 1)〉Fqn

is not contained in the linear set LU of rank n of PG(1, qn)
(which we can always assume after a suitable projectivity), then U = Uf :=
{(x, f(x)) : x ∈ Fqn} for some linearized polynomial (or q-polynomial) f(x) =
∑n−1

i=0 aix
qi ∈ Fqn [x]. In this case we will denote the associated linear set by

Lf .
The first example of maximum scattered Fq-linear set, found by Blokhuis

and Lavrauw in [2], is known as linear sets of pseudoregulus type and can be
defined (see [25, Section 4]) as any linear set PΓL-equivalent to

L1 = {〈(x, xq)〉Fqn
: x ∈ F

∗
qn}.

1Angle brackets without the indication of a field will denote the projective span of a
set of points in a projective space.
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A characterization of the linear sets of pseudoregulus type has been given
by Csajbók and Zanella in [13] as particular projections of a canonical sub-
geometry (see Theorem 1.1).

Theorem 1.1. [13, Theorem 2.3] Let Σ be a canonical subgeometry of PG(n−
1, qn), q > 2, n ≥ 3. Assume that Γ and Λ are an (n − 3)-subspace and a
line of PG(n − 1, qn), respectively, such that Σ ∩ Γ = Λ ∩ Γ = ∅. Then the
following assertions are equivalent:

1. The set pΓ,Λ(Σ) is a scattered Fq-linear set of pseudoregulus type;

2. A generator σ̂ exists of the subgroup of PΓL(n, qn) fixing Σ pointwise,
such that dim(Γ ∩ Γσ̂) = n − 4; furthermore Γ is not contained in the
span of any hyperplane of Σ;

3. There exists a point PΓ and a generator σ̂ of the subgroup of PΓL(n, qn)
fixing Σ pointwise, such that 〈PΓ, P

σ̂
Γ , . . . , P

σ̂n−1

Γ 〉 = PG(n− 1, qn), and

Γ = 〈PΓ, P
σ̂
Γ , . . . , P

σ̂n−3

Γ 〉.

Few other families of maximum scattered linear sets of PG(1, qn) are
known, see [7, 11]. We will deal with the only remaining family of maximum
scattered linear sets existing for each value of n. Such a family has been
introduced by Lunardon and Polverino in [27] for s = 1 and generalized by
Sheekey in [37] and is defined as follows

Ln
s,δ = {〈(x, δxqs + xqn−s

)〉Fqn
: x ∈ F

∗
qn}, (1)

with n ≥ 4, Nqn/q(δ) /∈ {0, 1} (2) and (s, n) = 1. More generally, we will
call each linear set equivalent to a maximum scattered linear set of the form
(1), with δ 6= 0, of Lunardon-Polverino type (or shortly LP-type). For some
values of s, δ and n, Nqn/q(δ) /∈ {0, 1} is a necessary condition for Ln

s,δ to be
scattered, see Section 4. Up to our knowledge, no scattered Ln

s,δ is known
satisfying N(δ) = 1.

Our aim is to prove characterizations of maximum scattered linear sets of
LP-type in the spirit of the characterization of the linear sets of pseudoregulus
type, cf. Theorem 1.1. As a consequence, we will construct new examples
of maximum scattered linear sets in PG(1, q6). As showed in [37, Sect. 5],

2This condition implies q 6= 2.
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this also yields to new examples of MRD-codes in F
6×6
q with left idealiser

isomorphic to Fq6 [7, Proposition 6.1] (see also [9, 10, 38]), see last section
for more details on the connections with MRD-codes.

We will work in the following framework. Let x0, . . . , xn−1 be the homo-
geneous coordinates of PG(n− 1, qn) and let

Σ = {〈(x, xq, . . . , xqn−1

)〉Fqn
: x ∈ Fqn}

be a fixed canonical subgeometry of PG(n − 1, qn). The collineation σ̂ of
PG(n− 1, qn) defined by 〈(x0, . . . , xn−1)〉

σ̂
Fqn

= 〈(xq
n−1, x

q
0, . . . , x

q
n−2)〉Fqn

fixes

precisely the points of Σ. Note that if σ is a collineation of PG(n − 1, qn)
such that Fix(σ) = Σ, then σ = σ̂s, with (s, n) = 1.

2 Possible configurations of the vertex of the

projection

Following [19, Section 3], we are able to describe the structure of the vertex
of the projection, under certain assumptions regarding the dimension of the
intersections with some of its conjugates w.r.t. a collineation of PG(n−1, qn)
fixing the chosen subgeometry pointwise.

We start by recalling the following lemma.

Lemma 2.1. [23, Lemma 3] If S is a nonempty projective subspace of di-
mension k of PG(n− 1, qn) fixed by σ, then S meets Σ in an Fq-subspace of
dimension k. In particular, S ∩ Σ 6= ∅.

Since the vertex of the projection is disjoint from Σ, we have that dim(Γ∩
Γσ) ≤ dimΓ−1. We characterize the extremal case, i.e. when dim(Γ∩Γσ) =
dimΓ− 1.

Theorem 2.2. Let Γ be a subspace of PG(n−1, qn) of dimension k and such
that Γ ∩ Σ = ∅. If dim(Γ ∩ Γσ) = k − 1, then there exists exactly one point
P in PG(n− 1, qn) such that

Γ = 〈P, P σ, . . . , P σk

〉.

Furthermore, P σn−1
6∈ Γ.
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Proof. The hypotheses imply k ≥ 0. For k = 0, Γ is a point P . If P σn−1
∈ Γ,

then P ∈ Σ, a contradiction. The remaining statements are trivial for this
k.

Now suppose that the assertion is true for (k−1)-dimensional subspaces,
and k ≥ 1. Let denote by Ω = Γ∩Γσ. Clearly, 〈Ω,Ωσ〉 ⊆ Γσ and dimΓσ = k.
By our assumption, dimΩ = k − 1 and also dim(Ω ∩ Ωσ) = k − 2. Indeed,

dim(Ω ∩ Ωσ) = 2(k − 1)− dim〈Ω,Ωσ〉 ≥ 2k − 2− k = k − 2.

So,
k − 2 ≤ dim(Ω ∩ Ωσ) ≤ k − 1,

and since Ω 6= Ωσ, otherwise by Lemma 2.1 we should have Γ ∩ Σ 6= ∅, we
get dim(Ω ∩ Ωσ) = k − 2. Therefore, there exists a point P ′ ∈ Ω such that

Ω = Γ ∩ Γσ = 〈P ′, P ′σ, . . . , P ′σk−1

〉.

By induction hypothesis, P ′σn−1
/∈ Γ ∩ Γσ. So,

Γ = 〈P, P σ, . . . , P σk

〉,

with P = P ′σn−1
.

Regarding the uniqueness, if Γ = 〈Q,Qσ, . . . , Qσk

〉 for some point Q, then
Ω = 〈Qσ, . . . , Qσk

〉. By induction, this implies Qσ = P ′ above defined, and
Q = P .

Finally note that P σn−1
∈ Γ would imply Γσn−1

= Γ and Γ ∩ Σ 6= ∅, a
contradiction.

The next result follows for r = 1 from Theorem 2.2.

Theorem 2.3. Let Γ be a subspace of PG(n−1, qn) of dimension k ≥ 0 such
that Γ ∩ Σ = ∅, and dim(Γ ∩ Γσ) ≥ k − 2. Let r be the least positive integer
satisfying the condition

dim(Γ ∩ Γσ ∩ Γσ2

∩ . . . ∩ Γσr

) > k − 2r. (2)

Then there is a point P ∈ PG(n− 1, q) satisfying

(i) P , P σ, . . ., P σk−r+1
are independent points contained in Γ;

(ii) P σn−1
6∈ Γ.
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If r < (k+2)/2, then the point P satisfying conditions (i) and (ii) is unique.

We will call the integer r of the above statement the intersection number
of Γ w.r.t. σ and we will denote it by intnσ(Γ).

Proof. Preliminary remarks. Since σ is a collineation and since dim(Γ∩Γσ) ≥
k − 2, for any positive integer t it holds

dim(Γ ∩ Γσ ∩ . . . ∩ Γσt+1

) =

dimΓ + dim(Γσ ∩ . . . ∩ Γσt+1

)− dim
(

〈Γ ∪ (Γσ ∩ . . . ∩ Γσt+1

)〉
)

≥

dimΓ + dim(Γ ∩ . . . ∩ Γσt

)− dim (〈Γ ∪ Γσ〉) ≥ dim(Γ ∩ . . . ∩ Γσt

)− 2.

This implies dim(Γ∩ . . .∩Γσt

) = k−2t for any 0 ≤ t < r; so, taking t = r−1,
k−2(r−1) ≥ −1, that is r ≤ (k+3)/2. Furthermore, if dim(Γ∩. . .∩Γσt

) ≥ 0,
then

dim(Γ ∩ Γσ ∩ . . . ∩ Γσt+1

) ≤ dim(Γ ∩ . . . ∩ Γσt

)− 1, (3)

for otherwise Σ ∩ Γ ∩ . . . ∩ Γσt

6= ∅. This implies

dim(Γ ∩ Γσ ∩ Γσ2

∩ . . . ∩ Γσr

) = k − 2r + 1 for r 6=
k + 3

2
. (4)

Note that for r = k+3
2

then dim(Γ∩ Γσ ∩ Γσ2
∩ . . .∩ Γσr

) = k− 2r+ 2 = −1.
Existence of P , by induction on r. For r = 1, the assertion follows from

Theorem 2.2. Assume then that Theorem 2.3 holds (except possibly for the
uniqueness part) for r−1, and r ≥ 2. Let Ω = Γ∩Γσ and dimΩ = k−2 =: k′.
If k′ = −1, then the thesis is trivial.

Now suppose k′ ≥ 0. Then it holds

dim(Ω ∩ . . . ∩ Ωσt

) = k′ − 2t

for t < r − 1, whereas

dim(Ω ∩ . . . ∩ Ωσr−1

) > k′ − 2(r − 1) = k − 2r.

By induction hypothesis there is a point P ′ ∈ PG(n− 1, qn) satisfying

(A) P ′, P ′σ, . . . , P ′σk′−(r−1)+1
= P ′σk−r

are independent points;

(B) P ′, P ′σ, . . . , P ′σk−r

∈ Ω;
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(C) P ′σn−1
6∈ Ω.

Let P = P ′σn−1
. Then (B) implies that P , P σ, . . ., P σk−r+1

are points con-
tained in Γ; both (C) and (A) imply that they are independent. P σn−1

∈ Γ
would imply

P σr−2

, P σr−1

, . . . , P σk−r+1

∈ Γ ∩ Γσ ∩ . . . ∩ Γσr−1

,

contradicting dim(Γ ∩ Γσ ∩ . . . ∩ Γσr−1
) = k − 2r + 2.

Uniqueness of P . By the previous considerations it follows that there
exists at least one point P such that P , P σ, . . ., P σk−r+1

are independent
points contained in Γ. From (4) it follows that

Λ := Γ ∩ Γσ ∩ Γσ2

∩ . . . ∩ Γσr

= 〈P σr

, . . . , P σk−r+1

〉,

has dimension k−2r+1 > −1. Furthermore, dim(Λ∩Λσ) = k−2r, otherwise
Γ∩Σ 6= ∅. It follows that Λ satisfies the hypotheses of Theorem 2.2 and hence
the point P is unique.

Remark 2.4. It is clear that P is as in the previous result, it follows that

dimL(P ) ≥ k − r + 2,

where L(P ) = 〈P, P σ, . . . , P σn−1
〉.

Remark 2.5. A similar idea to the intersection number for a vertex of a
linear set has been presented in [34] (see also [19, 35]), where the authors
used sequences of the dimensions of certain intersections as invariants for
rank metric codes. See also the last section.

3 Characterization of linear sets of LP-type

3.1 Sufficient conditions

We are now ready to state sufficient conditions for a linear set to be of LP-
type. In the following we denote by N(−) the norm over Fq, for short.

Theorem 3.1. In PG(n − 1, qn), n ≥ 4, let Γ be a subspace of dimension
n − 3, Λ a line, and Σ ∼= PG(n − 1, q) a canonical subgeometry, such that
Γ ∩ Σ = ∅ = Γ ∩ Λ. Assume L = pΓ,Λ(Σ) is a scattered linear set of Λ. If

7



intnσ(Γ) = 2 for some generator σ of the subgroup of PΓL(n, qn) fixing Σ
pointwise, then there exists a unique point P such that

Γ = 〈P, P σ, . . . , P σn−4

, Q〉.

Furthermore, if the line 〈P σn−1
, P σn−3

〉 meets Γ, then L is of LP-type.

Proof. An integer s exists such that (s, n) = 1 and σ = σ̂s, i.e. the i-th
component (3) of 〈(x0, x1, . . . , xn−1)〉

σ
Fqn

is xqs

i+s, where i + s is seen modulo
n. By Theorem 2.3, there exist P and Q in Γ such that

Γ = 〈P, P σ, . . . , P σn−4

, Q〉.

Denote by R = P σn−2
, then

Γ = 〈Rσ2

, Rσ3

, . . . , Rσn−2

, Q〉,

and Q may be chosen in 〈Rσ, Rσn−1
〉. If dim〈R,Rσ, . . . , Rσn−1

〉 < n−1, then,
since Q ∈ 〈Rσ, Rσn−1

〉, it follows that

Γ ⊆ 〈R,Rσ, . . . , Rσn−1

〉,

i.e. Γ is contained in a subspace fixed by σ of dimension either n − 3 or
n − 2. In both the cases we get a contradiction because of intnσ(Γ) = 2.
So, dim〈R,Rσ, . . . , Rσn−1

〉 = n − 1, and by [3, Proposition 3.1] there exists
a linear collineation k fixing Σ such that Rk = 〈(1, 0, . . . , 0)〉Fqn

. Clearly,
Γk satisfies the same hypothesis as Γ, since k and σ commute. For these
reasons, we may assume that R = 〈(1, 0, . . . , 0)〉Fqn

. In particular, it follows

that the coordinates of Rσi

are eis (mod n), where ej is the vector whose j-th
component is one and all the others are zero. And by hypothesis we may
assume that Q = 〈es − δes(n−1)〉Fqn

. Hence we can choose as Λ = 〈R,Rσn−1
〉,

so Γ has equations x0 = 0, xs(n−1) = −δxs, and Λ is defined by xi = 0 for
i ∈ {s, . . . , s(n− 2)}.

Therefore,

L = pΓ,Λ(Σ) ≃ {〈(x, δxqs + xqs(n−1)

)〉Fqn
: x ∈ Fqn},

i.e. L is of LP-type.

3Starting to count from zero.
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Each linear set of LP-type Ln
s,δ (1) of PG(1, qn), with n ≥ 4 and (s, n) = 1,

can be realized as the projection of Σ choosing Γ and Λ as follows

Γ:

{

x0 = 0
xs(n−1) = −δxs

and Λ: xi = 0, i ∈ {s, . . . , s(n− 2)}.

Therefore, as a direct consequence of Theorem 3.1 we provide a characteri-
zation result of linear sets of LP-type.

Theorem 3.2. Let Σ be a canonical subgeometry of PG(n − 1, qn), q > 2
and n ≥ 4. Let L be a scattered linear set in Λ = PG(1, qn). Then L is a
linear set of LP-type if and only if

(i) there exists an (n − 3)-subspace Γ of PG(n − 1, qn) such that Γ ∩ Σ =
Γ ∩ Λ = ∅ and L = pΓ,Λ(Σ);

(ii) there exists a generator σ of the subgroup of PΓL(n, qn) fixing Σ point-
wise, such that intnσ(Γ) = 2;

(iii) there exist a unique point P ∈ PG(n − 1, qn) and some point Q such
that

Γ = 〈P, P σ, . . . , P σn−4

, Q〉;

(iv) the line 〈P σn−1
, P σn−3

〉 meets Γ.

3.2 Necessary conditions

Very recently, Csajbók, Marino and Polverino in [5] have investigated the
equivalence problem between Fq-linear sets of rank n on the projective line
PG(1, qn). The idea is first to study the ΓL(2, qn)-orbits of the subspace U
defining the linear set LU and then to study the equivalence between two
linear sets. More precisely, they give the following definition of ΓL-class (see
[5, Definitions 2.5]) of an Fq-linear set of a line.

Let LU be an Fq−linear set of PG(V,Fqn) = PG(1, qn) of rank n with
maximum field of linearity Fq (4).

We say that LU is of ΓL-class s if s is the greatest integer such that there
exist Fq-subspaces U1, . . . , Us of V with LUi

= LU for i ∈ {1, . . . , s} and there

is no f ∈ ΓL(2, qn) such that Ui = Uf
j for each i 6= j, i, j ∈ {1, 2, . . . , s}.

4The maximum field of linearity of an Fq-linear set LU as Fqℓ if ℓ is the largest integer
such that ℓ | n and LU is an Fqℓ -linear set.
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If LU is of ΓL-class one, then LU is said to be simple, i.e. when the
ΓL(2, qn)-orbit of U completely determine the PΓL(2, qn)-orbit of LU . For
n ≤ 4, any linear set in PG(1, qn) is simple [5, Theorem 4.5].

The ΓL-class of a linear set is a projective invariant (by [5, Proposition
2.6]) and play a crucial role in the study of linear sets up to equivalences.
Using these notions and by developing some new techniques, the authors in
[6] prove that in PG(1, q5) each Fq-linear set Lf of rank 5 and with maxi-
mum field of linearity Fq is of ΓL-class at most 2, proving also that if LU is
equivalent to Lf then U is ΓL-equivalent to either Uf or to U⊥

f = Uf̂ , where
the non-degenerate symmetric bilinear form of Fqn over Fq defined by

〈x, y〉 = Trqn/q(xy),

for each x, y ∈ Fqn is taken into account. Then the adjoint f̂ of the linearized

polynomial f(x) =

n−1
∑

i=0

aix
qi ∈ L̃n,q with respect to the bilinear form 〈, 〉 is

f̂(x) =
n−1
∑

i=0

aq
n−i

i xqn−i

,

i.e.
Trqn/q(xf(y)) = Trqn/q(yf̂(x)),

for each x, y ∈ Fqn .

For linear sets of LP-type the following is known.

Theorem 3.3. [6, 11] A maximum scattered linear set of LP-type

Ln
s,δ = Lf = {〈(x, δxqs + xqn−s

)〉Fqn
: x ∈ Fqn} ⊆ PG(1, qn),

with (s, n) = 1 and f(x) = δxqs + xqn−s

, is of ΓL-class less than or equal to
2 for n ∈ {5, 6, 8}. Furthermore, LU is equivalent to L if and only if U is
ΓL(2, qn)-equivalent to either Uf or to U⊥

f = Uf̂ .

Furthermore, in [5, 40], it has been shown that there are maximum scat-
tered linear sets of LP-type of both ΓL-classes one and two.

For our purpose it is important to look to the ΓL-class in a more geometric
way. The following result has been stated in [5, Section 5.2] as a consequence
of [12, Theorems 6 & 7].
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Theorem 3.4. The ΓL-class of LU is the number of orbits in Stab(Σ) of
(n− 3)-subspaces of PG(n− 1, qn) containing a Γ disjoint from Σ and from
Λ such that pΓ,Λ(Σ) is equivalent to LU .

As a consequence of Theorems 3.3 and 3.4, we have the following charac-
terization for linear sets of LP-type.

Theorem 3.5. Let L be a maximum scattered linear set in Λ = PG(1, qn)
with n ≤ 6 or n = 8. Then L is a linear set of LP-type if and only if for
each (n−3)-subspace Γ of PG(n−1, qn) such that L = pΓ,Λ(Σ), the following
holds:

(i) there exists a generator σ of the subgroup of PΓL(n, qn) fixing Σ point-
wise, such that intnσ(Γ) = 2;

(ii) if P is the unique point of PG(n− 1, qn) such that

Γ = 〈P, P σ, . . . , P σn−4

, Q〉,

then the line 〈P σn−1
, P σn−3

〉 meets Γ.

Proof. Because of Theorem 3.3 and [5, Theorem 4.5], if n ≤ 6 or n = 8, then
the two (possibly) not ΓL(2, qn)-equivalent representation for a linear set of
LP-type (1) are

Uδxqs+xqn−s and Uδqn−sxqn−s+xqs .

Therefore, by Theorem 3.4 we have that all the possible vertices of the pro-
jections to obtain a linear set of LP-type satisfy the hypothesis of Theorem
3.2 and the assertion then follows.

Remark 3.6. Note that Theorem 3.5 guarantees that each vertex of the pro-
jection of a linear set of LP-type satisfies conditions (i) and (ii), whereas
Theorem 3.2 asserts the existence of a vertex of the projection of a linear set
of LP-type satisfying these conditions.

As we will see in Section 5, this result may turn out to be useful to
construct new examples of maximum scattered linear sets in PG(1, qn).
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4 A purely geometric description for odd n

The next lemma proves that, for n odd, the only scattered linear sets of
LP-type are exactly those described by Lunardon and Polverino in [27] and
Sheekey [37].

Lemma 4.1. Let L := {〈(x, δxqs + xqn−s

)〉Fqn
: x ∈ Fqn} ⊆ PG(1, qn), with

(s, n) = 1, and let n > 3 be odd. Then L is scattered if and only if N(δ) 6= 1.

Proof. We only have to prove that if N(δ) = 1, then L cannot be scattered.
The linear set L is scattered if and only if in the following set of polynomials

A = {αx+ δxqs + xqn−s

: α ∈ Fqn}

there are no polynomials with more than q roots, for otherwise there would be
a point 〈(1,−α)〉Fqn

of weight greater than one. Equivalently in the following
set of polynomials

A′ = {fα(x) = δ−1x+ αxqs + xq2s : α ∈ Fqn}

there are no polynomials with more than q roots. For any ξ ∈ F
∗
qn with

N(ξ) = 1, the polynomial

fα(x) ◦ ξx

ξq2s
= δ−1ξ1−q2sx+ αξq

s−q2sxqs + xq2s (5)

has the same number of roots of fα(x). Note that since n is odd, for any
m ∈ Fqn such that N(m) = 1 there is ξ ∈ Fqn such that m = ξ1−q2s. Taking
into account N(δ) = 1, this implies that for any polynomial of the form
P (x) = γx + βxqs + xq2s , with γ, β ∈ Fqn and N(γ) = 1, there are α and
ξ ∈ Fqn such that (5) coincides with P (x). This is a contradiction, since
there exist polynomials of type γx+βxqs +xq2s , N(γ) = 1, with q2 roots, e.g.

1

uqsvq2s − uq2svqs
det





x xqs xq2s

u uqs uq2s

v vq
s

vq
2s





where u, v ∈ Fqn are Fq-linearly independent.

The previous lemma was already proved for n = 4 in [14] and for s = 1
in [1].
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Theorem 4.2. Let Γ be a subspace of PG(n − 1, qn), n odd, of dimension
n− 3 ≥ 2, and Σ ∼= PG(n− 1, q) a canonical subgeometry of PG(n− 1, qn),
such that Γ ∩ Σ = ∅. Assume that a generator σ exists of the subgroup of
PΓL(n, qn) fixing Σ pointwise, such that intnσ(Γ) = 2. Then there exists a
point R ∈ PG(n− 1, qn) such that

Rσ2

, Rσ3

, . . . , Rσn−2

∈ Γ.

Furthermore assume that 〈Rσ, Rσn−1
〉 and Γ meet in a point Q and Rσ 6=

Q 6= Rσn−1
. Let Q′ be the point such that the pair {Rσ, Rσn−1

} separates
{Q,Q′} harmonically. Such Q′ is defined by the property that there are two
representative vectors v0 and v1 for Rσ and Rσn−1

, respectively, such that
〈v0+ v1〉Fqn

= Q, 〈v0− v1〉Fqn
= Q′. Under the assumptions above, the linear

set L = pΓ,Λ(Σ), with Λ a line disjoint from Γ, is a maximum scattered linear
set of LP-type if and only if

Σ ∩ 〈R,Rσ2

, Rσ3

, . . . , Rσn−2

, Q′〉 = ∅. (6)

Proof. As in Theorem 3.1 it may be assumed that the coordinates of Q
are xs = 1, xs(n−1) = −δ ∈ F

∗
qn, xi = 0 otherwise. The coordinates of

Q′ are xs = 1, xs(n−1) = δ ∈ F
∗
qn, xi = 0 otherwise. The span W =

〈R,Rσ2
, Rσ3

, . . . , Rσn−2
, Q′〉 and Rσ are complementary subspaces of PG(n−

1, qn). So, W is a hyperplane and its equation is −δxs+xs(n−1) = 0. A point

〈(u, uq, . . . , uq(n−1))〉Fqn
of Σ belongs to W if and only if −δuqs + uqs(n−1)

= 0,
equivalent to

δ = uqs(qs(n−2)−1). (7)

Since n is odd, s(n − 2) is coprime with n. This implies that an u ∈ F
∗
qn

exists satisfying (7) if and only if N(δ) = 1, which is a contradiction because
of Lemma 4.1.

5 New constructions

In this section we will deal with the following family of linear sets

L := {〈(x, xq−xq2 +xq4 +xq5)〉F
q6
: x ∈ F

∗
q6} ⊆ PG(1, q6), q ≡ 1 (mod 4).

We will show that for some choices of q we may get new examples of maximum
scattered linear sets. This family of linear sets can be obtained by projecting

13



the canonical subgeometry Σ = {〈(x, xq, xq2 , xq3 , xq4, xq5)〉F
q6
: x ∈ F

∗
q6} from

Γ:

{

x0 = 0
x5 = −x4 − x1 + x2

to

Λ:















x1 = 0
x2 = 0
x3 = 0
x4 = 0.

Let us consider σ ∈ PΓL(6, q6) defined as

(

〈(x0, x1, x2, x2, x4, x5)〉F
q6

)σ

= 〈(xq
5, x

q
0, x

q
1, x

q
2, x

q
3, x

q
4)〉Fq6

and σ := σ5, which are the two generators of the subgroup of PΓL(6, q6)
fixing Σ pointwise. Then

Γσ :

{

x1 = 0
x0 = −x5 − x2 + x3

and Γσ2

:

{

x2 = 0
x1 = −x0 − x3 + x4.

Therefore,

Γ ∩ Γσ :















x0 = 0
x1 = 0
x4 = 2x2 − x3

x5 = −x2 + x3

and Γ ∩ Γσ ∩ Γσ2

= ∅.

Hence, dimF
q6
(Γ ∩ Γσ) = 1 and since q is odd dimF

q6
(Γ ∩ Γσ ∩ Γσ2

) = −1.

Since Γ∩ Γσ = (Γ∩ Γσ)σ
5
and Γ∩ Γσ ∩ Γσ2

= (Γ∩ Γσ ∩ Γσ2
)σ

4
, we have that

dimF
q6
(Γ ∩ Γσ) = 1 and dimF

q6
(Γ ∩ Γσ ∩ Γσ2

) = −1. Therefore,

intnσ(Γ) = intnσ(Γ) = 3.

This implies the non-equivalence of L with the linear set of pseudoregulus
type and also it cannot be of LP-type because of Theorem 3.5.

Computational results show that for q ≡ 1 (mod 4) the linear set L is
maximum scattered for q ≤ 29. We show that for q ≤ 17 and q 6≡ 0 (mod 5)
it is also new. For q ≡ 0 (mod 5) we will prove in Proposition 5.5 that L is
equivalent to the linear set defined in [11].
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5.1 Known examples of maximum scattered linear sets
in PG(1, q6)

In order to decide whether the linear set L is new, we describe the known
maximum scattered linear sets in PG(1, q6).

We start by listing the non-equivalent (under the action of ΓL(2, q6)) max-
imum scattered subspaces of F2

q6 , i.e. subspaces defining maximum scattered
linear sets.

Example 5.1. 1. U1 := {(x, xq) : x ∈ Fq6}, see [2, 13];

2. U2
δ := {(x, δxq + xq5) : x ∈ Fq6}, Nq6/q(δ) /∈ {0, 1} 5, see [27, 29, 37];

3. U3
δ := {(x, δxq + xq4) : x ∈ Fq6}, Nq6/q3(δ) /∈ {0, 1}, satisfying further

conditions on δ and q, see [7, Theorems 7.1 and 7.2] 6;

4. U4
δ := {(x, xq+xq3 +δxq5) : x ∈ Fq6}, q odd and δ2+δ = 1, see [11, 31].

In order to simplify the notation, we will denote by L1 and Li
δ the Fq-

linear set defined by U1 and U i
δ, respectively. Therefore, L

2
δ = L6

s,δ as defined
in (1). We will also use the following notation: U := Uxq−xq2+xq4+xq5 .

In [11, Propositions 3.1, 4.1 & 5.5] the following result has been proved.

Lemma 5.2. Let Lf be one of the maximum scattered of PG(1, q6) listed
before. Then a linear set LU of PG(1, q6) is PΓL-equivalent to Lf if and only
if U is ΓL-equivalent either to Uf or to Uf̂ . Furthermore, the linear set L3

δ

is simple.

The previous lemma includes results on linear sets of LP-type.

Remark 5.3. If Uf is an Fq-subspace of type 1. or 2. above, then Uf̂ and Uf

are ΓL-equivalent. By Lemma 5.2, this holds also for Fq-subspaces of type 3.

5.2 The linear set L

Here we deal with the equivalence issue between the linear sets defined by
Example 5.1 and the linear set L. As already noted, we just have to check
the equivalence with the linear sets L3

δ and with L4
δ defined by the subspaces

3. and 4. in Example 5.1, because of the construction of L and Theorems
1.1 and 3.5.

5This condition implies q 6= 2.
6Also here q > 2, otherwise it is not scattered.
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Proposition 5.4. The linear set L is not PΓL-equivalent to L3
δ.

Proof. By Lemma 5.2, we have to check whether U and U3
δ are ΓL-equivalent,

with Nq6/q3(δ) /∈ {0, 1}. Suppose that there exist σ ∈ Aut(Fq6) and an

invertible matrix

(

a b
c d

)

such that for each x ∈ Fq6 there exists z ∈ Fq6

satisfying

(

a b
c d

)(

xσ

xσq − xσq2 + xσq4 + xσq5

)

=

(

z

δzq + zq
4

)

.

Equivalently, for each x ∈ Fq6 we have

cxσ + d(xσq − xσq2 + xσq4 + xσq5) = δ[aqxσq+

+bq(xσq2 − xσq3 + xσq5 + xσ)] + aq
4

xσq4 + bq
4

(xσq5 − xσ + xσq2 + xσq3).

This is a polynomial identity in xσ and hence we have the following relations:


































c = δbq − bq
4

d = δaq

−d = δbq + bq
4

0 = −δbq + bq
4

d = aq
4

d = δbq + bq
4
.

(8)

From the second and the fifth equations, if a 6= 0 then δ = (aq)q
3−1 and

so Nq6/q3(δ) = 1, which is not possible. So a = 0 and then d = 0. Hence we

have δbq + bq
4
= 0 and −δbq + bq

4
= 0, from which we get b = 0, which is not

possible. Therefore, L is not equivalent to L3
δ .

Proposition 5.5. The linear set L is PΓL-equivalent to L4
δ, for q odd and

δ2 + δ = 1, if and only if there exist a, b, c, d ∈ Fq6 such that ad− bc 6= 0 and
either



































c = bq + δbq
5

d = aq + bq
3
− δbq

5

−d = bq + bq
3

0 = −bq + aq
3
+ δbq

5

d = bq
3
+ δbq

5

d = bq − bq
3
+ δaq

5
,

(9)
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or


































c = δbq + bq
5

d = δaq + bq
3
− bq

5

−d = δbq + bq
3

0 = −δbq + aq
3
+ bq

5

d = bq
3
+ bq

5

d = δbq − bq
3
+ aq

5
.

(10)

In particular, when q ≡ 0 (mod 5) the linear set L is PΓL-equivalent to L4
2.

Proof. By Lemma 5.2 we have to check whether U is equivalent either to U4
δ

or to (U4
δ )

⊥. Suppose that there exist σ ∈ Aut(Fq6) and an invertible matrix
(

a b
c d

)

such that for each x ∈ Fq6 there exists z ∈ Fq6 satisfying

(

a b
c d

)(

xσ

xσq − xσq2 + xσq4 + xσq5

)

=

(

z

zq + zq
3
+ δzq

5

)

.

Equivalently, for each x ∈ Fq6 we have

cxσ + d(xσq − xσq2 + xσq4 + xσq5) = aqxσq + bq(xσq2 − xσq3 + xσq5 + xσ)+

+aq
3

xσq3 + bq
3

(xσq4 − xσq5 + xσq + xσq2)+

+δ[aq
5

xσq5 + bq
5

(xσ − xσq + xσq3 + xσq4)].

This is a polynomial identity in xσ and hence we have the Equations (9).
Now, suppose that there exist σ ∈ Aut(Fq6) and an invertible matrix

(

a b
c d

)

such that for each x ∈ Fq6 there exists z ∈ Fq6 satisfying

(

a b
c d

)(

xσ

xσq − xσq2 + xσq4 + xσq5

)

=

(

z

δzq + zq
3
+ zq

5

)

.

As before, we get the Relations (10).
The second part follows from the fact that for q ≡ 0 (mod 5), δ = 2,

a = −1, b = 1, c = 3 and d = 3 satisfy (9).

Thanks to GAP computations we are able to prove that the Systems (9)
and (10) have no solutions in a, b, c and d (ac− bd 6= 0) for q ≤ 17 and q 6≡ 0
(mod 5). Therefore, we have the following result.
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Corollary 5.6. If q ≤ 17, q ≡ 1 (mod 4), q 6= 5, then L is a maximum scat-
tered linear set of PG(1, q6) not equivalent to any of those listed in Example
5.1.

Recall that L is computationally proved to be scattered for q ≤ 29, q ≡ 1
(mod 4).

We conclude this section proposing the following conjecture.

Conjecture 5.7. The linear set L is a new maximum scattered linear set of
PG(1, q6) for each q such that q ≡ 1 (mod 4) and q 6≡ 0 (mod 5).

6 MRD-codes and scattered Fq-subspaces

The most natural way to look to the connection between maximum scat-
tered linear sets and MRD-codes is through the Fq-subspaces defining such
linear sets, i.e. maximum scattered Fq-subspaces. We briefly recall some
basic definitions and results on rank metric codes, that have been inten-
sively investigated for their applications in cryptography, space-time coding
and distributed storage and for their links with remarkable geometric and
algebraic objects (see e.g. [1, 18, 15, 30, 36, 39]).

In 1978, Delsarte [16] introduced rank metric codes as follows. The set
of m × n matrices Fm×n

q over Fq is a rank metric Fq-space with rank metric
distance defined by

d(A,B) = rk (A−B)

for A,B ∈ F
m×n
q . A subset C ⊆ F

m×n
q is called a rank metric code (or RM -

code for short). The minimum distance of C is

d = min{d(A,B) : A,B ∈ C, A 6= B}.

We are interested in Fq-linear RM-codes, i.e. for which C is an Fq-linear
subspace of Fm×n

q . We will say that such a code has parameters (m,n, q; d).
In [16], Delsarte also showed that the parameters of these codes must fulfill
a Singleton-like bound, i.e.

| C | ≤ qmax{m,n}(min{m,n}−d+1).

When the equality holds, we call C maximum rank distance (MRD for short)
code.
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From now on, we will only consider Fq-linear RM-codes of Fn×n
q , i.e. those

which can be identified with Fq-subspaces of EndFq
(Fqn). Since EndFq

(Fqn)
is isomorphic to the ring of q-polynomials over Fqn modulo xqn − x, denoted
by Ln,q, with addition and composition as operations, we will consider C
as an Fq-subspace of Ln,q. Given two Fq-linear RM-codes, C1 and C2, they
are equivalent if and only if there exist ϕ1, ϕ2 ∈ Ln,q permuting Fqn and
ρ ∈ Aut(Fq) such that

ϕ1 ◦ f
ρ ◦ ϕ2 ∈ C2 for all f ∈ C1,

where ◦ stands for the composition of maps and f ρ(x) =
∑

f ρ
i x

qi for f(x) =
∑

fix
qi . For a rank metric code C given by a set of linearized polynomials,

its left and right idealisers can be defined as:

L(C) = {ϕ ∈ Ln,q : ϕ ◦ f ∈ C for all f ∈ C},

R(C) = {ϕ ∈ Ln,q : f ◦ ϕ ∈ C for all f ∈ C}.

If L(C) has maximum cardinality qn, then we may always assume (up to
equivalence) that

L(C) = Fn = {τα = αx : α ∈ Fqn} ≃ Fqn;

the same holds for the right idealiser, see [7, Theorem 6.1] and [8, Theorem
2.2]. Hence, when the left idealiser is Fn, C results to be closed with respect
to the left composition with the Fqn-linear maps; while if the right idealiser is
Fn, then C is closed with respect to the right composition with the Fqn-linear
maps. For this reason, when L(C) (resp. R(C)) is equal to Fn we say that C
is Fqn-linear on the left (resp. right) (or simply Fqn-linear if it is clear from
the context).

The notion of Delsarte dual code can be written in terms of q-polynomials
as follows, see for example [29, Section 2]. Let b : Ln,q × Ln,q → Fq be the
bilinear form given by

b(f, g) = Trqn/q

(

n−1
∑

i=0

figi

)

where f(x) =
n−1
∑

i=0

fix
qi and g(x) =

n−1
∑

i=0

gix
qi , and Trqn/q is the trace function

Fqn → Fq. The Delsarte dual code C⊥ of a set of q-polynomials C is

C⊥ = {f ∈ Ln,q : b(f, g) = 0, ∀g ∈ C}.

19



Only few families of MRD-codes are known, due to the results in [1, 4, 33].
In [16], Delsarte gives the first construction for linear MRD-codes (he calls
such sets Singleton systems) from the perspective of bilinear forms. Few
years later, Gabidulin in [17, Section 4] presents the same class of MRD-codes
by using linearized polynomials. Although these codes have been originally
discovered by Delsarte, they are called Gabidulin codes. Kshevetskiy and
Gabidulin in [21] generalize the previous construction obtaining the so-called
generalized Gabidulin codes

Gk,s = 〈x, xqs, . . . , xqs(k−1)

〉Fqn
,

with gcd(s, n) = 1 and k ≤ n − 1. The RM-code Gk,s is an Fq-linear MRD-
code with parameters (n, n, q;n−k+1) and L(Gk,s) = R(Gk,s) ≃ Fqn , see [22,
Lemma 4.1 & Theorem 4.5]. Note that, as proved in [17, 21], this family is
closed with respect to the Delsarte duality, more precisely G⊥

k,s is equivalent
to Gn−k,s. This family of MRD-codes has been characterized by Horlemann-
Trautmann and Marshall in [20] as follows.

Theorem 6.1. [20, Theorem 4.8] An Fqn-linear MRD-code C ⊆ Ln,q having
dimension k (over Fqn) is equivalent to a generalized Gabidulin code Gk,s if
and only if there is an integer s < n with gcd(s, n) = 1 and dimFqn

(C∩C[s]) =

k − 1, where C[s] = {f(x)q
s

: f ∈ C}.

Very recently, Neri in [32] removed the hypothesis on C to be an MRD-
code.

Sheekey in [37] proves that with gcd(s, n) = 1, the set

Hk,s(η, h) = {a0x+ a1x
qs + . . .+ ak−1x

qs(k−1)

+ aq
h

0 ηxqsk : ai ∈ Fqn},

with k ≤ n − 1 and η ∈ Fqn such that Nqn/q(η) 6= (−1)nk, is an Fq-linear
MRD-code of dimension nk with parameters (n, n, q;n−k+1). This code is
called generalized twisted Gabidulin code. Lunardon, Trombetti and Zhou in
[29], generalizing the results of [37], determined the automorphism group of
the generalized twisted Gabidulin codes and proved that, up to equivalence,
the generalized Gabidulin codes and the twisted Gabidulin codes are both
proper subsets of this class. Clearly, for η = 0 we have exactly the generalized
Gabidulin code Gk,s. Also, the authors in [29, Corollary 5.2] determined the
left and right idealisers: if η 6= 0, then

L(Hk,s(η, h)) ≃ Fqgcd(n,h) and R(Hk,s(η, h)) ≃ Fqgcd(n,sk−h) . (11)
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The class of generalized twisted Gabidulin codes is closed with respect to the
Delsarte duality, more precisely Hk,s(η, h)

⊥ is equivalent toHn−k,s(−η, n−h),
[37, Theorem 6] and [29, Propositions 4.2]. We are interested in the case when
h = 0, i.e.

Hk,s(η) := Hk,s(η, 0) = 〈x+ ηxqsk , xqs, . . . , xqs(k−1)

〉Fqn
,

which is Fqn-linear (more precisely it is an Fq-linear MRD-code Fqn-linear on
the left). This family has been characterized in [19].

Theorem 6.2. [19, Theorem 3.9] Let C ⊆ Ln,q be an Fqn-linear MRD-code
having dimension k > 2. Then, the code C is equivalent to a generalized
twisted Gabidulin code if and only if there exists an integer s such that
gcd(s, n) = 1 and such that the following two conditions hold

1. dim(C ∩ C[s]) = k − 2 and dim(C ∩ C[s] ∩ C[2s]) = k − 3, i.e. there exist
p(x), q(x) ∈ C such that

C = 〈p(x)q
s

, p(x)q
2s

, . . . , p(x)q
s(k−1)

〉Fqn
⊕ 〈q(x)〉Fqn

;

2. p(x) is invertible and there exists η ∈ F
∗
qn such that p(x)+ηp(x)q

sk

∈ C.

Apart from the two infinite families of Fqn-linear MRD-codes (i.e. Gk,s

and Hk,s(η)), there are few other examples known for n ∈ {6, 7, 8}, which
arise from the connection with scattered linear sets we are going to explain.

In [37, Section 5] Sheekey showed that scattered Fq-subspaces of Fqn×Fqn

of dimension n yield Fq-linear MRD-codes with parameters (n, n, q;n − 1)
with left idealiser isomorphic to Fqn; see [9, 10, 38] for further details on
such kind of connections. Let us recall the construction from [37]. Let
Uf := {(x, f(x)) : x ∈ Fqn} be a scattered Fq-subspace of Fqn × Fqn. The set

Cf := 〈x, f(x)〉Fqn

corresponds to a set of n × n matrices over Fq forming an Fq-linear MRD-
code with parameters (n, n, q;n − 1). Also, since Cf is an Fqn-subspace of
Ln,q, its left idealiser L(Cf) is isomorphic to Fqn . For further details see
[7, Section 6]. Furthermore, let Cf and Ch be two MRD-codes arising from
maximum scattered subspaces Uf and Uh of Fqn × Fqn. In [37, Theorem 8]
the author showed that there exist invertible matrices A, B and σ ∈ Aut(Fq)
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such that A Cσ
f B = Ch if and only if Uf and Uh are ΓL(2, qn)-equivalent, i.e.

he proved that the equivalence of the rank metric codes coincides with the
ΓL-equivalence of the corresponding subspaces.

As a consequence we get the following result.

Theorem 6.3. If q ≤ 17, q ≡ 1 (mod 4) and q 6= 5, then the RM-code
C = 〈x, xq − xq2 + xq4 + xq5〉F

q6
is an Fq-linear MRD-code with parameters

(6, 6, q; 5) and left idealiser isomorphic to Fq6, and is not equivalent to any
previously known MRD-code.

Proof. From [7, Section 6], the previously known Fq-linear MRD-codes with
parameters (6, 6, q; 5) and with left idealiser isomorphic to Fq6 arise, up to
equivalence, from one of the maximum scattered subspaces of Fq6 × Fq6 de-
scribed in Section 5.1. From Corollary 5.6 the result then follows.

6.1 Scattered linear sets and MRD-codes

Lunardon in [24, Section 3] (see also [38, Theorem 3.4] and [10, Section 4.1])
proved that if Uf = {(x, f(x)) : x ∈ Fqn}, with f(x) = a0x + a1x

q + . . . +
an−1x

qn−1
, is a scattered7

Fq-subspace of Fqn × Fqn, then it can be obtained
as a special quotient. By [37, Section 5], it follows that

Cf = 〈x, f(x)〉Fqn
,

is an MRD-code. We may assume that the coefficient of x in f(x) is zero and
f(x) = xqk +

∑

j 6=k bjx
qj . Denoting with {i1, . . . , in−2} = {1, . . . , k − 1, k +

1, . . . , n− 1} and

hij (x) = xqij − bijx
qk , j = 1, . . . , n− 2,

it is straightforward to see that

C⊥ = 〈hi1(x), . . . , hin−2(x)〉Fqn
.

We can embed Uf in F
n
qn in such a way that the vector (x, f(x)) corre-

sponds to the vector (a0, . . . , an−1) ∈ F
n
qn with ai = 0 if i 6= 0, k, a0 = x

and ak = f(x). Note that W = 〈Uf〉Fqn
corresponds to the 2-dimensional

subspace with equations xj = 0 where j 6= 0, k.

7The statement is more general, we have adapted it to our case.
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Let V be the Fqn-subspace of Fn
qn of dimension n− 2 represented by the

equations

V :

{

x0 = 0
xk = −

∑

j 6=0,k bjxj
,

and let S = {(x, xq, . . . , xqn−1
) : x ∈ Fqn}. Note that

V = cN (C⊥), (12)

where cN (α0x+. . .+αn−1x
qn−1

) = (α0, . . . , αn−1). It can be seen that V ∩S =
{0} and

Uf = 〈V, S〉Fq
∩W. (13)

This link suggests a new proof of the equivalence between the assertions
1. and 2. of Theorem 1.1. In the following we will assume that L = Lf is a
scattered linear set of PG(1, qn) with rank n.

Proof. (Theorem 1.1) Assume that Lf is of pseudoregulus type, then by [12]
we have that if LU = Lf then U is ΓL(2, qn)-equivalent to

Us = {(x, xqs) : x ∈ Fqn}. with gcd(s, n) = 1 and s < n/2.

Therefore if U = Us, then Us = 〈V, S〉Fq
∩W , with

V :

{

x0 = 0
xs = 0

and W : xi = 0 for i 6= 0, s,

i.e. Lf = pΓ,Λ(Σ) with Γ = PG(V,Fqn) = PG(n − 3, qn), Σ = PG(S,Fq) =
PG(n−1, q) and Λ = PG(W,Fqn) = PG(1, qn). Denote by σ the collineation
of PG(n − 1, qn) defined by 〈(x0, . . . , xn−1)〉

σ
Fqn

= 〈(xq
n−1, x

q
0, . . . , x

q
n−2)〉Fqn

,

which fixes precisely the points of Σ. Therefore, we have that dim(Γ∩Γσs

) =
n − 4 and clearly σs is a generator of the subgroup of PΓL(n, qn) fixing Σ
pointwise.

Conversely, let L = pΓ,Λ(Σ) with dim(Γ ∩ Γσs

) = n − 4, gcd(s, n) = 1,
Γ = PG(V,Fqn) = PG(n − 3, qn), Σ = PG(S,Fq) = PG(n− 1, q). Note that
V = cN (C) with

C = 〈g1(x), . . . , gn−2(x)〉Fqn
,

for some linearized polynomials g1(x), . . . , gn−2(x). It follows that

V :

{

a0x0 + . . .+ an−1xn−1 = 0
a′0x0 + . . .+ a′n−1xn−1 = 0

,
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where C⊥ = 〈f1(x), f2(x)〉Fqn
and

f1(x) = a0x+ . . .+ an−1x
qn−1

,

f2(x) = a′0x+ . . .+ a′n−1x
qn−1

.

We may assume that aj = a′k = 1 and ak = a′j = 0 for some j 6= k, choose W
as the Fqn-subspace having equations xi = 0 for i 6= j, k. Therefore, we have

(V + S) ∩W ≃ U := {(f1(x), f2(x)) : x ∈ Fqn}.

So, L = LU and U results to be a scattered Fq-subspace of Fqn × Fqn , i.e.
by [37, Section 5] C⊥ is an MRD-code. It follows that C is an MRD-code
with dimFqn

C = n − 2 and dimFqn
(C ∩ C[s]) = n − 3. By Theorem 6.1, C is

equivalent to Gn−2,s. It follows that U is ΓL(2, qn)-equivalent to Us and hence
L is of pseudoregulus type.

In [32], Neri gives a characterization of generalized Gabidulin codes using
the standard form of their generator matrix. This suggests a further different
approach to the characterization of linear sets of pseudoregulus type.

For linear sets of LP-type, as done for the pseudoregulus case, it follows
that one of the possible Fq-subspaces representing a linear set of LP-type can
be obtained as in (13), choosing V in such a way that V = cN (Hn−2,s(η)).
Since a characterization of generalized twisted Gabidulin codes is known, see
Theorem 6.2 with k = n − 2, it follows that a scattered linear set L is of
LP-type if and only if there exists an Fq-subspace U of Fqn × Fqn such that
LU = L, where U is as in (13) and the rank-metric code associated to V
satisfies the hypothesis of Theorem 6.2 with k = n − 2. In contrast to the
above characterization, those presented in the previous sections are purely
geometric and take into account the problem of the possible Fq-subspaces
representing a linear set of LP-type.
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